Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 1 | //===--- HexagonBitSimplify.cpp -------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #define DEBUG_TYPE "hexbit" |
| 11 | |
Mehdi Amini | b550cb1 | 2016-04-18 09:17:29 +0000 | [diff] [blame^] | 12 | #include "HexagonBitTracker.h" |
| 13 | #include "HexagonTargetMachine.h" |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 14 | #include "llvm/CodeGen/MachineDominators.h" |
| 15 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 16 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 17 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
Mehdi Amini | b550cb1 | 2016-04-18 09:17:29 +0000 | [diff] [blame^] | 18 | #include "llvm/CodeGen/Passes.h" |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 19 | #include "llvm/Support/Debug.h" |
| 20 | #include "llvm/Support/raw_ostream.h" |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 21 | #include "llvm/Target/TargetInstrInfo.h" |
Mehdi Amini | b550cb1 | 2016-04-18 09:17:29 +0000 | [diff] [blame^] | 22 | #include "llvm/Target/TargetMachine.h" |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 23 | |
| 24 | using namespace llvm; |
| 25 | |
| 26 | namespace llvm { |
| 27 | void initializeHexagonBitSimplifyPass(PassRegistry& Registry); |
| 28 | FunctionPass *createHexagonBitSimplify(); |
| 29 | } |
| 30 | |
| 31 | namespace { |
| 32 | // Set of virtual registers, based on BitVector. |
| 33 | struct RegisterSet : private BitVector { |
| 34 | RegisterSet() : BitVector() {} |
| 35 | explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} |
| 36 | RegisterSet(const RegisterSet &RS) : BitVector(RS) {} |
| 37 | |
| 38 | using BitVector::clear; |
| 39 | using BitVector::count; |
| 40 | |
| 41 | unsigned find_first() const { |
| 42 | int First = BitVector::find_first(); |
| 43 | if (First < 0) |
| 44 | return 0; |
| 45 | return x2v(First); |
| 46 | } |
| 47 | |
| 48 | unsigned find_next(unsigned Prev) const { |
| 49 | int Next = BitVector::find_next(v2x(Prev)); |
| 50 | if (Next < 0) |
| 51 | return 0; |
| 52 | return x2v(Next); |
| 53 | } |
| 54 | |
| 55 | RegisterSet &insert(unsigned R) { |
| 56 | unsigned Idx = v2x(R); |
| 57 | ensure(Idx); |
| 58 | return static_cast<RegisterSet&>(BitVector::set(Idx)); |
| 59 | } |
| 60 | RegisterSet &remove(unsigned R) { |
| 61 | unsigned Idx = v2x(R); |
| 62 | if (Idx >= size()) |
| 63 | return *this; |
| 64 | return static_cast<RegisterSet&>(BitVector::reset(Idx)); |
| 65 | } |
| 66 | |
| 67 | RegisterSet &insert(const RegisterSet &Rs) { |
| 68 | return static_cast<RegisterSet&>(BitVector::operator|=(Rs)); |
| 69 | } |
| 70 | RegisterSet &remove(const RegisterSet &Rs) { |
| 71 | return static_cast<RegisterSet&>(BitVector::reset(Rs)); |
| 72 | } |
| 73 | |
| 74 | reference operator[](unsigned R) { |
| 75 | unsigned Idx = v2x(R); |
| 76 | ensure(Idx); |
| 77 | return BitVector::operator[](Idx); |
| 78 | } |
| 79 | bool operator[](unsigned R) const { |
| 80 | unsigned Idx = v2x(R); |
| 81 | assert(Idx < size()); |
| 82 | return BitVector::operator[](Idx); |
| 83 | } |
| 84 | bool has(unsigned R) const { |
| 85 | unsigned Idx = v2x(R); |
| 86 | if (Idx >= size()) |
| 87 | return false; |
| 88 | return BitVector::test(Idx); |
| 89 | } |
| 90 | |
| 91 | bool empty() const { |
| 92 | return !BitVector::any(); |
| 93 | } |
| 94 | bool includes(const RegisterSet &Rs) const { |
| 95 | // A.BitVector::test(B) <=> A-B != {} |
| 96 | return !Rs.BitVector::test(*this); |
| 97 | } |
| 98 | bool intersects(const RegisterSet &Rs) const { |
| 99 | return BitVector::anyCommon(Rs); |
| 100 | } |
| 101 | |
| 102 | private: |
| 103 | void ensure(unsigned Idx) { |
| 104 | if (size() <= Idx) |
| 105 | resize(std::max(Idx+1, 32U)); |
| 106 | } |
| 107 | static inline unsigned v2x(unsigned v) { |
| 108 | return TargetRegisterInfo::virtReg2Index(v); |
| 109 | } |
| 110 | static inline unsigned x2v(unsigned x) { |
| 111 | return TargetRegisterInfo::index2VirtReg(x); |
| 112 | } |
| 113 | }; |
| 114 | |
| 115 | |
| 116 | struct PrintRegSet { |
| 117 | PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) |
| 118 | : RS(S), TRI(RI) {} |
| 119 | friend raw_ostream &operator<< (raw_ostream &OS, |
| 120 | const PrintRegSet &P); |
| 121 | private: |
| 122 | const RegisterSet &RS; |
| 123 | const TargetRegisterInfo *TRI; |
| 124 | }; |
| 125 | |
| 126 | raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) |
| 127 | LLVM_ATTRIBUTE_UNUSED; |
| 128 | raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { |
| 129 | OS << '{'; |
| 130 | for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R)) |
| 131 | OS << ' ' << PrintReg(R, P.TRI); |
| 132 | OS << " }"; |
| 133 | return OS; |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | |
| 138 | namespace { |
| 139 | class Transformation; |
| 140 | |
| 141 | class HexagonBitSimplify : public MachineFunctionPass { |
| 142 | public: |
| 143 | static char ID; |
| 144 | HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) { |
| 145 | initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry()); |
| 146 | } |
| 147 | virtual const char *getPassName() const { |
| 148 | return "Hexagon bit simplification"; |
| 149 | } |
| 150 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 151 | AU.addRequired<MachineDominatorTree>(); |
| 152 | AU.addPreserved<MachineDominatorTree>(); |
| 153 | MachineFunctionPass::getAnalysisUsage(AU); |
| 154 | } |
| 155 | virtual bool runOnMachineFunction(MachineFunction &MF); |
| 156 | |
| 157 | static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs); |
| 158 | static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses); |
| 159 | static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1, |
| 160 | const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W); |
| 161 | static bool isConst(const BitTracker::RegisterCell &RC, uint16_t B, |
| 162 | uint16_t W); |
| 163 | static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B, |
| 164 | uint16_t W); |
| 165 | static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B, |
| 166 | uint16_t W, uint64_t &U); |
| 167 | static bool replaceReg(unsigned OldR, unsigned NewR, |
| 168 | MachineRegisterInfo &MRI); |
| 169 | static bool getSubregMask(const BitTracker::RegisterRef &RR, |
| 170 | unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI); |
| 171 | static bool replaceRegWithSub(unsigned OldR, unsigned NewR, |
| 172 | unsigned NewSR, MachineRegisterInfo &MRI); |
| 173 | static bool replaceSubWithSub(unsigned OldR, unsigned OldSR, |
| 174 | unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI); |
| 175 | static bool parseRegSequence(const MachineInstr &I, |
| 176 | BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH); |
| 177 | |
| 178 | static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits, |
| 179 | uint16_t Begin); |
| 180 | static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits, |
| 181 | uint16_t Begin, const HexagonInstrInfo &HII); |
| 182 | |
| 183 | static const TargetRegisterClass *getFinalVRegClass( |
| 184 | const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI); |
| 185 | static bool isTransparentCopy(const BitTracker::RegisterRef &RD, |
| 186 | const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI); |
| 187 | |
| 188 | private: |
| 189 | MachineDominatorTree *MDT; |
| 190 | |
| 191 | bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs); |
| 192 | }; |
| 193 | |
| 194 | char HexagonBitSimplify::ID = 0; |
| 195 | typedef HexagonBitSimplify HBS; |
| 196 | |
| 197 | |
| 198 | // The purpose of this class is to provide a common facility to traverse |
| 199 | // the function top-down or bottom-up via the dominator tree, and keep |
| 200 | // track of the available registers. |
| 201 | class Transformation { |
| 202 | public: |
| 203 | bool TopDown; |
| 204 | Transformation(bool TD) : TopDown(TD) {} |
| 205 | virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0; |
| 206 | virtual ~Transformation() {} |
| 207 | }; |
| 208 | } |
| 209 | |
| 210 | INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit", |
| 211 | "Hexagon bit simplification", false, false) |
| 212 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| 213 | INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit", |
| 214 | "Hexagon bit simplification", false, false) |
| 215 | |
| 216 | |
| 217 | bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T, |
| 218 | RegisterSet &AVs) { |
| 219 | MachineDomTreeNode *N = MDT->getNode(&B); |
| 220 | typedef GraphTraits<MachineDomTreeNode*> GTN; |
| 221 | bool Changed = false; |
| 222 | |
| 223 | if (T.TopDown) |
| 224 | Changed = T.processBlock(B, AVs); |
| 225 | |
| 226 | RegisterSet Defs; |
| 227 | for (auto &I : B) |
| 228 | getInstrDefs(I, Defs); |
| 229 | RegisterSet NewAVs = AVs; |
| 230 | NewAVs.insert(Defs); |
| 231 | |
| 232 | for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) { |
| 233 | MachineBasicBlock *SB = (*I)->getBlock(); |
| 234 | Changed |= visitBlock(*SB, T, NewAVs); |
| 235 | } |
| 236 | if (!T.TopDown) |
| 237 | Changed |= T.processBlock(B, AVs); |
| 238 | |
| 239 | return Changed; |
| 240 | } |
| 241 | |
| 242 | // |
| 243 | // Utility functions: |
| 244 | // |
| 245 | void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI, |
| 246 | RegisterSet &Defs) { |
| 247 | for (auto &Op : MI.operands()) { |
| 248 | if (!Op.isReg() || !Op.isDef()) |
| 249 | continue; |
| 250 | unsigned R = Op.getReg(); |
| 251 | if (!TargetRegisterInfo::isVirtualRegister(R)) |
| 252 | continue; |
| 253 | Defs.insert(R); |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | void HexagonBitSimplify::getInstrUses(const MachineInstr &MI, |
| 258 | RegisterSet &Uses) { |
| 259 | for (auto &Op : MI.operands()) { |
| 260 | if (!Op.isReg() || !Op.isUse()) |
| 261 | continue; |
| 262 | unsigned R = Op.getReg(); |
| 263 | if (!TargetRegisterInfo::isVirtualRegister(R)) |
| 264 | continue; |
| 265 | Uses.insert(R); |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | // Check if all the bits in range [B, E) in both cells are equal. |
| 270 | bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1, |
| 271 | uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2, |
| 272 | uint16_t W) { |
| 273 | for (uint16_t i = 0; i < W; ++i) { |
| 274 | // If RC1[i] is "bottom", it cannot be proven equal to RC2[i]. |
| 275 | if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0) |
| 276 | return false; |
| 277 | // Same for RC2[i]. |
| 278 | if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0) |
| 279 | return false; |
| 280 | if (RC1[B1+i] != RC2[B2+i]) |
| 281 | return false; |
| 282 | } |
| 283 | return true; |
| 284 | } |
| 285 | |
| 286 | |
| 287 | bool HexagonBitSimplify::isConst(const BitTracker::RegisterCell &RC, |
| 288 | uint16_t B, uint16_t W) { |
| 289 | assert(B < RC.width() && B+W <= RC.width()); |
| 290 | for (uint16_t i = B; i < B+W; ++i) |
| 291 | if (!RC[i].num()) |
| 292 | return false; |
| 293 | return true; |
| 294 | } |
| 295 | |
| 296 | |
| 297 | bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC, |
| 298 | uint16_t B, uint16_t W) { |
| 299 | assert(B < RC.width() && B+W <= RC.width()); |
| 300 | for (uint16_t i = B; i < B+W; ++i) |
| 301 | if (!RC[i].is(0)) |
| 302 | return false; |
| 303 | return true; |
| 304 | } |
| 305 | |
| 306 | |
| 307 | bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC, |
| 308 | uint16_t B, uint16_t W, uint64_t &U) { |
| 309 | assert(B < RC.width() && B+W <= RC.width()); |
| 310 | int64_t T = 0; |
| 311 | for (uint16_t i = B+W; i > B; --i) { |
| 312 | const BitTracker::BitValue &BV = RC[i-1]; |
| 313 | T <<= 1; |
| 314 | if (BV.is(1)) |
| 315 | T |= 1; |
| 316 | else if (!BV.is(0)) |
| 317 | return false; |
| 318 | } |
| 319 | U = T; |
| 320 | return true; |
| 321 | } |
| 322 | |
| 323 | |
| 324 | bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR, |
| 325 | MachineRegisterInfo &MRI) { |
| 326 | if (!TargetRegisterInfo::isVirtualRegister(OldR) || |
| 327 | !TargetRegisterInfo::isVirtualRegister(NewR)) |
| 328 | return false; |
| 329 | auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); |
| 330 | decltype(End) NextI; |
| 331 | for (auto I = Begin; I != End; I = NextI) { |
| 332 | NextI = std::next(I); |
| 333 | I->setReg(NewR); |
| 334 | } |
| 335 | return Begin != End; |
| 336 | } |
| 337 | |
| 338 | |
| 339 | bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR, |
| 340 | unsigned NewSR, MachineRegisterInfo &MRI) { |
| 341 | if (!TargetRegisterInfo::isVirtualRegister(OldR) || |
| 342 | !TargetRegisterInfo::isVirtualRegister(NewR)) |
| 343 | return false; |
| 344 | auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); |
| 345 | decltype(End) NextI; |
| 346 | for (auto I = Begin; I != End; I = NextI) { |
| 347 | NextI = std::next(I); |
| 348 | I->setReg(NewR); |
| 349 | I->setSubReg(NewSR); |
| 350 | } |
| 351 | return Begin != End; |
| 352 | } |
| 353 | |
| 354 | |
| 355 | bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR, |
| 356 | unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) { |
| 357 | if (!TargetRegisterInfo::isVirtualRegister(OldR) || |
| 358 | !TargetRegisterInfo::isVirtualRegister(NewR)) |
| 359 | return false; |
| 360 | auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); |
| 361 | decltype(End) NextI; |
| 362 | for (auto I = Begin; I != End; I = NextI) { |
| 363 | NextI = std::next(I); |
| 364 | if (I->getSubReg() != OldSR) |
| 365 | continue; |
