blob: b5a000de631871327095c65c351908486ba167f9 [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86CallingConv.h"
18#include "X86InstrBuilder.h"
19#include "X86InstrInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "X86RegisterInfo.h"
22#include "X86Subtarget.h"
23#include "X86TargetMachine.h"
24#include "llvm/Analysis/BranchProbabilityInfo.h"
25#include "llvm/CodeGen/Analysis.h"
26#include "llvm/CodeGen/FastISel.h"
27#include "llvm/CodeGen/FunctionLoweringInfo.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/IR/CallSite.h"
32#include "llvm/IR/CallingConv.h"
Reid Kleckner28865802016-04-14 18:29:59 +000033#include "llvm/IR/DebugInfo.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000034#include "llvm/IR/DerivedTypes.h"
35#include "llvm/IR/GetElementPtrTypeIterator.h"
36#include "llvm/IR/GlobalAlias.h"
37#include "llvm/IR/GlobalVariable.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Operator.h"
David Majnemerca194852015-02-10 22:00:34 +000041#include "llvm/MC/MCAsmInfo.h"
Rafael Espindolace4c2bc2015-06-23 12:21:54 +000042#include "llvm/MC/MCSymbol.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000043#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Target/TargetOptions.h"
45using namespace llvm;
46
47namespace {
48
49class X86FastISel final : public FastISel {
50 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
51 /// make the right decision when generating code for different targets.
52 const X86Subtarget *Subtarget;
53
54 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
55 /// floating point ops.
56 /// When SSE is available, use it for f32 operations.
57 /// When SSE2 is available, use it for f64 operations.
58 bool X86ScalarSSEf64;
59 bool X86ScalarSSEf32;
60
61public:
62 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
63 const TargetLibraryInfo *libInfo)
Eric Christophera1c535b2015-02-02 23:03:45 +000064 : FastISel(funcInfo, libInfo) {
65 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 X86ScalarSSEf64 = Subtarget->hasSSE2();
67 X86ScalarSSEf32 = Subtarget->hasSSE1();
68 }
69
70 bool fastSelectInstruction(const Instruction *I) override;
71
72 /// \brief The specified machine instr operand is a vreg, and that
73 /// vreg is being provided by the specified load instruction. If possible,
74 /// try to fold the load as an operand to the instruction, returning true if
75 /// possible.
76 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
77 const LoadInst *LI) override;
78
79 bool fastLowerArguments() override;
80 bool fastLowerCall(CallLoweringInfo &CLI) override;
81 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
82
83#include "X86GenFastISel.inc"
84
85private:
86 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL);
87
Pete Cooperd0dae3e2015-05-05 23:41:53 +000088 bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +000089 unsigned &ResultReg, unsigned Alignment = 1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000090
Pete Cooperd0dae3e2015-05-05 23:41:53 +000091 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000092 MachineMemOperand *MMO = nullptr, bool Aligned = false);
93 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +000094 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000095 MachineMemOperand *MMO = nullptr, bool Aligned = false);
96
97 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
98 unsigned &ResultReg);
99
100 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
101 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
102
103 bool X86SelectLoad(const Instruction *I);
104
105 bool X86SelectStore(const Instruction *I);
106
107 bool X86SelectRet(const Instruction *I);
108
109 bool X86SelectCmp(const Instruction *I);
110
111 bool X86SelectZExt(const Instruction *I);
112
113 bool X86SelectBranch(const Instruction *I);
114
115 bool X86SelectShift(const Instruction *I);
116
117 bool X86SelectDivRem(const Instruction *I);
118
119 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
120
121 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
122
123 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
124
125 bool X86SelectSelect(const Instruction *I);
126
127 bool X86SelectTrunc(const Instruction *I);
128
Andrea Di Biagio62622d22015-02-10 12:04:41 +0000129 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
130 const TargetRegisterClass *RC);
131
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000132 bool X86SelectFPExt(const Instruction *I);
133 bool X86SelectFPTrunc(const Instruction *I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +0000134 bool X86SelectSIToFP(const Instruction *I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000135
136 const X86InstrInfo *getInstrInfo() const {
Eric Christophera1c535b2015-02-02 23:03:45 +0000137 return Subtarget->getInstrInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000138 }
139 const X86TargetMachine *getTargetMachine() const {
140 return static_cast<const X86TargetMachine *>(&TM);
141 }
142
143 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
144
145 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
146 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
147 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
148 unsigned fastMaterializeConstant(const Constant *C) override;
149
150 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
151
152 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
153
154 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
155 /// computed in an SSE register, not on the X87 floating point stack.
156 bool isScalarFPTypeInSSEReg(EVT VT) const {
157 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
158 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
159 }
160
161 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
162
163 bool IsMemcpySmall(uint64_t Len);
164
165 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
166 X86AddressMode SrcAM, uint64_t Len);
167
168 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
169 const Value *Cond);
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000170
171 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
172 X86AddressMode &AM);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000173};
174
175} // end anonymous namespace.
176
177static std::pair<X86::CondCode, bool>
178getX86ConditionCode(CmpInst::Predicate Predicate) {
179 X86::CondCode CC = X86::COND_INVALID;
180 bool NeedSwap = false;
181 switch (Predicate) {
182 default: break;
183 // Floating-point Predicates
184 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
185 case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
186 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
187 case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
188 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
189 case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
190 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
191 case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
192 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
193 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
194 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
195 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
196 case CmpInst::FCMP_OEQ: // fall-through
197 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
198
199 // Integer Predicates
200 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
201 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
202 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
203 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
204 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
205 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
206 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
207 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
208 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
209 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
210 }
211
212 return std::make_pair(CC, NeedSwap);
213}
214
215static std::pair<unsigned, bool>
216getX86SSEConditionCode(CmpInst::Predicate Predicate) {
217 unsigned CC;
218 bool NeedSwap = false;
219
220 // SSE Condition code mapping:
221 // 0 - EQ
222 // 1 - LT
223 // 2 - LE
224 // 3 - UNORD
225 // 4 - NEQ
226 // 5 - NLT
227 // 6 - NLE
228 // 7 - ORD
229 switch (Predicate) {
230 default: llvm_unreachable("Unexpected predicate");
231 case CmpInst::FCMP_OEQ: CC = 0; break;
232 case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
233 case CmpInst::FCMP_OLT: CC = 1; break;
234 case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
235 case CmpInst::FCMP_OLE: CC = 2; break;
236 case CmpInst::FCMP_UNO: CC = 3; break;
237 case CmpInst::FCMP_UNE: CC = 4; break;
238 case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
239 case CmpInst::FCMP_UGE: CC = 5; break;
240 case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
241 case CmpInst::FCMP_UGT: CC = 6; break;
242 case CmpInst::FCMP_ORD: CC = 7; break;
243 case CmpInst::FCMP_UEQ:
244 case CmpInst::FCMP_ONE: CC = 8; break;
245 }
246
247 return std::make_pair(CC, NeedSwap);
248}
249
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000250/// \brief Adds a complex addressing mode to the given machine instr builder.
251/// Note, this will constrain the index register. If its not possible to
252/// constrain the given index register, then a new one will be created. The
253/// IndexReg field of the addressing mode will be updated to match in this case.
254const MachineInstrBuilder &
255X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
256 X86AddressMode &AM) {
257 // First constrain the index register. It needs to be a GR64_NOSP.
258 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
259 MIB->getNumOperands() +
260 X86::AddrIndexReg);
261 return ::addFullAddress(MIB, AM);
262}
263
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000264/// \brief Check if it is possible to fold the condition from the XALU intrinsic
265/// into the user. The condition code will only be updated on success.
266bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
267 const Value *Cond) {
268 if (!isa<ExtractValueInst>(Cond))
269 return false;
270
271 const auto *EV = cast<ExtractValueInst>(Cond);
272 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
273 return false;
274
275 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
276 MVT RetVT;
277 const Function *Callee = II->getCalledFunction();
278 Type *RetTy =
279 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
280 if (!isTypeLegal(RetTy, RetVT))
281 return false;
282
283 if (RetVT != MVT::i32 && RetVT != MVT::i64)
284 return false;
285
286 X86::CondCode TmpCC;
287 switch (II->getIntrinsicID()) {
288 default: return false;
289 case Intrinsic::sadd_with_overflow:
290 case Intrinsic::ssub_with_overflow:
291 case Intrinsic::smul_with_overflow:
292 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
293 case Intrinsic::uadd_with_overflow:
294 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
295 }
296
297 // Check if both instructions are in the same basic block.
298 if (II->getParent() != I->getParent())
299 return false;
300
301 // Make sure nothing is in the way
Duncan P. N. Exon Smithd77de642015-10-19 21:48:29 +0000302 BasicBlock::const_iterator Start(I);
303 BasicBlock::const_iterator End(II);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000304 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
305 // We only expect extractvalue instructions between the intrinsic and the
306 // instruction to be selected.
307 if (!isa<ExtractValueInst>(Itr))
308 return false;
309
310 // Check that the extractvalue operand comes from the intrinsic.
311 const auto *EVI = cast<ExtractValueInst>(Itr);
312 if (EVI->getAggregateOperand() != II)
313 return false;
314 }
315
316 CC = TmpCC;
317 return true;
318}
319
320bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
Mehdi Amini44ede332015-07-09 02:09:04 +0000321 EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000322 if (evt == MVT::Other || !evt.isSimple())
323 // Unhandled type. Halt "fast" selection and bail.
324 return false;
325
326 VT = evt.getSimpleVT();
327 // For now, require SSE/SSE2 for performing floating-point operations,
328 // since x87 requires additional work.
329 if (VT == MVT::f64 && !X86ScalarSSEf64)
330 return false;
331 if (VT == MVT::f32 && !X86ScalarSSEf32)
332 return false;
333 // Similarly, no f80 support yet.
334 if (VT == MVT::f80)
335 return false;
336 // We only handle legal types. For example, on x86-32 the instruction
337 // selector contains all of the 64-bit instructions from x86-64,
338 // under the assumption that i64 won't be used if the target doesn't
339 // support it.
340 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
341}
342
343#include "X86GenCallingConv.inc"
344
345/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
346/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
347/// Return true and the result register by reference if it is possible.
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000348bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000349 MachineMemOperand *MMO, unsigned &ResultReg,
350 unsigned Alignment) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000351 // Get opcode and regclass of the output for the given load instruction.
352 unsigned Opc = 0;
353 const TargetRegisterClass *RC = nullptr;
354 switch (VT.getSimpleVT().SimpleTy) {
355 default: return false;
356 case MVT::i1:
357 case MVT::i8:
358 Opc = X86::MOV8rm;
359 RC = &X86::GR8RegClass;
360 break;
361 case MVT::i16:
362 Opc = X86::MOV16rm;
363 RC = &X86::GR16RegClass;
364 break;
365 case MVT::i32:
366 Opc = X86::MOV32rm;
367 RC = &X86::GR32RegClass;
368 break;
369 case MVT::i64:
370 // Must be in x86-64 mode.
371 Opc = X86::MOV64rm;
372 RC = &X86::GR64RegClass;
373 break;
374 case MVT::f32:
375 if (X86ScalarSSEf32) {
376 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
377 RC = &X86::FR32RegClass;
378 } else {
379 Opc = X86::LD_Fp32m;
380 RC = &X86::RFP32RegClass;
381 }
382 break;
383 case MVT::f64:
384 if (X86ScalarSSEf64) {
385 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
386 RC = &X86::FR64RegClass;
387 } else {
388 Opc = X86::LD_Fp64m;
389 RC = &X86::RFP64RegClass;
390 }
391 break;
392 case MVT::f80:
393 // No f80 support yet.
