blob: f516be381aff005f762f9e2dc9ede2f2ec6e6d95 [file] [log] [blame]
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001//===--- HexagonBitSimplify.cpp -------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexbit"
11
Mehdi Aminib550cb12016-04-18 09:17:29 +000012#include "HexagonBitTracker.h"
13#include "HexagonTargetMachine.h"
Krzysztof Parzyszekced99412015-10-20 22:57:13 +000014#include "llvm/CodeGen/MachineDominators.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
Mehdi Aminib550cb12016-04-18 09:17:29 +000018#include "llvm/CodeGen/Passes.h"
Krzysztof Parzyszekced99412015-10-20 22:57:13 +000019#include "llvm/Support/Debug.h"
20#include "llvm/Support/raw_ostream.h"
Krzysztof Parzyszekced99412015-10-20 22:57:13 +000021#include "llvm/Target/TargetInstrInfo.h"
Mehdi Aminib550cb12016-04-18 09:17:29 +000022#include "llvm/Target/TargetMachine.h"
Krzysztof Parzyszekced99412015-10-20 22:57:13 +000023
24using namespace llvm;
25
26namespace llvm {
27 void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
28 FunctionPass *createHexagonBitSimplify();
29}
30
31namespace {
32 // Set of virtual registers, based on BitVector.
33 struct RegisterSet : private BitVector {
34 RegisterSet() : BitVector() {}
35 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
36 RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
37
38 using BitVector::clear;
39 using BitVector::count;
40
41 unsigned find_first() const {
42 int First = BitVector::find_first();
43 if (First < 0)
44 return 0;
45 return x2v(First);
46 }
47
48 unsigned find_next(unsigned Prev) const {
49 int Next = BitVector::find_next(v2x(Prev));
50 if (Next < 0)
51 return 0;
52 return x2v(Next);
53 }
54
55 RegisterSet &insert(unsigned R) {
56 unsigned Idx = v2x(R);
57 ensure(Idx);
58 return static_cast<RegisterSet&>(BitVector::set(Idx));
59 }
60 RegisterSet &remove(unsigned R) {
61 unsigned Idx = v2x(R);
62 if (Idx >= size())
63 return *this;
64 return static_cast<RegisterSet&>(BitVector::reset(Idx));
65 }
66
67 RegisterSet &insert(const RegisterSet &Rs) {
68 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
69 }
70 RegisterSet &remove(const RegisterSet &Rs) {
71 return static_cast<RegisterSet&>(BitVector::reset(Rs));
72 }
73
74 reference operator[](unsigned R) {
75 unsigned Idx = v2x(R);
76 ensure(Idx);
77 return BitVector::operator[](Idx);
78 }
79 bool operator[](unsigned R) const {
80 unsigned Idx = v2x(R);
81 assert(Idx < size());
82 return BitVector::operator[](Idx);
83 }
84 bool has(unsigned R) const {
85 unsigned Idx = v2x(R);
86 if (Idx >= size())
87 return false;
88 return BitVector::test(Idx);
89 }
90
91 bool empty() const {
92 return !BitVector::any();
93 }
94 bool includes(const RegisterSet &Rs) const {
95 // A.BitVector::test(B) <=> A-B != {}
96 return !Rs.BitVector::test(*this);
97 }
98 bool intersects(const RegisterSet &Rs) const {
99 return BitVector::anyCommon(Rs);
100 }
101
102 private:
103 void ensure(unsigned Idx) {
104 if (size() <= Idx)
105 resize(std::max(Idx+1, 32U));
106 }
107 static inline unsigned v2x(unsigned v) {
108 return TargetRegisterInfo::virtReg2Index(v);
109 }
110 static inline unsigned x2v(unsigned x) {
111 return TargetRegisterInfo::index2VirtReg(x);
112 }
113 };
114
115
116 struct PrintRegSet {
117 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
118 : RS(S), TRI(RI) {}
119 friend raw_ostream &operator<< (raw_ostream &OS,
120 const PrintRegSet &P);
121 private:
122 const RegisterSet &RS;
123 const TargetRegisterInfo *TRI;
124 };
125
126 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
127 LLVM_ATTRIBUTE_UNUSED;
128 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
129 OS << '{';
130 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
131 OS << ' ' << PrintReg(R, P.TRI);
132 OS << " }";
133 return OS;
134 }
135}
136
137
138namespace {
139 class Transformation;
140
141 class HexagonBitSimplify : public MachineFunctionPass {
142 public:
143 static char ID;
144 HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) {
145 initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
146 }
147 virtual const char *getPassName() const {
148 return "Hexagon bit simplification";
149 }
150 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
151 AU.addRequired<MachineDominatorTree>();
152 AU.addPreserved<MachineDominatorTree>();
153 MachineFunctionPass::getAnalysisUsage(AU);
154 }
155 virtual bool runOnMachineFunction(MachineFunction &MF);
156
157 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
158 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
159 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
160 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
161 static bool isConst(const BitTracker::RegisterCell &RC, uint16_t B,
162 uint16_t W);
163 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
164 uint16_t W);
165 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
166 uint16_t W, uint64_t &U);
167 static bool replaceReg(unsigned OldR, unsigned NewR,
168 MachineRegisterInfo &MRI);
169 static bool getSubregMask(const BitTracker::RegisterRef &RR,
170 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
171 static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
172 unsigned NewSR, MachineRegisterInfo &MRI);
173 static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
174 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
175 static bool parseRegSequence(const MachineInstr &I,
176 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH);
177
178 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
179 uint16_t Begin);
180 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
181 uint16_t Begin, const HexagonInstrInfo &HII);
182
183 static const TargetRegisterClass *getFinalVRegClass(
184 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
185 static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
186 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
187
188 private:
189 MachineDominatorTree *MDT;
190
191 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
192 };
193
194 char HexagonBitSimplify::ID = 0;
195 typedef HexagonBitSimplify HBS;
196
197
198 // The purpose of this class is to provide a common facility to traverse
199 // the function top-down or bottom-up via the dominator tree, and keep
200 // track of the available registers.
201 class Transformation {
202 public:
203 bool TopDown;
204 Transformation(bool TD) : TopDown(TD) {}
205 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
206 virtual ~Transformation() {}
207 };
208}
209
210INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
211 "Hexagon bit simplification", false, false)
212INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
213INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
214 "Hexagon bit simplification", false, false)
215
216
217bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
218 RegisterSet &AVs) {
219 MachineDomTreeNode *N = MDT->getNode(&B);
220 typedef GraphTraits<MachineDomTreeNode*> GTN;
221 bool Changed = false;
222
223 if (T.TopDown)
224 Changed = T.processBlock(B, AVs);
225
226 RegisterSet Defs;
227 for (auto &I : B)
228 getInstrDefs(I, Defs);
229 RegisterSet NewAVs = AVs;
230 NewAVs.insert(Defs);
231
232 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
233 MachineBasicBlock *SB = (*I)->getBlock();
234 Changed |= visitBlock(*SB, T, NewAVs);
235 }
236 if (!T.TopDown)
237 Changed |= T.processBlock(B, AVs);
238
239 return Changed;
240}
241
242//
243// Utility functions:
244//
245void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
246 RegisterSet &Defs) {
247 for (auto &Op : MI.operands()) {
248 if (!Op.isReg() || !Op.isDef())
249 continue;
250 unsigned R = Op.getReg();
251 if (!TargetRegisterInfo::isVirtualRegister(R))
252 continue;
253 Defs.insert(R);
254 }
255}
256
257void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
258 RegisterSet &Uses) {
259 for (auto &Op : MI.operands()) {
260 if (!Op.isReg() || !Op.isUse())
261 continue;
262 unsigned R = Op.getReg();
263 if (!TargetRegisterInfo::isVirtualRegister(R))
264 continue;
265 Uses.insert(R);
266 }
267}
268
269// Check if all the bits in range [B, E) in both cells are equal.
270bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
271 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
272 uint16_t W) {
273 for (uint16_t i = 0; i < W; ++i) {
274 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
275 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
276 return false;
277 // Same for RC2[i].
278 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
279 return false;
280 if (RC1[B1+i] != RC2[B2+i])
281 return false;
282 }
283 return true;
284}
285
286
287bool HexagonBitSimplify::isConst(const BitTracker::RegisterCell &RC,
288 uint16_t B, uint16_t W) {
289 assert(B < RC.width() && B+W <= RC.width());
290 for (uint16_t i = B; i < B+W; ++i)
291 if (!RC[i].num())
292 return false;
293 return true;
294}
295
296
297bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
298 uint16_t B, uint16_t W) {
299 assert(B < RC.width() && B+W <= RC.width());
300 for (uint16_t i = B; i < B+W; ++i)
301 if (!RC[i].is(0))
302 return false;
303 return true;
304}
305
306
307bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
308 uint16_t B, uint16_t W, uint64_t &U) {
309 assert(B < RC.width() && B+W <= RC.width());
310 int64_t T = 0;
311 for (uint16_t i = B+W; i > B; --i) {
312 const BitTracker::BitValue &BV = RC[i-1];
313 T <<= 1;
314 if (BV.is(1))
315 T |= 1;
316 else if (!BV.is(0))
317 return false;
318 }
319 U = T;
320 return true;
321}
322
323
324bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
325 MachineRegisterInfo &MRI) {
326 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
327 !TargetRegisterInfo::isVirtualRegister(NewR))
328 return false;
329 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
330 decltype(End) NextI;
331 for (auto I = Begin; I != End; I = NextI) {
332 NextI = std::next(I);
333 I->setReg(NewR);
334 }
335 return Begin != End;
336}
337
338
339bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
340 unsigned NewSR, MachineRegisterInfo &MRI) {
341 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
342 !TargetRegisterInfo::isVirtualRegister(NewR))
343 return false;
344 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
345 decltype(End) NextI;
346 for (auto I = Begin; I != End; I = NextI) {
347 NextI = std::next(I);
348 I->setReg(NewR);
349 I->setSubReg(NewSR);
350 }
351 return Begin != End;
352}
353
354
355bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
356 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
357 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
358 !TargetRegisterInfo::isVirtualRegister(NewR))
359 return false;
360 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
361 decltype(End) NextI;
362 for (auto I = Begin; I != End; I = NextI) {
363 NextI = std::next(I);
364 if (I->getSubReg() != OldSR)
365 continue;
366 I->setReg(NewR);
367 I->setSubReg(NewSR);
368 }
369 return Begin != End;
370}
371
372
373// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
374// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
375// if this succeeded, otherwise return false.
376bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
377 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
378 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
379 if (RC == &Hexagon::IntRegsRegClass) {
380 assert(RR.Sub == 0);
381 Begin = 0;
382 Width = 32;
383 return true;
384 }
385 if (RC == &Hexagon::DoubleRegsRegClass) {
386 if (RR.Sub == 0) {
387 Begin = 0;
388 Width = 64;
389 return true;
390 }
391 assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg);
392 Width = 32;
393 Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32);
394 return true;
395 }
396 return false;
397}
398
399
400// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
401// subregister.
402bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
403 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) {
404 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
405 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
406 assert(Sub1 != Sub2);
407 if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) {
408 SL = I.getOperand(1);
409 SH = I.getOperand(3);
410 return true;
411 }
412 if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) {
413 SH = I.getOperand(1);
414 SL = I.getOperand(3);
415 return true;
416 }
417 return false;
418}
419
420
421// All stores (except 64-bit stores) take a 32-bit register as the source
422// of the value to be stored. If the instruction stores into a location
423// that is shorter than 32 bits, some bits of the source register are not
424// used. For each store instruction, calculate the set of used bits in
425// the source register, and set appropriate bits in Bits. Return true if
426// the bits are calculated, false otherwise.
427bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
428 uint16_t Begin) {
429 using namespace Hexagon;
430
431 switch (Opc) {
432 // Store byte
433 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
434 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
435 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
436 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
437 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
438 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
439 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
440 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
441 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
442 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
443 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
444 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
445 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
446 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
447 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
448 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
449 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
450 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
451 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
452 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
453 case S4_storerb_ap: // memb(Re32=#U6)=Rt32
454 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
455 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
456 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
457 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
458 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
459 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
460 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
461 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
462 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
463 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
464 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
465 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
466 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
467 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
468 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
469 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
470 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
471 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
472 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
473 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
474 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
475 case S2_storerbgp: // memb(gp+#u16:0)=Rt32
476 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
477 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
478 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
479 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
480 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
481 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
482 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
483 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
484 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
485 Bits.set(Begin, Begin+8);
486 return true;
487
488 // Store low half
489 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
490 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
491 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
492 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
493 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
494 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
495 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
496 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
497 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
498 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
499 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
500 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
501 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
502 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
503 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
504 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
505 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
506 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
507 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
508 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
509 case S4_storerh_ap: // memh(Re32=#U6)=Rt32
510 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
511 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
512 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
513 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
514 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
515 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
516 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
517 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
518 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
519 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
520 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
521 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
522 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
523 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
524 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
525 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
526 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
527 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
528 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
529 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
530 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
531 case S2_storerhgp: // memh(gp+#u16:1)=Rt32
532 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
533 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
534 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
535 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
536 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
537 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
538 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
539 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
540 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
541 Bits.set(Begin, Begin+16);
542 return true;
543
544 // Store high half
545 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
546 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
547 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
548 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
549 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
550 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
551 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
552 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
553 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
554 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
555 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
556 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
557 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
558 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
559 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
560 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
561 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
562 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
563 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
564 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
565 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
566 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
567 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
568 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
569 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
570 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
571 Bits.set(Begin+16, Begin+32);
572 return true;
573 }
574
575 return false;
576}
577
578
579// For an instruction with opcode Opc, calculate the set of bits that it
580// uses in a register in operand OpN. This only calculates the set of used
581// bits for cases where it does not depend on any operands (as is the case
582// in shifts, for example). For concrete instructions from a program, the
583// operand may be a subregister of a larger register, while Bits would
584// correspond to the larger register in its entirety. Because of that,
585// the parameter Begin can be used to indicate which bit of Bits should be
586// considered the LSB of of the operand.
587bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
588 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
589 using namespace Hexagon;
590
591 const MCInstrDesc &D = HII.get(Opc);
592 if (D.mayStore()) {
593 if (OpN == D.getNumOperands()-1)
594 return getUsedBitsInStore(Opc, Bits, Begin);
595 return false;
596 }
597
598 switch (Opc) {
599 // One register source. Used bits: R1[0-7].
600 case A2_sxtb:
601 case A2_zxtb:
602 case A4_cmpbeqi:
603 case A4_cmpbgti:
604 case A4_cmpbgtui:
605 if (OpN == 1) {
606 Bits.set(Begin, Begin+8);
607 return true;
608 }
609 break;
610
611 // One register source. Used bits: R1[0-15].
612 case A2_aslh:
613 case A2_sxth:
614 case A2_zxth:
615 case A4_cmpheqi:
616 case A4_cmphgti:
617 case A4_cmphgtui:
618 if (OpN == 1) {
619 Bits.set(Begin, Begin+16);
620 return true;
621 }
622 break;
623
624 // One register source. Used bits: R1[16-31].
625 case A2_asrh:
626 if (OpN == 1) {
627 Bits.set(Begin+16, Begin+32);
628 return true;
629 }
630 break;
631
632 // Two register sources. Used bits: R1[0-7], R2[0-7].
633 case A4_cmpbeq:
634 case A4_cmpbgt:
635 case A4_cmpbgtu:
636 if (OpN == 1) {
637 Bits.set(Begin, Begin+8);
638 return true;
639 }
640 break;
641
642 // Two register sources. Used bits: R1[0-15], R2[0-15].
643 case A4_cmpheq:
644 case A4_cmphgt:
645 case A4_cmphgtu:
646 case A2_addh_h16_ll:
647 case A2_addh_h16_sat_ll:
648 case A2_addh_l16_ll:
649 case A2_addh_l16_sat_ll:
650 case A2_combine_ll:
651 case A2_subh_h16_ll:
652 case A2_subh_h16_sat_ll:
653 case A2_subh_l16_ll:
654 case A2_subh_l16_sat_ll:
655 case M2_mpy_acc_ll_s0:
656 case M2_mpy_acc_ll_s1:
657 case M2_mpy_acc_sat_ll_s0:
658 case M2_mpy_acc_sat_ll_s1:
659 case M2_mpy_ll_s0:
660 case M2_mpy_ll_s1:
661 case M2_mpy_nac_ll_s0:
662 case M2_mpy_nac_ll_s1:
663 case M2_mpy_nac_sat_ll_s0:
664 case M2_mpy_nac_sat_ll_s1:
665 case M2_mpy_rnd_ll_s0:
666 case M2_mpy_rnd_ll_s1:
667 case M2_mpy_sat_ll_s0:
668 case M2_mpy_sat_ll_s1:
669 case M2_mpy_sat_rnd_ll_s0:
670 case M2_mpy_sat_rnd_ll_s1:
671 case M2_mpyd_acc_ll_s0:
672 case M2_mpyd_acc_ll_s1:
673 case M2_mpyd_ll_s0:
674 case M2_mpyd_ll_s1:
675 case M2_mpyd_nac_ll_s0:
676 case M2_mpyd_nac_ll_s1:
677 case M2_mpyd_rnd_ll_s0:
678 case M2_mpyd_rnd_ll_s1:
679 case M2_mpyu_acc_ll_s0:
680 case M2_mpyu_acc_ll_s1:
681 case M2_mpyu_ll_s0:
682 case M2_mpyu_ll_s1:
683 case M2_mpyu_nac_ll_s0:
684 case M2_mpyu_nac_ll_s1:
685 case M2_mpyud_acc_ll_s0:
686 case M2_mpyud_acc_ll_s1:
687 case M2_mpyud_ll_s0:
688 case M2_mpyud_ll_s1:
689 case M2_mpyud_nac_ll_s0:
690 case M2_mpyud_nac_ll_s1:
691 if (OpN == 1 || OpN == 2) {
692 Bits.set(Begin, Begin+16);
693 return true;
694 }
695 break;
696
697 // Two register sources. Used bits: R1[0-15], R2[16-31].
698 case A2_addh_h16_lh:
699 case A2_addh_h16_sat_lh:
700 case A2_combine_lh:
701 case A2_subh_h16_lh:
702 case A2_subh_h16_sat_lh:
703 case M2_mpy_acc_lh_s0:
704 case M2_mpy_acc_lh_s1:
705 case M2_mpy_acc_sat_lh_s0:
706 case M2_mpy_acc_sat_lh_s1:
707 case M2_mpy_lh_s0:
708 case M2_mpy_lh_s1:
709 case M2_mpy_nac_lh_s0:
710 case M2_mpy_nac_lh_s1:
711 case M2_mpy_nac_sat_lh_s0:
712 case M2_mpy_nac_sat_lh_s1:
713 case M2_mpy_rnd_lh_s0:
714 case M2_mpy_rnd_lh_s1:
715 case M2_mpy_sat_lh_s0:
716 case M2_mpy_sat_lh_s1:
717 case M2_mpy_sat_rnd_lh_s0:
718 case M2_mpy_sat_rnd_lh_s1:
719 case M2_mpyd_acc_lh_s0:
720 case M2_mpyd_acc_lh_s1:
721 case M2_mpyd_lh_s0:
722 case M2_mpyd_lh_s1:
723 case M2_mpyd_nac_lh_s0:
724 case M2_mpyd_nac_lh_s1:
725 case M2_mpyd_rnd_lh_s0:
726 case M2_mpyd_rnd_lh_s1:
727 case M2_mpyu_acc_lh_s0:
728 case M2_mpyu_acc_lh_s1:
729 case M2_mpyu_lh_s0:
730 case M2_mpyu_lh_s1:
731 case M2_mpyu_nac_lh_s0:
732 case M2_mpyu_nac_lh_s1:
733 case M2_mpyud_acc_lh_s0:
734 case M2_mpyud_acc_lh_s1:
735 case M2_mpyud_lh_s0:
736 case M2_mpyud_lh_s1:
737 case M2_mpyud_nac_lh_s0:
738 case M2_mpyud_nac_lh_s1:
739 // These four are actually LH.
740 case A2_addh_l16_hl:
741 case A2_addh_l16_sat_hl:
742 case A2_subh_l16_hl:
743 case A2_subh_l16_sat_hl:
744 if (OpN == 1) {
745 Bits.set(Begin, Begin+16);
746 return true;
747 }
748 if (OpN == 2) {
749 Bits.set(Begin+16, Begin+32);
750 return true;
751 }
752 break;
753
754 // Two register sources, used bits: R1[16-31], R2[0-15].