| 366 | I->setReg(NewR); |
| 367 | I->setSubReg(NewSR); |
| 368 | } |
| 369 | return Begin != End; |
| 370 | } |
| 371 | |
| 372 | |
| 373 | // For a register ref (pair Reg:Sub), set Begin to the position of the LSB |
| 374 | // of Sub in Reg, and set Width to the size of Sub in bits. Return true, |
| 375 | // if this succeeded, otherwise return false. |
| 376 | bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR, |
| 377 | unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) { |
| 378 | const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg); |
| 379 | if (RC == &Hexagon::IntRegsRegClass) { |
| 380 | assert(RR.Sub == 0); |
| 381 | Begin = 0; |
| 382 | Width = 32; |
| 383 | return true; |
| 384 | } |
| 385 | if (RC == &Hexagon::DoubleRegsRegClass) { |
| 386 | if (RR.Sub == 0) { |
| 387 | Begin = 0; |
| 388 | Width = 64; |
| 389 | return true; |
| 390 | } |
| 391 | assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg); |
| 392 | Width = 32; |
| 393 | Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32); |
| 394 | return true; |
| 395 | } |
| 396 | return false; |
| 397 | } |
| 398 | |
| 399 | |
| 400 | // For a REG_SEQUENCE, set SL to the low subregister and SH to the high |
| 401 | // subregister. |
| 402 | bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I, |
| 403 | BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) { |
| 404 | assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE); |
| 405 | unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm(); |
| 406 | assert(Sub1 != Sub2); |
| 407 | if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) { |
| 408 | SL = I.getOperand(1); |
| 409 | SH = I.getOperand(3); |
| 410 | return true; |
| 411 | } |
| 412 | if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) { |
| 413 | SH = I.getOperand(1); |
| 414 | SL = I.getOperand(3); |
| 415 | return true; |
| 416 | } |
| 417 | return false; |
| 418 | } |
| 419 | |
| 420 | |
| 421 | // All stores (except 64-bit stores) take a 32-bit register as the source |
| 422 | // of the value to be stored. If the instruction stores into a location |
| 423 | // that is shorter than 32 bits, some bits of the source register are not |
| 424 | // used. For each store instruction, calculate the set of used bits in |
| 425 | // the source register, and set appropriate bits in Bits. Return true if |
| 426 | // the bits are calculated, false otherwise. |
| 427 | bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits, |
| 428 | uint16_t Begin) { |
| 429 | using namespace Hexagon; |
| 430 | |
| 431 | switch (Opc) { |
| 432 | // Store byte |
| 433 | case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32 |
| 434 | case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new |
| 435 | case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32 |
| 436 | case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32 |
| 437 | case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32 |
| 438 | case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32 |
| 439 | case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new |
| 440 | case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new |
| 441 | case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new |
| 442 | case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new |
| 443 | case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32 |
| 444 | case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new |
| 445 | case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32 |
| 446 | case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32 |
| 447 | case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32 |
| 448 | case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32 |
| 449 | case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new |
| 450 | case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new |
| 451 | case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new |
| 452 | case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new |
| 453 | case S4_storerb_ap: // memb(Re32=#U6)=Rt32 |
| 454 | case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new |
| 455 | case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32 |
| 456 | case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new |
| 457 | case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32 |
| 458 | case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new |
| 459 | case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32 |
| 460 | case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new |
| 461 | case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32 |
| 462 | case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new |
| 463 | case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32 |
| 464 | case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new |
| 465 | case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32 |
| 466 | case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new |
| 467 | case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32 |
| 468 | case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32 |
| 469 | case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 |
| 470 | case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 |
| 471 | case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new |
| 472 | case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new |
| 473 | case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new |
| 474 | case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new |
| 475 | case S2_storerbgp: // memb(gp+#u16:0)=Rt32 |
| 476 | case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new |
| 477 | case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32 |
| 478 | case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32 |
| 479 | case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32 |
| 480 | case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32 |
| 481 | case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new |
| 482 | case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new |
| 483 | case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new |
| 484 | case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new |
| 485 | Bits.set(Begin, Begin+8); |
| 486 | return true; |
| 487 | |
| 488 | // Store low half |
| 489 | case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32 |
| 490 | case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new |
| 491 | case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32 |
| 492 | case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32 |
| 493 | case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32 |
| 494 | case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32 |
| 495 | case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new |
| 496 | case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new |
| 497 | case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new |
| 498 | case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new |
| 499 | case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32 |
| 500 | case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new |
| 501 | case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32 |
| 502 | case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32 |
| 503 | case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32 |
| 504 | case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32 |
| 505 | case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new |
| 506 | case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new |
| 507 | case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new |
| 508 | case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new |
| 509 | case S4_storerh_ap: // memh(Re32=#U6)=Rt32 |
| 510 | case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new |
| 511 | case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32 |
| 512 | case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new |
| 513 | case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32 |
| 514 | case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new |
| 515 | case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32 |
| 516 | case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new |
| 517 | case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32 |
| 518 | case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new |
| 519 | case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32 |
| 520 | case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new |
| 521 | case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32 |
| 522 | case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32 |
| 523 | case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32 |
| 524 | case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 |
| 525 | case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 |
| 526 | case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new |
| 527 | case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new |
| 528 | case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new |
| 529 | case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new |
| 530 | case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new |
| 531 | case S2_storerhgp: // memh(gp+#u16:1)=Rt32 |
| 532 | case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new |
| 533 | case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32 |
| 534 | case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32 |
| 535 | case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32 |
| 536 | case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32 |
| 537 | case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new |
| 538 | case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new |
| 539 | case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new |
| 540 | case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new |
| 541 | Bits.set(Begin, Begin+16); |
| 542 | return true; |
| 543 | |
| 544 | // Store high half |
| 545 | case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32 |
| 546 | case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32 |
| 547 | case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32 |
| 548 | case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32 |
| 549 | case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32 |
| 550 | case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32 |
| 551 | case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32 |
| 552 | case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32 |
| 553 | case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32 |
| 554 | case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32 |
| 555 | case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32 |
| 556 | case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32 |
| 557 | case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32 |
| 558 | case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32 |
| 559 | case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32 |
| 560 | case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32 |
| 561 | case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32 |
| 562 | case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 |
| 563 | case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 |
| 564 | case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 |
| 565 | case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 |
| 566 | case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32 |
| 567 | case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32 |
| 568 | case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32 |
| 569 | case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32 |
| 570 | case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32 |
| 571 | Bits.set(Begin+16, Begin+32); |
| 572 | return true; |
| 573 | } |
| 574 | |
| 575 | return false; |
| 576 | } |
| 577 | |
| 578 | |
| 579 | // For an instruction with opcode Opc, calculate the set of bits that it |
| 580 | // uses in a register in operand OpN. This only calculates the set of used |
| 581 | // bits for cases where it does not depend on any operands (as is the case |
| 582 | // in shifts, for example). For concrete instructions from a program, the |
| 583 | // operand may be a subregister of a larger register, while Bits would |
| 584 | // correspond to the larger register in its entirety. Because of that, |
| 585 | // the parameter Begin can be used to indicate which bit of Bits should be |
| 586 | // considered the LSB of of the operand. |
| 587 | bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN, |
| 588 | BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) { |
| 589 | using namespace Hexagon; |
| 590 | |
| 591 | const MCInstrDesc &D = HII.get(Opc); |
| 592 | if (D.mayStore()) { |
| 593 | if (OpN == D.getNumOperands()-1) |
| 594 | return getUsedBitsInStore(Opc, Bits, Begin); |
| 595 | return false; |
| 596 | } |
| 597 | |
| 598 | switch (Opc) { |
| 599 | // One register source. Used bits: R1[0-7]. |
| 600 | case A2_sxtb: |
| 601 | case A2_zxtb: |
| 602 | case A4_cmpbeqi: |
| 603 | case A4_cmpbgti: |
| 604 | case A4_cmpbgtui: |
| 605 | if (OpN == 1) { |
| 606 | Bits.set(Begin, Begin+8); |
| 607 | return true; |
| 608 | } |
| 609 | break; |
| 610 | |
| 611 | // One register source. Used bits: R1[0-15]. |
