blob: 592df535af761b461e58280cc9bcc09bd679391e [file] [log] [blame]
Chris Lattnerc0f58002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner36663782003-05-02 19:26:34 +000011// to promote better constant propagation, GCSE, LICM, PRE...
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattnerf43e9742005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattnerc0f58002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattnercea57992005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000026#include "llvm/Function.h"
Misha Brukman2b3387a2004-07-29 17:05:13 +000027#include "llvm/Instructions.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000028#include "llvm/Pass.h"
Chris Lattnercea57992005-05-07 04:24:13 +000029#include "llvm/Type.h"
Chris Lattner9187f392005-05-08 20:09:57 +000030#include "llvm/Assembly/Writer.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000031#include "llvm/Support/CFG.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000032#include "llvm/Support/Debug.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/Statistic.h"
Chris Lattner1e506502005-05-07 21:59:39 +000035#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000036using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000037
Chris Lattnerc0f58002002-05-08 22:19:27 +000038namespace {
Chris Lattnerbf3a0992002-10-01 22:38:41 +000039 Statistic<> NumLinear ("reassociate","Number of insts linearized");
40 Statistic<> NumChanged("reassociate","Number of insts reassociated");
41 Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
Chris Lattner5847e5e2005-05-08 18:59:37 +000042 Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000043
Chris Lattner1e506502005-05-07 21:59:39 +000044 struct ValueEntry {
45 unsigned Rank;
46 Value *Op;
47 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
48 };
49 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
50 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
51 }
52
Chris Lattnerc0f58002002-05-08 22:19:27 +000053 class Reassociate : public FunctionPass {
Chris Lattner10073a92002-07-25 06:17:51 +000054 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattner8ac196d2003-08-13 16:16:26 +000055 std::map<Value*, unsigned> ValueRankMap;
Chris Lattner1e506502005-05-07 21:59:39 +000056 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +000057 public:
Chris Lattner113f4f42002-06-25 16:13:24 +000058 bool runOnFunction(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +000059
60 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattner820d9712002-10-21 20:00:28 +000061 AU.setPreservesCFG();
Chris Lattnerc0f58002002-05-08 22:19:27 +000062 }
63 private:
Chris Lattner113f4f42002-06-25 16:13:24 +000064 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +000065 unsigned getRank(Value *V);
Chris Lattner1e506502005-05-07 21:59:39 +000066 void RewriteExprTree(BinaryOperator *I, unsigned Idx,
67 std::vector<ValueEntry> &Ops);
Chris Lattnere1850b82005-05-08 00:19:31 +000068 void OptimizeExpression(unsigned Opcode, std::vector<ValueEntry> &Ops);
Chris Lattner1e506502005-05-07 21:59:39 +000069 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
70 void LinearizeExpr(BinaryOperator *I);
71 void ReassociateBB(BasicBlock *BB);
Chris Lattnerc0f58002002-05-08 22:19:27 +000072 };
Chris Lattnerb28b6802002-07-23 18:06:35 +000073
Chris Lattnerc8b70922002-07-26 21:12:46 +000074 RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
Chris Lattnerc0f58002002-05-08 22:19:27 +000075}
76
Brian Gaeke960707c2003-11-11 22:41:34 +000077// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +000078FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +000079
Chris Lattner9f284e02005-05-08 20:57:04 +000080
81static bool isUnmovableInstruction(Instruction *I) {
82 if (I->getOpcode() == Instruction::PHI ||
83 I->getOpcode() == Instruction::Alloca ||
84 I->getOpcode() == Instruction::Load ||
85 I->getOpcode() == Instruction::Malloc ||
86 I->getOpcode() == Instruction::Invoke ||
87 I->getOpcode() == Instruction::Call ||
88 I->getOpcode() == Instruction::Div ||
89 I->getOpcode() == Instruction::Rem)
90 return true;
91 return false;
92}
93
Chris Lattner113f4f42002-06-25 16:13:24 +000094void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +000095 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +000096
97 // Assign distinct ranks to function arguments
Chris Lattner531f9e92005-03-15 04:54:21 +000098 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattner8ac196d2003-08-13 16:16:26 +000099 ValueRankMap[I] = ++i;
100
Chris Lattner113f4f42002-06-25 16:13:24 +0000101 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000102 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000103 E = RPOT.end(); I != E; ++I) {
104 BasicBlock *BB = *I;
105 unsigned BBRank = RankMap[BB] = ++i << 16;
106
107 // Walk the basic block, adding precomputed ranks for any instructions that
108 // we cannot move. This ensures that the ranks for these instructions are
109 // all different in the block.