755 case A2_addh_h16_hl:
756 case A2_addh_h16_sat_hl:
757 case A2_combine_hl:
758 case A2_subh_h16_hl:
759 case A2_subh_h16_sat_hl:
760 case M2_mpy_acc_hl_s0:
761 case M2_mpy_acc_hl_s1:
762 case M2_mpy_acc_sat_hl_s0:
763 case M2_mpy_acc_sat_hl_s1:
764 case M2_mpy_hl_s0:
765 case M2_mpy_hl_s1:
766 case M2_mpy_nac_hl_s0:
767 case M2_mpy_nac_hl_s1:
768 case M2_mpy_nac_sat_hl_s0:
769 case M2_mpy_nac_sat_hl_s1:
770 case M2_mpy_rnd_hl_s0:
771 case M2_mpy_rnd_hl_s1:
772 case M2_mpy_sat_hl_s0:
773 case M2_mpy_sat_hl_s1:
774 case M2_mpy_sat_rnd_hl_s0:
775 case M2_mpy_sat_rnd_hl_s1:
776 case M2_mpyd_acc_hl_s0:
777 case M2_mpyd_acc_hl_s1:
778 case M2_mpyd_hl_s0:
779 case M2_mpyd_hl_s1:
780 case M2_mpyd_nac_hl_s0:
781 case M2_mpyd_nac_hl_s1:
782 case M2_mpyd_rnd_hl_s0:
783 case M2_mpyd_rnd_hl_s1:
784 case M2_mpyu_acc_hl_s0:
785 case M2_mpyu_acc_hl_s1:
786 case M2_mpyu_hl_s0:
787 case M2_mpyu_hl_s1:
788 case M2_mpyu_nac_hl_s0:
789 case M2_mpyu_nac_hl_s1:
790 case M2_mpyud_acc_hl_s0:
791 case M2_mpyud_acc_hl_s1:
792 case M2_mpyud_hl_s0:
793 case M2_mpyud_hl_s1:
794 case M2_mpyud_nac_hl_s0:
795 case M2_mpyud_nac_hl_s1:
796 if (OpN == 1) {
797 Bits.set(Begin+16, Begin+32);
798 return true;
799 }
800 if (OpN == 2) {
801 Bits.set(Begin, Begin+16);
802 return true;
803 }
804 break;
805
806 // Two register sources, used bits: R1[16-31], R2[16-31].
807 case A2_addh_h16_hh:
808 case A2_addh_h16_sat_hh:
809 case A2_combine_hh:
810 case A2_subh_h16_hh:
811 case A2_subh_h16_sat_hh:
812 case M2_mpy_acc_hh_s0:
813 case M2_mpy_acc_hh_s1:
814 case M2_mpy_acc_sat_hh_s0:
815 case M2_mpy_acc_sat_hh_s1:
816 case M2_mpy_hh_s0:
817 case M2_mpy_hh_s1:
818 case M2_mpy_nac_hh_s0:
819 case M2_mpy_nac_hh_s1:
820 case M2_mpy_nac_sat_hh_s0:
821 case M2_mpy_nac_sat_hh_s1:
822 case M2_mpy_rnd_hh_s0:
823 case M2_mpy_rnd_hh_s1:
824 case M2_mpy_sat_hh_s0:
825 case M2_mpy_sat_hh_s1:
826 case M2_mpy_sat_rnd_hh_s0:
827 case M2_mpy_sat_rnd_hh_s1:
828 case M2_mpyd_acc_hh_s0:
829 case M2_mpyd_acc_hh_s1:
830 case M2_mpyd_hh_s0:
831 case M2_mpyd_hh_s1:
832 case M2_mpyd_nac_hh_s0:
833 case M2_mpyd_nac_hh_s1:
834 case M2_mpyd_rnd_hh_s0:
835 case M2_mpyd_rnd_hh_s1:
836 case M2_mpyu_acc_hh_s0:
837 case M2_mpyu_acc_hh_s1:
838 case M2_mpyu_hh_s0:
839 case M2_mpyu_hh_s1:
840 case M2_mpyu_nac_hh_s0:
841 case M2_mpyu_nac_hh_s1:
842 case M2_mpyud_acc_hh_s0:
843 case M2_mpyud_acc_hh_s1:
844 case M2_mpyud_hh_s0:
845 case M2_mpyud_hh_s1:
846 case M2_mpyud_nac_hh_s0:
847 case M2_mpyud_nac_hh_s1:
848 if (OpN == 1 || OpN == 2) {
849 Bits.set(Begin+16, Begin+32);
850 return true;
851 }
852 break;
853 }
854
855 return false;
856}
857
858
859// Calculate the register class that matches Reg:Sub. For example, if
860// vreg1 is a double register, then vreg1:subreg_hireg would match "int"
861// register class.
862const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
863 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
864 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
865 return nullptr;
866 auto *RC = MRI.getRegClass(RR.Reg);
867 if (RR.Sub == 0)
868 return RC;
869
870 auto VerifySR = [] (unsigned Sub) -> void {
871 assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg);
872 };
873
874 switch (RC->getID()) {
875 case Hexagon::DoubleRegsRegClassID:
876 VerifySR(RR.Sub);
877 return &Hexagon::IntRegsRegClass;
Krzysztof Parzyszek5337a3e2016-01-14 21:45:43 +0000878 case Hexagon::VecDblRegsRegClassID:
879 VerifySR(RR.Sub);
880 return &Hexagon::VectorRegsRegClass;
881 case Hexagon::VecDblRegs128BRegClassID:
882 VerifySR(RR.Sub);
883 return &Hexagon::VectorRegs128BRegClass;
Krzysztof Parzyszekced99412015-10-20 22:57:13 +0000884 }
885 return nullptr;
886}
887
888
889// Check if RD could be replaced with RS at any possible use of RD.
890// For example a predicate register cannot be replaced with a integer
891// register, but a 64-bit register with a subregister can be replaced
892// with a 32-bit register.
893bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
894 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
895 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
896 !TargetRegisterInfo::isVirtualRegister(RS.Reg))
897 return false;
898 // Return false if one (or both) classes are nullptr.
899 auto *DRC = getFinalVRegClass(RD, MRI);
900 if (!DRC)
901 return false;
902
903 return DRC == getFinalVRegClass(RS, MRI);
904}
905
906
907//
908// Dead code elimination
909//
910namespace {
911 class DeadCodeElimination {
912 public:
913 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
914 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
915 MDT(mdt), MRI(mf.getRegInfo()) {}
916
917 bool run() {
918 return runOnNode(MDT.getRootNode());
919 }
920
921 private:
922 bool isDead(unsigned R) const;
923 bool runOnNode(MachineDomTreeNode *N);
924
925 MachineFunction &MF;
926 const HexagonInstrInfo &HII;
927 MachineDominatorTree &MDT;
928 MachineRegisterInfo &MRI;
929 };
930}
931
932
933bool DeadCodeElimination::isDead(unsigned R) const {
934 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
935 MachineInstr *UseI = I->getParent();
936 if (UseI->isDebugValue())
937 continue;
938 if (UseI->isPHI()) {
939 assert(!UseI->getOperand(0).getSubReg());
940 unsigned DR = UseI->getOperand(0).getReg();
941 if (DR == R)
942 continue;
943 }
944 return false;
945 }
946 return true;
947}
948
949
950bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
951 bool Changed = false;
952 typedef GraphTraits<MachineDomTreeNode*> GTN;
953 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
954 Changed |= runOnNode(*I);
955
956 MachineBasicBlock *B = N->getBlock();
957 std::vector<MachineInstr*> Instrs;
958 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
959 Instrs.push_back(&*I);
960
961 for (auto MI : Instrs) {
962 unsigned Opc = MI->getOpcode();
963 // Do not touch lifetime markers. This is why the target-independent DCE
964 // cannot be used.
965 if (Opc == TargetOpcode::LIFETIME_START ||
966 Opc == TargetOpcode::LIFETIME_END)
967 continue;
968 bool Store = false;
969 if (MI->isInlineAsm())
970 continue;
971 // Delete PHIs if possible.
972 if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
973 continue;
974
975 bool AllDead = true;
976 SmallVector<unsigned,2> Regs;
977 for (auto &Op : MI->operands()) {
978 if (!Op.isReg() || !Op.isDef())
979 continue;
980 unsigned R = Op.getReg();
981 if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
982 AllDead = false;
983 break;
984 }
985 Regs.push_back(R);
986 }
987 if (!AllDead)
988 continue;
989
990 B->erase(MI);
991 for (unsigned i = 0, n = Regs.size(); i != n; ++i)
992 MRI.markUsesInDebugValueAsUndef(Regs[i]);
993 Changed = true;
994 }
995
996 return Changed;
997}
998
999
1000//
1001// Eliminate redundant instructions
1002//
1003// This transformation will identify instructions where the output register
1004// is the same as one of its input registers. This only works on instructions
1005// that define a single register (unlike post-increment loads, for example).
1006// The equality check is actually more detailed: the code calculates which
1007// bits of the output are used, and only compares these bits with the input
1008// registers.
1009// If the output matches an input, the instruction is replaced with COPY.
1010// The copies will be removed by another transformation.
1011namespace {
1012 class RedundantInstrElimination : public Transformation {
1013 public:
1014 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1015 MachineRegisterInfo &mri)
1016 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1017 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1018 private:
1019 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1020 unsigned &LostB, unsigned &LostE);
1021 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1022 unsigned &LostB, unsigned &LostE);
1023 bool computeUsedBits(unsigned Reg, BitVector &Bits);
1024 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1025 uint16_t Begin);
1026 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1027
1028 const HexagonInstrInfo &HII;
1029 MachineRegisterInfo &MRI;
1030 BitTracker &BT;
1031 };
1032}
1033
1034
1035// Check if the instruction is a lossy shift left, where the input being
1036// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1037// of bit indices that are lost.
1038bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1039 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1040 using namespace Hexagon;
1041 unsigned Opc = MI.getOpcode();
1042 unsigned ImN, RegN, Width;
1043 switch (Opc) {
1044 case S2_asl_i_p:
1045 ImN = 2;
1046 RegN = 1;
1047 Width = 64;
1048 break;
1049 case S2_asl_i_p_acc:
1050 case S2_asl_i_p_and:
1051 case S2_asl_i_p_nac:
1052 case S2_asl_i_p_or:
1053 case S2_asl_i_p_xacc:
1054 ImN = 3;
1055 RegN = 2;
1056 Width = 64;
1057 break;
1058 case S2_asl_i_r:
1059 ImN = 2;
1060 RegN = 1;
1061 Width = 32;
1062 break;
1063 case S2_addasl_rrri:
1064 case S4_andi_asl_ri:
1065 case S4_ori_asl_ri:
1066 case S4_addi_asl_ri:
1067 case S4_subi_asl_ri:
1068 case S2_asl_i_r_acc:
1069 case S2_asl_i_r_and:
1070 case S2_asl_i_r_nac:
1071 case S2_asl_i_r_or:
1072 case S2_asl_i_r_sat:
1073 case S2_asl_i_r_xacc:
1074 ImN = 3;
1075 RegN = 2;
1076 Width = 32;
1077 break;
1078 default:
1079 return false;
1080 }
1081
1082 if (RegN != OpN)
1083 return false;
1084
1085 assert(MI.getOperand(ImN).isImm());
1086 unsigned S = MI.getOperand(ImN).getImm();
1087 if (S == 0)
1088 return false;
1089 LostB = Width-S;
1090 LostE = Width;
1091 return true;
1092}
1093
1094
1095// Check if the instruction is a lossy shift right, where the input being
1096// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1097// of bit indices that are lost.