394 return false;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000395 case MVT::v4f32:
396 if (Alignment >= 16)
397 Opc = Subtarget->hasAVX() ? X86::VMOVAPSrm : X86::MOVAPSrm;
398 else
399 Opc = Subtarget->hasAVX() ? X86::VMOVUPSrm : X86::MOVUPSrm;
400 RC = &X86::VR128RegClass;
401 break;
402 case MVT::v2f64:
403 if (Alignment >= 16)
404 Opc = Subtarget->hasAVX() ? X86::VMOVAPDrm : X86::MOVAPDrm;
405 else
406 Opc = Subtarget->hasAVX() ? X86::VMOVUPDrm : X86::MOVUPDrm;
407 RC = &X86::VR128RegClass;
408 break;
409 case MVT::v4i32:
410 case MVT::v2i64:
411 case MVT::v8i16:
412 case MVT::v16i8:
413 if (Alignment >= 16)
414 Opc = Subtarget->hasAVX() ? X86::VMOVDQArm : X86::MOVDQArm;
415 else
416 Opc = Subtarget->hasAVX() ? X86::VMOVDQUrm : X86::MOVDQUrm;
417 RC = &X86::VR128RegClass;
418 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000419 }
420
421 ResultReg = createResultReg(RC);
422 MachineInstrBuilder MIB =
423 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
424 addFullAddress(MIB, AM);
425 if (MMO)
426 MIB->addMemOperand(*FuncInfo.MF, MMO);
427 return true;
428}
429
430/// X86FastEmitStore - Emit a machine instruction to store a value Val of
431/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
432/// and a displacement offset, or a GlobalAddress,
433/// i.e. V. Return true if it is possible.
434bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000435 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000436 MachineMemOperand *MMO, bool Aligned) {
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000437 bool HasSSE2 = Subtarget->hasSSE2();
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000438 bool HasSSE4A = Subtarget->hasSSE4A();
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000439 bool HasAVX = Subtarget->hasAVX();
440 bool IsNonTemporal = MMO && MMO->isNonTemporal();
441
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000442 // Get opcode and regclass of the output for the given store instruction.
443 unsigned Opc = 0;
444 switch (VT.getSimpleVT().SimpleTy) {
445 case MVT::f80: // No f80 support yet.
446 default: return false;
447 case MVT::i1: {
448 // Mask out all but lowest bit.
449 unsigned AndResult = createResultReg(&X86::GR8RegClass);
450 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
451 TII.get(X86::AND8ri), AndResult)
452 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
453 ValReg = AndResult;
454 }
455 // FALLTHROUGH, handling i1 as i8.
456 case MVT::i8: Opc = X86::MOV8mr; break;
457 case MVT::i16: Opc = X86::MOV16mr; break;
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000458 case MVT::i32:
459 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
460 break;
461 case MVT::i64:
462 // Must be in x86-64 mode.
463 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
464 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000465 case MVT::f32:
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000466 if (X86ScalarSSEf32) {
467 if (IsNonTemporal && HasSSE4A)
468 Opc = X86::MOVNTSS;
469 else
470 Opc = HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
471 } else
472 Opc = X86::ST_Fp32m;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000473 break;
474 case MVT::f64:
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000475 if (X86ScalarSSEf32) {
476 if (IsNonTemporal && HasSSE4A)
477 Opc = X86::MOVNTSD;
478 else
479 Opc = HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
480 } else
481 Opc = X86::ST_Fp64m;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000482 break;
483 case MVT::v4f32:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000484 if (Aligned) {
485 if (IsNonTemporal)
486 Opc = HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
487 else
488 Opc = HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
489 } else
490 Opc = HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000491 break;
492 case MVT::v2f64:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000493 if (Aligned) {
494 if (IsNonTemporal)
495 Opc = HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
496 else
497 Opc = HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
498 } else
499 Opc = HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000500 break;
501 case MVT::v4i32:
502 case MVT::v2i64:
503 case MVT::v8i16:
504 case MVT::v16i8:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000505 if (Aligned) {
506 if (IsNonTemporal)
507 Opc = HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
508 else
509 Opc = HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
510 } else
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000511 Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
512 break;
513 }
514
Quentin Colombetbf200682016-04-27 22:33:42 +0000515 const MCInstrDesc &Desc = TII.get(Opc);
516 // Some of the instructions in the previous switch use FR128 instead
517 // of FR32 for ValReg. Make sure the register we feed the instruction
518 // matches its register class constraints.
519 // Note: This is fine to do a copy from FR32 to FR128, this is the
520 // same registers behind the scene and actually why it did not trigger
521 // any bugs before.
522 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000523 MachineInstrBuilder MIB =
Quentin Colombetbf200682016-04-27 22:33:42 +0000524 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000525 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
526 if (MMO)
527 MIB->addMemOperand(*FuncInfo.MF, MMO);
528
529 return true;
530}
531
532bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000533 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000534 MachineMemOperand *MMO, bool Aligned) {
535 // Handle 'null' like i32/i64 0.
536 if (isa<ConstantPointerNull>(Val))
537 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
538
539 // If this is a store of a simple constant, fold the constant into the store.
540 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
541 unsigned Opc = 0;
542 bool Signed = true;
543 switch (VT.getSimpleVT().SimpleTy) {
544 default: break;
545 case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
546 case MVT::i8: Opc = X86::MOV8mi; break;
547 case MVT::i16: Opc = X86::MOV16mi; break;
548 case MVT::i32: Opc = X86::MOV32mi; break;
549 case MVT::i64:
550 // Must be a 32-bit sign extended value.
551 if (isInt<32>(CI->getSExtValue()))
552 Opc = X86::MOV64mi32;
553 break;
554 }
555
556 if (Opc) {
557 MachineInstrBuilder MIB =
558 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
559 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
560 : CI->getZExtValue());
561 if (MMO)
562 MIB->addMemOperand(*FuncInfo.MF, MMO);
563 return true;
564 }
565 }
566
567 unsigned ValReg = getRegForValue(Val);
568 if (ValReg == 0)
569 return false;
570
571 bool ValKill = hasTrivialKill(Val);
572 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
573}
574
575/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
576/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
577/// ISD::SIGN_EXTEND).
578bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
579 unsigned Src, EVT SrcVT,
580 unsigned &ResultReg) {
581 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
582 Src, /*TODO: Kill=*/false);
583 if (RR == 0)
584 return false;
585
586 ResultReg = RR;
587 return true;
588}
589
590bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
591 // Handle constant address.
592 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
593 // Can't handle alternate code models yet.
594 if (TM.getCodeModel() != CodeModel::Small)
595 return false;
596
597 // Can't handle TLS yet.
598 if (GV->isThreadLocal())
599 return false;
600
601 // RIP-relative addresses can't have additional register operands, so if
602 // we've already folded stuff into the addressing mode, just force the
603 // global value into its own register, which we can use as the basereg.
604 if (!Subtarget->isPICStyleRIPRel() ||
605 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
606 // Okay, we've committed to selecting this global. Set up the address.
607 AM.GV = GV;
608
609 // Allow the subtarget to classify the global.
Rafael Espindolaab03eb02016-05-19 22:07:57 +0000610 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000611
612 // If this reference is relative to the pic base, set it now.
613 if (isGlobalRelativeToPICBase(GVFlags)) {
614 // FIXME: How do we know Base.Reg is free??
615 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
616 }
617
618 // Unless the ABI requires an extra load, return a direct reference to
619 // the global.
620 if (!isGlobalStubReference(GVFlags)) {
621 if (Subtarget->isPICStyleRIPRel()) {
622 // Use rip-relative addressing if we can. Above we verified that the
623 // base and index registers are unused.
624 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
625 AM.Base.Reg = X86::RIP;
626 }
627 AM.GVOpFlags = GVFlags;
628 return true;
629 }
630
631 // Ok, we need to do a load from a stub. If we've already loaded from
632 // this stub, reuse the loaded pointer, otherwise emit the load now.
633 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
634 unsigned LoadReg;
635 if (I != LocalValueMap.end() && I->second != 0) {
636 LoadReg = I->second;
637 } else {
638 // Issue load from stub.
639 unsigned Opc = 0;
640 const TargetRegisterClass *RC = nullptr;
641 X86AddressMode StubAM;
642 StubAM.Base.Reg = AM.Base.Reg;
643 StubAM.GV = GV;
644 StubAM.GVOpFlags = GVFlags;
645
646 // Prepare for inserting code in the local-value area.
647 SavePoint SaveInsertPt = enterLocalValueArea();
648
Mehdi Amini44ede332015-07-09 02:09:04 +0000649 if (TLI.getPointerTy(DL) == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000650 Opc = X86::MOV64rm;
651 RC = &X86::GR64RegClass;
652
653 if (Subtarget->isPICStyleRIPRel())
654 StubAM.Base.Reg = X86::RIP;
655 } else {
656 Opc = X86::MOV32rm;
657 RC = &X86::GR32RegClass;
658 }
659
660 LoadReg = createResultReg(RC);
661 MachineInstrBuilder LoadMI =
662 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
663 addFullAddress(LoadMI, StubAM);
664
665 // Ok, back to normal mode.
666 leaveLocalValueArea(SaveInsertPt);
667
668 // Prevent loading GV stub multiple times in same MBB.
669 LocalValueMap[V] = LoadReg;
670 }
671
672 // Now construct the final address. Note that the Disp, Scale,
673 // and Index values may already be set here.
674 AM.Base.Reg = LoadReg;
675 AM.GV = nullptr;
676 return true;
677 }
678 }
679
680 // If all else fails, try to materialize the value in a register.
681 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
682 if (AM.Base.Reg == 0) {
683 AM.Base.Reg = getRegForValue(V);
684 return AM.Base.Reg != 0;
685 }
686 if (AM.IndexReg == 0) {
687 assert(AM.Scale == 1 && "Scale with no index!");
688 AM.IndexReg = getRegForValue(V);
689 return AM.IndexReg != 0;
690 }
691 }
692
693 return false;
694}
695
696/// X86SelectAddress - Attempt to fill in an address from the given value.
697///
698bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
699 SmallVector<const Value *, 32> GEPs;
700redo_gep:
701 const User *U = nullptr;
702 unsigned Opcode = Instruction::UserOp1;
703 if (const Instruction *I = dyn_cast<Instruction>(V)) {
704 // Don't walk into other basic blocks; it's possible we haven't
705 // visited them yet, so the instructions may not yet be assigned
706 // virtual registers.
707 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
708 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
709 Opcode = I->getOpcode();
710 U = I;
711 }
712 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
713 Opcode = C->getOpcode();
714 U = C;
715 }
716
717 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
718 if (Ty->getAddressSpace() > 255)
719 // Fast instruction selection doesn't support the special
720 // address spaces.
721 return false;
722
723 switch (Opcode) {
724 default: break;
725 case Instruction::BitCast:
726 // Look past bitcasts.
727 return X86SelectAddress(U->getOperand(0), AM);
728
729 case Instruction::IntToPtr:
730 // Look past no-op inttoptrs.
Mehdi Amini44ede332015-07-09 02:09:04 +0000731 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
732 TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000733 return X86SelectAddress(U->getOperand(0), AM);
734 break;
735
736 case Instruction::PtrToInt:
737 // Look past no-op ptrtoints.