110 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
111 if (isUnmovableInstruction(I))
112 ValueRankMap[I] = ++BBRank;
113 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000114}
115
116unsigned Reassociate::getRank(Value *V) {
Chris Lattner8ac196d2003-08-13 16:16:26 +0000117 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
118
Chris Lattnerf43e9742005-05-07 04:08:02 +0000119 Instruction *I = dyn_cast<Instruction>(V);
120 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
Chris Lattnerc0f58002002-05-08 22:19:27 +0000121
Chris Lattnerf43e9742005-05-07 04:08:02 +0000122 unsigned &CachedRank = ValueRankMap[I];
123 if (CachedRank) return CachedRank; // Rank already known?
124
125 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
126 // we can reassociate expressions for code motion! Since we do not recurse
127 // for PHI nodes, we cannot have infinite recursion here, because there
128 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000129 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
130 for (unsigned i = 0, e = I->getNumOperands();
131 i != e && Rank != MaxRank; ++i)
132 Rank = std::max(Rank, getRank(I->getOperand(i)));
133
Chris Lattner6e2086d2005-05-08 00:08:33 +0000134 // If this is a not or neg instruction, do not count it for rank. This
135 // assures us that X and ~X will have the same rank.
136 if (!I->getType()->isIntegral() ||
137 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
138 ++Rank;
139
Chris Lattner9f284e02005-05-08 20:57:04 +0000140 //DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
141 //<< Rank << "\n");
Chris Lattnerf43e9742005-05-07 04:08:02 +0000142
Chris Lattner6e2086d2005-05-08 00:08:33 +0000143 return CachedRank = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000144}
145
Chris Lattner1e506502005-05-07 21:59:39 +0000146/// isReassociableOp - Return true if V is an instruction of the specified
147/// opcode and if it only has one use.
148static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
149 if (V->hasOneUse() && isa<Instruction>(V) &&
150 cast<Instruction>(V)->getOpcode() == Opcode)
151 return cast<BinaryOperator>(V);
152 return 0;
153}
Chris Lattnerc0f58002002-05-08 22:19:27 +0000154
Chris Lattner877b1142005-05-08 21:28:52 +0000155/// LowerNegateToMultiply - Replace 0-X with X*-1.
156///
157static Instruction *LowerNegateToMultiply(Instruction *Neg) {
158 Constant *Cst;
159 if (Neg->getType()->isFloatingPoint())
160 Cst = ConstantFP::get(Neg->getType(), -1);
161 else
162 Cst = ConstantInt::getAllOnesValue(Neg->getType());
163
164 std::string NegName = Neg->getName(); Neg->setName("");
165 Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
166 Neg);
167 Neg->replaceAllUsesWith(Res);
168 Neg->eraseFromParent();
169 return Res;
170}
171
Chris Lattner1e506502005-05-07 21:59:39 +0000172// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
173// Note that if D is also part of the expression tree that we recurse to
174// linearize it as well. Besides that case, this does not recurse into A,B, or
175// C.
176void Reassociate::LinearizeExpr(BinaryOperator *I) {
177 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
178 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
179 assert(isReassociableOp(LHS, I->getOpcode()) &&
180 isReassociableOp(RHS, I->getOpcode()) &&
181 "Not an expression that needs linearization?");
Misha Brukmanb1c93172005-04-21 23:48:37 +0000182
Chris Lattner1e506502005-05-07 21:59:39 +0000183 DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000184
Chris Lattner1e506502005-05-07 21:59:39 +0000185 // Move the RHS instruction to live immediately before I, avoiding breaking
186 // dominator properties.