1098bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1099 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1100 using namespace Hexagon;
1101 unsigned Opc = MI.getOpcode();
1102 unsigned ImN, RegN;
1103 switch (Opc) {
1104 case S2_asr_i_p:
1105 case S2_lsr_i_p:
1106 ImN = 2;
1107 RegN = 1;
1108 break;
1109 case S2_asr_i_p_acc:
1110 case S2_asr_i_p_and:
1111 case S2_asr_i_p_nac:
1112 case S2_asr_i_p_or:
1113 case S2_lsr_i_p_acc:
1114 case S2_lsr_i_p_and:
1115 case S2_lsr_i_p_nac:
1116 case S2_lsr_i_p_or:
1117 case S2_lsr_i_p_xacc:
1118 ImN = 3;
1119 RegN = 2;
1120 break;
1121 case S2_asr_i_r:
1122 case S2_lsr_i_r:
1123 ImN = 2;
1124 RegN = 1;
1125 break;
1126 case S4_andi_lsr_ri:
1127 case S4_ori_lsr_ri:
1128 case S4_addi_lsr_ri:
1129 case S4_subi_lsr_ri:
1130 case S2_asr_i_r_acc:
1131 case S2_asr_i_r_and:
1132 case S2_asr_i_r_nac:
1133 case S2_asr_i_r_or:
1134 case S2_lsr_i_r_acc:
1135 case S2_lsr_i_r_and:
1136 case S2_lsr_i_r_nac:
1137 case S2_lsr_i_r_or:
1138 case S2_lsr_i_r_xacc:
1139 ImN = 3;
1140 RegN = 2;
1141 break;
1142
1143 default:
1144 return false;
1145 }
1146
1147 if (RegN != OpN)
1148 return false;
1149
1150 assert(MI.getOperand(ImN).isImm());
1151 unsigned S = MI.getOperand(ImN).getImm();
1152 LostB = 0;
1153 LostE = S;
1154 return true;
1155}
1156
1157
1158// Calculate the bit vector that corresponds to the used bits of register Reg.
1159// The vector Bits has the same size, as the size of Reg in bits. If the cal-
1160// culation fails (i.e. the used bits are unknown), it returns false. Other-
1161// wise, it returns true and sets the corresponding bits in Bits.
1162bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1163 BitVector Used(Bits.size());
1164 RegisterSet Visited;
1165 std::vector<unsigned> Pending;
1166 Pending.push_back(Reg);
1167
1168 for (unsigned i = 0; i < Pending.size(); ++i) {
1169 unsigned R = Pending[i];
1170 if (Visited.has(R))
1171 continue;
1172 Visited.insert(R);
1173 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1174 BitTracker::RegisterRef UR = *I;
1175 unsigned B, W;
1176 if (!HBS::getSubregMask(UR, B, W, MRI))
1177 return false;
1178 MachineInstr &UseI = *I->getParent();
1179 if (UseI.isPHI() || UseI.isCopy()) {
1180 unsigned DefR = UseI.getOperand(0).getReg();
1181 if (!TargetRegisterInfo::isVirtualRegister(DefR))
1182 return false;
1183 Pending.push_back(DefR);
1184 } else {
1185 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1186 return false;
1187 }
1188 }
1189 }
1190 Bits |= Used;
1191 return true;
1192}
1193
1194
1195// Calculate the bits used by instruction MI in a register in operand OpN.
1196// Return true/false if the calculation succeeds/fails. If is succeeds, set
1197// used bits in Bits. This function does not reset any bits in Bits, so
1198// subsequent calls over different instructions will result in the union
1199// of the used bits in all these instructions.
1200// The register in question may be used with a sub-register, whereas Bits
1201// holds the bits for the entire register. To keep track of that, the
1202// argument Begin indicates where in Bits is the lowest-significant bit
1203// of the register used in operand OpN. For example, in instruction:
1204// vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10
1205// the operand 1 is a 32-bit register, which happens to be a subregister
1206// of the 64-bit register vreg2, and that subregister starts at position 32.
1207// In this case Begin=32, since Bits[32] would be the lowest-significant bit
1208// of vreg2:subreg_hireg.
1209bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1210 unsigned OpN, BitVector &Bits, uint16_t Begin) {
1211 unsigned Opc = MI.getOpcode();
1212 BitVector T(Bits.size());
1213 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1214 // Even if we don't have bits yet, we could still provide some information
1215 // if the instruction is a lossy shift: the lost bits will be marked as
1216 // not used.
1217 unsigned LB, LE;
1218 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1219 assert(MI.getOperand(OpN).isReg());
1220 BitTracker::RegisterRef RR = MI.getOperand(OpN);
1221 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1222 uint16_t Width = RC->getSize()*8;
1223
1224 if (!GotBits)
1225 T.set(Begin, Begin+Width);
1226 assert(LB <= LE && LB < Width && LE <= Width);
1227 T.reset(Begin+LB, Begin+LE);
1228 GotBits = true;
1229 }
1230 if (GotBits)
1231 Bits |= T;
1232 return GotBits;
1233}
1234
1235
1236// Calculates the used bits in RD ("defined register"), and checks if these
1237// bits in RS ("used register") and RD are identical.
1238bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1239 BitTracker::RegisterRef RS) {
1240 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1241 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1242
1243 unsigned DB, DW;
1244 if (!HBS::getSubregMask(RD, DB, DW, MRI))
1245 return false;
1246 unsigned SB, SW;
1247 if (!HBS::getSubregMask(RS, SB, SW, MRI))
1248 return false;
1249 if (SW != DW)
1250 return false;
1251
1252 BitVector Used(DC.width());
1253 if (!computeUsedBits(RD.Reg, Used))
1254 return false;
1255
1256 for (unsigned i = 0; i != DW; ++i)
1257 if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1258 return false;
1259 return true;
1260}
1261
1262
1263bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1264 const RegisterSet&) {
1265 bool Changed = false;
1266
1267 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1268 NextI = std::next(I);
1269 MachineInstr *MI = &*I;
1270
1271 if (MI->getOpcode() == TargetOpcode::COPY)
1272 continue;
1273 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1274 continue;
1275 unsigned NumD = MI->getDesc().getNumDefs();
1276 if (NumD != 1)
1277 continue;
1278
1279 BitTracker::RegisterRef RD = MI->getOperand(0);
1280 if (!BT.has(RD.Reg))
1281 continue;
1282 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001283 auto At = MI->isPHI() ? B.getFirstNonPHI()
1284 : MachineBasicBlock::iterator(MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001285
1286 // Find a source operand that is equal to the result.
1287 for (auto &Op : MI->uses()) {
1288 if (!Op.isReg())
1289 continue;
1290 BitTracker::RegisterRef RS = Op;
1291 if (!BT.has(RS.Reg))
1292 continue;
1293 if (!HBS::isTransparentCopy(RD, RS, MRI))
1294 continue;
1295
1296 unsigned BN, BW;
1297 if (!HBS::getSubregMask(RS, BN, BW, MRI))
1298 continue;
1299
1300 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1301 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1302 continue;
1303
1304 // If found, replace the instruction with a COPY.
1305 DebugLoc DL = MI->getDebugLoc();
1306 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1307 unsigned NewR = MRI.createVirtualRegister(FRC);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001308 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001309 .addReg(RS.Reg, 0, RS.Sub);
1310 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1311 BT.put(BitTracker::RegisterRef(NewR), SC);
1312 Changed = true;
1313 break;
1314 }
1315 }
1316
1317 return Changed;
1318}
1319
1320
1321//
1322// Const generation
1323//
1324// Recognize instructions that produce constant values known at compile-time.
1325// Replace them with register definitions that load these constants directly.
1326namespace {
1327 class ConstGeneration : public Transformation {
1328 public:
1329 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1330 MachineRegisterInfo &mri)
1331 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1332 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1333 private:
1334 bool isTfrConst(const MachineInstr *MI) const;
1335 bool isConst(unsigned R, int64_t &V) const;
1336 unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1337 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1338
1339 const HexagonInstrInfo &HII;
1340 MachineRegisterInfo &MRI;
1341 BitTracker &BT;
1342 };
1343}
1344
1345bool ConstGeneration::isConst(unsigned R, int64_t &C) const {
1346 if (!BT.has(R))
1347 return false;
1348 const BitTracker::RegisterCell &RC = BT.lookup(R);
1349 int64_t T = 0;
1350 for (unsigned i = RC.width(); i > 0; --i) {
1351 const BitTracker::BitValue &V = RC[i-1];
1352 T <<= 1;
1353 if (V.is(1))
1354 T |= 1;
1355 else if (!V.is(0))
1356 return false;
1357 }
1358 C = T;
1359 return true;
1360}
1361
1362
1363bool ConstGeneration::isTfrConst(const MachineInstr *MI) const {
1364 unsigned Opc = MI->getOpcode();
1365 switch (Opc) {
1366 case Hexagon::A2_combineii:
1367 case Hexagon::A4_combineii:
1368 case Hexagon::A2_tfrsi:
1369 case Hexagon::A2_tfrpi:
1370 case Hexagon::TFR_PdTrue:
1371 case Hexagon::TFR_PdFalse:
1372 case Hexagon::CONST32_Int_Real:
1373 case Hexagon::CONST64_Int_Real:
1374 return true;
1375 }
1376 return false;
1377}
1378
1379
1380// Generate a transfer-immediate instruction that is appropriate for the
1381// register class and the actual value being transferred.