| 612 | case A2_aslh: |
| 613 | case A2_sxth: |
| 614 | case A2_zxth: |
| 615 | case A4_cmpheqi: |
| 616 | case A4_cmphgti: |
| 617 | case A4_cmphgtui: |
| 618 | if (OpN == 1) { |
| 619 | Bits.set(Begin, Begin+16); |
| 620 | return true; |
| 621 | } |
| 622 | break; |
| 623 | |
| 624 | // One register source. Used bits: R1[16-31]. |
| 625 | case A2_asrh: |
| 626 | if (OpN == 1) { |
| 627 | Bits.set(Begin+16, Begin+32); |
| 628 | return true; |
| 629 | } |
| 630 | break; |
| 631 | |
| 632 | // Two register sources. Used bits: R1[0-7], R2[0-7]. |
| 633 | case A4_cmpbeq: |
| 634 | case A4_cmpbgt: |
| 635 | case A4_cmpbgtu: |
| 636 | if (OpN == 1) { |
| 637 | Bits.set(Begin, Begin+8); |
| 638 | return true; |
| 639 | } |
| 640 | break; |
| 641 | |
| 642 | // Two register sources. Used bits: R1[0-15], R2[0-15]. |
| 643 | case A4_cmpheq: |
| 644 | case A4_cmphgt: |
| 645 | case A4_cmphgtu: |
| 646 | case A2_addh_h16_ll: |
| 647 | case A2_addh_h16_sat_ll: |
| 648 | case A2_addh_l16_ll: |
| 649 | case A2_addh_l16_sat_ll: |
| 650 | case A2_combine_ll: |
| 651 | case A2_subh_h16_ll: |
| 652 | case A2_subh_h16_sat_ll: |
| 653 | case A2_subh_l16_ll: |
| 654 | case A2_subh_l16_sat_ll: |
| 655 | case M2_mpy_acc_ll_s0: |
| 656 | case M2_mpy_acc_ll_s1: |
| 657 | case M2_mpy_acc_sat_ll_s0: |
| 658 | case M2_mpy_acc_sat_ll_s1: |
| 659 | case M2_mpy_ll_s0: |
| 660 | case M2_mpy_ll_s1: |
| 661 | case M2_mpy_nac_ll_s0: |
| 662 | case M2_mpy_nac_ll_s1: |
| 663 | case M2_mpy_nac_sat_ll_s0: |
| 664 | case M2_mpy_nac_sat_ll_s1: |
| 665 | case M2_mpy_rnd_ll_s0: |
| 666 | case M2_mpy_rnd_ll_s1: |
| 667 | case M2_mpy_sat_ll_s0: |
| 668 | case M2_mpy_sat_ll_s1: |
| 669 | case M2_mpy_sat_rnd_ll_s0: |
| 670 | case M2_mpy_sat_rnd_ll_s1: |
| 671 | case M2_mpyd_acc_ll_s0: |
| 672 | case M2_mpyd_acc_ll_s1: |
| 673 | case M2_mpyd_ll_s0: |
| 674 | case M2_mpyd_ll_s1: |
| 675 | case M2_mpyd_nac_ll_s0: |
| 676 | case M2_mpyd_nac_ll_s1: |
| 677 | case M2_mpyd_rnd_ll_s0: |
| 678 | case M2_mpyd_rnd_ll_s1: |
| 679 | case M2_mpyu_acc_ll_s0: |
| 680 | case M2_mpyu_acc_ll_s1: |
| 681 | case M2_mpyu_ll_s0: |
| 682 | case M2_mpyu_ll_s1: |
| 683 | case M2_mpyu_nac_ll_s0: |
| 684 | case M2_mpyu_nac_ll_s1: |
| 685 | case M2_mpyud_acc_ll_s0: |
| 686 | case M2_mpyud_acc_ll_s1: |
| 687 | case M2_mpyud_ll_s0: |
| 688 | case M2_mpyud_ll_s1: |
| 689 | case M2_mpyud_nac_ll_s0: |
| 690 | case M2_mpyud_nac_ll_s1: |
| 691 | if (OpN == 1 || OpN == 2) { |
| 692 | Bits.set(Begin, Begin+16); |
| 693 | return true; |
| 694 | } |
| 695 | break; |
| 696 | |
| 697 | // Two register sources. Used bits: R1[0-15], R2[16-31]. |
| 698 | case A2_addh_h16_lh: |
| 699 | case A2_addh_h16_sat_lh: |
| 700 | case A2_combine_lh: |
| 701 | case A2_subh_h16_lh: |
| 702 | case A2_subh_h16_sat_lh: |
| 703 | case M2_mpy_acc_lh_s0: |
| 704 | case M2_mpy_acc_lh_s1: |
| 705 | case M2_mpy_acc_sat_lh_s0: |
| 706 | case M2_mpy_acc_sat_lh_s1: |
| 707 | case M2_mpy_lh_s0: |
| 708 | case M2_mpy_lh_s1: |
| 709 | case M2_mpy_nac_lh_s0: |
| 710 | case M2_mpy_nac_lh_s1: |
| 711 | case M2_mpy_nac_sat_lh_s0: |
| 712 | case M2_mpy_nac_sat_lh_s1: |
| 713 | case M2_mpy_rnd_lh_s0: |
| 714 | case M2_mpy_rnd_lh_s1: |
| 715 | case M2_mpy_sat_lh_s0: |
| 716 | case M2_mpy_sat_lh_s1: |
| 717 | case M2_mpy_sat_rnd_lh_s0: |
| 718 | case M2_mpy_sat_rnd_lh_s1: |
| 719 | case M2_mpyd_acc_lh_s0: |
| 720 | case M2_mpyd_acc_lh_s1: |
| 721 | case M2_mpyd_lh_s0: |
| 722 | case M2_mpyd_lh_s1: |
| 723 | case M2_mpyd_nac_lh_s0: |
| 724 | case M2_mpyd_nac_lh_s1: |
| 725 | case M2_mpyd_rnd_lh_s0: |
| 726 | case M2_mpyd_rnd_lh_s1: |
| 727 | case M2_mpyu_acc_lh_s0: |
| 728 | case M2_mpyu_acc_lh_s1: |
| 729 | case M2_mpyu_lh_s0: |
| 730 | case M2_mpyu_lh_s1: |
| 731 | case M2_mpyu_nac_lh_s0: |
| 732 | case M2_mpyu_nac_lh_s1: |
| 733 | case M2_mpyud_acc_lh_s0: |
| 734 | case M2_mpyud_acc_lh_s1: |
| 735 | case M2_mpyud_lh_s0: |
| 736 | case M2_mpyud_lh_s1: |
| 737 | case M2_mpyud_nac_lh_s0: |
| 738 | case M2_mpyud_nac_lh_s1: |
| 739 | // These four are actually LH. |
| 740 | case A2_addh_l16_hl: |
| 741 | case A2_addh_l16_sat_hl: |
| 742 | case A2_subh_l16_hl: |
| 743 | case A2_subh_l16_sat_hl: |
| 744 | if (OpN == 1) { |
| 745 | Bits.set(Begin, Begin+16); |
| 746 | return true; |
| 747 | } |
| 748 | if (OpN == 2) { |
| 749 | Bits.set(Begin+16, Begin+32); |
| 750 | return true; |
| 751 | } |
| 752 | break; |
| 753 | |
| 754 | // Two register sources, used bits: R1[16-31], R2[0-15]. |
| 755 | case A2_addh_h16_hl: |
| 756 | case A2_addh_h16_sat_hl: |
| 757 | case A2_combine_hl: |
| 758 | case A2_subh_h16_hl: |
| 759 | case A2_subh_h16_sat_hl: |
| 760 | case M2_mpy_acc_hl_s0: |
| 761 | case M2_mpy_acc_hl_s1: |
| 762 | case M2_mpy_acc_sat_hl_s0: |
| 763 | case M2_mpy_acc_sat_hl_s1: |
| 764 | case M2_mpy_hl_s0: |
| 765 | case M2_mpy_hl_s1: |
| 766 | case M2_mpy_nac_hl_s0: |
| 767 | case M2_mpy_nac_hl_s1: |
| 768 | case M2_mpy_nac_sat_hl_s0: |
| 769 | case M2_mpy_nac_sat_hl_s1: |
| 770 | case M2_mpy_rnd_hl_s0: |
| 771 | case M2_mpy_rnd_hl_s1: |
| 772 | case M2_mpy_sat_hl_s0: |
| 773 | case M2_mpy_sat_hl_s1: |
| 774 | case M2_mpy_sat_rnd_hl_s0: |
| 775 | case M2_mpy_sat_rnd_hl_s1: |
| 776 | case M2_mpyd_acc_hl_s0: |
| 777 | case M2_mpyd_acc_hl_s1: |
| 778 | case M2_mpyd_hl_s0: |
| 779 | case M2_mpyd_hl_s1: |
| 780 | case M2_mpyd_nac_hl_s0: |
| 781 | case M2_mpyd_nac_hl_s1: |
| 782 | case M2_mpyd_rnd_hl_s0: |
| 783 | case M2_mpyd_rnd_hl_s1: |
| 784 | case M2_mpyu_acc_hl_s0: |
| 785 | case M2_mpyu_acc_hl_s1: |
| 786 | case M2_mpyu_hl_s0: |
| 787 | case M2_mpyu_hl_s1: |
| 788 | case M2_mpyu_nac_hl_s0: |
| 789 | case M2_mpyu_nac_hl_s1: |
| 790 | case M2_mpyud_acc_hl_s0: |
| 791 | case M2_mpyud_acc_hl_s1: |
| 792 | case M2_mpyud_hl_s0: |
| 793 | case M2_mpyud_hl_s1: |
| 794 | case M2_mpyud_nac_hl_s0: |
| 795 | case M2_mpyud_nac_hl_s1: |
| 796 | if (OpN == 1) { |
| 797 | Bits.set(Begin+16, Begin+32); |
| 798 | return true; |
| 799 | } |
| 800 | if (OpN == 2) { |
| 801 | Bits.set(Begin, Begin+16); |
| 802 | return true; |
| 803 | } |
| 804 | break; |
| 805 | |
| 806 | // Two register sources, used bits: R1[16-31], R2[16-31]. |
| 807 | case A2_addh_h16_hh: |
| 808 | case A2_addh_h16_sat_hh: |
| 809 | case A2_combine_hh: |
| 810 | case A2_subh_h16_hh: |
| 811 | case A2_subh_h16_sat_hh: |
| 812 | case M2_mpy_acc_hh_s0: |
| 813 | case M2_mpy_acc_hh_s1: |
| 814 | case M2_mpy_acc_sat_hh_s0: |
| 815 | case M2_mpy_acc_sat_hh_s1: |
| 816 | case M2_mpy_hh_s0: |
| 817 | case M2_mpy_hh_s1: |
| 818 | case M2_mpy_nac_hh_s0: |
| 819 | case M2_mpy_nac_hh_s1: |
| 820 | case M2_mpy_nac_sat_hh_s0: |
| 821 | case M2_mpy_nac_sat_hh_s1: |
| 822 | case M2_mpy_rnd_hh_s0: |
| 823 | case M2_mpy_rnd_hh_s1: |
| 824 | case M2_mpy_sat_hh_s0: |
| 825 | case M2_mpy_sat_hh_s1: |
| 826 | case M2_mpy_sat_rnd_hh_s0: |
| 827 | case M2_mpy_sat_rnd_hh_s1: |
| 828 | case M2_mpyd_acc_hh_s0: |
| 829 | case M2_mpyd_acc_hh_s1: |
| 830 | case M2_mpyd_hh_s0: |
| 831 | case M2_mpyd_hh_s1: |
| 832 | case M2_mpyd_nac_hh_s0: |
| 833 | case M2_mpyd_nac_hh_s1: |
| 834 | case M2_mpyd_rnd_hh_s0: |
| 835 | case M2_mpyd_rnd_hh_s1: |
| 836 | case M2_mpyu_acc_hh_s0: |
| 837 | case M2_mpyu_acc_hh_s1: |
| 838 | case M2_mpyu_hh_s0: |
| 839 | case M2_mpyu_hh_s1: |
| 840 | case M2_mpyu_nac_hh_s0: |
| 841 | case M2_mpyu_nac_hh_s1: |
| 842 | case M2_mpyud_acc_hh_s0: |
| 843 | case M2_mpyud_acc_hh_s1: |
| 844 | case M2_mpyud_hh_s0: |
| 845 | case M2_mpyud_hh_s1: |
| 846 | case M2_mpyud_nac_hh_s0: |
| 847 | case M2_mpyud_nac_hh_s1: |
| 848 | if (OpN == 1 || OpN == 2) { |
| 849 | Bits.set(Begin+16, Begin+32); |
| 850 | return true; |
| 851 | } |
| 852 | break; |
| 853 | } |
| 854 | |
| 855 | return false; |
| 856 | } |
| 857 | |
| 858 | |
| 859 | // Calculate the register class that matches Reg:Sub. For example, if |
| 860 | // vreg1 is a double register, then vreg1:subreg_hireg would match "int" |
| 861 | // register class. |
| 862 | const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass( |
| 863 | const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) { |
| 864 | if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) |
| 865 | return nullptr; |
| 866 | auto *RC = MRI.getRegClass(RR.Reg); |
| 867 | if (RR.Sub == 0) |
| 868 | return RC; |
| 869 | |
| 870 | auto VerifySR = [] (unsigned Sub) -> void { |
| 871 | assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg); |
| 872 | }; |
| 873 | |
| 874 | switch (RC->getID()) { |
| 875 | case Hexagon::DoubleRegsRegClassID: |
| 876 | VerifySR(RR.Sub); |
| 877 | return &Hexagon::IntRegsRegClass; |
Krzysztof Parzyszek | 5337a3e | 2016-01-14 21:45:43 +0000 | [diff] [blame] | 878 | case Hexagon::VecDblRegsRegClassID: |
| 879 | VerifySR(RR.Sub); |
| 880 | return &Hexagon::VectorRegsRegClass; |
| 881 | case Hexagon::VecDblRegs128BRegClassID: |
| 882 | VerifySR(RR.Sub); |
| 883 | return &Hexagon::VectorRegs128BRegClass; |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 884 | } |
| 885 | return nullptr; |
| 886 | } |
| 887 | |
| 888 | |
| 889 | // Check if RD could be replaced with RS at any possible use of RD. |
| 890 | // For example a predicate register cannot be replaced with a integer |
| 891 | // register, but a 64-bit register with a subregister can be replaced |
| 892 | // with a 32-bit register. |
| 893 | bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD, |
| 894 | const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) { |
| 895 | if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) || |
| 896 | !TargetRegisterInfo::isVirtualRegister(RS.Reg)) |
| 897 | return false; |
| 898 | // Return false if one (or both) classes are nullptr. |
| 899 | auto *DRC = getFinalVRegClass(RD, MRI); |
| 900 | if (!DRC) |
| 901 | return false; |
| 902 | |
| 903 | return DRC == getFinalVRegClass(RS, MRI); |
| 904 | } |
| 905 | |
| 906 | |
| 907 | // |
| 908 | // Dead code elimination |
| 909 | // |
| 910 | namespace { |
| 911 | class DeadCodeElimination { |
| 912 | public: |
| 913 | DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt) |
| 914 | : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()), |
| 915 | MDT(mdt), MRI(mf.getRegInfo()) {} |
| 916 | |
| 917 | bool run() { |
| 918 | return runOnNode(MDT.getRootNode()); |
| 919 | } |
| 920 | |
| 921 | private: |
| 922 | bool isDead(unsigned R) const; |
| 923 | bool runOnNode(MachineDomTreeNode *N); |
| 924 | |
| 925 | MachineFunction &MF; |
| 926 | const HexagonInstrInfo &HII; |
| 927 | MachineDominatorTree &MDT; |
| 928 | MachineRegisterInfo &MRI; |
| 929 | }; |
| 930 | } |
| 931 | |
| 932 | |
| 933 | bool DeadCodeElimination::isDead(unsigned R) const { |
| 934 | for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { |
| 935 | MachineInstr *UseI = I->getParent(); |
| 936 | if (UseI->isDebugValue()) |
| 937 | continue; |
| 938 | if (UseI->isPHI()) { |
| 939 | assert(!UseI->getOperand(0).getSubReg()); |
| 940 | unsigned DR = UseI->getOperand(0).getReg(); |
| 941 | if (DR == R) |
| 942 | continue; |
| 943 | } |
| 944 | return false; |
| 945 | } |
| 946 | return true; |
| 947 | } |
| 948 | |
| 949 | |
| 950 | bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) { |
| 951 | bool Changed = false; |
| 952 | typedef GraphTraits<MachineDomTreeNode*> GTN; |
| 953 | for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) |
| 954 | Changed |= runOnNode(*I); |
| 955 | |
| 956 | MachineBasicBlock *B = N->getBlock(); |
| 957 | std::vector<MachineInstr*> Instrs; |
| 958 | for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) |
| 959 | Instrs.push_back(&*I); |
| 960 | |
| 961 | for (auto MI : Instrs) { |
| 962 | unsigned Opc = MI->getOpcode(); |
| 963 | // Do not touch lifetime markers. This is why the target-independent DCE |
| 964 | // cannot be used. |
| 965 | if (Opc == TargetOpcode::LIFETIME_START || |
| 966 | Opc == TargetOpcode::LIFETIME_END) |
| 967 | continue; |
| 968 | bool Store = false; |
| 969 | if (MI->isInlineAsm()) |
| 970 | continue; |
| 971 | // Delete PHIs if possible. |
| 972 | if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store)) |
| 973 | continue; |
| 974 | |
| 975 | bool AllDead = true; |
| 976 | SmallVector<unsigned,2> Regs; |
| 977 | for (auto &Op : MI->operands()) { |
| 978 | if (!Op.isReg() || !Op.isDef()) |
| 979 | continue; |
| 980 | unsigned R = Op.getReg(); |
| 981 | if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) { |
| 982 | AllDead = false; |
| 983 | break; |
| 984 | } |
| 985 | Regs.push_back(R); |
| 986 | } |
| 987 | if (!AllDead) |
| 988 | continue; |
| 989 | |
| 990 | B->erase(MI); |
| 991 | for (unsigned i = 0, n = Regs.size(); i != n; ++i) |
| 992 | MRI.markUsesInDebugValueAsUndef(Regs[i]); |
| 993 | Changed = true; |
| 994 | } |
| 995 | |
| 996 | return Changed; |
| 997 | } |
| 998 | |
| 999 | |
| 1000 | // |
| 1001 | // Eliminate redundant instructions |
| 1002 | // |
| 1003 | // This transformation will identify instructions where the output register |
| 1004 | // is the same as one of its input registers. This only works on instructions |
| 1005 | // that define a single register (unlike post-increment loads, for example). |
| 1006 | // The equality check is actually more detailed: the code calculates which |
| 1007 | // bits of the output are used, and only compares these bits with the input |
| 1008 | // registers. |
| 1009 | // If the output matches an input, the instruction is replaced with COPY. |
| 1010 | // The copies will be removed by another transformation. |
| 1011 | namespace { |