187 I->getParent()->getInstList().splice(I, RHS->getParent()->getInstList(), RHS);
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000188
Chris Lattner1e506502005-05-07 21:59:39 +0000189 // Move operands around to do the linearization.
190 I->setOperand(1, RHS->getOperand(0));
191 RHS->setOperand(0, LHS);
192 I->setOperand(0, RHS);
193
194 ++NumLinear;
195 MadeChange = true;
196 DEBUG(std::cerr << "Linearized: " << *I);
197
198 // If D is part of this expression tree, tail recurse.
199 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
200 LinearizeExpr(I);
201}
202
203
204/// LinearizeExprTree - Given an associative binary expression tree, traverse
205/// all of the uses putting it into canonical form. This forces a left-linear
206/// form of the the expression (((a+b)+c)+d), and collects information about the
207/// rank of the non-tree operands.
208///
209/// This returns the rank of the RHS operand, which is known to be the highest
210/// rank value in the expression tree.
211///
212void Reassociate::LinearizeExprTree(BinaryOperator *I,
213 std::vector<ValueEntry> &Ops) {
214 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
215 unsigned Opcode = I->getOpcode();
216
217 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
218 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
219 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
220
Chris Lattner877b1142005-05-08 21:28:52 +0000221 // If this is a multiply expression tree and it contains internal negations,
222 // transform them into multiplies by -1 so they can be reassociated.
223 if (I->getOpcode() == Instruction::Mul) {
224 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
225 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
226 LHSBO = isReassociableOp(LHS, Opcode);
227 }
228 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
229 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
230 RHSBO = isReassociableOp(RHS, Opcode);
231 }
232 }
233
Chris Lattner1e506502005-05-07 21:59:39 +0000234 if (!LHSBO) {
235 if (!RHSBO) {
236 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
237 // such, just remember these operands and their rank.
238 Ops.push_back(ValueEntry(getRank(LHS), LHS));
239 Ops.push_back(ValueEntry(getRank(RHS), RHS));
240 return;
241 } else {
242 // Turn X+(Y+Z) -> (Y+Z)+X
243 std::swap(LHSBO, RHSBO);
244 std::swap(LHS, RHS);
245 bool Success = !I->swapOperands();
246 assert(Success && "swapOperands failed");
247 MadeChange = true;
248 }
249 } else if (RHSBO) {
250 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
251 // part of the expression tree.
252 LinearizeExpr(I);
253 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
254 RHS = I->getOperand(1);
255 RHSBO = 0;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000256 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000257
Chris Lattner1e506502005-05-07 21:59:39 +0000258 // Okay, now we know that the LHS is a nested expression and that the RHS is
259 // not. Perform reassociation.
260 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattnerc0f58002002-05-08 22:19:27 +0000261
Chris Lattner1e506502005-05-07 21:59:39 +0000262 // Move LHS right before I to make sure that the tree expression dominates all
263 // values.
264 I->getParent()->getInstList().splice(I,
265 LHSBO->getParent()->getInstList(), LHSBO);
Chris Lattner98b3ecd2003-08-12 21:45:24 +0000266
Chris Lattner1e506502005-05-07 21:59:39 +0000267 // Linearize the expression tree on the LHS.
268 LinearizeExprTree(LHSBO, Ops);
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000269
Chris Lattner1e506502005-05-07 21:59:39 +0000270 // Remember the RHS operand and its rank.
271 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000272}
273
Chris Lattner1e506502005-05-07 21:59:39 +0000274// RewriteExprTree - Now that the operands for this expression tree are
275// linearized and optimized, emit them in-order. This function is written to be
276// tail recursive.