1382unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1383 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1384 unsigned Reg = MRI.createVirtualRegister(RC);
1385 if (RC == &Hexagon::IntRegsRegClass) {
1386 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1387 .addImm(int32_t(C));
1388 return Reg;
1389 }
1390
1391 if (RC == &Hexagon::DoubleRegsRegClass) {
1392 if (isInt<8>(C)) {
1393 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1394 .addImm(C);
1395 return Reg;
1396 }
1397
1398 unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1399 if (isInt<8>(Lo) || isInt<8>(Hi)) {
1400 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1401 : Hexagon::A4_combineii;
1402 BuildMI(B, At, DL, HII.get(Opc), Reg)
1403 .addImm(int32_t(Hi))
1404 .addImm(int32_t(Lo));
1405 return Reg;
1406 }
1407
1408 BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg)
1409 .addImm(C);
1410 return Reg;
1411 }
1412
1413 if (RC == &Hexagon::PredRegsRegClass) {
1414 unsigned Opc;
1415 if (C == 0)
1416 Opc = Hexagon::TFR_PdFalse;
1417 else if ((C & 0xFF) == 0xFF)
1418 Opc = Hexagon::TFR_PdTrue;
1419 else
1420 return 0;
1421 BuildMI(B, At, DL, HII.get(Opc), Reg);
1422 return Reg;
1423 }
1424
1425 return 0;
1426}
1427
1428
1429bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1430 bool Changed = false;
1431 RegisterSet Defs;
1432
1433 for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1434 if (isTfrConst(I))
1435 continue;
1436 Defs.clear();
1437 HBS::getInstrDefs(*I, Defs);
1438 if (Defs.count() != 1)
1439 continue;
1440 unsigned DR = Defs.find_first();
1441 if (!TargetRegisterInfo::isVirtualRegister(DR))
1442 continue;
1443 int64_t C;
1444 if (isConst(DR, C)) {
1445 DebugLoc DL = I->getDebugLoc();
1446 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1447 unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1448 if (ImmReg) {
1449 HBS::replaceReg(DR, ImmReg, MRI);
1450 BT.put(ImmReg, BT.lookup(DR));
1451 Changed = true;
1452 }
1453 }
1454 }
1455 return Changed;
1456}
1457
1458
1459//
1460// Copy generation
1461//
1462// Identify pairs of available registers which hold identical values.
1463// In such cases, only one of them needs to be calculated, the other one
1464// will be defined as a copy of the first.
1465//
1466// Copy propagation
1467//
1468// Eliminate register copies RD = RS, by replacing the uses of RD with
1469// with uses of RS.
1470namespace {
1471 class CopyGeneration : public Transformation {
1472 public:
1473 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1474 MachineRegisterInfo &mri)
1475 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1476 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1477 private:
1478 bool findMatch(const BitTracker::RegisterRef &Inp,
1479 BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1480
1481 const HexagonInstrInfo &HII;
1482 MachineRegisterInfo &MRI;
1483 BitTracker &BT;
1484 };
1485
1486 class CopyPropagation : public Transformation {
1487 public:
1488 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1489 : Transformation(false), MRI(mri) {}
1490 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1491 static bool isCopyReg(unsigned Opc);
1492 private:
1493 bool propagateRegCopy(MachineInstr &MI);
1494
1495 MachineRegisterInfo &MRI;
1496 };
1497
1498}
1499
1500
1501/// Check if there is a register in AVs that is identical to Inp. If so,
1502/// set Out to the found register. The output may be a pair Reg:Sub.
1503bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1504 BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1505 if (!BT.has(Inp.Reg))
1506 return false;
1507 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1508 unsigned B, W;
1509 if (!HBS::getSubregMask(Inp, B, W, MRI))
1510 return false;
1511
1512 for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1513 if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI))
1514 continue;
1515 const BitTracker::RegisterCell &RC = BT.lookup(R);
1516 unsigned RW = RC.width();
1517 if (W == RW) {
1518 if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R))
1519 continue;
1520 if (!HBS::isEqual(InpRC, B, RC, 0, W))
1521 continue;
1522 Out.Reg = R;
1523 Out.Sub = 0;
1524 return true;
1525 }
1526 // Check if there is a super-register, whose part (with a subregister)
1527 // is equal to the input.
1528 // Only do double registers for now.
1529 if (W*2 != RW)
1530 continue;
1531 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1532 continue;
1533
1534 if (HBS::isEqual(InpRC, B, RC, 0, W))
1535 Out.Sub = Hexagon::subreg_loreg;
1536 else if (HBS::isEqual(InpRC, B, RC, W, W))
1537 Out.Sub = Hexagon::subreg_hireg;
1538 else
1539 continue;
1540 Out.Reg = R;
1541 return true;
1542 }
1543 return false;
1544}
1545
1546
1547bool CopyGeneration::processBlock(MachineBasicBlock &B,
1548 const RegisterSet &AVs) {
1549 RegisterSet AVB(AVs);
1550 bool Changed = false;
1551 RegisterSet Defs;
1552
1553 for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1554 ++I, AVB.insert(Defs)) {
1555 NextI = std::next(I);
1556 Defs.clear();
1557 HBS::getInstrDefs(*I, Defs);
1558
1559 unsigned Opc = I->getOpcode();
1560 if (CopyPropagation::isCopyReg(Opc))
1561 continue;
1562
1563 for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1564 BitTracker::RegisterRef MR;
1565 if (!findMatch(R, MR, AVB))
1566 continue;
1567 DebugLoc DL = I->getDebugLoc();
1568 auto *FRC = HBS::getFinalVRegClass(MR, MRI);
1569 unsigned NewR = MRI.createVirtualRegister(FRC);
1570 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1571 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1572 .addReg(MR.Reg, 0, MR.Sub);
1573 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1574 }
1575 }
1576
1577 return Changed;
1578}
1579
1580
1581bool CopyPropagation::isCopyReg(unsigned Opc) {
1582 switch (Opc) {
1583 case TargetOpcode::COPY:
1584 case TargetOpcode::REG_SEQUENCE:
1585 case Hexagon::A2_tfr:
1586 case Hexagon::A2_tfrp:
1587 case Hexagon::A2_combinew:
1588 case Hexagon::A4_combineir:
1589 case Hexagon::A4_combineri:
1590 return true;
1591 default:
1592 break;
1593 }
1594 return false;
1595}
1596
1597
1598bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1599 bool Changed = false;
1600 unsigned Opc = MI.getOpcode();
1601 BitTracker::RegisterRef RD = MI.getOperand(0);
1602 assert(MI.getOperand(0).getSubReg() == 0);
1603
1604 switch (Opc) {
1605 case TargetOpcode::COPY:
1606 case Hexagon::A2_tfr:
1607 case Hexagon::A2_tfrp: {
1608 BitTracker::RegisterRef RS = MI.getOperand(1);
1609 if (!HBS::isTransparentCopy(RD, RS, MRI))
1610 break;
1611 if (RS.Sub != 0)
1612 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1613 else
1614 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1615 break;
1616 }
1617 case TargetOpcode::REG_SEQUENCE: {
1618 BitTracker::RegisterRef SL, SH;
1619 if (HBS::parseRegSequence(MI, SL, SH)) {
1620 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1621 SL.Reg, SL.Sub, MRI);
1622 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1623 SH.Reg, SH.Sub, MRI);
1624 }
1625 break;
1626 }
1627 case Hexagon::A2_combinew: {
1628 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1629 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1630 RL.Reg, RL.Sub, MRI);
1631 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1632 RH.Reg, RH.Sub, MRI);
1633 break;
1634 }
1635 case Hexagon::A4_combineir:
1636 case Hexagon::A4_combineri: {
1637 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1638 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg
1639 : Hexagon::subreg_hireg;
1640 BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1641 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1642 break;
1643 }
1644 }
1645 return Changed;
1646}
1647
1648
1649bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1650 std::vector<MachineInstr*> Instrs;
1651 for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1652 Instrs.push_back(&*I);
1653
1654 bool Changed = false;
1655 for (auto I : Instrs) {
1656 unsigned Opc = I->getOpcode();
1657 if (!CopyPropagation::isCopyReg(Opc))
1658 continue;
1659 Changed |= propagateRegCopy(*I);
1660 }
1661
1662 return Changed;
1663}
1664
1665
1666//
1667// Bit simplification
1668//
1669// Recognize patterns that can be simplified and replace them with the
1670// simpler forms.
1671// This is by no means complete
1672namespace {
1673 class BitSimplification : public Transformation {
1674 public:
1675 BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii,
1676 MachineRegisterInfo &mri)
1677 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1678 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1679 private:
1680 struct RegHalf : public BitTracker::RegisterRef {
1681 bool Low; // Low/High halfword.
1682 };
1683
1684 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1685 unsigned B, RegHalf &RH);
1686
1687 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1688 BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1689 unsigned getCombineOpcode(bool HLow, bool LLow);
1690
1691 bool genStoreUpperHalf(MachineInstr *MI);
1692 bool genStoreImmediate(MachineInstr *MI);
1693 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1694 const BitTracker::RegisterCell &RC);
1695 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1696 const BitTracker::RegisterCell &RC);
1697 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1698 const BitTracker::RegisterCell &RC);
1699 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1700 const BitTracker::RegisterCell &RC);
1701 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1702 const BitTracker::RegisterCell &RC);
1703
1704 const HexagonInstrInfo &HII;
1705 MachineRegisterInfo &MRI;
1706 BitTracker &BT;
1707 };
1708}
1709
1710
1711// Check if the bits [B..B+16) in register cell RC form a valid halfword,
1712// i.e. [0..16), [16..32), etc. of some register. If so, return true and
1713// set the information about the found register in RH.
1714bool BitSimplification::matchHalf(unsigned SelfR,
1715 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1716 // XXX This could be searching in the set of available registers, in case
1717 // the match is not exact.
1718
1719 // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1720 // register and all the bits B..B+15 match between RC and the register.
1721 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1722 // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1723 bool Low = false;
1724 unsigned I = B;
1725 while (I < B+16 && RC[I].num())
1726 I++;
1727 if (I == B+16)
1728 return false;
1729
1730 unsigned Reg = RC[I].RefI.Reg;
1731 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
1732 if (P < I-B)
1733 return false;
1734 unsigned Pos = P - (I-B);
1735
1736 if (Reg == 0 || Reg == SelfR) // Don't match "self".
1737 return false;
1738 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1739 return false;
1740 if (!BT.has(Reg))
1741 return false;
1742
1743 const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1744 if (Pos+16 > SC.width())
1745 return false;
1746
1747 for (unsigned i = 0; i < 16; ++i) {
1748 const BitTracker::BitValue &RV = RC[i+B];
1749 if (RV.Type == BitTracker::BitValue::Ref) {
1750 if (RV.RefI.Reg != Reg)
1751 return false;
1752 if (RV.RefI.Pos != i+Pos)
1753 return false;
1754 continue;
1755 }
1756 if (RC[i+B] != SC[i+Pos])
1757 return false;
1758 }
1759
1760 unsigned Sub = 0;
1761 switch (Pos) {
1762 case 0:
1763 Sub = Hexagon::subreg_loreg;
1764 Low = true;
1765 break;
1766 case 16:
1767 Sub = Hexagon::subreg_loreg;
1768 Low = false;
1769 break;
1770 case 32:
1771 Sub = Hexagon::subreg_hireg;
1772 Low = true;
1773 break;
1774 case 48:
1775 Sub = Hexagon::subreg_hireg;
1776 Low = false;
1777 break;
1778 default:
1779 return false;
1780 }
1781
1782 RH.Reg = Reg;
1783 RH.Sub = Sub;
1784 RH.Low = Low;
1785 // If the subregister is not valid with the register, set it to 0.