Mehdi Amini44ede332015-07-09 02:09:04 +0000738 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000739 return X86SelectAddress(U->getOperand(0), AM);
740 break;
741
742 case Instruction::Alloca: {
743 // Do static allocas.
744 const AllocaInst *A = cast<AllocaInst>(V);
745 DenseMap<const AllocaInst *, int>::iterator SI =
746 FuncInfo.StaticAllocaMap.find(A);
747 if (SI != FuncInfo.StaticAllocaMap.end()) {
748 AM.BaseType = X86AddressMode::FrameIndexBase;
749 AM.Base.FrameIndex = SI->second;
750 return true;
751 }
752 break;
753 }
754
755 case Instruction::Add: {
756 // Adds of constants are common and easy enough.
757 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
758 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
759 // They have to fit in the 32-bit signed displacement field though.
760 if (isInt<32>(Disp)) {
761 AM.Disp = (uint32_t)Disp;
762 return X86SelectAddress(U->getOperand(0), AM);
763 }
764 }
765 break;
766 }
767
768 case Instruction::GetElementPtr: {
769 X86AddressMode SavedAM = AM;
770
771 // Pattern-match simple GEPs.
772 uint64_t Disp = (int32_t)AM.Disp;
773 unsigned IndexReg = AM.IndexReg;
774 unsigned Scale = AM.Scale;
775 gep_type_iterator GTI = gep_type_begin(U);
776 // Iterate through the indices, folding what we can. Constants can be
777 // folded, and one dynamic index can be handled, if the scale is supported.
778 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
779 i != e; ++i, ++GTI) {
780 const Value *Op = *i;
781 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
782 const StructLayout *SL = DL.getStructLayout(STy);
783 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
784 continue;
785 }
786
787 // A array/variable index is always of the form i*S where S is the
788 // constant scale size. See if we can push the scale into immediates.
789 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
790 for (;;) {
791 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
792 // Constant-offset addressing.
793 Disp += CI->getSExtValue() * S;
794 break;
795 }
796 if (canFoldAddIntoGEP(U, Op)) {
797 // A compatible add with a constant operand. Fold the constant.
798 ConstantInt *CI =
799 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
800 Disp += CI->getSExtValue() * S;
801 // Iterate on the other operand.
802 Op = cast<AddOperator>(Op)->getOperand(0);
803 continue;
804 }
805 if (IndexReg == 0 &&
806 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
807 (S == 1 || S == 2 || S == 4 || S == 8)) {
808 // Scaled-index addressing.
809 Scale = S;
810 IndexReg = getRegForGEPIndex(Op).first;
811 if (IndexReg == 0)
812 return false;
813 break;
814 }
815 // Unsupported.
816 goto unsupported_gep;
817 }
818 }
819
820 // Check for displacement overflow.
821 if (!isInt<32>(Disp))
822 break;
823
824 AM.IndexReg = IndexReg;
825 AM.Scale = Scale;
826 AM.Disp = (uint32_t)Disp;
827 GEPs.push_back(V);
828
829 if (const GetElementPtrInst *GEP =
830 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
831 // Ok, the GEP indices were covered by constant-offset and scaled-index
832 // addressing. Update the address state and move on to examining the base.
833 V = GEP;
834 goto redo_gep;
835 } else if (X86SelectAddress(U->getOperand(0), AM)) {
836 return true;
837 }
838
839 // If we couldn't merge the gep value into this addr mode, revert back to
840 // our address and just match the value instead of completely failing.
841 AM = SavedAM;
842
843 for (SmallVectorImpl<const Value *>::reverse_iterator
844 I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
845 if (handleConstantAddresses(*I, AM))
846 return true;
847
848 return false;
849 unsupported_gep:
850 // Ok, the GEP indices weren't all covered.
851 break;
852 }
853 }
854
855 return handleConstantAddresses(V, AM);
856}
857
858/// X86SelectCallAddress - Attempt to fill in an address from the given value.
859///
860bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
861 const User *U = nullptr;
862 unsigned Opcode = Instruction::UserOp1;
863 const Instruction *I = dyn_cast<Instruction>(V);
864 // Record if the value is defined in the same basic block.
865 //
866 // This information is crucial to know whether or not folding an
867 // operand is valid.
868 // Indeed, FastISel generates or reuses a virtual register for all
869 // operands of all instructions it selects. Obviously, the definition and
870 // its uses must use the same virtual register otherwise the produced
871 // code is incorrect.
872 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
873 // registers for values that are alive across basic blocks. This ensures
874 // that the values are consistently set between across basic block, even
875 // if different instruction selection mechanisms are used (e.g., a mix of
876 // SDISel and FastISel).
877 // For values local to a basic block, the instruction selection process
878 // generates these virtual registers with whatever method is appropriate
879 // for its needs. In particular, FastISel and SDISel do not share the way
880 // local virtual registers are set.
881 // Therefore, this is impossible (or at least unsafe) to share values
882 // between basic blocks unless they use the same instruction selection
883 // method, which is not guarantee for X86.
884 // Moreover, things like hasOneUse could not be used accurately, if we
885 // allow to reference values across basic blocks whereas they are not
886 // alive across basic blocks initially.
887 bool InMBB = true;
888 if (I) {
889 Opcode = I->getOpcode();
890 U = I;
891 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
892 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
893 Opcode = C->getOpcode();
894 U = C;
895 }
896
897 switch (Opcode) {
898 default: break;
899 case Instruction::BitCast:
900 // Look past bitcasts if its operand is in the same BB.
901 if (InMBB)
902 return X86SelectCallAddress(U->getOperand(0), AM);
903 break;
904
905 case Instruction::IntToPtr:
906 // Look past no-op inttoptrs if its operand is in the same BB.
907 if (InMBB &&
Mehdi Amini44ede332015-07-09 02:09:04 +0000908 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
909 TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000910 return X86SelectCallAddress(U->getOperand(0), AM);
911 break;
912
913 case Instruction::PtrToInt:
914 // Look past no-op ptrtoints if its operand is in the same BB.
Mehdi Amini44ede332015-07-09 02:09:04 +0000915 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000916 return X86SelectCallAddress(U->getOperand(0), AM);
917 break;
918 }
919
920 // Handle constant address.
921 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
922 // Can't handle alternate code models yet.
923 if (TM.getCodeModel() != CodeModel::Small)
924 return false;
925
926 // RIP-relative addresses can't have additional register operands.
927 if (Subtarget->isPICStyleRIPRel() &&
928 (AM.Base.Reg != 0 || AM.IndexReg != 0))
929 return false;
930
931 // Can't handle DLL Import.
932 if (GV->hasDLLImportStorageClass())
933 return false;
934
935 // Can't handle TLS.
936 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
937 if (GVar->isThreadLocal())
938 return false;
939
940 // Okay, we've committed to selecting this global. Set up the basic address.
941 AM.GV = GV;
942
943 // No ABI requires an extra load for anything other than DLLImport, which
944 // we rejected above. Return a direct reference to the global.
945 if (Subtarget->isPICStyleRIPRel()) {
946 // Use rip-relative addressing if we can. Above we verified that the
947 // base and index registers are unused.
948 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
949 AM.Base.Reg = X86::RIP;
Rafael Espindolac7e98132016-05-20 12:20:10 +0000950 } else {
951 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000952 }
953
954 return true;
955 }
956
957 // If all else fails, try to materialize the value in a register.
958 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
959 if (AM.Base.Reg == 0) {
960 AM.Base.Reg = getRegForValue(V);
961 return AM.Base.Reg != 0;
962 }
963 if (AM.IndexReg == 0) {
964 assert(AM.Scale == 1 && "Scale with no index!");
965 AM.IndexReg = getRegForValue(V);
966 return AM.IndexReg != 0;
967 }
968 }
969
970 return false;
971}
972
973
974/// X86SelectStore - Select and emit code to implement store instructions.
975bool X86FastISel::X86SelectStore(const Instruction *I) {
976 // Atomic stores need special handling.
977 const StoreInst *S = cast<StoreInst>(I);
978
979 if (S->isAtomic())
980 return false;
981
Manman Ren57518142016-04-11 21:08:06 +0000982 const Value *PtrV = I->getOperand(1);
983 if (TLI.supportSwiftError()) {
984 // Swifterror values can come from either a function parameter with
985 // swifterror attribute or an alloca with swifterror attribute.
986 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
987 if (Arg->hasSwiftErrorAttr())
988 return false;
989 }
990
991 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
992 if (Alloca->isSwiftError())
993 return false;
994 }
995 }
996
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000997 const Value *Val = S->getValueOperand();
998 const Value *Ptr = S->getPointerOperand();
999
1000 MVT VT;
1001 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1002 return false;
1003
1004 unsigned Alignment = S->getAlignment();
1005 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1006 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1007 Alignment = ABIAlignment;
1008 bool Aligned = Alignment >= ABIAlignment;
1009
1010 X86AddressMode AM;
1011 if (!X86SelectAddress(Ptr, AM))
1012 return false;
1013
1014 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1015}
1016
1017/// X86SelectRet - Select and emit code to implement ret instructions.
1018bool X86FastISel::X86SelectRet(const Instruction *I) {
1019 const ReturnInst *Ret = cast<ReturnInst>(I);
1020 const Function &F = *I->getParent()->getParent();
1021 const X86MachineFunctionInfo *X86MFInfo =
1022 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1023
1024 if (!FuncInfo.CanLowerReturn)
1025 return false;
1026
Manman Ren57518142016-04-11 21:08:06 +00001027 if (TLI.supportSwiftError() &&
1028 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1029 return false;
1030
Manman Rened967f32016-01-12 01:08:46 +00001031 if (TLI.supportSplitCSR(FuncInfo.MF))
1032 return false;
1033
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001034 CallingConv::ID CC = F.getCallingConv();
1035 if (CC != CallingConv::C &&
1036 CC != CallingConv::Fast &&
1037 CC != CallingConv::X86_FastCall &&
1038 CC != CallingConv::X86_64_SysV)
1039 return false;
1040
1041 if (Subtarget->isCallingConvWin64(CC))
1042 return false;
1043
1044 // Don't handle popping bytes on return for now.
1045 if (X86MFInfo->getBytesToPopOnReturn() != 0)
1046 return false;
1047
1048 // fastcc with -tailcallopt is intended to provide a guaranteed
1049 // tail call optimization. Fastisel doesn't know how to do that.
1050 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1051 return false;
1052
1053 // Let SDISel handle vararg functions.
1054 if (F.isVarArg())
1055 return false;
1056
1057 // Build a list of return value registers.
1058 SmallVector<unsigned, 4> RetRegs;
1059
1060 if (Ret->getNumOperands() > 0) {
1061 SmallVector<ISD::OutputArg, 4> Outs;
Mehdi Amini44ede332015-07-09 02:09:04 +00001062 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001063
1064 // Analyze operands of the call, assigning locations to each operand.
1065 SmallVector<CCValAssign, 16> ValLocs;
1066 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1067 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1068
1069 const Value *RV = Ret->getOperand(0);
1070 unsigned Reg = getRegForValue(RV);
1071 if (Reg == 0)
1072 return false;
1073
1074 // Only handle a single return value for now.
1075 if (ValLocs.size() != 1)
1076 return false;
1077
1078 CCValAssign &VA = ValLocs[0];
1079
1080 // Don't bother handling odd stuff for now.
1081 if (VA.getLocInfo() != CCValAssign::Full)
1082 return false;
1083 // Only handle register returns for now.
1084 if (!VA.isRegLoc())
1085 return false;
1086
1087 // The calling-convention tables for x87 returns don't tell
1088 // the whole story.