277void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
278 std::vector<ValueEntry> &Ops) {
279 if (i+2 == Ops.size()) {
280 if (I->getOperand(0) != Ops[i].Op ||
281 I->getOperand(1) != Ops[i+1].Op) {
282 DEBUG(std::cerr << "RA: " << *I);
283 I->setOperand(0, Ops[i].Op);
284 I->setOperand(1, Ops[i+1].Op);
285 DEBUG(std::cerr << "TO: " << *I);
286 MadeChange = true;
287 ++NumChanged;
288 }
289 return;
290 }
291 assert(i+2 < Ops.size() && "Ops index out of range!");
292
293 if (I->getOperand(1) != Ops[i].Op) {
294 DEBUG(std::cerr << "RA: " << *I);
295 I->setOperand(1, Ops[i].Op);
296 DEBUG(std::cerr << "TO: " << *I);
297 MadeChange = true;
298 ++NumChanged;
299 }
300 RewriteExprTree(cast<BinaryOperator>(I->getOperand(0)), i+1, Ops);
301}
302
303
Chris Lattnerc0f58002002-05-08 22:19:27 +0000304
Chris Lattner7bc532d2002-05-16 04:37:07 +0000305// NegateValue - Insert instructions before the instruction pointed to by BI,
306// that computes the negative version of the value specified. The negative
307// version of the value is returned, and BI is left pointing at the instruction
308// that should be processed next by the reassociation pass.
309//
Chris Lattnerf43e9742005-05-07 04:08:02 +0000310static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner7bc532d2002-05-16 04:37:07 +0000311 // We are trying to expose opportunity for reassociation. One of the things
312 // that we want to do to achieve this is to push a negation as deep into an
313 // expression chain as possible, to expose the add instructions. In practice,
314 // this means that we turn this:
315 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
316 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
317 // the constants. We assume that instcombine will clean up the mess later if
Misha Brukman7eb05a12003-08-18 14:43:39 +0000318 // we introduce tons of unnecessary negation instructions...
Chris Lattner7bc532d2002-05-16 04:37:07 +0000319 //
320 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000321 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000322 Value *RHS = NegateValue(I->getOperand(1), BI);
323 Value *LHS = NegateValue(I->getOperand(0), BI);
Chris Lattner7bc532d2002-05-16 04:37:07 +0000324
325 // We must actually insert a new add instruction here, because the neg
326 // instructions do not dominate the old add instruction in general. By
327 // adding it now, we are assured that the neg instructions we just
328 // inserted dominate the instruction we are about to insert after them.
329 //
Chris Lattner28a8d242002-09-10 17:04:02 +0000330 return BinaryOperator::create(Instruction::Add, LHS, RHS,
Chris Lattnerf43e9742005-05-07 04:08:02 +0000331 I->getName()+".neg", BI);
Chris Lattner7bc532d2002-05-16 04:37:07 +0000332 }
333
334 // Insert a 'neg' instruction that subtracts the value from zero to get the
335 // negation.
336 //
Chris Lattnerf43e9742005-05-07 04:08:02 +0000337 return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
338}
339
Chris Lattnerf43e9742005-05-07 04:08:02 +0000340/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
341/// only used by an add, transform this into (X+(0-Y)) to promote better
342/// reassociation.
343static Instruction *BreakUpSubtract(Instruction *Sub) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000344 // Don't bother to break this up unless either the LHS is an associable add or
345 // if this is only used by one.
346 if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
347 !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
348 !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
349 return 0;
350
351 // Convert a subtract into an add and a neg instruction... so that sub
352 // instructions can be commuted with other add instructions...
353 //
354 // Calculate the negative value of Operand 1 of the sub instruction...
355 // and set it as the RHS of the add instruction we just made...
356 //
357 std::string Name = Sub->getName();
358 Sub->setName("");
359 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
360 Instruction *New =
361 BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
362
363 // Everyone now refers to the add instruction.