1786 if (!HBS::getFinalVRegClass(RH, MRI))
1787 RH.Sub = 0;
1788
1789 return true;
1790}
1791
1792
1793// Check if RC matches the pattern of a S2_packhl. If so, return true and
1794// set the inputs Rs and Rt.
1795bool BitSimplification::matchPackhl(unsigned SelfR,
1796 const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1797 BitTracker::RegisterRef &Rt) {
1798 RegHalf L1, H1, L2, H2;
1799
1800 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
1801 return false;
1802 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1803 return false;
1804
1805 // Rs = H1.L1, Rt = H2.L2
1806 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1807 return false;
1808 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1809 return false;
1810
1811 Rs = H1;
1812 Rt = H2;
1813 return true;
1814}
1815
1816
1817unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1818 return HLow ? LLow ? Hexagon::A2_combine_ll
1819 : Hexagon::A2_combine_lh
1820 : LLow ? Hexagon::A2_combine_hl
1821 : Hexagon::A2_combine_hh;
1822}
1823
1824
1825// If MI stores the upper halfword of a register (potentially obtained via
1826// shifts or extracts), replace it with a storerf instruction. This could
1827// cause the "extraction" code to become dead.
1828bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1829 unsigned Opc = MI->getOpcode();
1830 if (Opc != Hexagon::S2_storerh_io)
1831 return false;
1832
1833 MachineOperand &ValOp = MI->getOperand(2);
1834 BitTracker::RegisterRef RS = ValOp;
1835 if (!BT.has(RS.Reg))
1836 return false;
1837 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1838 RegHalf H;
1839 if (!matchHalf(0, RC, 0, H))
1840 return false;
1841 if (H.Low)
1842 return false;
1843 MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1844 ValOp.setReg(H.Reg);
1845 ValOp.setSubReg(H.Sub);
1846 return true;
1847}
1848
1849
1850// If MI stores a value known at compile-time, and the value is within a range
1851// that avoids using constant-extenders, replace it with a store-immediate.
1852bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1853 unsigned Opc = MI->getOpcode();
1854 unsigned Align = 0;
1855 switch (Opc) {
1856 case Hexagon::S2_storeri_io:
1857 Align++;
1858 case Hexagon::S2_storerh_io:
1859 Align++;
1860 case Hexagon::S2_storerb_io:
1861 break;
1862 default:
1863 return false;
1864 }
1865
1866 // Avoid stores to frame-indices (due to an unknown offset).
1867 if (!MI->getOperand(0).isReg())
1868 return false;
1869 MachineOperand &OffOp = MI->getOperand(1);
1870 if (!OffOp.isImm())
1871 return false;
1872
1873 int64_t Off = OffOp.getImm();
1874 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1875 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1876 return false;
1877 // Source register:
1878 BitTracker::RegisterRef RS = MI->getOperand(2);
1879 if (!BT.has(RS.Reg))
1880 return false;
1881 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1882 uint64_t U;
1883 if (!HBS::getConst(RC, 0, RC.width(), U))
1884 return false;
1885
1886 // Only consider 8-bit values to avoid constant-extenders.
1887 int V;
1888 switch (Opc) {
1889 case Hexagon::S2_storerb_io:
1890 V = int8_t(U);
1891 break;
1892 case Hexagon::S2_storerh_io:
1893 V = int16_t(U);
1894 break;
1895 case Hexagon::S2_storeri_io:
1896 V = int32_t(U);
1897 break;
1898 }
1899 if (!isInt<8>(V))
1900 return false;
1901
1902 MI->RemoveOperand(2);
1903 switch (Opc) {
1904 case Hexagon::S2_storerb_io:
1905 MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1906 break;
1907 case Hexagon::S2_storerh_io:
1908 MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
1909 break;
1910 case Hexagon::S2_storeri_io:
1911 MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
1912 break;
1913 }
1914 MI->addOperand(MachineOperand::CreateImm(V));
1915 return true;
1916}
1917
1918
1919// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
1920// last instruction in a sequence that results in something equivalent to
1921// the pack-halfwords. The intent is to cause the entire sequence to become
1922// dead.
1923bool BitSimplification::genPackhl(MachineInstr *MI,
1924 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1925 unsigned Opc = MI->getOpcode();
1926 if (Opc == Hexagon::S2_packhl)
1927 return false;
1928 BitTracker::RegisterRef Rs, Rt;
1929 if (!matchPackhl(RD.Reg, RC, Rs, Rt))
1930 return false;
1931
1932 MachineBasicBlock &B = *MI->getParent();
1933 unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
1934 DebugLoc DL = MI->getDebugLoc();
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001935 auto At = MI->isPHI() ? B.getFirstNonPHI()
1936 : MachineBasicBlock::iterator(MI);
1937 BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001938 .addReg(Rs.Reg, 0, Rs.Sub)
1939 .addReg(Rt.Reg, 0, Rt.Sub);
1940 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1941 BT.put(BitTracker::RegisterRef(NewR), RC);
1942 return true;
1943}
1944
1945
1946// If MI produces halfword of the input in the low half of the output,
1947// replace it with zero-extend or extractu.
1948bool BitSimplification::genExtractHalf(MachineInstr *MI,
1949 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1950 RegHalf L;
1951 // Check for halfword in low 16 bits, zeros elsewhere.
1952 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
1953 return false;
1954
1955 unsigned Opc = MI->getOpcode();
1956 MachineBasicBlock &B = *MI->getParent();
1957 DebugLoc DL = MI->getDebugLoc();
1958
1959 // Prefer zxth, since zxth can go in any slot, while extractu only in
1960 // slots 2 and 3.
1961 unsigned NewR = 0;
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001962 auto At = MI->isPHI() ? B.getFirstNonPHI()
1963 : MachineBasicBlock::iterator(MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001964 if (L.Low && Opc != Hexagon::A2_zxth) {
1965 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001966 BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001967 .addReg(L.Reg, 0, L.Sub);
Krzysztof Parzyszek0d112122016-01-14 21:59:22 +00001968 } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001969 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszek0d112122016-01-14 21:59:22 +00001970 BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001971 .addReg(L.Reg, 0, L.Sub)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001972 .addImm(16);
1973 }
1974 if (NewR == 0)
1975 return false;
1976 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1977 BT.put(BitTracker::RegisterRef(NewR), RC);
1978 return true;
1979}
1980
1981
1982// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
1983// combine.
1984bool BitSimplification::genCombineHalf(MachineInstr *MI,
1985 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1986 RegHalf L, H;
1987 // Check for combine h/l
1988 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
1989 return false;
1990 // Do nothing if this is just a reg copy.
1991 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
1992 return false;
1993
1994 unsigned Opc = MI->getOpcode();
1995 unsigned COpc = getCombineOpcode(H.Low, L.Low);
1996 if (COpc == Opc)
1997 return false;
1998
1999 MachineBasicBlock &B = *MI->getParent();
2000 DebugLoc DL = MI->getDebugLoc();
2001 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002002 auto At = MI->isPHI() ? B.getFirstNonPHI()
2003 : MachineBasicBlock::iterator(MI);
2004 BuildMI(B, At, DL, HII.get(COpc), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002005 .addReg(H.Reg, 0, H.Sub)
2006 .addReg(L.Reg, 0, L.Sub);
2007 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2008 BT.put(BitTracker::RegisterRef(NewR), RC);
2009 return true;
2010}
2011
2012
2013// If MI resets high bits of a register and keeps the lower ones, replace it
2014// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2015bool BitSimplification::genExtractLow(MachineInstr *MI,
2016 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2017 unsigned Opc = MI->getOpcode();
2018 switch (Opc) {
2019 case Hexagon::A2_zxtb:
2020 case Hexagon::A2_zxth:
2021 case Hexagon::S2_extractu:
2022 return false;
2023 }
2024 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2025 int32_t Imm = MI->getOperand(2).getImm();
2026 if (isInt<10>(Imm))
2027 return false;
2028 }
2029
2030 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2031 return false;
2032 unsigned W = RC.width();
2033 while (W > 0 && RC[W-1].is(0))
2034 W--;
2035 if (W == 0 || W == RC.width())
2036 return false;
2037 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
2038 : (W == 16) ? Hexagon::A2_zxth
2039 : (W < 10) ? Hexagon::A2_andir
2040 : Hexagon::S2_extractu;
2041 MachineBasicBlock &B = *MI->getParent();
2042 DebugLoc DL = MI->getDebugLoc();
2043
2044 for (auto &Op : MI->uses()) {
2045 if (!Op.isReg())
2046 continue;
2047 BitTracker::RegisterRef RS = Op;
2048 if (!BT.has(RS.Reg))
2049 continue;
2050 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2051 unsigned BN, BW;
2052 if (!HBS::getSubregMask(RS, BN, BW, MRI))
2053 continue;
2054 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2055 continue;
2056
2057 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002058 auto At = MI->isPHI() ? B.getFirstNonPHI()
2059 : MachineBasicBlock::iterator(MI);
2060 auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002061 .addReg(RS.Reg, 0, RS.Sub);
2062 if (NewOpc == Hexagon::A2_andir)
2063 MIB.addImm((1 << W) - 1);
2064 else if (NewOpc == Hexagon::S2_extractu)
2065 MIB.addImm(W).addImm(0);
2066 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2067 BT.put(BitTracker::RegisterRef(NewR), RC);
2068 return true;
2069 }
2070 return false;
2071}
2072
2073
2074// Check for tstbit simplification opportunity, where the bit being checked
2075// can be tracked back to another register. For example:
2076// vreg2 = S2_lsr_i_r vreg1, 5
2077// vreg3 = S2_tstbit_i vreg2, 0
2078// =>
2079// vreg3 = S2_tstbit_i vreg1, 5
2080bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2081 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2082 unsigned Opc = MI->getOpcode();
2083 if (Opc != Hexagon::S2_tstbit_i)
2084 return false;
2085
2086 unsigned BN = MI->getOperand(2).getImm();
2087 BitTracker::RegisterRef RS = MI->getOperand(1);
2088 unsigned F, W;
2089 DebugLoc DL = MI->getDebugLoc();
2090 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2091 return false;
2092 MachineBasicBlock &B = *MI->getParent();
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002093 auto At = MI->isPHI() ? B.getFirstNonPHI()
2094 : MachineBasicBlock::iterator(MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002095
2096 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2097 const BitTracker::BitValue &V = SC[F+BN];
2098 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2099 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2100 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2101 // a double register, need to use a subregister and adjust bit
2102 // number.