1089 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1090 return false;
1091
1092 unsigned SrcReg = Reg + VA.getValNo();
Mehdi Amini44ede332015-07-09 02:09:04 +00001093 EVT SrcVT = TLI.getValueType(DL, RV->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001094 EVT DstVT = VA.getValVT();
1095 // Special handling for extended integers.
1096 if (SrcVT != DstVT) {
1097 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1098 return false;
1099
1100 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1101 return false;
1102
1103 assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1104
1105 if (SrcVT == MVT::i1) {
1106 if (Outs[0].Flags.isSExt())
1107 return false;
1108 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1109 SrcVT = MVT::i8;
1110 }
1111 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1112 ISD::SIGN_EXTEND;
1113 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1114 SrcReg, /*TODO: Kill=*/false);
1115 }
1116
1117 // Make the copy.
1118 unsigned DstReg = VA.getLocReg();
1119 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1120 // Avoid a cross-class copy. This is very unlikely.
1121 if (!SrcRC->contains(DstReg))
1122 return false;
1123 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1124 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1125
1126 // Add register to return instruction.
1127 RetRegs.push_back(VA.getLocReg());
1128 }
1129
Manman Ren1c3f65a2016-04-26 18:08:06 +00001130 // Swift calling convention does not require we copy the sret argument
1131 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1132
Dimitry Andric227b9282016-01-03 17:22:03 +00001133 // All x86 ABIs require that for returning structs by value we copy
1134 // the sret argument into %rax/%eax (depending on ABI) for the return.
1135 // We saved the argument into a virtual register in the entry block,
Michael Kuperstein2ea81ba2015-12-28 14:39:21 +00001136 // so now we copy the value out and into %rax/%eax.
Manman Ren1c3f65a2016-04-26 18:08:06 +00001137 if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001138 unsigned Reg = X86MFInfo->getSRetReturnReg();
1139 assert(Reg &&
1140 "SRetReturnReg should have been set in LowerFormalArguments()!");
1141 unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
1142 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1143 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1144 RetRegs.push_back(RetReg);
1145 }
1146
1147 // Now emit the RET.
1148 MachineInstrBuilder MIB =
1149 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1150 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1151 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1152 MIB.addReg(RetRegs[i], RegState::Implicit);
1153 return true;
1154}
1155
1156/// X86SelectLoad - Select and emit code to implement load instructions.
1157///
1158bool X86FastISel::X86SelectLoad(const Instruction *I) {
1159 const LoadInst *LI = cast<LoadInst>(I);
1160
1161 // Atomic loads need special handling.
1162 if (LI->isAtomic())
1163 return false;
1164
Manman Ren57518142016-04-11 21:08:06 +00001165 const Value *SV = I->getOperand(0);
1166 if (TLI.supportSwiftError()) {
1167 // Swifterror values can come from either a function parameter with
1168 // swifterror attribute or an alloca with swifterror attribute.
1169 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1170 if (Arg->hasSwiftErrorAttr())
1171 return false;
1172 }
1173
1174 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1175 if (Alloca->isSwiftError())
1176 return false;
1177 }
1178 }
1179
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001180 MVT VT;
1181 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1182 return false;
1183
1184 const Value *Ptr = LI->getPointerOperand();
1185
1186 X86AddressMode AM;
1187 if (!X86SelectAddress(Ptr, AM))
1188 return false;
1189
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001190 unsigned Alignment = LI->getAlignment();
1191 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1192 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1193 Alignment = ABIAlignment;
1194
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001195 unsigned ResultReg = 0;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001196 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1197 Alignment))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001198 return false;
1199
1200 updateValueMap(I, ResultReg);
1201 return true;
1202}
1203
1204static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1205 bool HasAVX = Subtarget->hasAVX();
1206 bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1207 bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1208
1209 switch (VT.getSimpleVT().SimpleTy) {
1210 default: return 0;
1211 case MVT::i8: return X86::CMP8rr;
1212 case MVT::i16: return X86::CMP16rr;
1213 case MVT::i32: return X86::CMP32rr;
1214 case MVT::i64: return X86::CMP64rr;
1215 case MVT::f32:
1216 return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
1217 case MVT::f64:
1218 return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
1219 }
1220}
1221
Rafael Espindola19141f22015-03-16 14:05:49 +00001222/// If we have a comparison with RHS as the RHS of the comparison, return an
1223/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001224static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
Rafael Espindola933f51a2015-03-16 14:25:08 +00001225 int64_t Val = RHSC->getSExtValue();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001226 switch (VT.getSimpleVT().SimpleTy) {
1227 // Otherwise, we can't fold the immediate into this comparison.
Rafael Espindola19141f22015-03-16 14:05:49 +00001228 default:
1229 return 0;
1230 case MVT::i8:
1231 return X86::CMP8ri;
1232 case MVT::i16:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001233 if (isInt<8>(Val))
1234 return X86::CMP16ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001235 return X86::CMP16ri;
1236 case MVT::i32:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001237 if (isInt<8>(Val))
1238 return X86::CMP32ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001239 return X86::CMP32ri;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001240 case MVT::i64:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001241 if (isInt<8>(Val))
1242 return X86::CMP64ri8;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001243 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1244 // field.
Rafael Espindola933f51a2015-03-16 14:25:08 +00001245 if (isInt<32>(Val))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001246 return X86::CMP64ri32;
1247 return 0;
1248 }
1249}
1250
1251bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
1252 EVT VT, DebugLoc CurDbgLoc) {
1253 unsigned Op0Reg = getRegForValue(Op0);
1254 if (Op0Reg == 0) return false;
1255
1256 // Handle 'null' like i32/i64 0.
1257 if (isa<ConstantPointerNull>(Op1))
1258 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1259
1260 // We have two options: compare with register or immediate. If the RHS of
1261 // the compare is an immediate that we can fold into this compare, use
1262 // CMPri, otherwise use CMPrr.
1263 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1264 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1265 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1266 .addReg(Op0Reg)
1267 .addImm(Op1C->getSExtValue());
1268 return true;
1269 }
1270 }
1271
1272 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1273 if (CompareOpc == 0) return false;
1274
1275 unsigned Op1Reg = getRegForValue(Op1);
1276 if (Op1Reg == 0) return false;
1277 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1278 .addReg(Op0Reg)
1279 .addReg(Op1Reg);
1280
1281 return true;
1282}
1283
1284bool X86FastISel::X86SelectCmp(const Instruction *I) {
1285 const CmpInst *CI = cast<CmpInst>(I);
1286
1287 MVT VT;
1288 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1289 return false;
1290
1291 // Try to optimize or fold the cmp.
1292 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1293 unsigned ResultReg = 0;
1294 switch (Predicate) {
1295 default: break;
1296 case CmpInst::FCMP_FALSE: {
1297 ResultReg = createResultReg(&X86::GR32RegClass);
1298 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1299 ResultReg);
1300 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1301 X86::sub_8bit);
1302 if (!ResultReg)
1303 return false;
1304 break;
1305 }
1306 case CmpInst::FCMP_TRUE: {
1307 ResultReg = createResultReg(&X86::GR8RegClass);
1308 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1309 ResultReg).addImm(1);
1310 break;
1311 }
1312 }
1313
1314 if (ResultReg) {
1315 updateValueMap(I, ResultReg);
1316 return true;
1317 }
1318
1319 const Value *LHS = CI->getOperand(0);
1320 const Value *RHS = CI->getOperand(1);
1321
1322 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1323 // We don't have to materialize a zero constant for this case and can just use
1324 // %x again on the RHS.
1325 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1326 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1327 if (RHSC && RHSC->isNullValue())
1328 RHS = LHS;
1329 }
1330
1331 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1332 static unsigned SETFOpcTable[2][3] = {
1333 { X86::SETEr, X86::SETNPr, X86::AND8rr },
1334 { X86::SETNEr, X86::SETPr, X86::OR8rr }
1335 };
1336 unsigned *SETFOpc = nullptr;
1337 switch (Predicate) {
1338 default: break;
1339 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1340 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1341 }
1342
1343 ResultReg = createResultReg(&X86::GR8RegClass);
1344 if (SETFOpc) {
1345 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1346 return false;
1347
1348 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1349 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1350 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1351 FlagReg1);
1352 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1353 FlagReg2);
1354 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1355 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1356 updateValueMap(I, ResultReg);
1357 return true;
1358 }
1359
1360 X86::CondCode CC;
1361 bool SwapArgs;
1362 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1363 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1364 unsigned Opc = X86::getSETFromCond(CC);
1365
1366 if (SwapArgs)
1367 std::swap(LHS, RHS);
1368
1369 // Emit a compare of LHS/RHS.
1370 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1371 return false;
1372
1373 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1374 updateValueMap(I, ResultReg);
1375 return true;
1376}
1377
1378bool X86FastISel::X86SelectZExt(const Instruction *I) {
Mehdi Amini44ede332015-07-09 02:09:04 +00001379 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001380 if (!TLI.isTypeLegal(DstVT))
1381 return false;
1382
1383 unsigned ResultReg = getRegForValue(I->getOperand(0));
1384 if (ResultReg == 0)
1385 return false;
1386
1387 // Handle zero-extension from i1 to i8, which is common.
Mehdi Amini44ede332015-07-09 02:09:04 +00001388 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001389 if (SrcVT.SimpleTy == MVT::i1) {
1390 // Set the high bits to zero.
1391 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1392 SrcVT = MVT::i8;
1393
1394 if (ResultReg == 0)
1395 return false;
1396 }
1397
1398 if (DstVT == MVT::i64) {
1399 // Handle extension to 64-bits via sub-register shenanigans.
1400 unsigned MovInst;
1401
1402 switch (SrcVT.SimpleTy) {
1403 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1404 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1405 case MVT::i32: MovInst = X86::MOV32rr; break;
1406 default: llvm_unreachable("Unexpected zext to i64 source type");
1407 }
1408
1409 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1411 .addReg(ResultReg);
1412
1413 ResultReg = createResultReg(&X86::GR64RegClass);
1414 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1415 ResultReg)
1416 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1417 } else if (DstVT != MVT::i8) {
1418 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1419 ResultReg, /*Kill=*/true);
1420 if (ResultReg == 0)
1421 return false;
1422 }
1423
1424 updateValueMap(I, ResultReg);
1425 return true;
1426}
1427
1428bool X86FastISel::X86SelectBranch(const Instruction *I) {
1429 // Unconditional branches are selected by tablegen-generated code.
1430 // Handle a conditional branch.
1431 const BranchInst *BI = cast<BranchInst>(I);
1432 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1433 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1434
1435 // Fold the common case of a conditional branch with a comparison
1436 // in the same block (values defined on other blocks may not have
1437 // initialized registers).
1438 X86::CondCode CC;
1439 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1440 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
Mehdi Amini44ede332015-07-09 02:09:04 +00001441 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001442
1443 // Try to optimize or fold the cmp.
1444 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1445 switch (Predicate) {
1446 default: break;
1447 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1448 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
1449 }
1450
1451 const Value *CmpLHS = CI->getOperand(0);
1452 const Value *CmpRHS = CI->getOperand(1);
1453
1454 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1455 // 0.0.
1456 // We don't have to materialize a zero constant for this case and can just
1457 // use %x again on the RHS.
1458 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1459 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1460 if (CmpRHSC && CmpRHSC->isNullValue())
1461 CmpRHS = CmpLHS;
1462 }
1463
1464 // Try to take advantage of fallthrough opportunities.