| 1012 | class RedundantInstrElimination : public Transformation { |
| 1013 | public: |
| 1014 | RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii, |
| 1015 | MachineRegisterInfo &mri) |
| 1016 | : Transformation(true), HII(hii), MRI(mri), BT(bt) {} |
| 1017 | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| 1018 | private: |
| 1019 | bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN, |
| 1020 | unsigned &LostB, unsigned &LostE); |
| 1021 | bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN, |
| 1022 | unsigned &LostB, unsigned &LostE); |
| 1023 | bool computeUsedBits(unsigned Reg, BitVector &Bits); |
| 1024 | bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits, |
| 1025 | uint16_t Begin); |
| 1026 | bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS); |
| 1027 | |
| 1028 | const HexagonInstrInfo &HII; |
| 1029 | MachineRegisterInfo &MRI; |
| 1030 | BitTracker &BT; |
| 1031 | }; |
| 1032 | } |
| 1033 | |
| 1034 | |
| 1035 | // Check if the instruction is a lossy shift left, where the input being |
| 1036 | // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range |
| 1037 | // of bit indices that are lost. |
| 1038 | bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI, |
| 1039 | unsigned OpN, unsigned &LostB, unsigned &LostE) { |
| 1040 | using namespace Hexagon; |
| 1041 | unsigned Opc = MI.getOpcode(); |
| 1042 | unsigned ImN, RegN, Width; |
| 1043 | switch (Opc) { |
| 1044 | case S2_asl_i_p: |
| 1045 | ImN = 2; |
| 1046 | RegN = 1; |
| 1047 | Width = 64; |
| 1048 | break; |
| 1049 | case S2_asl_i_p_acc: |
| 1050 | case S2_asl_i_p_and: |
| 1051 | case S2_asl_i_p_nac: |
| 1052 | case S2_asl_i_p_or: |
| 1053 | case S2_asl_i_p_xacc: |
| 1054 | ImN = 3; |
| 1055 | RegN = 2; |
| 1056 | Width = 64; |
| 1057 | break; |
| 1058 | case S2_asl_i_r: |
| 1059 | ImN = 2; |
| 1060 | RegN = 1; |
| 1061 | Width = 32; |
| 1062 | break; |
| 1063 | case S2_addasl_rrri: |
| 1064 | case S4_andi_asl_ri: |
| 1065 | case S4_ori_asl_ri: |
| 1066 | case S4_addi_asl_ri: |
| 1067 | case S4_subi_asl_ri: |
| 1068 | case S2_asl_i_r_acc: |
| 1069 | case S2_asl_i_r_and: |
| 1070 | case S2_asl_i_r_nac: |
| 1071 | case S2_asl_i_r_or: |
| 1072 | case S2_asl_i_r_sat: |
| 1073 | case S2_asl_i_r_xacc: |
| 1074 | ImN = 3; |
| 1075 | RegN = 2; |
| 1076 | Width = 32; |
| 1077 | break; |
| 1078 | default: |
| 1079 | return false; |
| 1080 | } |
| 1081 | |
| 1082 | if (RegN != OpN) |
| 1083 | return false; |
| 1084 | |
| 1085 | assert(MI.getOperand(ImN).isImm()); |
| 1086 | unsigned S = MI.getOperand(ImN).getImm(); |
| 1087 | if (S == 0) |
| 1088 | return false; |
| 1089 | LostB = Width-S; |
| 1090 | LostE = Width; |
| 1091 | return true; |
| 1092 | } |
| 1093 | |
| 1094 | |
| 1095 | // Check if the instruction is a lossy shift right, where the input being |
| 1096 | // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range |
| 1097 | // of bit indices that are lost. |
| 1098 | bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI, |
| 1099 | unsigned OpN, unsigned &LostB, unsigned &LostE) { |
| 1100 | using namespace Hexagon; |
| 1101 | unsigned Opc = MI.getOpcode(); |
| 1102 | unsigned ImN, RegN; |
| 1103 | switch (Opc) { |
| 1104 | case S2_asr_i_p: |
| 1105 | case S2_lsr_i_p: |
| 1106 | ImN = 2; |
| 1107 | RegN = 1; |
| 1108 | break; |
| 1109 | case S2_asr_i_p_acc: |
| 1110 | case S2_asr_i_p_and: |
| 1111 | case S2_asr_i_p_nac: |
| 1112 | case S2_asr_i_p_or: |
| 1113 | case S2_lsr_i_p_acc: |
| 1114 | case S2_lsr_i_p_and: |
| 1115 | case S2_lsr_i_p_nac: |
| 1116 | case S2_lsr_i_p_or: |
| 1117 | case S2_lsr_i_p_xacc: |
| 1118 | ImN = 3; |
| 1119 | RegN = 2; |
| 1120 | break; |
| 1121 | case S2_asr_i_r: |
| 1122 | case S2_lsr_i_r: |
| 1123 | ImN = 2; |
| 1124 | RegN = 1; |
| 1125 | break; |
| 1126 | case S4_andi_lsr_ri: |
| 1127 | case S4_ori_lsr_ri: |
| 1128 | case S4_addi_lsr_ri: |
| 1129 | case S4_subi_lsr_ri: |
| 1130 | case S2_asr_i_r_acc: |
| 1131 | case S2_asr_i_r_and: |
| 1132 | case S2_asr_i_r_nac: |
| 1133 | case S2_asr_i_r_or: |
| 1134 | case S2_lsr_i_r_acc: |
| 1135 | case S2_lsr_i_r_and: |
| 1136 | case S2_lsr_i_r_nac: |
| 1137 | case S2_lsr_i_r_or: |
| 1138 | case S2_lsr_i_r_xacc: |
| 1139 | ImN = 3; |
| 1140 | RegN = 2; |
| 1141 | break; |
| 1142 | |
| 1143 | default: |
| 1144 | return false; |
| 1145 | } |
| 1146 | |
| 1147 | if (RegN != OpN) |
| 1148 | return false; |
| 1149 | |
| 1150 | assert(MI.getOperand(ImN).isImm()); |
| 1151 | unsigned S = MI.getOperand(ImN).getImm(); |
| 1152 | LostB = 0; |
| 1153 | LostE = S; |
| 1154 | return true; |
| 1155 | } |
| 1156 | |
| 1157 | |
| 1158 | // Calculate the bit vector that corresponds to the used bits of register Reg. |
| 1159 | // The vector Bits has the same size, as the size of Reg in bits. If the cal- |
| 1160 | // culation fails (i.e. the used bits are unknown), it returns false. Other- |
| 1161 | // wise, it returns true and sets the corresponding bits in Bits. |
| 1162 | bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) { |
| 1163 | BitVector Used(Bits.size()); |
| 1164 | RegisterSet Visited; |
| 1165 | std::vector<unsigned> Pending; |
| 1166 | Pending.push_back(Reg); |
| 1167 | |
| 1168 | for (unsigned i = 0; i < Pending.size(); ++i) { |
| 1169 | unsigned R = Pending[i]; |
| 1170 | if (Visited.has(R)) |
| 1171 | continue; |
| 1172 | Visited.insert(R); |
| 1173 | for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { |
| 1174 | BitTracker::RegisterRef UR = *I; |
| 1175 | unsigned B, W; |
| 1176 | if (!HBS::getSubregMask(UR, B, W, MRI)) |
| 1177 | return false; |
| 1178 | MachineInstr &UseI = *I->getParent(); |
| 1179 | if (UseI.isPHI() || UseI.isCopy()) { |
| 1180 | unsigned DefR = UseI.getOperand(0).getReg(); |
| 1181 | if (!TargetRegisterInfo::isVirtualRegister(DefR)) |
| 1182 | return false; |
| 1183 | Pending.push_back(DefR); |
| 1184 | } else { |
| 1185 | if (!computeUsedBits(UseI, I.getOperandNo(), Used, B)) |
| 1186 | return false; |
| 1187 | } |
| 1188 | } |
| 1189 | } |
| 1190 | Bits |= Used; |
| 1191 | return true; |
| 1192 | } |
| 1193 | |
| 1194 | |
| 1195 | // Calculate the bits used by instruction MI in a register in operand OpN. |
| 1196 | // Return true/false if the calculation succeeds/fails. If is succeeds, set |
| 1197 | // used bits in Bits. This function does not reset any bits in Bits, so |
| 1198 | // subsequent calls over different instructions will result in the union |
| 1199 | // of the used bits in all these instructions. |
| 1200 | // The register in question may be used with a sub-register, whereas Bits |
| 1201 | // holds the bits for the entire register. To keep track of that, the |
| 1202 | // argument Begin indicates where in Bits is the lowest-significant bit |
| 1203 | // of the register used in operand OpN. For example, in instruction: |
| 1204 | // vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10 |
| 1205 | // the operand 1 is a 32-bit register, which happens to be a subregister |
| 1206 | // of the 64-bit register vreg2, and that subregister starts at position 32. |
| 1207 | // In this case Begin=32, since Bits[32] would be the lowest-significant bit |
| 1208 | // of vreg2:subreg_hireg. |
| 1209 | bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI, |
| 1210 | unsigned OpN, BitVector &Bits, uint16_t Begin) { |
| 1211 | unsigned Opc = MI.getOpcode(); |
| 1212 | BitVector T(Bits.size()); |
| 1213 | bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII); |
| 1214 | // Even if we don't have bits yet, we could still provide some information |
| 1215 | // if the instruction is a lossy shift: the lost bits will be marked as |
| 1216 | // not used. |
| 1217 | unsigned LB, LE; |
| 1218 | if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) { |
| 1219 | assert(MI.getOperand(OpN).isReg()); |
| 1220 | BitTracker::RegisterRef RR = MI.getOperand(OpN); |
| 1221 | const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI); |
| 1222 | uint16_t Width = RC->getSize()*8; |
| 1223 | |
| 1224 | if (!GotBits) |
| 1225 | T.set(Begin, Begin+Width); |
| 1226 | assert(LB <= LE && LB < Width && LE <= Width); |
| 1227 | T.reset(Begin+LB, Begin+LE); |
| 1228 | GotBits = true; |
| 1229 | } |
| 1230 | if (GotBits) |
| 1231 | Bits |= T; |
| 1232 | return GotBits; |
| 1233 | } |
| 1234 | |
| 1235 | |
| 1236 | // Calculates the used bits in RD ("defined register"), and checks if these |
| 1237 | // bits in RS ("used register") and RD are identical. |
| 1238 | bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD, |
| 1239 | BitTracker::RegisterRef RS) { |
| 1240 | const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); |
| 1241 | const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); |
| 1242 | |
| 1243 | unsigned DB, DW; |
| 1244 | if (!HBS::getSubregMask(RD, DB, DW, MRI)) |
| 1245 | return false; |
| 1246 | unsigned SB, SW; |
| 1247 | if (!HBS::getSubregMask(RS, SB, SW, MRI)) |
| 1248 | return false; |
| 1249 | if (SW != DW) |
| 1250 | return false; |
| 1251 | |
| 1252 | BitVector Used(DC.width()); |
| 1253 | if (!computeUsedBits(RD.Reg, Used)) |
| 1254 | return false; |
| 1255 | |
| 1256 | for (unsigned i = 0; i != DW; ++i) |
| 1257 | if (Used[i+DB] && DC[DB+i] != SC[SB+i]) |
| 1258 | return false; |
| 1259 | return true; |
| 1260 | } |
| 1261 | |
| 1262 | |
| 1263 | bool RedundantInstrElimination::processBlock(MachineBasicBlock &B, |
| 1264 | const RegisterSet&) { |
| 1265 | bool Changed = false; |
| 1266 | |
| 1267 | for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) { |
| 1268 | NextI = std::next(I); |
| 1269 | MachineInstr *MI = &*I; |
| 1270 | |
| 1271 | if (MI->getOpcode() == TargetOpcode::COPY) |
| 1272 | continue; |
| 1273 | if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) |
| 1274 | continue; |
| 1275 | unsigned NumD = MI->getDesc().getNumDefs(); |
| 1276 | if (NumD != 1) |
| 1277 | continue; |
| 1278 | |
| 1279 | BitTracker::RegisterRef RD = MI->getOperand(0); |
| 1280 | if (!BT.has(RD.Reg)) |
| 1281 | continue; |
| 1282 | const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); |
Krzysztof Parzyszek | a3c5d44 | 2016-01-13 15:48:18 +0000 | [diff] [blame] | 1283 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 1284 | : MachineBasicBlock::iterator(MI); |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 1285 | |
| 1286 | // Find a source operand that is equal to the result. |
| 1287 | for (auto &Op : MI->uses()) { |
| 1288 | if (!Op.isReg()) |
| 1289 | continue; |
| 1290 | BitTracker::RegisterRef RS = Op; |
| 1291 | if (!BT.has(RS.Reg)) |
| 1292 | continue; |
| 1293 | if (!HBS::isTransparentCopy(RD, RS, MRI)) |
| 1294 | continue; |
| 1295 | |
| 1296 | unsigned BN, BW; |
| 1297 | if (!HBS::getSubregMask(RS, BN, BW, MRI)) |
| 1298 | continue; |
| 1299 | |
| 1300 | const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); |
| 1301 | if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW)) |
| 1302 | continue; |
| 1303 | |
| 1304 | // If found, replace the instruction with a COPY. |
| 1305 | DebugLoc DL = MI->getDebugLoc(); |
| 1306 | const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); |
| 1307 | unsigned NewR = MRI.createVirtualRegister(FRC); |
Krzysztof Parzyszek | a3c5d44 | 2016-01-13 15:48:18 +0000 | [diff] [blame] | 1308 | BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 1309 | .addReg(RS.Reg, 0, RS.Sub); |
| 1310 | HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); |
| 1311 | BT.put(BitTracker::RegisterRef(NewR), SC); |
| 1312 | Changed = true; |
| 1313 | break; |
| 1314 | } |
| 1315 | } |
| 1316 | |
| 1317 | return Changed; |
| 1318 | } |
| 1319 | |
| 1320 | |
| 1321 | // |
| 1322 | // Const generation |
| 1323 | // |
| 1324 | // Recognize instructions that produce constant values known at compile-time. |
| 1325 | // Replace them with register definitions that load these constants directly. |
| 1326 | namespace { |
| 1327 | class ConstGeneration : public Transformation { |
| 1328 | public: |
| 1329 | ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii, |
| 1330 | MachineRegisterInfo &mri) |
| 1331 | : Transformation(true), HII(hii), MRI(mri), BT(bt) {} |
| 1332 | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| 1333 | private: |
| 1334 | bool isTfrConst(const MachineInstr *MI) const; |
| 1335 | bool isConst(unsigned R, int64_t &V) const; |
| 1336 | unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C, |
| 1337 | MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL); |
| 1338 | |
| 1339 | const HexagonInstrInfo &HII; |
| 1340 | MachineRegisterInfo &MRI; |
| 1341 | BitTracker &BT; |
| 1342 | }; |
| 1343 | } |
| 1344 | |
| 1345 | bool ConstGeneration::isConst(unsigned R, int64_t &C) const { |
| 1346 | if (!BT.has(R)) |
| 1347 | return false; |
| 1348 | const BitTracker::RegisterCell &RC = BT.lookup(R); |
| 1349 | int64_t T = 0; |
| 1350 | for (unsigned i = RC.width(); i > 0; --i) { |
| 1351 | const BitTracker::BitValue &V = RC[i-1]; |
| 1352 | T <<= 1; |
| 1353 | if (V.is(1)) |
| 1354 | T |= 1; |
| 1355 | else if (!V.is(0)) |
| 1356 | return false; |
| 1357 | } |
| 1358 | C = T; |
| 1359 | return true; |
| 1360 | } |
| 1361 | |
| 1362 | |
| 1363 | bool ConstGeneration::isTfrConst(const MachineInstr *MI) const { |
| 1364 | unsigned Opc = MI->getOpcode(); |
| 1365 | switch (Opc) { |
| 1366 | case Hexagon::A2_combineii: |
| 1367 | case Hexagon::A4_combineii: |
| 1368 | case Hexagon::A2_tfrsi: |
| 1369 | case Hexagon::A2_tfrpi: |
| 1370 | case Hexagon::TFR_PdTrue: |
| 1371 | case Hexagon::TFR_PdFalse: |