364 Sub->replaceAllUsesWith(New);
365 Sub->eraseFromParent();
366
367 DEBUG(std::cerr << "Negated: " << *New);
368 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000369}
370
Chris Lattnercea57992005-05-07 04:24:13 +0000371/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
372/// by one, change this into a multiply by a constant to assist with further
373/// reassociation.
374static Instruction *ConvertShiftToMul(Instruction *Shl) {
375 if (!isReassociableOp(Shl->getOperand(0), Instruction::Mul) &&
376 !(Shl->hasOneUse() && isReassociableOp(Shl->use_back(),Instruction::Mul)))
377 return 0;
378
379 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
380 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
381
382 std::string Name = Shl->getName(); Shl->setName("");
383 Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
384 Name, Shl);
385 Shl->replaceAllUsesWith(Mul);
386 Shl->eraseFromParent();
387 return Mul;
388}
389
Chris Lattner5847e5e2005-05-08 18:59:37 +0000390// Scan backwards and forwards among values with the same rank as element i to
391// see if X exists. If X does not exist, return i.
392static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
393 Value *X) {
394 unsigned XRank = Ops[i].Rank;
395 unsigned e = Ops.size();
396 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
397 if (Ops[j].Op == X)
398 return j;
399 // Scan backwards
400 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
401 if (Ops[j].Op == X)
402 return j;
403 return i;
404}
405
Chris Lattnere1850b82005-05-08 00:19:31 +0000406void Reassociate::OptimizeExpression(unsigned Opcode,
407 std::vector<ValueEntry> &Ops) {
408 // Now that we have the linearized expression tree, try to optimize it.
409 // Start by folding any constants that we found.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000410 bool IterateOptimization = false;
Chris Lattnere1850b82005-05-08 00:19:31 +0000411 if (Ops.size() == 1) return;
412
413 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
414 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
415 Ops.pop_back();
416 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattner08582be2005-05-08 19:48:43 +0000417 OptimizeExpression(Opcode, Ops);
418 return;
Chris Lattnere1850b82005-05-08 00:19:31 +0000419 }
420
421 // Check for destructive annihilation due to a constant being used.
422 if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
423 switch (Opcode) {
424 default: break;
425 case Instruction::And:
426 if (CstVal->isNullValue()) { // ... & 0 -> 0
427 Ops[0].Op = CstVal;
428 Ops.erase(Ops.begin()+1, Ops.end());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000429 ++NumAnnihil;
430 return;
Chris Lattnere1850b82005-05-08 00:19:31 +0000431 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
432 Ops.pop_back();
433 }
434 break;
435 case Instruction::Mul:
436 if (CstVal->isNullValue()) { // ... * 0 -> 0
437 Ops[0].Op = CstVal;
438 Ops.erase(Ops.begin()+1, Ops.end());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000439 ++NumAnnihil;
440 return;
Chris Lattnere1850b82005-05-08 00:19:31 +0000441 } else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) {
442 Ops.pop_back(); // ... * 1 -> ...
443 }
444 break;
445 case Instruction::Or:
446 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
447 Ops[0].Op = CstVal;
448 Ops.erase(Ops.begin()+1, Ops.end());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000449 ++NumAnnihil;
450 return;
Chris Lattnere1850b82005-05-08 00:19:31 +0000451 }
452 // FALLTHROUGH!
453 case Instruction::Add:
454 case Instruction::Xor:
455 if (CstVal->isNullValue()) // ... [|^+] 0 -> ...
456 Ops.pop_back();
457 break;
458 }
459
460 // Handle destructive annihilation do to identities between elements in the
461 // argument list here.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000462 switch (Opcode) {
463 default: break;
464 case Instruction::And:
465 case Instruction::Or:
466 case Instruction::Xor:
467 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
468 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
469 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
470 // First, check for X and ~X in the operand list.