2103 unsigned P = UINT_MAX;
2104 BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2105 if (TC == &Hexagon::DoubleRegsRegClass) {
2106 P = V.RefI.Pos;
2107 RR.Sub = Hexagon::subreg_loreg;
2108 if (P >= 32) {
2109 P -= 32;
2110 RR.Sub = Hexagon::subreg_hireg;
2111 }
2112 } else if (TC == &Hexagon::IntRegsRegClass) {
2113 P = V.RefI.Pos;
2114 }
2115 if (P != UINT_MAX) {
2116 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002117 BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002118 .addReg(RR.Reg, 0, RR.Sub)
2119 .addImm(P);
2120 HBS::replaceReg(RD.Reg, NewR, MRI);
2121 BT.put(NewR, RC);
2122 return true;
2123 }
2124 } else if (V.is(0) || V.is(1)) {
2125 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2126 unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue;
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002127 BuildMI(B, At, DL, HII.get(NewOpc), NewR);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002128 HBS::replaceReg(RD.Reg, NewR, MRI);
2129 return true;
2130 }
2131
2132 return false;
2133}
2134
2135
2136bool BitSimplification::processBlock(MachineBasicBlock &B,
2137 const RegisterSet &AVs) {
2138 bool Changed = false;
2139 RegisterSet AVB = AVs;
2140 RegisterSet Defs;
2141
2142 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2143 MachineInstr *MI = &*I;
2144 Defs.clear();
2145 HBS::getInstrDefs(*MI, Defs);
2146
2147 unsigned Opc = MI->getOpcode();
2148 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2149 continue;
2150
2151 if (MI->mayStore()) {
2152 bool T = genStoreUpperHalf(MI);
2153 T = T || genStoreImmediate(MI);
2154 Changed |= T;
2155 continue;
2156 }
2157
2158 if (Defs.count() != 1)
2159 continue;
2160 const MachineOperand &Op0 = MI->getOperand(0);
2161 if (!Op0.isReg() || !Op0.isDef())
2162 continue;
2163 BitTracker::RegisterRef RD = Op0;
2164 if (!BT.has(RD.Reg))
2165 continue;
2166 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2167 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2168
2169 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2170 bool T = genPackhl(MI, RD, RC);
2171 Changed |= T;
2172 continue;
2173 }
2174
2175 if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2176 bool T = genExtractHalf(MI, RD, RC);
2177 T = T || genCombineHalf(MI, RD, RC);
2178 T = T || genExtractLow(MI, RD, RC);
2179 Changed |= T;
2180 continue;
2181 }
2182
2183 if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2184 bool T = simplifyTstbit(MI, RD, RC);
2185 Changed |= T;
2186 continue;
2187 }
2188 }
2189 return Changed;
2190}
2191
2192
2193bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2194 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2195 auto &HRI = *HST.getRegisterInfo();
2196 auto &HII = *HST.getInstrInfo();
2197
2198 MDT = &getAnalysis<MachineDominatorTree>();
2199 MachineRegisterInfo &MRI = MF.getRegInfo();
2200 bool Changed;
2201
2202 Changed = DeadCodeElimination(MF, *MDT).run();
2203
2204 const HexagonEvaluator HE(HRI, MRI, HII, MF);
2205 BitTracker BT(HE, MF);
2206 DEBUG(BT.trace(true));
2207 BT.run();
2208
2209 MachineBasicBlock &Entry = MF.front();
2210
2211 RegisterSet AIG; // Available registers for IG.
2212 ConstGeneration ImmG(BT, HII, MRI);
2213 Changed |= visitBlock(Entry, ImmG, AIG);
2214
2215 RegisterSet ARE; // Available registers for RIE.
2216 RedundantInstrElimination RIE(BT, HII, MRI);
2217 Changed |= visitBlock(Entry, RIE, ARE);
2218
2219 RegisterSet ACG; // Available registers for CG.
2220 CopyGeneration CopyG(BT, HII, MRI);
2221 Changed |= visitBlock(Entry, CopyG, ACG);
2222
2223 RegisterSet ACP; // Available registers for CP.
2224 CopyPropagation CopyP(HRI, MRI);
2225 Changed |= visitBlock(Entry, CopyP, ACP);
2226
2227 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2228
2229 BT.run();
2230 RegisterSet ABS; // Available registers for BS.
2231 BitSimplification BitS(BT, HII, MRI);
2232 Changed |= visitBlock(Entry, BitS, ABS);
2233
2234 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2235
2236 if (Changed) {
2237 for (auto &B : MF)
2238 for (auto &I : B)
2239 I.clearKillInfo();
2240 DeadCodeElimination(MF, *MDT).run();
2241 }
2242 return Changed;
2243}
2244
2245
2246// Recognize loops where the code at the end of the loop matches the code
2247// before the entry of the loop, and the matching code is such that is can
2248// be simplified. This pass relies on the bit simplification above and only
2249// prepares code in a way that can be handled by the bit simplifcation.
2250//
2251// This is the motivating testcase (and explanation):
2252//
2253// {
2254// loop0(.LBB0_2, r1) // %for.body.preheader
2255// r5:4 = memd(r0++#8)
2256// }
2257// {
2258// r3 = lsr(r4, #16)
2259// r7:6 = combine(r5, r5)
2260// }
2261// {
2262// r3 = insert(r5, #16, #16)
2263// r7:6 = vlsrw(r7:6, #16)
2264// }
2265// .LBB0_2:
2266// {
2267// memh(r2+#4) = r5
2268// memh(r2+#6) = r6 # R6 is really R5.H
2269// }
2270// {
2271// r2 = add(r2, #8)
2272// memh(r2+#0) = r4
2273// memh(r2+#2) = r3 # R3 is really R4.H
2274// }
2275// {
2276// r5:4 = memd(r0++#8)
2277// }
2278// { # "Shuffling" code that sets up R3 and R6
2279// r3 = lsr(r4, #16) # so that their halves can be stored in the
2280// r7:6 = combine(r5, r5) # next iteration. This could be folded into
2281// } # the stores if the code was at the beginning
2282// { # of the loop iteration. Since the same code
2283// r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
2284// r7:6 = vlsrw(r7:6, #16) # there.
2285// }:endloop0
2286//
2287//
2288// The outcome:
2289//
2290// {
2291// loop0(.LBB0_2, r1)
2292// r5:4 = memd(r0++#8)
2293// }
2294// .LBB0_2:
2295// {
2296// memh(r2+#4) = r5
2297// memh(r2+#6) = r5.h
2298// }
2299// {
2300// r2 = add(r2, #8)
2301// memh(r2+#0) = r4
2302// memh(r2+#2) = r4.h
2303// }
2304// {
2305// r5:4 = memd(r0++#8)
2306// }:endloop0
2307
2308namespace llvm {
2309 FunctionPass *createHexagonLoopRescheduling();
2310 void initializeHexagonLoopReschedulingPass(PassRegistry&);
2311}
2312
2313namespace {
2314 class HexagonLoopRescheduling : public MachineFunctionPass {
2315 public:
2316 static char ID;
2317 HexagonLoopRescheduling() : MachineFunctionPass(ID),
2318 HII(0), HRI(0), MRI(0), BTP(0) {
2319 initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2320 }
2321
2322 bool runOnMachineFunction(MachineFunction &MF) override;
2323
2324 private:
2325 const HexagonInstrInfo *HII;
2326 const HexagonRegisterInfo *HRI;
2327 MachineRegisterInfo *MRI;
2328 BitTracker *BTP;
2329
2330 struct LoopCand {
2331 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2332 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2333 MachineBasicBlock *LB, *PB, *EB;
2334 };
2335 typedef std::vector<MachineInstr*> InstrList;
2336 struct InstrGroup {
2337 BitTracker::RegisterRef Inp, Out;
2338 InstrList Ins;
2339 };
2340 struct PhiInfo {
2341 PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2342 unsigned DefR;
2343 BitTracker::RegisterRef LR, PR;
2344 MachineBasicBlock *LB, *PB;
2345 };
2346
2347 static unsigned getDefReg(const MachineInstr *MI);
2348 bool isConst(unsigned Reg) const;
2349 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2350 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2351 bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2352 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2353 unsigned &InpR2) const;
2354 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2355 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2356 bool processLoop(LoopCand &C);
2357 };
2358}
2359
2360char HexagonLoopRescheduling::ID = 0;
2361
2362INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2363 "Hexagon Loop Rescheduling", false, false)
2364
2365
2366HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2367 MachineBasicBlock &B) {
2368 DefR = HexagonLoopRescheduling::getDefReg(&P);
2369 LB = &B;
2370 PB = nullptr;
2371 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2372 const MachineOperand &OpB = P.getOperand(i+1);
2373 if (OpB.getMBB() == &B) {
2374 LR = P.getOperand(i);
2375 continue;
2376 }
2377 PB = OpB.getMBB();
2378 PR = P.getOperand(i);
2379 }
2380}
2381
2382
2383unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2384 RegisterSet Defs;
2385 HBS::getInstrDefs(*MI, Defs);
2386 if (Defs.count() != 1)
2387 return 0;
2388 return Defs.find_first();
2389}
2390
2391
2392bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2393 if (!BTP->has(Reg))
2394 return false;
2395 const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2396 for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2397 const BitTracker::BitValue &V = RC[i];
2398 if (!V.is(0) && !V.is(1))
2399 return false;
2400 }
2401 return true;
2402}
2403
2404
2405bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2406 unsigned DefR) const {
2407 unsigned Opc = MI->getOpcode();
2408 switch (Opc) {
2409 case TargetOpcode::COPY:
2410 case Hexagon::S2_lsr_i_r:
2411 case Hexagon::S2_asr_i_r:
2412 case Hexagon::S2_asl_i_r:
2413 case Hexagon::S2_lsr_i_p:
2414 case Hexagon::S2_asr_i_p:
2415 case Hexagon::S2_asl_i_p:
2416 case Hexagon::S2_insert:
2417 case Hexagon::A2_or:
2418 case Hexagon::A2_orp:
2419 case Hexagon::A2_and:
2420 case Hexagon::A2_andp:
2421 case Hexagon::A2_combinew:
2422 case Hexagon::A4_combineri:
2423 case Hexagon::A4_combineir:
2424 case Hexagon::A2_combineii:
2425 case Hexagon::A4_combineii:
2426 case Hexagon::A2_combine_ll:
2427 case Hexagon::A2_combine_lh:
2428 case Hexagon::A2_combine_hl:
2429 case Hexagon::A2_combine_hh:
2430 return true;
2431 }
2432 return false;
2433}
2434
2435
2436bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
2437 unsigned InpR) const {
2438 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
2439 const MachineOperand &Op = MI->getOperand(i);
2440 if (!Op.isReg())
2441 continue;
2442 if (Op.getReg() == InpR)
2443 return i == n-1;
2444 }
2445 return false;
2446}
2447
2448
2449bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
2450 if (!BTP->has(OutR) || !BTP->has(InpR))
2451 return false;
2452 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
2453 for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
2454 const BitTracker::BitValue &V = OutC[i];
2455 if (V.Type != BitTracker::BitValue::Ref)
2456 continue;
2457 if (V.RefI.Reg != InpR)
2458 return false;
2459 }
2460 return true;
2461}
2462
2463
2464bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