| 1372 | case Hexagon::CONST32_Int_Real: |
| 1373 | case Hexagon::CONST64_Int_Real: |
| 1374 | return true; |
| 1375 | } |
| 1376 | return false; |
| 1377 | } |
| 1378 | |
| 1379 | |
| 1380 | // Generate a transfer-immediate instruction that is appropriate for the |
| 1381 | // register class and the actual value being transferred. |
| 1382 | unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C, |
| 1383 | MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) { |
| 1384 | unsigned Reg = MRI.createVirtualRegister(RC); |
| 1385 | if (RC == &Hexagon::IntRegsRegClass) { |
| 1386 | BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg) |
| 1387 | .addImm(int32_t(C)); |
| 1388 | return Reg; |
| 1389 | } |
| 1390 | |
| 1391 | if (RC == &Hexagon::DoubleRegsRegClass) { |
| 1392 | if (isInt<8>(C)) { |
| 1393 | BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg) |
| 1394 | .addImm(C); |
| 1395 | return Reg; |
| 1396 | } |
| 1397 | |
| 1398 | unsigned Lo = Lo_32(C), Hi = Hi_32(C); |
| 1399 | if (isInt<8>(Lo) || isInt<8>(Hi)) { |
| 1400 | unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii |
| 1401 | : Hexagon::A4_combineii; |
| 1402 | BuildMI(B, At, DL, HII.get(Opc), Reg) |
| 1403 | .addImm(int32_t(Hi)) |
| 1404 | .addImm(int32_t(Lo)); |
| 1405 | return Reg; |
| 1406 | } |
| 1407 | |
| 1408 | BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg) |
| 1409 | .addImm(C); |
| 1410 | return Reg; |
| 1411 | } |
| 1412 | |
| 1413 | if (RC == &Hexagon::PredRegsRegClass) { |
| 1414 | unsigned Opc; |
| 1415 | if (C == 0) |
| 1416 | Opc = Hexagon::TFR_PdFalse; |
| 1417 | else if ((C & 0xFF) == 0xFF) |
| 1418 | Opc = Hexagon::TFR_PdTrue; |
| 1419 | else |
| 1420 | return 0; |
| 1421 | BuildMI(B, At, DL, HII.get(Opc), Reg); |
| 1422 | return Reg; |
| 1423 | } |
| 1424 | |
| 1425 | return 0; |
| 1426 | } |
| 1427 | |
| 1428 | |
| 1429 | bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) { |
| 1430 | bool Changed = false; |
| 1431 | RegisterSet Defs; |
| 1432 | |
| 1433 | for (auto I = B.begin(), E = B.end(); I != E; ++I) { |
| 1434 | if (isTfrConst(I)) |
| 1435 | continue; |
| 1436 | Defs.clear(); |
| 1437 | HBS::getInstrDefs(*I, Defs); |
| 1438 | if (Defs.count() != 1) |
| 1439 | continue; |
| 1440 | unsigned DR = Defs.find_first(); |
| 1441 | if (!TargetRegisterInfo::isVirtualRegister(DR)) |
| 1442 | continue; |
| 1443 | int64_t C; |
| 1444 | if (isConst(DR, C)) { |
| 1445 | DebugLoc DL = I->getDebugLoc(); |
| 1446 | auto At = I->isPHI() ? B.getFirstNonPHI() : I; |
| 1447 | unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL); |
| 1448 | if (ImmReg) { |
| 1449 | HBS::replaceReg(DR, ImmReg, MRI); |
| 1450 | BT.put(ImmReg, BT.lookup(DR)); |
| 1451 | Changed = true; |
| 1452 | } |
| 1453 | } |
| 1454 | } |
| 1455 | return Changed; |
| 1456 | } |
| 1457 | |
| 1458 | |
| 1459 | // |
| 1460 | // Copy generation |
| 1461 | // |
| 1462 | // Identify pairs of available registers which hold identical values. |
| 1463 | // In such cases, only one of them needs to be calculated, the other one |
| 1464 | // will be defined as a copy of the first. |
| 1465 | // |
| 1466 | // Copy propagation |
| 1467 | // |
| 1468 | // Eliminate register copies RD = RS, by replacing the uses of RD with |
| 1469 | // with uses of RS. |
| 1470 | namespace { |
| 1471 | class CopyGeneration : public Transformation { |
| 1472 | public: |
| 1473 | CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii, |
| 1474 | MachineRegisterInfo &mri) |
| 1475 | : Transformation(true), HII(hii), MRI(mri), BT(bt) {} |
| 1476 | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| 1477 | private: |
| 1478 | bool findMatch(const BitTracker::RegisterRef &Inp, |
| 1479 | BitTracker::RegisterRef &Out, const RegisterSet &AVs); |
| 1480 | |
| 1481 | const HexagonInstrInfo &HII; |
| 1482 | MachineRegisterInfo &MRI; |
| 1483 | BitTracker &BT; |
| 1484 | }; |
| 1485 | |
| 1486 | class CopyPropagation : public Transformation { |
| 1487 | public: |
| 1488 | CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) |
| 1489 | : Transformation(false), MRI(mri) {} |
| 1490 | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| 1491 | static bool isCopyReg(unsigned Opc); |
| 1492 | private: |
| 1493 | bool propagateRegCopy(MachineInstr &MI); |
| 1494 | |
| 1495 | MachineRegisterInfo &MRI; |
| 1496 | }; |
| 1497 | |
| 1498 | } |
| 1499 | |
| 1500 | |
| 1501 | /// Check if there is a register in AVs that is identical to Inp. If so, |
| 1502 | /// set Out to the found register. The output may be a pair Reg:Sub. |
| 1503 | bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp, |
| 1504 | BitTracker::RegisterRef &Out, const RegisterSet &AVs) { |
| 1505 | if (!BT.has(Inp.Reg)) |
| 1506 | return false; |
| 1507 | const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg); |
| 1508 | unsigned B, W; |
| 1509 | if (!HBS::getSubregMask(Inp, B, W, MRI)) |
| 1510 | return false; |
| 1511 | |
| 1512 | for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) { |
| 1513 | if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI)) |
| 1514 | continue; |
| 1515 | const BitTracker::RegisterCell &RC = BT.lookup(R); |
| 1516 | unsigned RW = RC.width(); |
| 1517 | if (W == RW) { |
| 1518 | if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R)) |
| 1519 | continue; |
| 1520 | if (!HBS::isEqual(InpRC, B, RC, 0, W)) |
| 1521 | continue; |
| 1522 | Out.Reg = R; |
| 1523 | Out.Sub = 0; |
| 1524 | return true; |
| 1525 | } |
| 1526 | // Check if there is a super-register, whose part (with a subregister) |
| 1527 | // is equal to the input. |
| 1528 | // Only do double registers for now. |
| 1529 | if (W*2 != RW) |
| 1530 | continue; |
| 1531 | if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass) |
| 1532 | continue; |
| 1533 | |
| 1534 | if (HBS::isEqual(InpRC, B, RC, 0, W)) |
| 1535 | Out.Sub = Hexagon::subreg_loreg; |
| 1536 | else if (HBS::isEqual(InpRC, B, RC, W, W)) |
| 1537 | Out.Sub = Hexagon::subreg_hireg; |
| 1538 | else |
| 1539 | continue; |
| 1540 | Out.Reg = R; |
| 1541 | return true; |
| 1542 | } |
| 1543 | return false; |
| 1544 | } |
| 1545 | |
| 1546 | |
| 1547 | bool CopyGeneration::processBlock(MachineBasicBlock &B, |
| 1548 | const RegisterSet &AVs) { |
| 1549 | RegisterSet AVB(AVs); |
| 1550 | bool Changed = false; |
| 1551 | RegisterSet Defs; |
| 1552 | |
| 1553 | for (auto I = B.begin(), E = B.end(), NextI = I; I != E; |
| 1554 | ++I, AVB.insert(Defs)) { |
| 1555 | NextI = std::next(I); |
| 1556 | Defs.clear(); |
| 1557 | HBS::getInstrDefs(*I, Defs); |
| 1558 | |
| 1559 | unsigned Opc = I->getOpcode(); |
| 1560 | if (CopyPropagation::isCopyReg(Opc)) |
| 1561 | continue; |
| 1562 | |
| 1563 | for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) { |
| 1564 | BitTracker::RegisterRef MR; |
| 1565 | if (!findMatch(R, MR, AVB)) |
| 1566 | continue; |
| 1567 | DebugLoc DL = I->getDebugLoc(); |
| 1568 | auto *FRC = HBS::getFinalVRegClass(MR, MRI); |
| 1569 | unsigned NewR = MRI.createVirtualRegister(FRC); |
| 1570 | auto At = I->isPHI() ? B.getFirstNonPHI() : I; |
| 1571 | BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) |
| 1572 | .addReg(MR.Reg, 0, MR.Sub); |
| 1573 | BT.put(BitTracker::RegisterRef(NewR), BT.get(MR)); |
| 1574 | } |
| 1575 | } |
| 1576 | |
| 1577 | return Changed; |
| 1578 | } |
| 1579 | |
| 1580 | |
| 1581 | bool CopyPropagation::isCopyReg(unsigned Opc) { |
| 1582 | switch (Opc) { |
| 1583 | case TargetOpcode::COPY: |
| 1584 | case TargetOpcode::REG_SEQUENCE: |
| 1585 | case Hexagon::A2_tfr: |
| 1586 | case Hexagon::A2_tfrp: |
| 1587 | case Hexagon::A2_combinew: |
| 1588 | case Hexagon::A4_combineir: |
| 1589 | case Hexagon::A4_combineri: |
| 1590 | return true; |
| 1591 | default: |
| 1592 | break; |
| 1593 | } |
| 1594 | return false; |
| 1595 | } |
| 1596 | |
| 1597 | |
| 1598 | bool CopyPropagation::propagateRegCopy(MachineInstr &MI) { |
| 1599 | bool Changed = false; |
| 1600 | unsigned Opc = MI.getOpcode(); |
| 1601 | BitTracker::RegisterRef RD = MI.getOperand(0); |
| 1602 | assert(MI.getOperand(0).getSubReg() == 0); |
| 1603 | |
| 1604 | switch (Opc) { |
| 1605 | case TargetOpcode::COPY: |
| 1606 | case Hexagon::A2_tfr: |
| 1607 | case Hexagon::A2_tfrp: { |
| 1608 | BitTracker::RegisterRef RS = MI.getOperand(1); |
| 1609 | if (!HBS::isTransparentCopy(RD, RS, MRI)) |
| 1610 | break; |
| 1611 | if (RS.Sub != 0) |
| 1612 | Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI); |
| 1613 | else |
| 1614 | Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI); |
| 1615 | break; |
| 1616 | } |
| 1617 | case TargetOpcode::REG_SEQUENCE: { |
| 1618 | BitTracker::RegisterRef SL, SH; |
| 1619 | if (HBS::parseRegSequence(MI, SL, SH)) { |
| 1620 | Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg, |
| 1621 | SL.Reg, SL.Sub, MRI); |
| 1622 | Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg, |
| 1623 | SH.Reg, SH.Sub, MRI); |
| 1624 | } |
| 1625 | break; |
| 1626 | } |
| 1627 | case Hexagon::A2_combinew: { |
| 1628 | BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2); |
| 1629 | Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg, |
| 1630 | RL.Reg, RL.Sub, MRI); |
| 1631 | Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg, |
| 1632 | RH.Reg, RH.Sub, MRI); |
| 1633 | break; |
| 1634 | } |
| 1635 | case Hexagon::A4_combineir: |
| 1636 | case Hexagon::A4_combineri: { |
| 1637 | unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1; |
| 1638 | unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg |
| 1639 | : Hexagon::subreg_hireg; |
| 1640 | BitTracker::RegisterRef RS = MI.getOperand(SrcX); |
| 1641 | Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI); |
| 1642 | break; |
| 1643 | } |
| 1644 | } |
| 1645 | return Changed; |
| 1646 | } |
| 1647 | |
| 1648 | |
| 1649 | bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) { |
| 1650 | std::vector<MachineInstr*> Instrs; |
| 1651 | for (auto I = B.rbegin(), E = B.rend(); I != E; ++I) |
| 1652 | Instrs.push_back(&*I); |
| 1653 | |
| 1654 | bool Changed = false; |
| 1655 | for (auto I : Instrs) { |
| 1656 | unsigned Opc = I->getOpcode(); |
| 1657 | if (!CopyPropagation::isCopyReg(Opc)) |
| 1658 | continue; |
| 1659 | Changed |= propagateRegCopy(*I); |
| 1660 | } |
| 1661 | |
| 1662 | return Changed; |
| 1663 | } |
| 1664 | |
| 1665 | |
| 1666 | // |
| 1667 | // Bit simplification |
| 1668 | // |
| 1669 | // Recognize patterns that can be simplified and replace them with the |
| 1670 | // simpler forms. |
| 1671 | // This is by no means complete |
| 1672 | namespace { |
| 1673 | class BitSimplification : public Transformation { |
| 1674 | public: |
| 1675 | BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii, |
| 1676 | MachineRegisterInfo &mri) |
| 1677 | : Transformation(true), HII(hii), MRI(mri), BT(bt) {} |
| 1678 | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| 1679 | private: |
| 1680 | struct RegHalf : public BitTracker::RegisterRef { |
| 1681 | bool Low; // Low/High halfword. |
| 1682 | }; |
| 1683 | |
| 1684 | bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC, |
| 1685 | unsigned B, RegHalf &RH); |
| 1686 | |
| 1687 | bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC, |
| 1688 | BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt); |
| 1689 | unsigned getCombineOpcode(bool HLow, bool LLow); |
| 1690 | |
| 1691 | bool genStoreUpperHalf(MachineInstr *MI); |
| 1692 | bool genStoreImmediate(MachineInstr *MI); |
| 1693 | bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD, |
| 1694 | const BitTracker::RegisterCell &RC); |
| 1695 | bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD, |
| 1696 | const BitTracker::RegisterCell &RC); |
| 1697 | bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD, |
| 1698 | const BitTracker::RegisterCell &RC); |
| 1699 | bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD, |
| 1700 | const BitTracker::RegisterCell &RC); |
| 1701 | bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD, |
| 1702 | const BitTracker::RegisterCell &RC); |
| 1703 | |
| 1704 | const HexagonInstrInfo &HII; |
| 1705 | MachineRegisterInfo &MRI; |
| 1706 | BitTracker &BT; |
| 1707 | }; |
| 1708 | } |
| 1709 | |
| 1710 | |
| 1711 | // Check if the bits [B..B+16) in register cell RC form a valid halfword, |
| 1712 | // i.e. [0..16), [16..32), etc. of some register. If so, return true and |
| 1713 | // set the information about the found register in RH. |
| 1714 | bool BitSimplification::matchHalf(unsigned SelfR, |
| 1715 | const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) { |
| 1716 | // XXX This could be searching in the set of available registers, in case |
| 1717 | // the match is not exact. |
| 1718 | |
| 1719 | // Match 16-bit chunks, where the RC[B..B+15] references exactly one |
| 1720 | // register and all the bits B..B+15 match between RC and the register. |
| 1721 | // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... }, |
| 1722 | // and RC = { [0]:0 [1-15]:v1[1-15]... }. |
| 1723 | bool Low = false; |
| 1724 | unsigned I = B; |
| 1725 | while (I < B+16 && RC[I].num()) |
| 1726 | I++; |
| 1727 | if (I == B+16) |
| 1728 | return false; |
| 1729 | |
| 1730 | unsigned Reg = RC[I].RefI.Reg; |
| 1731 | unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B. |
| 1732 | if (P < I-B) |
| 1733 | return false; |
| 1734 | unsigned Pos = P - (I-B); |
| 1735 | |
| 1736 | if (Reg == 0 || Reg == SelfR) // Don't match "self". |
| 1737 | return false; |