1465 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1466 std::swap(TrueMBB, FalseMBB);
1467 Predicate = CmpInst::getInversePredicate(Predicate);
1468 }
1469
1470 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1471 // code check. Instead two branch instructions are required to check all
1472 // the flags. First we change the predicate to a supported condition code,
1473 // which will be the first branch. Later one we will emit the second
1474 // branch.
1475 bool NeedExtraBranch = false;
1476 switch (Predicate) {
1477 default: break;
1478 case CmpInst::FCMP_OEQ:
1479 std::swap(TrueMBB, FalseMBB); // fall-through
1480 case CmpInst::FCMP_UNE:
1481 NeedExtraBranch = true;
1482 Predicate = CmpInst::FCMP_ONE;
1483 break;
1484 }
1485
1486 bool SwapArgs;
1487 unsigned BranchOpc;
1488 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1489 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1490
1491 BranchOpc = X86::GetCondBranchFromCond(CC);
1492 if (SwapArgs)
1493 std::swap(CmpLHS, CmpRHS);
1494
1495 // Emit a compare of the LHS and RHS, setting the flags.
1496 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1497 return false;
1498
1499 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1500 .addMBB(TrueMBB);
1501
1502 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1503 // to UNE above).
1504 if (NeedExtraBranch) {
1505 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1506 .addMBB(TrueMBB);
1507 }
1508
Matthias Braun17af6072015-08-26 01:38:00 +00001509 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001510 return true;
1511 }
1512 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1513 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1514 // typically happen for _Bool and C++ bools.
1515 MVT SourceVT;
1516 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1517 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1518 unsigned TestOpc = 0;
1519 switch (SourceVT.SimpleTy) {
1520 default: break;
1521 case MVT::i8: TestOpc = X86::TEST8ri; break;
1522 case MVT::i16: TestOpc = X86::TEST16ri; break;
1523 case MVT::i32: TestOpc = X86::TEST32ri; break;
1524 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1525 }
1526 if (TestOpc) {
1527 unsigned OpReg = getRegForValue(TI->getOperand(0));
1528 if (OpReg == 0) return false;
1529 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1530 .addReg(OpReg).addImm(1);
1531
1532 unsigned JmpOpc = X86::JNE_1;
1533 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1534 std::swap(TrueMBB, FalseMBB);
1535 JmpOpc = X86::JE_1;
1536 }
1537
1538 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1539 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001540
1541 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001542 return true;
1543 }
1544 }
1545 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1546 // Fake request the condition, otherwise the intrinsic might be completely
1547 // optimized away.
1548 unsigned TmpReg = getRegForValue(BI->getCondition());
1549 if (TmpReg == 0)
1550 return false;
1551
1552 unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1553
1554 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1555 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001556 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001557 return true;
1558 }
1559
1560 // Otherwise do a clumsy setcc and re-test it.
1561 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1562 // in an explicit cast, so make sure to handle that correctly.
1563 unsigned OpReg = getRegForValue(BI->getCondition());
1564 if (OpReg == 0) return false;
1565
1566 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1567 .addReg(OpReg).addImm(1);
1568 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1569 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001570 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001571 return true;
1572}
1573
1574bool X86FastISel::X86SelectShift(const Instruction *I) {
1575 unsigned CReg = 0, OpReg = 0;
1576 const TargetRegisterClass *RC = nullptr;
1577 if (I->getType()->isIntegerTy(8)) {
1578 CReg = X86::CL;
1579 RC = &X86::GR8RegClass;
1580 switch (I->getOpcode()) {
1581 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1582 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1583 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1584 default: return false;
1585 }
1586 } else if (I->getType()->isIntegerTy(16)) {
1587 CReg = X86::CX;
1588 RC = &X86::GR16RegClass;
1589 switch (I->getOpcode()) {
1590 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1591 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1592 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1593 default: return false;
1594 }
1595 } else if (I->getType()->isIntegerTy(32)) {
1596 CReg = X86::ECX;
1597 RC = &X86::GR32RegClass;
1598 switch (I->getOpcode()) {
1599 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1600 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1601 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1602 default: return false;
1603 }
1604 } else if (I->getType()->isIntegerTy(64)) {
1605 CReg = X86::RCX;
1606 RC = &X86::GR64RegClass;
1607 switch (I->getOpcode()) {
1608 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1609 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1610 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1611 default: return false;
1612 }
1613 } else {
1614 return false;
1615 }
1616
1617 MVT VT;
1618 if (!isTypeLegal(I->getType(), VT))
1619 return false;
1620
1621 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1622 if (Op0Reg == 0) return false;
1623
1624 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1625 if (Op1Reg == 0) return false;
1626 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1627 CReg).addReg(Op1Reg);
1628
1629 // The shift instruction uses X86::CL. If we defined a super-register
1630 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1631 if (CReg != X86::CL)
1632 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1633 TII.get(TargetOpcode::KILL), X86::CL)
1634 .addReg(CReg, RegState::Kill);
1635
1636 unsigned ResultReg = createResultReg(RC);
1637 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1638 .addReg(Op0Reg);
1639 updateValueMap(I, ResultReg);
1640 return true;
1641}
1642
1643bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1644 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1645 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1646 const static bool S = true; // IsSigned
1647 const static bool U = false; // !IsSigned
1648 const static unsigned Copy = TargetOpcode::COPY;
1649 // For the X86 DIV/IDIV instruction, in most cases the dividend
1650 // (numerator) must be in a specific register pair highreg:lowreg,
1651 // producing the quotient in lowreg and the remainder in highreg.
1652 // For most data types, to set up the instruction, the dividend is
1653 // copied into lowreg, and lowreg is sign-extended or zero-extended
1654 // into highreg. The exception is i8, where the dividend is defined
1655 // as a single register rather than a register pair, and we
1656 // therefore directly sign-extend or zero-extend the dividend into
1657 // lowreg, instead of copying, and ignore the highreg.
1658 const static struct DivRemEntry {
1659 // The following portion depends only on the data type.
1660 const TargetRegisterClass *RC;
1661 unsigned LowInReg; // low part of the register pair
1662 unsigned HighInReg; // high part of the register pair
1663 // The following portion depends on both the data type and the operation.
1664 struct DivRemResult {
1665 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1666 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1667 // highreg, or copying a zero into highreg.
1668 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1669 // zero/sign-extending into lowreg for i8.
1670 unsigned DivRemResultReg; // Register containing the desired result.
1671 bool IsOpSigned; // Whether to use signed or unsigned form.
1672 } ResultTable[NumOps];
1673 } OpTable[NumTypes] = {
1674 { &X86::GR8RegClass, X86::AX, 0, {
1675 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1676 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1677 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1678 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1679 }
1680 }, // i8
1681 { &X86::GR16RegClass, X86::AX, X86::DX, {
1682 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1683 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1684 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1685 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1686 }
1687 }, // i16
1688 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1689 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1690 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1691 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1692 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1693 }
1694 }, // i32
1695 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1696 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1697 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1698 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1699 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1700 }
1701 }, // i64
1702 };
1703
1704 MVT VT;
1705 if (!isTypeLegal(I->getType(), VT))
1706 return false;
1707
1708 unsigned TypeIndex, OpIndex;
1709 switch (VT.SimpleTy) {
1710 default: return false;
1711 case MVT::i8: TypeIndex = 0; break;
1712 case MVT::i16: TypeIndex = 1; break;
1713 case MVT::i32: TypeIndex = 2; break;
1714 case MVT::i64: TypeIndex = 3;
1715 if (!Subtarget->is64Bit())
1716 return false;
1717 break;
1718 }
1719
1720 switch (I->getOpcode()) {
1721 default: llvm_unreachable("Unexpected div/rem opcode");
1722 case Instruction::SDiv: OpIndex = 0; break;
1723 case Instruction::SRem: OpIndex = 1; break;
1724 case Instruction::UDiv: OpIndex = 2; break;
1725 case Instruction::URem: OpIndex = 3; break;
1726 }
1727
1728 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1729 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1730 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1731 if (Op0Reg == 0)
1732 return false;
1733 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1734 if (Op1Reg == 0)
1735 return false;
1736
1737 // Move op0 into low-order input register.
1738 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1739 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1740 // Zero-extend or sign-extend into high-order input register.
1741 if (OpEntry.OpSignExtend) {
1742 if (OpEntry.IsOpSigned)
1743 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1744 TII.get(OpEntry.OpSignExtend));
1745 else {
1746 unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1747 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1748 TII.get(X86::MOV32r0), Zero32);
1749
1750 // Copy the zero into the appropriate sub/super/identical physical
1751 // register. Unfortunately the operations needed are not uniform enough
1752 // to fit neatly into the table above.
1753 if (VT.SimpleTy == MVT::i16) {
1754 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1755 TII.get(Copy), TypeEntry.HighInReg)
1756 .addReg(Zero32, 0, X86::sub_16bit);
1757 } else if (VT.SimpleTy == MVT::i32) {
1758 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1759 TII.get(Copy), TypeEntry.HighInReg)
1760 .addReg(Zero32);
1761 } else if (VT.SimpleTy == MVT::i64) {
1762 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1763 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1764 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1765 }
1766 }
1767 }
1768 // Generate the DIV/IDIV instruction.
1769 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1770 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1771 // For i8 remainder, we can't reference AH directly, as we'll end
1772 // up with bogus copies like %R9B = COPY %AH. Reference AX
1773 // instead to prevent AH references in a REX instruction.
1774 //
1775 // The current assumption of the fast register allocator is that isel
1776 // won't generate explicit references to the GPR8_NOREX registers. If
1777 // the allocator and/or the backend get enhanced to be more robust in
1778 // that regard, this can be, and should be, removed.
1779 unsigned ResultReg = 0;
1780 if ((I->getOpcode() == Instruction::SRem ||
1781 I->getOpcode() == Instruction::URem) &&
1782 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1783 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1784 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1785 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1786 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1787
1788 // Shift AX right by 8 bits instead of using AH.
1789 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1790 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1791
1792 // Now reference the 8-bit subreg of the result.
1793 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
1794 /*Kill=*/true, X86::sub_8bit);
1795 }
1796 // Copy the result out of the physreg if we haven't already.
1797 if (!ResultReg) {
1798 ResultReg = createResultReg(TypeEntry.RC);
1799 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
1800 .addReg(OpEntry.DivRemResultReg);
1801 }
1802 updateValueMap(I, ResultReg);
1803
1804 return true;
1805}
1806
1807/// \brief Emit a conditional move instruction (if the are supported) to lower
1808/// the select.
1809bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
1810 // Check if the subtarget supports these instructions.
1811 if (!Subtarget->hasCMov())
1812 return false;
1813
1814 // FIXME: Add support for i8.
1815 if (RetVT < MVT::i16 || RetVT > MVT::i64)
1816 return false;
1817
1818 const Value *Cond = I->getOperand(0);
1819 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
1820 bool NeedTest = true;
1821 X86::CondCode CC = X86::COND_NE;
1822
1823 // Optimize conditions coming from a compare if both instructions are in the
1824 // same basic block (values defined in other basic blocks may not have
1825 // initialized registers).