471 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
472 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
473 unsigned FoundX = FindInOperandList(Ops, i, X);
474 if (FoundX != i) {
475 if (Opcode == Instruction::And) { // ...&X&~X = 0
476 Ops[0].Op = Constant::getNullValue(X->getType());
477 Ops.erase(Ops.begin()+1, Ops.end());
478 ++NumAnnihil;
479 return;
480 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
481 Ops[0].Op = ConstantIntegral::getAllOnesValue(X->getType());
482 Ops.erase(Ops.begin()+1, Ops.end());
483 ++NumAnnihil;
484 return;
485 }
486 }
487 }
488
489 // Next, check for duplicate pairs of values, which we assume are next to
490 // each other, due to our sorting criteria.
491 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
492 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
493 // Drop duplicate values.
494 Ops.erase(Ops.begin()+i);
495 --i; --e;
496 IterateOptimization = true;
497 ++NumAnnihil;
498 } else {
499 assert(Opcode == Instruction::Xor);
500 // ... X^X -> ...
501 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
502 i -= 2; e -= 2;
503 IterateOptimization = true;
504 ++NumAnnihil;
505 }
506 }
507 }
508 break;
509
510 case Instruction::Add:
511 // Scan the operand lists looking for X and -X pairs. If we find any, we
512 // can simplify the expression. X+-X == 0
513 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
514 // Check for X and -X in the operand list.
515 if (BinaryOperator::isNeg(Ops[i].Op)) {
516 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
517 unsigned FoundX = FindInOperandList(Ops, i, X);
518 if (FoundX != i) {
519 // Remove X and -X from the operand list.
520 if (Ops.size() == 2) {
521 Ops[0].Op = Constant::getNullValue(X->getType());
522 Ops.erase(Ops.begin()+1);
523 ++NumAnnihil;
524 return;
525 } else {
526 Ops.erase(Ops.begin()+i);
527 if (i < FoundX) --FoundX;
528 Ops.erase(Ops.begin()+FoundX);
529 IterateOptimization = true;
530 ++NumAnnihil;
531 }
532 }
533 }
534 }
535 break;
536 //case Instruction::Mul:
537 }
538
Chris Lattner08582be2005-05-08 19:48:43 +0000539 if (IterateOptimization)
540 OptimizeExpression(Opcode, Ops);
Chris Lattnere1850b82005-05-08 00:19:31 +0000541}
542
Chris Lattner9187f392005-05-08 20:09:57 +0000543/// PrintOps - Print out the expression identified in the Ops list.
544///
545static void PrintOps(unsigned Opcode, const std::vector<ValueEntry> &Ops,
546 BasicBlock *BB) {
547 Module *M = BB->getParent()->getParent();
548 std::cerr << Instruction::getOpcodeName(Opcode) << " "
549 << *Ops[0].Op->getType();
550 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
551 WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
552 << "," << Ops[i].Rank;
553}
Chris Lattner7bc532d2002-05-16 04:37:07 +0000554
Chris Lattnerf43e9742005-05-07 04:08:02 +0000555/// ReassociateBB - Inspect all of the instructions in this basic block,
556/// reassociating them as we go.
Chris Lattner1e506502005-05-07 21:59:39 +0000557void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnerc0f58002002-05-08 22:19:27 +0000558 for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
Chris Lattnerc4f8e2b2005-05-08 21:33:47 +0000559 // Reject cases where it is pointless to do this.
560 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint())
561 continue; // Floating point ops are not associative.
562
Chris Lattnerf43e9742005-05-07 04:08:02 +0000563 // If this is a subtract instruction which is not already in negate form,
564 // see if we can convert it to X+-Y.
Chris Lattner877b1142005-05-08 21:28:52 +0000565 if (BI->getOpcode() == Instruction::Sub) {
566 if (!BinaryOperator::isNeg(BI)) {
567 if (Instruction *NI = BreakUpSubtract(BI)) {
568 MadeChange = true;
569 BI = NI;
570 }
571 } else {
572 // Otherwise, this is a negation. See if the operand is a multiply tree
573 // and if this is not an inner node of a multiply tree.