| 1738 | if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| 1739 | return false; |
| 1740 | if (!BT.has(Reg)) |
| 1741 | return false; |
| 1742 | |
| 1743 | const BitTracker::RegisterCell &SC = BT.lookup(Reg); |
| 1744 | if (Pos+16 > SC.width()) |
| 1745 | return false; |
| 1746 | |
| 1747 | for (unsigned i = 0; i < 16; ++i) { |
| 1748 | const BitTracker::BitValue &RV = RC[i+B]; |
| 1749 | if (RV.Type == BitTracker::BitValue::Ref) { |
| 1750 | if (RV.RefI.Reg != Reg) |
| 1751 | return false; |
| 1752 | if (RV.RefI.Pos != i+Pos) |
| 1753 | return false; |
| 1754 | continue; |
| 1755 | } |
| 1756 | if (RC[i+B] != SC[i+Pos]) |
| 1757 | return false; |
| 1758 | } |
| 1759 | |
| 1760 | unsigned Sub = 0; |
| 1761 | switch (Pos) { |
| 1762 | case 0: |
| 1763 | Sub = Hexagon::subreg_loreg; |
| 1764 | Low = true; |
| 1765 | break; |
| 1766 | case 16: |
| 1767 | Sub = Hexagon::subreg_loreg; |
| 1768 | Low = false; |
| 1769 | break; |
| 1770 | case 32: |
| 1771 | Sub = Hexagon::subreg_hireg; |
| 1772 | Low = true; |
| 1773 | break; |
| 1774 | case 48: |
| 1775 | Sub = Hexagon::subreg_hireg; |
| 1776 | Low = false; |
| 1777 | break; |
| 1778 | default: |
| 1779 | return false; |
| 1780 | } |
| 1781 | |
| 1782 | RH.Reg = Reg; |
| 1783 | RH.Sub = Sub; |
| 1784 | RH.Low = Low; |
| 1785 | // If the subregister is not valid with the register, set it to 0. |
| 1786 | if (!HBS::getFinalVRegClass(RH, MRI)) |
| 1787 | RH.Sub = 0; |
| 1788 | |
| 1789 | return true; |
| 1790 | } |
| 1791 | |
| 1792 | |
| 1793 | // Check if RC matches the pattern of a S2_packhl. If so, return true and |
| 1794 | // set the inputs Rs and Rt. |
| 1795 | bool BitSimplification::matchPackhl(unsigned SelfR, |
| 1796 | const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs, |
| 1797 | BitTracker::RegisterRef &Rt) { |
| 1798 | RegHalf L1, H1, L2, H2; |
| 1799 | |
| 1800 | if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1)) |
| 1801 | return false; |
| 1802 | if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1)) |
| 1803 | return false; |
| 1804 | |
| 1805 | // Rs = H1.L1, Rt = H2.L2 |
| 1806 | if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low) |
| 1807 | return false; |
| 1808 | if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low) |
| 1809 | return false; |
| 1810 | |
| 1811 | Rs = H1; |
| 1812 | Rt = H2; |
| 1813 | return true; |
| 1814 | } |
| 1815 | |
| 1816 | |
| 1817 | unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) { |
| 1818 | return HLow ? LLow ? Hexagon::A2_combine_ll |
| 1819 | : Hexagon::A2_combine_lh |
| 1820 | : LLow ? Hexagon::A2_combine_hl |
| 1821 | : Hexagon::A2_combine_hh; |
| 1822 | } |
| 1823 | |
| 1824 | |
| 1825 | // If MI stores the upper halfword of a register (potentially obtained via |
| 1826 | // shifts or extracts), replace it with a storerf instruction. This could |
| 1827 | // cause the "extraction" code to become dead. |
| 1828 | bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) { |
| 1829 | unsigned Opc = MI->getOpcode(); |
| 1830 | if (Opc != Hexagon::S2_storerh_io) |
| 1831 | return false; |
| 1832 | |
| 1833 | MachineOperand &ValOp = MI->getOperand(2); |
| 1834 | BitTracker::RegisterRef RS = ValOp; |
| 1835 | if (!BT.has(RS.Reg)) |
| 1836 | return false; |
| 1837 | const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); |
| 1838 | RegHalf H; |
| 1839 | if (!matchHalf(0, RC, 0, H)) |
| 1840 | return false; |
| 1841 | if (H.Low) |
| 1842 | return false; |
| 1843 | MI->setDesc(HII.get(Hexagon::S2_storerf_io)); |
| 1844 | ValOp.setReg(H.Reg); |
| 1845 | ValOp.setSubReg(H.Sub); |
| 1846 | return true; |
| 1847 | } |
| 1848 | |
| 1849 | |
| 1850 | // If MI stores a value known at compile-time, and the value is within a range |
| 1851 | // that avoids using constant-extenders, replace it with a store-immediate. |
| 1852 | bool BitSimplification::genStoreImmediate(MachineInstr *MI) { |
| 1853 | unsigned Opc = MI->getOpcode(); |
| 1854 | unsigned Align = 0; |
| 1855 | switch (Opc) { |
| 1856 | case Hexagon::S2_storeri_io: |
| 1857 | Align++; |
| 1858 | case Hexagon::S2_storerh_io: |
| 1859 | Align++; |
| 1860 | case Hexagon::S2_storerb_io: |
| 1861 | break; |
| 1862 | default: |
| 1863 | return false; |
| 1864 | } |
| 1865 | |
| 1866 | // Avoid stores to frame-indices (due to an unknown offset). |
| 1867 | if (!MI->getOperand(0).isReg()) |
| 1868 | return false; |
| 1869 | MachineOperand &OffOp = MI->getOperand(1); |
| 1870 | if (!OffOp.isImm()) |
| 1871 | return false; |
| 1872 | |
| 1873 | int64_t Off = OffOp.getImm(); |
| 1874 | // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x). |
| 1875 | if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1))) |
| 1876 | return false; |
| 1877 | // Source register: |
| 1878 | BitTracker::RegisterRef RS = MI->getOperand(2); |
| 1879 | if (!BT.has(RS.Reg)) |
| 1880 | return false; |
| 1881 | const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); |
| 1882 | uint64_t U; |
| 1883 | if (!HBS::getConst(RC, 0, RC.width(), U)) |
| 1884 | return false; |
| 1885 | |
| 1886 | // Only consider 8-bit values to avoid constant-extenders. |
| 1887 | int V; |
| 1888 | switch (Opc) { |
| 1889 | case Hexagon::S2_storerb_io: |
| 1890 | V = int8_t(U); |
| 1891 | break; |
| 1892 | case Hexagon::S2_storerh_io: |
| 1893 | V = int16_t(U); |
| 1894 | break; |
| 1895 | case Hexagon::S2_storeri_io: |
| 1896 | V = int32_t(U); |
| 1897 | break; |
| 1898 | } |
| 1899 | if (!isInt<8>(V)) |
| 1900 | return false; |
| 1901 | |
| 1902 | MI->RemoveOperand(2); |
| 1903 | switch (Opc) { |
| 1904 | case Hexagon::S2_storerb_io: |
| 1905 | MI->setDesc(HII.get(Hexagon::S4_storeirb_io)); |
| 1906 | break; |
| 1907 | case Hexagon::S2_storerh_io: |
| 1908 | MI->setDesc(HII.get(Hexagon::S4_storeirh_io)); |
| 1909 | break; |
| 1910 | case Hexagon::S2_storeri_io: |
| 1911 | MI->setDesc(HII.get(Hexagon::S4_storeiri_io)); |
| 1912 | break; |
| 1913 | } |
| 1914 | MI->addOperand(MachineOperand::CreateImm(V)); |
| 1915 | return true; |
| 1916 | } |
| 1917 | |
| 1918 | |
| 1919 | // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the |
| 1920 | // last instruction in a sequence that results in something equivalent to |
| 1921 | // the pack-halfwords. The intent is to cause the entire sequence to become |
| 1922 | // dead. |
| 1923 | bool BitSimplification::genPackhl(MachineInstr *MI, |
| 1924 | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| 1925 | unsigned Opc = MI->getOpcode(); |
| 1926 | if (Opc == Hexagon::S2_packhl) |
| 1927 | return false; |
| 1928 | BitTracker::RegisterRef Rs, Rt; |
| 1929 | if (!matchPackhl(RD.Reg, RC, Rs, Rt)) |
| 1930 | return false; |
| 1931 | |
| 1932 | MachineBasicBlock &B = *MI->getParent(); |
| 1933 | unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass); |
| 1934 | DebugLoc DL = MI->getDebugLoc(); |
Krzysztof Parzyszek | a3c5d44 | 2016-01-13 15:48:18 +0000 | [diff] [blame] | 1935 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 1936 | : MachineBasicBlock::iterator(MI); |
| 1937 | BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR) |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 1938 | .addReg(Rs.Reg, 0, Rs.Sub) |
| 1939 | .addReg(Rt.Reg, 0, Rt.Sub); |
| 1940 | HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); |
| 1941 | BT.put(BitTracker::RegisterRef(NewR), RC); |
| 1942 | return true; |
| 1943 | } |
| 1944 | |
| 1945 | |
| 1946 | // If MI produces halfword of the input in the low half of the output, |
| 1947 | // replace it with zero-extend or extractu. |
| 1948 | bool BitSimplification::genExtractHalf(MachineInstr *MI, |
| 1949 | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| 1950 | RegHalf L; |
| 1951 | // Check for halfword in low 16 bits, zeros elsewhere. |
| 1952 | if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16)) |
| 1953 | return false; |
| 1954 | |
| 1955 | unsigned Opc = MI->getOpcode(); |
| 1956 | MachineBasicBlock &B = *MI->getParent(); |
| 1957 | DebugLoc DL = MI->getDebugLoc(); |
| 1958 | |
| 1959 | // Prefer zxth, since zxth can go in any slot, while extractu only in |
| 1960 | // slots 2 and 3. |
| 1961 | unsigned NewR = 0; |
Krzysztof Parzyszek | a3c5d44 | 2016-01-13 15:48:18 +0000 | [diff] [blame] | 1962 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 1963 | : MachineBasicBlock::iterator(MI); |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 1964 | if (L.Low && Opc != Hexagon::A2_zxth) { |
| 1965 | NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); |
Krzysztof Parzyszek | a3c5d44 | 2016-01-13 15:48:18 +0000 | [diff] [blame] | 1966 | BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR) |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 1967 | .addReg(L.Reg, 0, L.Sub); |
Krzysztof Parzyszek | 0d11212 | 2016-01-14 21:59:22 +0000 | [diff] [blame] | 1968 | } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) { |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 1969 | NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); |
Krzysztof Parzyszek | 0d11212 | 2016-01-14 21:59:22 +0000 | [diff] [blame] | 1970 | BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR) |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 1971 | .addReg(L.Reg, 0, L.Sub) |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 1972 | .addImm(16); |
| 1973 | } |
| 1974 | if (NewR == 0) |
| 1975 | return false; |
| 1976 | HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); |
| 1977 | BT.put(BitTracker::RegisterRef(NewR), RC); |
| 1978 | return true; |
| 1979 | } |
| 1980 | |
| 1981 | |
| 1982 | // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the |
| 1983 | // combine. |
| 1984 | bool BitSimplification::genCombineHalf(MachineInstr *MI, |
| 1985 | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| 1986 | RegHalf L, H; |
| 1987 | // Check for combine h/l |
| 1988 | if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H)) |
| 1989 | return false; |
| 1990 | // Do nothing if this is just a reg copy. |
| 1991 | if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low) |
| 1992 | return false; |
| 1993 | |
| 1994 | unsigned Opc = MI->getOpcode(); |
| 1995 | unsigned COpc = getCombineOpcode(H.Low, L.Low); |
| 1996 | if (COpc == Opc) |
| 1997 | return false; |
| 1998 | |
| 1999 | MachineBasicBlock &B = *MI->getParent(); |
| 2000 | DebugLoc DL = MI->getDebugLoc(); |
| 2001 | unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); |
Krzysztof Parzyszek | a3c5d44 | 2016-01-13 15:48:18 +0000 | [diff] [blame] | 2002 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 2003 | : MachineBasicBlock::iterator(MI); |
| 2004 | BuildMI(B, At, DL, HII.get(COpc), NewR) |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 2005 | .addReg(H.Reg, 0, H.Sub) |
| 2006 | .addReg(L.Reg, 0, L.Sub); |
| 2007 | HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); |
| 2008 | BT.put(BitTracker::RegisterRef(NewR), RC); |
| 2009 | return true; |
| 2010 | } |
| 2011 | |
| 2012 | |
| 2013 | // If MI resets high bits of a register and keeps the lower ones, replace it |
| 2014 | // with zero-extend byte/half, and-immediate, or extractu, as appropriate. |
| 2015 | bool BitSimplification::genExtractLow(MachineInstr *MI, |
| 2016 | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| 2017 | unsigned Opc = MI->getOpcode(); |
| 2018 | switch (Opc) { |
| 2019 | case Hexagon::A2_zxtb: |
| 2020 | case Hexagon::A2_zxth: |
| 2021 | case Hexagon::S2_extractu: |
| 2022 | return false; |
| 2023 | } |
| 2024 | if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) { |
| 2025 | int32_t Imm = MI->getOperand(2).getImm(); |
| 2026 | if (isInt<10>(Imm)) |
| 2027 | return false; |
| 2028 | } |
| 2029 | |
| 2030 | if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) |
| 2031 | return false; |
| 2032 | unsigned W = RC.width(); |
| 2033 | while (W > 0 && RC[W-1].is(0)) |
| 2034 | W--; |
| 2035 | if (W == 0 || W == RC.width()) |
| 2036 | return false; |
| 2037 | unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb |
| 2038 | : (W == 16) ? Hexagon::A2_zxth |
| 2039 | : (W < 10) ? Hexagon::A2_andir |
| 2040 | : Hexagon::S2_extractu; |
| 2041 | MachineBasicBlock &B = *MI->getParent(); |
| 2042 | DebugLoc DL = MI->getDebugLoc(); |
| 2043 | |
| 2044 | for (auto &Op : MI->uses()) { |
| 2045 | if (!Op.isReg()) |
| 2046 | continue; |
| 2047 | BitTracker::RegisterRef RS = Op; |
| 2048 | if (!BT.has(RS.Reg)) |
| 2049 | continue; |
| 2050 | const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); |
| 2051 | unsigned BN, BW; |
| 2052 | if (!HBS::getSubregMask(RS, BN, BW, MRI)) |
| 2053 | continue; |
| 2054 | if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W)) |
| 2055 | continue; |
| 2056 | |
| 2057 | unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); |
Krzysztof Parzyszek | a3c5d44 | 2016-01-13 15:48:18 +0000 | [diff] [blame] | 2058 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 2059 | : MachineBasicBlock::iterator(MI); |
| 2060 | auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR) |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 2061 | .addReg(RS.Reg, 0, RS.Sub); |
| 2062 | if (NewOpc == Hexagon::A2_andir) |
| 2063 | MIB.addImm((1 << W) - 1); |
| 2064 | else if (NewOpc == Hexagon::S2_extractu) |
| 2065 | MIB.addImm(W).addImm(0); |
| 2066 | HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); |
| 2067 | BT.put(BitTracker::RegisterRef(NewR), RC); |
| 2068 | return true; |
| 2069 | } |
| 2070 | return false; |
| 2071 | } |
| 2072 | |
| 2073 | |