1826 const auto *CI = dyn_cast<CmpInst>(Cond);
1827 if (CI && (CI->getParent() == I->getParent())) {
1828 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1829
1830 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1831 static unsigned SETFOpcTable[2][3] = {
1832 { X86::SETNPr, X86::SETEr , X86::TEST8rr },
1833 { X86::SETPr, X86::SETNEr, X86::OR8rr }
1834 };
1835 unsigned *SETFOpc = nullptr;
1836 switch (Predicate) {
1837 default: break;
1838 case CmpInst::FCMP_OEQ:
1839 SETFOpc = &SETFOpcTable[0][0];
1840 Predicate = CmpInst::ICMP_NE;
1841 break;
1842 case CmpInst::FCMP_UNE:
1843 SETFOpc = &SETFOpcTable[1][0];
1844 Predicate = CmpInst::ICMP_NE;
1845 break;
1846 }
1847
1848 bool NeedSwap;
1849 std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
1850 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1851
1852 const Value *CmpLHS = CI->getOperand(0);
1853 const Value *CmpRHS = CI->getOperand(1);
1854 if (NeedSwap)
1855 std::swap(CmpLHS, CmpRHS);
1856
Mehdi Amini44ede332015-07-09 02:09:04 +00001857 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001858 // Emit a compare of the LHS and RHS, setting the flags.
1859 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
1860 return false;
1861
1862 if (SETFOpc) {
1863 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1864 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1865 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1866 FlagReg1);
1867 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1868 FlagReg2);
1869 auto const &II = TII.get(SETFOpc[2]);
1870 if (II.getNumDefs()) {
1871 unsigned TmpReg = createResultReg(&X86::GR8RegClass);
1872 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
1873 .addReg(FlagReg2).addReg(FlagReg1);
1874 } else {
1875 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1876 .addReg(FlagReg2).addReg(FlagReg1);
1877 }
1878 }
1879 NeedTest = false;
1880 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
1881 // Fake request the condition, otherwise the intrinsic might be completely
1882 // optimized away.
1883 unsigned TmpReg = getRegForValue(Cond);
1884 if (TmpReg == 0)
1885 return false;
1886
1887 NeedTest = false;
1888 }
1889
1890 if (NeedTest) {
1891 // Selects operate on i1, however, CondReg is 8 bits width and may contain
1892 // garbage. Indeed, only the less significant bit is supposed to be
1893 // accurate. If we read more than the lsb, we may see non-zero values
1894 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
1895 // the select. This is achieved by performing TEST against 1.
1896 unsigned CondReg = getRegForValue(Cond);
1897 if (CondReg == 0)
1898 return false;
1899 bool CondIsKill = hasTrivialKill(Cond);
1900
1901 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1902 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
1903 }
1904
1905 const Value *LHS = I->getOperand(1);
1906 const Value *RHS = I->getOperand(2);
1907
1908 unsigned RHSReg = getRegForValue(RHS);
1909 bool RHSIsKill = hasTrivialKill(RHS);
1910
1911 unsigned LHSReg = getRegForValue(LHS);
1912 bool LHSIsKill = hasTrivialKill(LHS);
1913
1914 if (!LHSReg || !RHSReg)
1915 return false;
1916
1917 unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
1918 unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
1919 LHSReg, LHSIsKill);
1920 updateValueMap(I, ResultReg);
1921 return true;
1922}
1923
Sanjay Patel302404b2015-03-05 21:46:54 +00001924/// \brief Emit SSE or AVX instructions to lower the select.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001925///
1926/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
1927/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
Sanjay Patel302404b2015-03-05 21:46:54 +00001928/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001929bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
1930 // Optimize conditions coming from a compare if both instructions are in the
1931 // same basic block (values defined in other basic blocks may not have
1932 // initialized registers).
1933 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
1934 if (!CI || (CI->getParent() != I->getParent()))
1935 return false;
1936
1937 if (I->getType() != CI->getOperand(0)->getType() ||
1938 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
1939 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
1940 return false;
1941
1942 const Value *CmpLHS = CI->getOperand(0);
1943 const Value *CmpRHS = CI->getOperand(1);
1944 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1945
1946 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1947 // We don't have to materialize a zero constant for this case and can just use
1948 // %x again on the RHS.
1949 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1950 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1951 if (CmpRHSC && CmpRHSC->isNullValue())
1952 CmpRHS = CmpLHS;
1953 }
1954
1955 unsigned CC;
1956 bool NeedSwap;
1957 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
1958 if (CC > 7)
1959 return false;
1960
1961 if (NeedSwap)
1962 std::swap(CmpLHS, CmpRHS);
1963
Sanjay Patel302404b2015-03-05 21:46:54 +00001964 // Choose the SSE instruction sequence based on data type (float or double).
1965 static unsigned OpcTable[2][4] = {
1966 { X86::CMPSSrr, X86::FsANDPSrr, X86::FsANDNPSrr, X86::FsORPSrr },
1967 { X86::CMPSDrr, X86::FsANDPDrr, X86::FsANDNPDrr, X86::FsORPDrr }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001968 };
1969
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001970 unsigned *Opc = nullptr;
1971 switch (RetVT.SimpleTy) {
1972 default: return false;
Sanjay Patel302404b2015-03-05 21:46:54 +00001973 case MVT::f32: Opc = &OpcTable[0][0]; break;
1974 case MVT::f64: Opc = &OpcTable[1][0]; break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001975 }
1976
1977 const Value *LHS = I->getOperand(1);
1978 const Value *RHS = I->getOperand(2);
1979
1980 unsigned LHSReg = getRegForValue(LHS);
1981 bool LHSIsKill = hasTrivialKill(LHS);
1982
1983 unsigned RHSReg = getRegForValue(RHS);
1984 bool RHSIsKill = hasTrivialKill(RHS);
1985
1986 unsigned CmpLHSReg = getRegForValue(CmpLHS);
1987 bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
1988
1989 unsigned CmpRHSReg = getRegForValue(CmpRHS);
1990 bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
1991
1992 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
1993 return false;
1994
1995 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
Sanjay Patel302404b2015-03-05 21:46:54 +00001996 unsigned ResultReg;
1997
1998 if (Subtarget->hasAVX()) {
Matthias Braun818c78d2015-08-31 18:25:11 +00001999 const TargetRegisterClass *FR32 = &X86::FR32RegClass;
2000 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2001
Sanjay Patel302404b2015-03-05 21:46:54 +00002002 // If we have AVX, create 1 blendv instead of 3 logic instructions.
2003 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2004 // uses XMM0 as the selection register. That may need just as many
2005 // instructions as the AND/ANDN/OR sequence due to register moves, so
2006 // don't bother.
2007 unsigned CmpOpcode =
2008 (RetVT.SimpleTy == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2009 unsigned BlendOpcode =
2010 (RetVT.SimpleTy == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2011
Matthias Braun818c78d2015-08-31 18:25:11 +00002012 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, FR32, CmpLHSReg, CmpLHSIsKill,
Sanjay Patel302404b2015-03-05 21:46:54 +00002013 CmpRHSReg, CmpRHSIsKill, CC);
Matthias Braun818c78d2015-08-31 18:25:11 +00002014 unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2015 LHSReg, LHSIsKill, CmpReg, true);
2016 ResultReg = createResultReg(RC);
2017 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2018 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
Sanjay Patel302404b2015-03-05 21:46:54 +00002019 } else {
2020 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2021 CmpRHSReg, CmpRHSIsKill, CC);
2022 unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
2023 LHSReg, LHSIsKill);
2024 unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
2025 RHSReg, RHSIsKill);
2026 ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
2027 AndReg, /*IsKill=*/true);
2028 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002029 updateValueMap(I, ResultReg);
2030 return true;
2031}
2032
2033bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2034 // These are pseudo CMOV instructions and will be later expanded into control-
2035 // flow.
2036 unsigned Opc;
2037 switch (RetVT.SimpleTy) {
2038 default: return false;
2039 case MVT::i8: Opc = X86::CMOV_GR8; break;
2040 case MVT::i16: Opc = X86::CMOV_GR16; break;
2041 case MVT::i32: Opc = X86::CMOV_GR32; break;
2042 case MVT::f32: Opc = X86::CMOV_FR32; break;
2043 case MVT::f64: Opc = X86::CMOV_FR64; break;
2044 }
2045
2046 const Value *Cond = I->getOperand(0);
2047 X86::CondCode CC = X86::COND_NE;
2048
2049 // Optimize conditions coming from a compare if both instructions are in the
2050 // same basic block (values defined in other basic blocks may not have
2051 // initialized registers).
2052 const auto *CI = dyn_cast<CmpInst>(Cond);
2053 if (CI && (CI->getParent() == I->getParent())) {
2054 bool NeedSwap;
2055 std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
2056 if (CC > X86::LAST_VALID_COND)
2057 return false;
2058
2059 const Value *CmpLHS = CI->getOperand(0);
2060 const Value *CmpRHS = CI->getOperand(1);
2061
2062 if (NeedSwap)
2063 std::swap(CmpLHS, CmpRHS);
2064
Mehdi Amini44ede332015-07-09 02:09:04 +00002065 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002066 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2067 return false;
2068 } else {
2069 unsigned CondReg = getRegForValue(Cond);
2070 if (CondReg == 0)
2071 return false;
2072 bool CondIsKill = hasTrivialKill(Cond);
2073 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2074 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
2075 }
2076
2077 const Value *LHS = I->getOperand(1);
2078 const Value *RHS = I->getOperand(2);
2079
2080 unsigned LHSReg = getRegForValue(LHS);
2081 bool LHSIsKill = hasTrivialKill(LHS);
2082
2083 unsigned RHSReg = getRegForValue(RHS);
2084 bool RHSIsKill = hasTrivialKill(RHS);
2085
2086 if (!LHSReg || !RHSReg)
2087 return false;
2088
2089 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2090
2091 unsigned ResultReg =
2092 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2093 updateValueMap(I, ResultReg);
2094 return true;
2095}
2096
2097bool X86FastISel::X86SelectSelect(const Instruction *I) {
2098 MVT RetVT;
2099 if (!isTypeLegal(I->getType(), RetVT))
2100 return false;
2101
2102 // Check if we can fold the select.
2103 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2104 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2105 const Value *Opnd = nullptr;
2106 switch (Predicate) {
2107 default: break;
2108 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2109 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2110 }
2111 // No need for a select anymore - this is an unconditional move.
2112 if (Opnd) {
2113 unsigned OpReg = getRegForValue(Opnd);
2114 if (OpReg == 0)
2115 return false;
2116 bool OpIsKill = hasTrivialKill(Opnd);
2117 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2118 unsigned ResultReg = createResultReg(RC);
2119 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2120 TII.get(TargetOpcode::COPY), ResultReg)
2121 .addReg(OpReg, getKillRegState(OpIsKill));
2122 updateValueMap(I, ResultReg);
2123 return true;
2124 }
2125 }
2126
2127 // First try to use real conditional move instructions.
2128 if (X86FastEmitCMoveSelect(RetVT, I))
2129 return true;
2130
2131 // Try to use a sequence of SSE instructions to simulate a conditional move.
2132 if (X86FastEmitSSESelect(RetVT, I))
2133 return true;
2134
2135 // Fall-back to pseudo conditional move instructions, which will be later
2136 // converted to control-flow.
2137 if (X86FastEmitPseudoSelect(RetVT, I))
2138 return true;
2139
2140 return false;
2141}
2142
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002143bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
Andrea Di Biagio98c36702015-04-20 11:56:59 +00002144 // The target-independent selection algorithm in FastISel already knows how
2145 // to select a SINT_TO_FP if the target is SSE but not AVX.
2146 // Early exit if the subtarget doesn't have AVX.
2147 if (!Subtarget->hasAVX())
2148 return false;
2149
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002150 if (!I->getOperand(0)->getType()->isIntegerTy(32))
2151 return false;
2152
2153 // Select integer to float/double conversion.