574 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
575 (!BI->hasOneUse() ||
576 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
577 BI = LowerNegateToMultiply(BI);
578 MadeChange = true;
579 }
Chris Lattnerf43e9742005-05-07 04:08:02 +0000580 }
Chris Lattner877b1142005-05-08 21:28:52 +0000581 }
Chris Lattnercea57992005-05-07 04:24:13 +0000582 if (BI->getOpcode() == Instruction::Shl &&
583 isa<ConstantInt>(BI->getOperand(1)))
584 if (Instruction *NI = ConvertShiftToMul(BI)) {
Chris Lattner1e506502005-05-07 21:59:39 +0000585 MadeChange = true;
Chris Lattnercea57992005-05-07 04:24:13 +0000586 BI = NI;
587 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000588
Chris Lattner1e506502005-05-07 21:59:39 +0000589 // If this instruction is a commutative binary operator, process it.
590 if (!BI->isAssociative()) continue;
591 BinaryOperator *I = cast<BinaryOperator>(BI);
592
593 // If this is an interior node of a reassociable tree, ignore it until we
594 // get to the root of the tree, to avoid N^2 analysis.
595 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
596 continue;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000597
Chris Lattner1e506502005-05-07 21:59:39 +0000598 // First, walk the expression tree, linearizing the tree, collecting
599 std::vector<ValueEntry> Ops;
600 LinearizeExprTree(I, Ops);
601
Chris Lattner9187f392005-05-08 20:09:57 +0000602 DEBUG(std::cerr << "RAIn:\t"; PrintOps(I->getOpcode(), Ops, BB);
603 std::cerr << "\n");
604
Chris Lattner1e506502005-05-07 21:59:39 +0000605 // Now that we have linearized the tree to a list and have gathered all of
606 // the operands and their ranks, sort the operands by their rank. Use a
607 // stable_sort so that values with equal ranks will have their relative
608 // positions maintained (and so the compiler is deterministic). Note that
609 // this sorts so that the highest ranking values end up at the beginning of
610 // the vector.
611 std::stable_sort(Ops.begin(), Ops.end());
612
Chris Lattnere1850b82005-05-08 00:19:31 +0000613 // OptimizeExpression - Now that we have the expression tree in a convenient
614 // sorted form, optimize it globally if possible.
615 OptimizeExpression(I->getOpcode(), Ops);
Chris Lattner1e506502005-05-07 21:59:39 +0000616
Chris Lattner9187f392005-05-08 20:09:57 +0000617 DEBUG(std::cerr << "RAOut:\t"; PrintOps(I->getOpcode(), Ops, BB);
618 std::cerr << "\n");
619
Chris Lattner1e506502005-05-07 21:59:39 +0000620 if (Ops.size() == 1) {
621 // This expression tree simplified to something that isn't a tree,
622 // eliminate it.
623 I->replaceAllUsesWith(Ops[0].Op);
624 } else {
625 // Now that we ordered and optimized the expressions, splat them back into
626 // the expression tree, removing any unneeded nodes.
627 RewriteExprTree(I, 0, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000628 }
629 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000630}
631
632
Chris Lattner113f4f42002-06-25 16:13:24 +0000633bool Reassociate::runOnFunction(Function &F) {
Chris Lattnerc0f58002002-05-08 22:19:27 +0000634 // Recalculate the rank map for F
635 BuildRankMap(F);
636
Chris Lattner1e506502005-05-07 21:59:39 +0000637 MadeChange = false;
Chris Lattner113f4f42002-06-25 16:13:24 +0000638 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattner1e506502005-05-07 21:59:39 +0000639 ReassociateBB(FI);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000640
641 // We are done with the rank map...
642 RankMap.clear();
Chris Lattner8ac196d2003-08-13 16:16:26 +0000643 ValueRankMap.clear();
Chris Lattner1e506502005-05-07 21:59:39 +0000644 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000645}
Brian Gaeke960707c2003-11-11 22:41:34 +0000646