| 2074 | // Check for tstbit simplification opportunity, where the bit being checked |
| 2075 | // can be tracked back to another register. For example: |
| 2076 | // vreg2 = S2_lsr_i_r vreg1, 5 |
| 2077 | // vreg3 = S2_tstbit_i vreg2, 0 |
| 2078 | // => |
| 2079 | // vreg3 = S2_tstbit_i vreg1, 5 |
| 2080 | bool BitSimplification::simplifyTstbit(MachineInstr *MI, |
| 2081 | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| 2082 | unsigned Opc = MI->getOpcode(); |
| 2083 | if (Opc != Hexagon::S2_tstbit_i) |
| 2084 | return false; |
| 2085 | |
| 2086 | unsigned BN = MI->getOperand(2).getImm(); |
| 2087 | BitTracker::RegisterRef RS = MI->getOperand(1); |
| 2088 | unsigned F, W; |
| 2089 | DebugLoc DL = MI->getDebugLoc(); |
| 2090 | if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI)) |
| 2091 | return false; |
| 2092 | MachineBasicBlock &B = *MI->getParent(); |
Krzysztof Parzyszek | a3c5d44 | 2016-01-13 15:48:18 +0000 | [diff] [blame] | 2093 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 2094 | : MachineBasicBlock::iterator(MI); |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 2095 | |
| 2096 | const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); |
| 2097 | const BitTracker::BitValue &V = SC[F+BN]; |
| 2098 | if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) { |
| 2099 | const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg); |
| 2100 | // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is |
| 2101 | // a double register, need to use a subregister and adjust bit |
| 2102 | // number. |
| 2103 | unsigned P = UINT_MAX; |
| 2104 | BitTracker::RegisterRef RR(V.RefI.Reg, 0); |
| 2105 | if (TC == &Hexagon::DoubleRegsRegClass) { |
| 2106 | P = V.RefI.Pos; |
| 2107 | RR.Sub = Hexagon::subreg_loreg; |
| 2108 | if (P >= 32) { |
| 2109 | P -= 32; |
| 2110 | RR.Sub = Hexagon::subreg_hireg; |
| 2111 | } |
| 2112 | } else if (TC == &Hexagon::IntRegsRegClass) { |
| 2113 | P = V.RefI.Pos; |
| 2114 | } |
| 2115 | if (P != UINT_MAX) { |
| 2116 | unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); |
Krzysztof Parzyszek | a3c5d44 | 2016-01-13 15:48:18 +0000 | [diff] [blame] | 2117 | BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR) |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 2118 | .addReg(RR.Reg, 0, RR.Sub) |
| 2119 | .addImm(P); |
| 2120 | HBS::replaceReg(RD.Reg, NewR, MRI); |
| 2121 | BT.put(NewR, RC); |
| 2122 | return true; |
| 2123 | } |
| 2124 | } else if (V.is(0) || V.is(1)) { |
| 2125 | unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); |
| 2126 | unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue; |
Krzysztof Parzyszek | a3c5d44 | 2016-01-13 15:48:18 +0000 | [diff] [blame] | 2127 | BuildMI(B, At, DL, HII.get(NewOpc), NewR); |
Krzysztof Parzyszek | ced9941 | 2015-10-20 22:57:13 +0000 | [diff] [blame] | 2128 | HBS::replaceReg(RD.Reg, NewR, MRI); |
| 2129 | return true; |
| 2130 | } |
| 2131 | |
| 2132 | return false; |
| 2133 | } |
| 2134 | |
| 2135 | |
| 2136 | bool BitSimplification::processBlock(MachineBasicBlock &B, |
| 2137 | const RegisterSet &AVs) { |
| 2138 | bool Changed = false; |
| 2139 | RegisterSet AVB = AVs; |
| 2140 | RegisterSet Defs; |
| 2141 | |
| 2142 | for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) { |
| 2143 | MachineInstr *MI = &*I; |
| 2144 | Defs.clear(); |
| 2145 | HBS::getInstrDefs(*MI, Defs); |
| 2146 | |
| 2147 | unsigned Opc = MI->getOpcode(); |
| 2148 | if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE) |
| 2149 | continue; |
| 2150 | |
| 2151 | if (MI->mayStore()) { |
| 2152 | bool T = genStoreUpperHalf(MI); |
| 2153 | T = T || genStoreImmediate(MI); |
| 2154 | Changed |= T; |
| 2155 | continue; |
| 2156 | } |
| 2157 | |
| 2158 | if (Defs.count() != 1) |
| 2159 | continue; |
| 2160 | const MachineOperand &Op0 = MI->getOperand(0); |
| 2161 | if (!Op0.isReg() || !Op0.isDef()) |
| 2162 | continue; |
| 2163 | BitTracker::RegisterRef RD = Op0; |
| 2164 | if (!BT.has(RD.Reg)) |
| 2165 | continue; |
| 2166 | const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); |
| 2167 | const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg); |
| 2168 | |
| 2169 | if (FRC->getID() == Hexagon::DoubleRegsRegClassID) { |
| 2170 | bool T = genPackhl(MI, RD, RC); |
| 2171 | Changed |= T; |
| 2172 | continue; |
| 2173 | } |
| 2174 | |
| 2175 | if (FRC->getID() == Hexagon::IntRegsRegClassID) { |
| 2176 | bool T = genExtractHalf(MI, RD, RC); |
| 2177 | T = T || genCombineHalf(MI, RD, RC); |
| 2178 | T = T || genExtractLow(MI, RD, RC); |
| 2179 | Changed |= T; |
| 2180 | continue; |
| 2181 | } |
| 2182 | |
| 2183 | if (FRC->getID() == Hexagon::PredRegsRegClassID) { |
| 2184 | bool T = simplifyTstbit(MI, RD, RC); |
| 2185 | Changed |= T; |
| 2186 | continue; |
| 2187 | } |
| 2188 | } |
| 2189 | return Changed; |
| 2190 | } |
| 2191 | |
| 2192 | |
| 2193 | bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) { |
| 2194 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
| 2195 | auto &HRI = *HST.getRegisterInfo(); |
| 2196 | auto &HII = *HST.getInstrInfo(); |
| 2197 | |
| 2198 | MDT = &getAnalysis<MachineDominatorTree>(); |
| 2199 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 2200 | bool Changed; |
| 2201 | |
| 2202 | Changed = DeadCodeElimination(MF, *MDT).run(); |
| 2203 | |
| 2204 | const HexagonEvaluator HE(HRI, MRI, HII, MF); |
| 2205 | BitTracker BT(HE, MF); |
| 2206 | DEBUG(BT.trace(true)); |
| 2207 | BT.run(); |
| 2208 | |
| 2209 | MachineBasicBlock &Entry = MF.front(); |
| 2210 | |
| 2211 | RegisterSet AIG; // Available registers for IG. |
| 2212 | ConstGeneration ImmG(BT, HII, MRI); |
| 2213 | Changed |= visitBlock(Entry, ImmG, AIG); |
| 2214 | |
| 2215 | RegisterSet ARE; // Available registers for RIE. |
| 2216 | RedundantInstrElimination RIE(BT, HII, MRI); |
| 2217 | Changed |= visitBlock(Entry, RIE, ARE); |
| 2218 | |
| 2219 | RegisterSet ACG; // Available registers for CG. |
| 2220 | CopyGeneration CopyG(BT, HII, MRI); |
| 2221 | Changed |= visitBlock(Entry, CopyG, ACG); |
| 2222 | |
| 2223 | RegisterSet ACP; // Available registers for CP. |
| 2224 | CopyPropagation CopyP(HRI, MRI); |
| 2225 | Changed |= visitBlock(Entry, CopyP, ACP); |
| 2226 | |
| 2227 | Changed = DeadCodeElimination(MF, *MDT).run() || Changed; |
| 2228 | |
| 2229 | BT.run(); |
| 2230 | RegisterSet ABS; // Available registers for BS. |
| 2231 | BitSimplification BitS(BT, HII, MRI); |
| 2232 | Changed |= visitBlock(Entry, BitS, ABS); |
| 2233 | |
| 2234 | Changed = DeadCodeElimination(MF, *MDT).run() || Changed; |
| 2235 | |
| 2236 | if (Changed) { |
| 2237 | for (auto &B : MF) |
| 2238 | for (auto &I : B) |
| 2239 | I.clearKillInfo(); |
| 2240 | DeadCodeElimination(MF, *MDT).run(); |
| 2241 | } |
| 2242 | return Changed; |
| 2243 | } |
| 2244 | |
| 2245 | |
| 2246 | // Recognize loops where the code at the end of the loop matches the code |
| 2247 | // before the entry of the loop, and the matching code is such that is can |
| 2248 | // be simplified. This pass relies on the bit simplification above and only |
| 2249 | // prepares code in a way that can be handled by the bit simplifcation. |
| 2250 | // |
| 2251 | // This is the motivating testcase (and explanation): |
| 2252 | // |
| 2253 | // { |
| 2254 | // loop0(.LBB0_2, r1) // %for.body.preheader |
| 2255 | // r5:4 = memd(r0++#8) |
| 2256 | // } |
| 2257 | // { |
| 2258 | // r3 = lsr(r4, #16) |
| 2259 | // r7:6 = combine(r5, r5) |
| 2260 | // } |
| 2261 | // { |
| 2262 | // r3 = insert(r5, #16, #16) |
| 2263 | // r7:6 = vlsrw(r7:6, #16) |
| 2264 | // } |
| 2265 | // .LBB0_2: |
| 2266 | // { |
| 2267 | // memh(r2+#4) = r5 |
| 2268 | // memh(r2+#6) = r6 # R6 is really R5.H |
| 2269 | // } |
| 2270 | // { |
| 2271 | // r2 = add(r2, #8) |
| 2272 | // memh(r2+#0) = r4 |
| 2273 | // memh(r2+#2) = r3 # R3 is really R4.H |
| 2274 | // } |
| 2275 | // { |
| 2276 | // r5:4 = memd(r0++#8) |
| 2277 | // } |
| 2278 | // { # "Shuffling" code that sets up R3 and R6 |
| 2279 | // r3 = lsr(r4, #16) # so that their halves can be stored in the |
| 2280 | // r7:6 = combine(r5, r5) # next iteration. This could be folded into |
| 2281 | // } # the stores if the code was at the beginning |
| 2282 | // { # of the loop iteration. Since the same code |
| 2283 | // r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved |
| 2284 | // r7:6 = vlsrw(r7:6, #16) # there. |
| 2285 | // }:endloop0 |
| 2286 | // |
| 2287 | // |
| 2288 | // The outcome: |
| 2289 | // |
| 2290 | // { |
| 2291 | // loop0(.LBB0_2, r1) |
| 2292 | // r5:4 = memd(r0++#8) |
| 2293 | // } |
| 2294 | // .LBB0_2: |
| 2295 | // { |
| 2296 | // memh(r2+#4) = r5 |
| 2297 | // memh(r2+#6) = r5.h |
| 2298 | // } |
| 2299 | // { |
| 2300 | // r2 = add(r2, #8) |
| 2301 | // memh(r2+#0) = r4 |
| 2302 | // memh(r2+#2) = r4.h |
| 2303 | // } |
| 2304 | // { |
| 2305 | // r5:4 = memd(r0++#8) |
| 2306 | // }:endloop0 |
| 2307 | |
| 2308 | namespace llvm { |
| 2309 | FunctionPass *createHexagonLoopRescheduling(); |
| 2310 | void initializeHexagonLoopReschedulingPass(PassRegistry&); |
| 2311 | } |
| 2312 | |
| 2313 | namespace { |
| 2314 | class HexagonLoopRescheduling : public MachineFunctionPass { |
| 2315 | public: |
| 2316 | static char ID; |
| 2317 | HexagonLoopRescheduling() : MachineFunctionPass(ID), |
| 2318 | HII(0), HRI(0), MRI(0), BTP(0) { |
| 2319 | initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry()); |
| 2320 | } |
| 2321 | |
| 2322 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 2323 | |
| 2324 | private: |
| 2325 | const HexagonInstrInfo *HII; |
| 2326 | const HexagonRegisterInfo *HRI; |
| 2327 | MachineRegisterInfo *MRI; |
| 2328 | BitTracker *BTP; |
| 2329 | |
| 2330 | struct LoopCand { |
| 2331 | LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb, |
| 2332 | MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {} |
| 2333 | MachineBasicBlock *LB, *PB, *EB; |
| 2334 | }; |
| 2335 | typedef std::vector<MachineInstr*> InstrList; |
| 2336 | struct InstrGroup { |
| 2337 | BitTracker::RegisterRef Inp, Out; |
| 2338 | InstrList Ins; |
| 2339 | }; |
| 2340 | struct PhiInfo { |
| 2341 | PhiInfo(MachineInstr &P, MachineBasicBlock &B); |
| 2342 | unsigned DefR; |
| 2343 | BitTracker::RegisterRef LR, PR; |
| 2344 | MachineBasicBlock *LB, *PB; |
| 2345 | }; |
| 2346 | |
| 2347 | static unsigned getDefReg(const MachineInstr *MI); |
| 2348 | bool isConst(unsigned Reg) const; |
| 2349 | bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const; |
| 2350 | bool isStoreInput(const MachineInstr *MI, unsigned DefR) const; |
| 2351 | bool isShuffleOf(unsigned OutR, unsigned InpR) const; |
| 2352 | bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2, |
| 2353 | unsigned &InpR2) const; |
| 2354 | void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB, |
| 2355 | MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR); |
| 2356 | bool processLoop(LoopCand &C); |
| 2357 | }; |
| 2358 | } |
| 2359 | |
| 2360 | char HexagonLoopRescheduling::ID = 0; |
| 2361 | |
| 2362 | INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched", |
| 2363 | "Hexagon Loop Rescheduling", false, false) |
| 2364 | |
| 2365 | |
| 2366 | HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P, |
| 2367 | MachineBasicBlock &B) { |
| 2368 | DefR = HexagonLoopRescheduling::getDefReg(&P); |
| 2369 | LB = &B; |
| 2370 | PB = nullptr; |
| 2371 | for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) { |
| 2372 | const MachineOperand &OpB = P.getOperand(i+1); |
| 2373 | if (OpB.getMBB() == &B) { |
| 2374 | LR = P.getOperand(i); |
| 2375 | continue; |
| 2376 | } |
| 2377 | PB = OpB.getMBB(); |
| 2378 | PR = P.getOperand(i); |
| 2379 | } |
| 2380 | } |
| 2381 | |
| 2382 | |
| 2383 | unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) { |
| 2384 | RegisterSet Defs; |
| 2385 | HBS::getInstrDefs(*MI, Defs); |
| 2386 | if (Defs.count() != 1) |
| 2387 | return 0; |
| 2388 | return Defs.find_first(); |
| 2389 | } |
| 2390 | |
| 2391 | |
| 2392 | bool HexagonLoopRescheduling::isConst(unsigned Reg) const { |
| 2393 | if (!BTP->has(Reg)) |
| 2394 | return false; |
| 2395 | const BitTracker::RegisterCell &RC = BTP->lookup(Reg); |
| 2396 | for (unsigned i = 0, w = RC.width(); i < w; ++i) { |
| 2397 | const BitTracker::BitValue &V = RC[i]; |
| 2398 | if (!V.is(0) && !V.is(1)) |
| 2399 | return false; |
| 2400 | } |
| 2401 | return true; |
| 2402 | } |
| 2403 | |
| 2404 | |
| 2405 | bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI, |
| 2406 | unsigned DefR) const { |
| 2407 | unsigned Opc = MI->getOpcode(); |
| 2408 | switch (Opc) { |
| 2409 | case TargetOpcode::COPY: |
| 2410 | case Hexagon::S2_lsr_i_r: |
| 2411 | case Hexagon::S2_asr_i_r: |
| 2412 | case Hexagon::S2_asl_i_r: |
| 2413 | case Hexagon::S2_lsr_i_p: |
| 2414 | case Hexagon::S2_asr_i_p: |
| 2415 | case Hexagon::S2_asl_i_p: |
| 2416 | case Hexagon::S2_insert: |
| 2417 | case Hexagon::A2_or: |
| 2418 | case Hexagon::A2_orp: |
| 2419 | case Hexagon::A2_and: |
| 2420 | case Hexagon::A2_andp: |
| 2421 | case Hexagon::A2_combinew: |
| 2422 | case Hexagon::A4_combineri: |
| 2423 | case Hexagon::A4_combineir: |
| 2424 | case Hexagon::A2_combineii: |
| 2425 | case Hexagon::A4_combineii: |
| 2426 | case Hexagon::A2_combine_ll: |
| 2427 | case Hexagon::A2_combine_lh: |
| 2428 | case Hexagon::A2_combine_hl: |
| 2429 | case Hexagon::A2_combine_hh: |
| 2430 | return true; |
| 2431 | } |
| 2432 | return false; |
| 2433 | } |
| 2434 | |
| 2435 | |