2465 unsigned OutR2, unsigned &InpR2) const {
2466 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
2467 return false;
2468 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
2469 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
2470 unsigned W = OutC1.width();
2471 unsigned MatchR = 0;
2472 if (W != OutC2.width())
2473 return false;
2474 for (unsigned i = 0; i < W; ++i) {
2475 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
2476 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
2477 return false;
2478 if (V1.Type != BitTracker::BitValue::Ref)
2479 continue;
2480 if (V1.RefI.Pos != V2.RefI.Pos)
2481 return false;
2482 if (V1.RefI.Reg != InpR1)
2483 return false;
2484 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
2485 return false;
2486 if (!MatchR)
2487 MatchR = V2.RefI.Reg;
2488 else if (V2.RefI.Reg != MatchR)
2489 return false;
2490 }
2491 InpR2 = MatchR;
2492 return true;
2493}
2494
2495
2496void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
2497 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
2498 unsigned NewPredR) {
2499 DenseMap<unsigned,unsigned> RegMap;
2500
2501 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
2502 unsigned PhiR = MRI->createVirtualRegister(PhiRC);
2503 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
2504 .addReg(NewPredR)
2505 .addMBB(&PB)
2506 .addReg(G.Inp.Reg)
2507 .addMBB(&LB);
2508 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
2509
2510 for (unsigned i = G.Ins.size(); i > 0; --i) {
2511 const MachineInstr *SI = G.Ins[i-1];
2512 unsigned DR = getDefReg(SI);
2513 const TargetRegisterClass *RC = MRI->getRegClass(DR);
2514 unsigned NewDR = MRI->createVirtualRegister(RC);
2515 DebugLoc DL = SI->getDebugLoc();
2516
2517 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
2518 for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
2519 const MachineOperand &Op = SI->getOperand(j);
2520 if (!Op.isReg()) {
2521 MIB.addOperand(Op);
2522 continue;
2523 }
2524 if (!Op.isUse())
2525 continue;
2526 unsigned UseR = RegMap[Op.getReg()];
2527 MIB.addReg(UseR, 0, Op.getSubReg());
2528 }
2529 RegMap.insert(std::make_pair(DR, NewDR));
2530 }
2531
2532 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
2533}
2534
2535
2536bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
2537 DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
2538 std::vector<PhiInfo> Phis;
2539 for (auto &I : *C.LB) {
2540 if (!I.isPHI())
2541 break;
2542 unsigned PR = getDefReg(&I);
2543 if (isConst(PR))
2544 continue;
2545 bool BadUse = false, GoodUse = false;
2546 for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
2547 MachineInstr *UseI = UI->getParent();
2548 if (UseI->getParent() != C.LB) {
2549 BadUse = true;
2550 break;
2551 }
2552 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
2553 GoodUse = true;
2554 }
2555 if (BadUse || !GoodUse)
2556 continue;
2557
2558 Phis.push_back(PhiInfo(I, *C.LB));
2559 }
2560
2561 DEBUG({
2562 dbgs() << "Phis: {";
2563 for (auto &I : Phis) {
2564 dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
2565 << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
2566 << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
2567 << I.LB->getNumber() << ')';
2568 }
2569 dbgs() << " }\n";
2570 });
2571
2572 if (Phis.empty())
2573 return false;
2574
2575 bool Changed = false;
2576 InstrList ShufIns;
2577
2578 // Go backwards in the block: for each bit shuffling instruction, check
2579 // if that instruction could potentially be moved to the front of the loop:
2580 // the output of the loop cannot be used in a non-shuffling instruction
2581 // in this loop.
2582 for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
2583 if (I->isTerminator())
2584 continue;
2585 if (I->isPHI())
2586 break;
2587
2588 RegisterSet Defs;
2589 HBS::getInstrDefs(*I, Defs);
2590 if (Defs.count() != 1)
2591 continue;
2592 unsigned DefR = Defs.find_first();
2593 if (!TargetRegisterInfo::isVirtualRegister(DefR))
2594 continue;
2595 if (!isBitShuffle(&*I, DefR))
2596 continue;
2597
2598 bool BadUse = false;
2599 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
2600 MachineInstr *UseI = UI->getParent();
2601 if (UseI->getParent() == C.LB) {
2602 if (UseI->isPHI()) {
2603 // If the use is in a phi node in this loop, then it should be
2604 // the value corresponding to the back edge.
2605 unsigned Idx = UI.getOperandNo();
2606 if (UseI->getOperand(Idx+1).getMBB() != C.LB)
2607 BadUse = true;
2608 } else {
2609 auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI);
2610 if (F == ShufIns.end())
2611 BadUse = true;
2612 }
2613 } else {
2614 // There is a use outside of the loop, but there is no epilog block
2615 // suitable for a copy-out.
2616 if (C.EB == nullptr)
2617 BadUse = true;
2618 }
2619 if (BadUse)
2620 break;
2621 }
2622
2623 if (BadUse)
2624 continue;
2625 ShufIns.push_back(&*I);
2626 }
2627
2628 // Partition the list of shuffling instructions into instruction groups,
2629 // where each group has to be moved as a whole (i.e. a group is a chain of
2630 // dependent instructions). A group produces a single live output register,
2631 // which is meant to be the input of the loop phi node (although this is
2632 // not checked here yet). It also uses a single register as its input,
2633 // which is some value produced in the loop body. After moving the group
2634 // to the beginning of the loop, that input register would need to be
2635 // the loop-carried register (through a phi node) instead of the (currently
2636 // loop-carried) output register.
2637 typedef std::vector<InstrGroup> InstrGroupList;
2638 InstrGroupList Groups;
2639
2640 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
2641 MachineInstr *SI = ShufIns[i];
2642 if (SI == nullptr)
2643 continue;
2644
2645 InstrGroup G;
2646 G.Ins.push_back(SI);
2647 G.Out.Reg = getDefReg(SI);
2648 RegisterSet Inputs;
2649 HBS::getInstrUses(*SI, Inputs);
2650
2651 for (unsigned j = i+1; j < n; ++j) {
2652 MachineInstr *MI = ShufIns[j];
2653 if (MI == nullptr)
2654 continue;
2655 RegisterSet Defs;
2656 HBS::getInstrDefs(*MI, Defs);
2657 // If this instruction does not define any pending inputs, skip it.
2658 if (!Defs.intersects(Inputs))
2659 continue;
2660 // Otherwise, add it to the current group and remove the inputs that
2661 // are defined by MI.
2662 G.Ins.push_back(MI);
2663 Inputs.remove(Defs);
2664 // Then add all registers used by MI.
2665 HBS::getInstrUses(*MI, Inputs);
2666 ShufIns[j] = nullptr;
2667 }
2668
2669 // Only add a group if it requires at most one register.
2670 if (Inputs.count() > 1)
2671 continue;
2672 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2673 return G.Out.Reg == P.LR.Reg;
2674 };
2675 if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end())
2676 continue;
2677
2678 G.Inp.Reg = Inputs.find_first();
2679 Groups.push_back(G);
2680 }
2681
2682 DEBUG({
2683 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2684 InstrGroup &G = Groups[i];
2685 dbgs() << "Group[" << i << "] inp: "
2686 << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
2687 << " out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
2688 for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
2689 dbgs() << " " << *G.Ins[j];
2690 }
2691 });
2692
2693 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2694 InstrGroup &G = Groups[i];
2695 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
2696 continue;
2697 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2698 return G.Out.Reg == P.LR.Reg;
2699 };
2700 auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq);
2701 if (F == Phis.end())
2702 continue;
2703 unsigned PredR = 0;
2704 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) {
2705 const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg);
2706 unsigned Opc = DefPredR->getOpcode();
2707 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
2708 continue;
2709 if (!DefPredR->getOperand(1).isImm())
2710 continue;
2711 if (DefPredR->getOperand(1).getImm() != 0)
2712 continue;
2713 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
2714 if (RC != MRI->getRegClass(F->PR.Reg)) {
2715 PredR = MRI->createVirtualRegister(RC);
2716 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
2717 : Hexagon::A2_tfrpi;
2718 auto T = C.PB->getFirstTerminator();
2719 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
2720 BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR)
2721 .addImm(0);
2722 } else {
2723 PredR = F->PR.Reg;
2724 }
2725 }
2726 assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg));
2727 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR);
2728 Changed = true;
2729 }
2730
2731 return Changed;
2732}
2733
2734
2735bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
2736 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2737 HII = HST.getInstrInfo();
2738 HRI = HST.getRegisterInfo();
2739 MRI = &MF.getRegInfo();
2740 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
2741 BitTracker BT(HE, MF);
2742 DEBUG(BT.trace(true));
2743 BT.run();
2744 BTP = &BT;
2745
2746 std::vector<LoopCand> Cand;
2747
2748 for (auto &B : MF) {
2749 if (B.pred_size() != 2 || B.succ_size() != 2)
2750 continue;
2751 MachineBasicBlock *PB = nullptr;
2752 bool IsLoop = false;
2753 for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
2754 if (*PI != &B)
2755 PB = *PI;
2756 else
2757 IsLoop = true;
2758 }
2759 if (!IsLoop)
2760 continue;
2761
2762 MachineBasicBlock *EB = nullptr;
2763 for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
2764 if (*SI == &B)
2765 continue;
2766 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
2767 // edge from B to EP is non-critical.
2768 if ((*SI)->pred_size() == 1)
2769 EB = *SI;
2770 break;
2771 }
2772
2773 Cand.push_back(LoopCand(&B, PB, EB));
2774 }
2775
2776 bool Changed = false;
2777 for (auto &C : Cand)
2778 Changed |= processLoop(C);
2779
2780 return Changed;
2781}
2782
2783//===----------------------------------------------------------------------===//
2784// Public Constructor Functions
2785//===----------------------------------------------------------------------===//
2786
2787FunctionPass *llvm::createHexagonLoopRescheduling() {
2788 return new HexagonLoopRescheduling();
2789}
2790
2791FunctionPass *llvm::createHexagonBitSimplify() {
2792 return new HexagonBitSimplify();
2793}
2794