2154 unsigned OpReg = getRegForValue(I->getOperand(0));
2155 if (OpReg == 0)
2156 return false;
2157
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002158 const TargetRegisterClass *RC = nullptr;
2159 unsigned Opcode;
2160
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002161 if (I->getType()->isDoubleTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002162 // sitofp int -> double
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002163 Opcode = X86::VCVTSI2SDrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002164 RC = &X86::FR64RegClass;
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002165 } else if (I->getType()->isFloatTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002166 // sitofp int -> float
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002167 Opcode = X86::VCVTSI2SSrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002168 RC = &X86::FR32RegClass;
2169 } else
2170 return false;
2171
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002172 unsigned ImplicitDefReg = createResultReg(RC);
2173 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2174 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2175 unsigned ResultReg =
2176 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002177 updateValueMap(I, ResultReg);
2178 return true;
2179}
2180
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002181// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2182bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2183 unsigned TargetOpc,
2184 const TargetRegisterClass *RC) {
2185 assert((I->getOpcode() == Instruction::FPExt ||
2186 I->getOpcode() == Instruction::FPTrunc) &&
2187 "Instruction must be an FPExt or FPTrunc!");
2188
2189 unsigned OpReg = getRegForValue(I->getOperand(0));
2190 if (OpReg == 0)
2191 return false;
2192
2193 unsigned ResultReg = createResultReg(RC);
2194 MachineInstrBuilder MIB;
2195 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2196 ResultReg);
2197 if (Subtarget->hasAVX())
2198 MIB.addReg(OpReg);
2199 MIB.addReg(OpReg);
2200 updateValueMap(I, ResultReg);
2201 return true;
2202}
2203
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002204bool X86FastISel::X86SelectFPExt(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002205 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2206 I->getOperand(0)->getType()->isFloatTy()) {
2207 // fpext from float to double.
2208 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2209 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002210 }
2211
2212 return false;
2213}
2214
2215bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002216 if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2217 I->getOperand(0)->getType()->isDoubleTy()) {
2218 // fptrunc from double to float.
2219 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2220 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002221 }
2222
2223 return false;
2224}
2225
2226bool X86FastISel::X86SelectTrunc(const Instruction *I) {
Mehdi Amini44ede332015-07-09 02:09:04 +00002227 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2228 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002229
2230 // This code only handles truncation to byte.
2231 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2232 return false;
2233 if (!TLI.isTypeLegal(SrcVT))
2234 return false;
2235
2236 unsigned InputReg = getRegForValue(I->getOperand(0));
2237 if (!InputReg)
2238 // Unhandled operand. Halt "fast" selection and bail.
2239 return false;
2240
2241 if (SrcVT == MVT::i8) {
2242 // Truncate from i8 to i1; no code needed.
2243 updateValueMap(I, InputReg);
2244 return true;
2245 }
2246
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002247 bool KillInputReg = false;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002248 if (!Subtarget->is64Bit()) {
2249 // If we're on x86-32; we can't extract an i8 from a general register.
2250 // First issue a copy to GR16_ABCD or GR32_ABCD.
2251 const TargetRegisterClass *CopyRC =
2252 (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
2253 unsigned CopyReg = createResultReg(CopyRC);
2254 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2255 TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
2256 InputReg = CopyReg;
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002257 KillInputReg = true;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002258 }
2259
2260 // Issue an extract_subreg.
2261 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002262 InputReg, KillInputReg,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002263 X86::sub_8bit);
2264 if (!ResultReg)
2265 return false;
2266
2267 updateValueMap(I, ResultReg);
2268 return true;
2269}
2270
2271bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2272 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2273}
2274
2275bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2276 X86AddressMode SrcAM, uint64_t Len) {
2277
2278 // Make sure we don't bloat code by inlining very large memcpy's.
2279 if (!IsMemcpySmall(Len))
2280 return false;
2281
2282 bool i64Legal = Subtarget->is64Bit();
2283
2284 // We don't care about alignment here since we just emit integer accesses.
2285 while (Len) {
2286 MVT VT;
2287 if (Len >= 8 && i64Legal)
2288 VT = MVT::i64;
2289 else if (Len >= 4)
2290 VT = MVT::i32;
2291 else if (Len >= 2)
2292 VT = MVT::i16;
2293 else
2294 VT = MVT::i8;
2295
2296 unsigned Reg;
2297 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2298 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2299 assert(RV && "Failed to emit load or store??");
2300
2301 unsigned Size = VT.getSizeInBits()/8;
2302 Len -= Size;
2303 DestAM.Disp += Size;
2304 SrcAM.Disp += Size;
2305 }
2306
2307 return true;
2308}
2309
2310bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2311 // FIXME: Handle more intrinsics.
2312 switch (II->getIntrinsicID()) {
2313 default: return false;
Andrea Di Biagio70351782015-02-20 19:37:14 +00002314 case Intrinsic::convert_from_fp16:
2315 case Intrinsic::convert_to_fp16: {
Eric Christopher824f42f2015-05-12 01:26:05 +00002316 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
Andrea Di Biagio70351782015-02-20 19:37:14 +00002317 return false;
2318
2319 const Value *Op = II->getArgOperand(0);
2320 unsigned InputReg = getRegForValue(Op);
2321 if (InputReg == 0)
2322 return false;
2323
2324 // F16C only allows converting from float to half and from half to float.
2325 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2326 if (IsFloatToHalf) {
2327 if (!Op->getType()->isFloatTy())
2328 return false;
2329 } else {
2330 if (!II->getType()->isFloatTy())
2331 return false;
2332 }
2333
2334 unsigned ResultReg = 0;
2335 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2336 if (IsFloatToHalf) {
2337 // 'InputReg' is implicitly promoted from register class FR32 to
2338 // register class VR128 by method 'constrainOperandRegClass' which is
2339 // directly called by 'fastEmitInst_ri'.
2340 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
Ahmed Bougacha68a8efa2016-02-02 01:44:03 +00002341 // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2342 // It's consistent with the other FP instructions, which are usually
2343 // controlled by MXCSR.
2344 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
Andrea Di Biagio70351782015-02-20 19:37:14 +00002345
2346 // Move the lower 32-bits of ResultReg to another register of class GR32.
2347 ResultReg = createResultReg(&X86::GR32RegClass);
2348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2349 TII.get(X86::VMOVPDI2DIrr), ResultReg)
2350 .addReg(InputReg, RegState::Kill);
2351
2352 // The result value is in the lower 16-bits of ResultReg.
2353 unsigned RegIdx = X86::sub_16bit;
2354 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2355 } else {
2356 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2357 // Explicitly sign-extend the input to 32-bit.
2358 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2359 /*Kill=*/false);
2360
2361 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2362 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2363 InputReg, /*Kill=*/true);
2364
2365 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2366
2367 // The result value is in the lower 32-bits of ResultReg.
2368 // Emit an explicit copy from register class VR128 to register class FR32.
2369 ResultReg = createResultReg(&X86::FR32RegClass);
2370 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2371 TII.get(TargetOpcode::COPY), ResultReg)
2372 .addReg(InputReg, RegState::Kill);
2373 }
2374
2375 updateValueMap(II, ResultReg);
2376 return true;
2377 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002378 case Intrinsic::frameaddress: {
David Majnemerca194852015-02-10 22:00:34 +00002379 MachineFunction *MF = FuncInfo.MF;
2380 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2381 return false;
2382
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002383 Type *RetTy = II->getCalledFunction()->getReturnType();
2384
2385 MVT VT;
2386 if (!isTypeLegal(RetTy, VT))
2387 return false;
2388
2389 unsigned Opc;
2390 const TargetRegisterClass *RC = nullptr;
2391
2392 switch (VT.SimpleTy) {
2393 default: llvm_unreachable("Invalid result type for frameaddress.");
2394 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2395 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2396 }
2397
2398 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2399 // we get the wrong frame register.
David Majnemerca194852015-02-10 22:00:34 +00002400 MachineFrameInfo *MFI = MF->getFrameInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002401 MFI->setFrameAddressIsTaken(true);
2402
Eric Christophera1c535b2015-02-02 23:03:45 +00002403 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
David Majnemerca194852015-02-10 22:00:34 +00002404 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002405 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2406 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2407 "Invalid Frame Register!");
2408
2409 // Always make a copy of the frame register to to a vreg first, so that we
2410 // never directly reference the frame register (the TwoAddressInstruction-
2411 // Pass doesn't like that).
2412 unsigned SrcReg = createResultReg(RC);
2413 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2414 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2415
2416 // Now recursively load from the frame address.
2417 // movq (%rbp), %rax
2418 // movq (%rax), %rax
2419 // movq (%rax), %rax
2420 // ...
2421 unsigned DestReg;
2422 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2423 while (Depth--) {
2424 DestReg = createResultReg(RC);
2425 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2426 TII.get(Opc), DestReg), SrcReg);
2427 SrcReg = DestReg;
2428 }
2429
2430 updateValueMap(II, SrcReg);
2431 return true;
2432 }
2433 case Intrinsic::memcpy: {
2434 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2435 // Don't handle volatile or variable length memcpys.
2436 if (MCI->isVolatile())
2437 return false;
2438
2439 if (isa<ConstantInt>(MCI->getLength())) {
2440 // Small memcpy's are common enough that we want to do them
2441 // without a call if possible.
2442 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2443 if (IsMemcpySmall(Len)) {
2444 X86AddressMode DestAM, SrcAM;
2445 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2446 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2447 return false;
2448 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2449 return true;
2450 }
2451 }
2452
2453 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2454 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2455 return false;
2456
2457 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2458 return false;
2459
Pete Cooper67cf9a72015-11-19 05:56:52 +00002460 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002461 }
2462 case Intrinsic::memset: {
2463 const MemSetInst *MSI = cast<MemSetInst>(II);
2464
2465 if (MSI->isVolatile())
2466 return false;
2467
2468 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2469 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2470 return false;
2471
2472 if (MSI->getDestAddressSpace() > 255)
2473 return false;
2474
Pete Cooper67cf9a72015-11-19 05:56:52 +00002475 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002476 }
2477 case Intrinsic::stackprotector: {
2478 // Emit code to store the stack guard onto the stack.
Mehdi Amini44ede332015-07-09 02:09:04 +00002479 EVT PtrTy = TLI.getPointerTy(DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002480
2481 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2482 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2483
2484 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2485
2486 // Grab the frame index.
2487 X86AddressMode AM;
2488 if (!X86SelectAddress(Slot, AM)) return false;
2489 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2490 return true;
2491 }
2492 case Intrinsic::dbg_declare: {
2493 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2494 X86AddressMode AM;
2495 assert(DI->getAddress() && "Null address should be checked earlier!");
2496 if (!X86SelectAddress(DI->getAddress(), AM))
2497 return false;
2498 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2499 // FIXME may need to add RegState::Debug to any registers produced,
2500 // although ESP/EBP should be the only ones at the moment.
Duncan P. N. Exon Smith3bef6a32015-04-03 19:20:26 +00002501 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2502 "Expected inlined-at fields to agree");
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002503 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2504 .addImm(0)
2505 .addMetadata(DI->getVariable())
2506 .addMetadata(DI->getExpression());
2507 return true;
2508 }
2509 case Intrinsic::trap: {
2510 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2511 return true;
2512 }
2513 case Intrinsic::sqrt: {
2514 if (!Subtarget->hasSSE1())
2515 return false;
2516
2517 Type *RetTy = II->getCalledFunction()->getReturnType();
2518
2519 MVT VT;
2520 if (!isTypeLegal(RetTy, VT))
2521 return false;
2522
2523 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2524 // is not generated by FastISel yet.