| 2436 | bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI, |
| 2437 | unsigned InpR) const { |
| 2438 | for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { |
| 2439 | const MachineOperand &Op = MI->getOperand(i); |
| 2440 | if (!Op.isReg()) |
| 2441 | continue; |
| 2442 | if (Op.getReg() == InpR) |
| 2443 | return i == n-1; |
| 2444 | } |
| 2445 | return false; |
| 2446 | } |
| 2447 | |
| 2448 | |
| 2449 | bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const { |
| 2450 | if (!BTP->has(OutR) || !BTP->has(InpR)) |
| 2451 | return false; |
| 2452 | const BitTracker::RegisterCell &OutC = BTP->lookup(OutR); |
| 2453 | for (unsigned i = 0, w = OutC.width(); i < w; ++i) { |
| 2454 | const BitTracker::BitValue &V = OutC[i]; |
| 2455 | if (V.Type != BitTracker::BitValue::Ref) |
| 2456 | continue; |
| 2457 | if (V.RefI.Reg != InpR) |
| 2458 | return false; |
| 2459 | } |
| 2460 | return true; |
| 2461 | } |
| 2462 | |
| 2463 | |
| 2464 | bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1, |
| 2465 | unsigned OutR2, unsigned &InpR2) const { |
| 2466 | if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2)) |
| 2467 | return false; |
| 2468 | const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1); |
| 2469 | const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2); |
| 2470 | unsigned W = OutC1.width(); |
| 2471 | unsigned MatchR = 0; |
| 2472 | if (W != OutC2.width()) |
| 2473 | return false; |
| 2474 | for (unsigned i = 0; i < W; ++i) { |
| 2475 | const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i]; |
| 2476 | if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One) |
| 2477 | return false; |
| 2478 | if (V1.Type != BitTracker::BitValue::Ref) |
| 2479 | continue; |
| 2480 | if (V1.RefI.Pos != V2.RefI.Pos) |
| 2481 | return false; |
| 2482 | if (V1.RefI.Reg != InpR1) |
| 2483 | return false; |
| 2484 | if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2) |
| 2485 | return false; |
| 2486 | if (!MatchR) |
| 2487 | MatchR = V2.RefI.Reg; |
| 2488 | else if (V2.RefI.Reg != MatchR) |
| 2489 | return false; |
| 2490 | } |
| 2491 | InpR2 = MatchR; |
| 2492 | return true; |
| 2493 | } |
| 2494 | |
| 2495 | |
| 2496 | void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB, |
| 2497 | MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR, |
| 2498 | unsigned NewPredR) { |
| 2499 | DenseMap<unsigned,unsigned> RegMap; |
| 2500 | |
| 2501 | const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR); |
| 2502 | unsigned PhiR = MRI->createVirtualRegister(PhiRC); |
| 2503 | BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR) |
| 2504 | .addReg(NewPredR) |
| 2505 | .addMBB(&PB) |
| 2506 | .addReg(G.Inp.Reg) |
| 2507 | .addMBB(&LB); |
| 2508 | RegMap.insert(std::make_pair(G.Inp.Reg, PhiR)); |
| 2509 | |
| 2510 | for (unsigned i = G.Ins.size(); i > 0; --i) { |
| 2511 | const MachineInstr *SI = G.Ins[i-1]; |
| 2512 | unsigned DR = getDefReg(SI); |
| 2513 | const TargetRegisterClass *RC = MRI->getRegClass(DR); |
| 2514 | unsigned NewDR = MRI->createVirtualRegister(RC); |
| 2515 | DebugLoc DL = SI->getDebugLoc(); |
| 2516 | |
| 2517 | auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR); |
| 2518 | for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) { |
| 2519 | const MachineOperand &Op = SI->getOperand(j); |
| 2520 | if (!Op.isReg()) { |
| 2521 | MIB.addOperand(Op); |
| 2522 | continue; |
| 2523 | } |
| 2524 | if (!Op.isUse()) |
| 2525 | continue; |
| 2526 | unsigned UseR = RegMap[Op.getReg()]; |
| 2527 | MIB.addReg(UseR, 0, Op.getSubReg()); |
| 2528 | } |
| 2529 | RegMap.insert(std::make_pair(DR, NewDR)); |
| 2530 | } |
| 2531 | |
| 2532 | HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI); |
| 2533 | } |
| 2534 | |
| 2535 | |
| 2536 | bool HexagonLoopRescheduling::processLoop(LoopCand &C) { |
| 2537 | DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n"); |
| 2538 | std::vector<PhiInfo> Phis; |
| 2539 | for (auto &I : *C.LB) { |
| 2540 | if (!I.isPHI()) |
| 2541 | break; |
| 2542 | unsigned PR = getDefReg(&I); |
| 2543 | if (isConst(PR)) |
| 2544 | continue; |
| 2545 | bool BadUse = false, GoodUse = false; |
| 2546 | for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) { |
| 2547 | MachineInstr *UseI = UI->getParent(); |
| 2548 | if (UseI->getParent() != C.LB) { |
| 2549 | BadUse = true; |
| 2550 | break; |
| 2551 | } |
| 2552 | if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR)) |
| 2553 | GoodUse = true; |
| 2554 | } |
| 2555 | if (BadUse || !GoodUse) |
| 2556 | continue; |
| 2557 | |
| 2558 | Phis.push_back(PhiInfo(I, *C.LB)); |
| 2559 | } |
| 2560 | |
| 2561 | DEBUG({ |
| 2562 | dbgs() << "Phis: {"; |
| 2563 | for (auto &I : Phis) { |
| 2564 | dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi(" |
| 2565 | << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber() |
| 2566 | << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b" |
| 2567 | << I.LB->getNumber() << ')'; |
| 2568 | } |
| 2569 | dbgs() << " }\n"; |
| 2570 | }); |
| 2571 | |
| 2572 | if (Phis.empty()) |
| 2573 | return false; |
| 2574 | |
| 2575 | bool Changed = false; |
| 2576 | InstrList ShufIns; |
| 2577 | |
| 2578 | // Go backwards in the block: for each bit shuffling instruction, check |
| 2579 | // if that instruction could potentially be moved to the front of the loop: |
| 2580 | // the output of the loop cannot be used in a non-shuffling instruction |
| 2581 | // in this loop. |
| 2582 | for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) { |
| 2583 | if (I->isTerminator()) |
| 2584 | continue; |
| 2585 | if (I->isPHI()) |
| 2586 | break; |
| 2587 | |
| 2588 | RegisterSet Defs; |
| 2589 | HBS::getInstrDefs(*I, Defs); |
| 2590 | if (Defs.count() != 1) |
| 2591 | continue; |
| 2592 | unsigned DefR = Defs.find_first(); |
| 2593 | if (!TargetRegisterInfo::isVirtualRegister(DefR)) |
| 2594 | continue; |
| 2595 | if (!isBitShuffle(&*I, DefR)) |
| 2596 | continue; |
| 2597 | |
| 2598 | bool BadUse = false; |
| 2599 | for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) { |
| 2600 | MachineInstr *UseI = UI->getParent(); |
| 2601 | if (UseI->getParent() == C.LB) { |
| 2602 | if (UseI->isPHI()) { |
| 2603 | // If the use is in a phi node in this loop, then it should be |
| 2604 | // the value corresponding to the back edge. |
| 2605 | unsigned Idx = UI.getOperandNo(); |
| 2606 | if (UseI->getOperand(Idx+1).getMBB() != C.LB) |
| 2607 | BadUse = true; |
| 2608 | } else { |
| 2609 | auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI); |
| 2610 | if (F == ShufIns.end()) |
| 2611 | BadUse = true; |
| 2612 | } |
| 2613 | } else { |
| 2614 | // There is a use outside of the loop, but there is no epilog block |
| 2615 | // suitable for a copy-out. |
| 2616 | if (C.EB == nullptr) |
| 2617 | BadUse = true; |
| 2618 | } |
| 2619 | if (BadUse) |
| 2620 | break; |
| 2621 | } |
| 2622 | |
| 2623 | if (BadUse) |
| 2624 | continue; |
| 2625 | ShufIns.push_back(&*I); |
| 2626 | } |
| 2627 | |
| 2628 | // Partition the list of shuffling instructions into instruction groups, |
| 2629 | // where each group has to be moved as a whole (i.e. a group is a chain of |
| 2630 | // dependent instructions). A group produces a single live output register, |
| 2631 | // which is meant to be the input of the loop phi node (although this is |
| 2632 | // not checked here yet). It also uses a single register as its input, |
| 2633 | // which is some value produced in the loop body. After moving the group |
| 2634 | // to the beginning of the loop, that input register would need to be |
| 2635 | // the loop-carried register (through a phi node) instead of the (currently |
| 2636 | // loop-carried) output register. |
| 2637 | typedef std::vector<InstrGroup> InstrGroupList; |
| 2638 | InstrGroupList Groups; |
| 2639 | |
| 2640 | for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) { |
| 2641 | MachineInstr *SI = ShufIns[i]; |
| 2642 | if (SI == nullptr) |
| 2643 | continue; |
| 2644 | |
| 2645 | InstrGroup G; |
| 2646 | G.Ins.push_back(SI); |
| 2647 | G.Out.Reg = getDefReg(SI); |
| 2648 | RegisterSet Inputs; |
| 2649 | HBS::getInstrUses(*SI, Inputs); |
| 2650 | |
| 2651 | for (unsigned j = i+1; j < n; ++j) { |
| 2652 | MachineInstr *MI = ShufIns[j]; |
| 2653 | if (MI == nullptr) |
| 2654 | continue; |
| 2655 | RegisterSet Defs; |
| 2656 | HBS::getInstrDefs(*MI, Defs); |
| 2657 | // If this instruction does not define any pending inputs, skip it. |
| 2658 | if (!Defs.intersects(Inputs)) |
| 2659 | continue; |
| 2660 | // Otherwise, add it to the current group and remove the inputs that |
| 2661 | // are defined by MI. |
| 2662 | G.Ins.push_back(MI); |
| 2663 | Inputs.remove(Defs); |
| 2664 | // Then add all registers used by MI. |
| 2665 | HBS::getInstrUses(*MI, Inputs); |
| 2666 | ShufIns[j] = nullptr; |
| 2667 | } |
| 2668 | |
| 2669 | // Only add a group if it requires at most one register. |
| 2670 | if (Inputs.count() > 1) |
| 2671 | continue; |
| 2672 | auto LoopInpEq = [G] (const PhiInfo &P) -> bool { |
| 2673 | return G.Out.Reg == P.LR.Reg; |
| 2674 | }; |
| 2675 | if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end()) |
| 2676 | continue; |
| 2677 | |
| 2678 | G.Inp.Reg = Inputs.find_first(); |
| 2679 | Groups.push_back(G); |
| 2680 | } |
| 2681 | |
| 2682 | DEBUG({ |
| 2683 | for (unsigned i = 0, n = Groups.size(); i < n; ++i) { |
| 2684 | InstrGroup &G = Groups[i]; |
| 2685 | dbgs() << "Group[" << i << "] inp: " |
| 2686 | << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub) |
| 2687 | << " out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n"; |
| 2688 | for (unsigned j = 0, m = G.Ins.size(); j < m; ++j) |
| 2689 | dbgs() << " " << *G.Ins[j]; |
| 2690 | } |
| 2691 | }); |
| 2692 | |
| 2693 | for (unsigned i = 0, n = Groups.size(); i < n; ++i) { |
| 2694 | InstrGroup &G = Groups[i]; |
| 2695 | if (!isShuffleOf(G.Out.Reg, G.Inp.Reg)) |
| 2696 | continue; |
| 2697 | auto LoopInpEq = [G] (const PhiInfo &P) -> bool { |
| 2698 | return G.Out.Reg == P.LR.Reg; |
| 2699 | }; |
| 2700 | auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq); |
| 2701 | if (F == Phis.end()) |
| 2702 | continue; |
| 2703 | unsigned PredR = 0; |
| 2704 | if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) { |
| 2705 | const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg); |
| 2706 | unsigned Opc = DefPredR->getOpcode(); |
| 2707 | if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi) |
| 2708 | continue; |
| 2709 | if (!DefPredR->getOperand(1).isImm()) |
| 2710 | continue; |
| 2711 | if (DefPredR->getOperand(1).getImm() != 0) |
| 2712 | continue; |
| 2713 | const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg); |
| 2714 | if (RC != MRI->getRegClass(F->PR.Reg)) { |
| 2715 | PredR = MRI->createVirtualRegister(RC); |
| 2716 | unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi |
| 2717 | : Hexagon::A2_tfrpi; |
| 2718 | auto T = C.PB->getFirstTerminator(); |
| 2719 | DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc(); |
| 2720 | BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR) |
| 2721 | .addImm(0); |
| 2722 | } else { |
| 2723 | PredR = F->PR.Reg; |
| 2724 | } |
| 2725 | } |
| 2726 | assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg)); |
| 2727 | moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR); |
| 2728 | Changed = true; |
| 2729 | } |
| 2730 | |
| 2731 | return Changed; |
| 2732 | } |
| 2733 | |
| 2734 | |
| 2735 | bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) { |
| 2736 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
| 2737 | HII = HST.getInstrInfo(); |
| 2738 | HRI = HST.getRegisterInfo(); |
| 2739 | MRI = &MF.getRegInfo(); |
| 2740 | const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); |
| 2741 | BitTracker BT(HE, MF); |
| 2742 | DEBUG(BT.trace(true)); |
| 2743 | BT.run(); |
| 2744 | BTP = &BT; |
| 2745 | |
| 2746 | std::vector<LoopCand> Cand; |
| 2747 | |
| 2748 | for (auto &B : MF) { |
| 2749 | if (B.pred_size() != 2 || B.succ_size() != 2) |
| 2750 | continue; |
| 2751 | MachineBasicBlock *PB = nullptr; |
| 2752 | bool IsLoop = false; |
| 2753 | for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) { |
| 2754 | if (*PI != &B) |
| 2755 | PB = *PI; |
| 2756 | else |
| 2757 | IsLoop = true; |
| 2758 | } |
| 2759 | if (!IsLoop) |
| 2760 | continue; |
| 2761 | |
| 2762 | MachineBasicBlock *EB = nullptr; |
| 2763 | for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) { |
| 2764 | if (*SI == &B) |
| 2765 | continue; |
| 2766 | // Set EP to the epilog block, if it has only 1 predecessor (i.e. the |
| 2767 | // edge from B to EP is non-critical. |
| 2768 | if ((*SI)->pred_size() == 1) |
| 2769 | EB = *SI; |
| 2770 | break; |
| 2771 | } |
| 2772 | |
| 2773 | Cand.push_back(LoopCand(&B, PB, EB)); |
| 2774 | } |
| 2775 | |
| 2776 | bool Changed = false; |
| 2777 | for (auto &C : Cand) |
| 2778 | Changed |= processLoop(C); |
| 2779 | |
| 2780 | return Changed; |
| 2781 | } |
| 2782 | |
| 2783 | //===----------------------------------------------------------------------===// |
| 2784 | // Public Constructor Functions |
| 2785 | //===----------------------------------------------------------------------===// |
| 2786 | |
| 2787 | FunctionPass *llvm::createHexagonLoopRescheduling() { |
| 2788 | return new HexagonLoopRescheduling(); |
| 2789 | } |
| 2790 | |
| 2791 | FunctionPass *llvm::createHexagonBitSimplify() { |
| 2792 | return new HexagonBitSimplify(); |
| 2793 | } |
| 2794 | |