2525 // FIXME: Update this code once tablegen can handle it.
Craig Toppercf65c622016-03-02 04:42:31 +00002526 static const uint16_t SqrtOpc[2][2] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002527 {X86::SQRTSSr, X86::VSQRTSSr},
2528 {X86::SQRTSDr, X86::VSQRTSDr}
2529 };
2530 bool HasAVX = Subtarget->hasAVX();
2531 unsigned Opc;
2532 const TargetRegisterClass *RC;
2533 switch (VT.SimpleTy) {
2534 default: return false;
2535 case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
2536 case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
2537 }
2538
2539 const Value *SrcVal = II->getArgOperand(0);
2540 unsigned SrcReg = getRegForValue(SrcVal);
2541
2542 if (SrcReg == 0)
2543 return false;
2544
2545 unsigned ImplicitDefReg = 0;
2546 if (HasAVX) {
2547 ImplicitDefReg = createResultReg(RC);
2548 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2549 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2550 }
2551
2552 unsigned ResultReg = createResultReg(RC);
2553 MachineInstrBuilder MIB;
2554 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2555 ResultReg);
2556
2557 if (ImplicitDefReg)
2558 MIB.addReg(ImplicitDefReg);
2559
2560 MIB.addReg(SrcReg);
2561
2562 updateValueMap(II, ResultReg);
2563 return true;
2564 }
2565 case Intrinsic::sadd_with_overflow:
2566 case Intrinsic::uadd_with_overflow:
2567 case Intrinsic::ssub_with_overflow:
2568 case Intrinsic::usub_with_overflow:
2569 case Intrinsic::smul_with_overflow:
2570 case Intrinsic::umul_with_overflow: {
2571 // This implements the basic lowering of the xalu with overflow intrinsics
2572 // into add/sub/mul followed by either seto or setb.
2573 const Function *Callee = II->getCalledFunction();
2574 auto *Ty = cast<StructType>(Callee->getReturnType());
2575 Type *RetTy = Ty->getTypeAtIndex(0U);
2576 Type *CondTy = Ty->getTypeAtIndex(1);
2577
2578 MVT VT;
2579 if (!isTypeLegal(RetTy, VT))
2580 return false;
2581
2582 if (VT < MVT::i8 || VT > MVT::i64)
2583 return false;
2584
2585 const Value *LHS = II->getArgOperand(0);
2586 const Value *RHS = II->getArgOperand(1);
2587
2588 // Canonicalize immediate to the RHS.
2589 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2590 isCommutativeIntrinsic(II))
2591 std::swap(LHS, RHS);
2592
2593 bool UseIncDec = false;
2594 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
2595 UseIncDec = true;
2596
2597 unsigned BaseOpc, CondOpc;
2598 switch (II->getIntrinsicID()) {
2599 default: llvm_unreachable("Unexpected intrinsic!");
2600 case Intrinsic::sadd_with_overflow:
2601 BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
2602 CondOpc = X86::SETOr;
2603 break;
2604 case Intrinsic::uadd_with_overflow:
2605 BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2606 case Intrinsic::ssub_with_overflow:
2607 BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
2608 CondOpc = X86::SETOr;
2609 break;
2610 case Intrinsic::usub_with_overflow:
2611 BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2612 case Intrinsic::smul_with_overflow:
2613 BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2614 case Intrinsic::umul_with_overflow:
2615 BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2616 }
2617
2618 unsigned LHSReg = getRegForValue(LHS);
2619 if (LHSReg == 0)
2620 return false;
2621 bool LHSIsKill = hasTrivialKill(LHS);
2622
2623 unsigned ResultReg = 0;
2624 // Check if we have an immediate version.
2625 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2626 static const unsigned Opc[2][4] = {
2627 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2628 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2629 };
2630
2631 if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
2632 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2633 bool IsDec = BaseOpc == X86ISD::DEC;
2634 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2635 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2636 .addReg(LHSReg, getKillRegState(LHSIsKill));
2637 } else
2638 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2639 CI->getZExtValue());
2640 }
2641
2642 unsigned RHSReg;
2643 bool RHSIsKill;
2644 if (!ResultReg) {
2645 RHSReg = getRegForValue(RHS);
2646 if (RHSReg == 0)
2647 return false;
2648 RHSIsKill = hasTrivialKill(RHS);
2649 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2650 RHSIsKill);
2651 }
2652
2653 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2654 // it manually.
2655 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
Craig Toppercf65c622016-03-02 04:42:31 +00002656 static const uint16_t MULOpc[] =
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002657 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
Craig Toppercf65c622016-03-02 04:42:31 +00002658 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002659 // First copy the first operand into RAX, which is an implicit input to
2660 // the X86::MUL*r instruction.
2661 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2662 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2663 .addReg(LHSReg, getKillRegState(LHSIsKill));
2664 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2665 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2666 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
Craig Toppercf65c622016-03-02 04:42:31 +00002667 static const uint16_t MULOpc[] =
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002668 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2669 if (VT == MVT::i8) {
2670 // Copy the first operand into AL, which is an implicit input to the
2671 // X86::IMUL8r instruction.
2672 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2673 TII.get(TargetOpcode::COPY), X86::AL)
2674 .addReg(LHSReg, getKillRegState(LHSIsKill));
2675 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2676 RHSIsKill);
2677 } else
2678 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2679 TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2680 RHSReg, RHSIsKill);
2681 }
2682
2683 if (!ResultReg)
2684 return false;
2685
2686 unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
2687 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2688 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
2689 ResultReg2);
2690
2691 updateValueMap(II, ResultReg, 2);
2692 return true;
2693 }
2694 case Intrinsic::x86_sse_cvttss2si:
2695 case Intrinsic::x86_sse_cvttss2si64:
2696 case Intrinsic::x86_sse2_cvttsd2si:
2697 case Intrinsic::x86_sse2_cvttsd2si64: {
2698 bool IsInputDouble;
2699 switch (II->getIntrinsicID()) {
2700 default: llvm_unreachable("Unexpected intrinsic.");
2701 case Intrinsic::x86_sse_cvttss2si:
2702 case Intrinsic::x86_sse_cvttss2si64:
2703 if (!Subtarget->hasSSE1())
2704 return false;
2705 IsInputDouble = false;
2706 break;
2707 case Intrinsic::x86_sse2_cvttsd2si:
2708 case Intrinsic::x86_sse2_cvttsd2si64:
2709 if (!Subtarget->hasSSE2())
2710 return false;
2711 IsInputDouble = true;
2712 break;
2713 }
2714
2715 Type *RetTy = II->getCalledFunction()->getReturnType();
2716 MVT VT;
2717 if (!isTypeLegal(RetTy, VT))
2718 return false;
2719
2720 static const unsigned CvtOpc[2][2][2] = {
2721 { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr },
2722 { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } },
2723 { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr },
2724 { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } }
2725 };
2726 bool HasAVX = Subtarget->hasAVX();
2727 unsigned Opc;
2728 switch (VT.SimpleTy) {
2729 default: llvm_unreachable("Unexpected result type.");
2730 case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
2731 case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
2732 }
2733
2734 // Check if we can fold insertelement instructions into the convert.
2735 const Value *Op = II->getArgOperand(0);
2736 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
2737 const Value *Index = IE->getOperand(2);
2738 if (!isa<ConstantInt>(Index))
2739 break;
2740 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
2741
2742 if (Idx == 0) {
2743 Op = IE->getOperand(1);
2744 break;
2745 }
2746 Op = IE->getOperand(0);
2747 }
2748
2749 unsigned Reg = getRegForValue(Op);
2750 if (Reg == 0)
2751 return false;
2752
2753 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
2754 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2755 .addReg(Reg);
2756
2757 updateValueMap(II, ResultReg);
2758 return true;
2759 }
2760 }
2761}
2762
2763bool X86FastISel::fastLowerArguments() {
2764 if (!FuncInfo.CanLowerReturn)
2765 return false;
2766
2767 const Function *F = FuncInfo.Fn;
2768 if (F->isVarArg())
2769 return false;
2770
2771 CallingConv::ID CC = F->getCallingConv();
2772 if (CC != CallingConv::C)
2773 return false;
2774
2775 if (Subtarget->isCallingConvWin64(CC))
2776 return false;
2777
2778 if (!Subtarget->is64Bit())
2779 return false;
2780
2781 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
2782 unsigned GPRCnt = 0;
2783 unsigned FPRCnt = 0;
2784 unsigned Idx = 0;
2785 for (auto const &Arg : F->args()) {
2786 // The first argument is at index 1.
2787 ++Idx;
2788 if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
2789 F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
2790 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
Manman Renf46262e2016-03-29 17:37:21 +00002791 F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) ||
Manman Ren57518142016-04-11 21:08:06 +00002792 F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) ||
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002793 F->getAttributes().hasAttribute(Idx, Attribute::Nest))
2794 return false;
2795
2796 Type *ArgTy = Arg.getType();
2797 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
2798 return false;
2799
Mehdi Amini44ede332015-07-09 02:09:04 +00002800 EVT ArgVT = TLI.getValueType(DL, ArgTy);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002801 if (!ArgVT.isSimple()) return false;
2802 switch (ArgVT.getSimpleVT().SimpleTy) {
2803 default: return false;
2804 case MVT::i32:
2805 case MVT::i64:
2806 ++GPRCnt;
2807 break;
2808 case MVT::f32:
2809 case MVT::f64:
2810 if (!Subtarget->hasSSE1())
2811 return false;
2812 ++FPRCnt;
2813 break;
2814 }
2815
2816 if (GPRCnt > 6)
2817 return false;
2818
2819 if (FPRCnt > 8)
2820 return false;
2821 }
2822
2823 static const MCPhysReg GPR32ArgRegs[] = {
2824 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
2825 };
2826 static const MCPhysReg GPR64ArgRegs[] = {
2827 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
2828 };
2829 static const MCPhysReg XMMArgRegs[] = {
2830 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2831 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2832 };
2833
2834 unsigned GPRIdx = 0;
2835 unsigned FPRIdx = 0;
2836 for (auto const &Arg : F->args()) {
Mehdi Amini44ede332015-07-09 02:09:04 +00002837 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002838 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2839 unsigned SrcReg;
2840 switch (VT.SimpleTy) {
2841 default: llvm_unreachable("Unexpected value type.");
2842 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
2843 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
2844 case MVT::f32: // fall-through
2845 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
2846 }
2847 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
2848 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
2849 // Without this, EmitLiveInCopies may eliminate the livein if its only
2850 // use is a bitcast (which isn't turned into an instruction).
2851 unsigned ResultReg = createResultReg(RC);
2852 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2853 TII.get(TargetOpcode::COPY), ResultReg)
2854 .addReg(DstReg, getKillRegState(true));
2855 updateValueMap(&Arg, ResultReg);
2856 }
2857 return true;
2858}
2859
2860static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
2861 CallingConv::ID CC,
2862 ImmutableCallSite *CS) {
2863 if (Subtarget->is64Bit())
2864 return 0;
2865 if (Subtarget->getTargetTriple().isOSMSVCRT())
2866 return 0;
2867 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2868 CC == CallingConv::HiPE)
2869 return 0;
Sanjoy Dasb11b4402015-11-04 20:33:45 +00002870
2871 if (CS)
2872 if (CS->arg_empty() || !CS->paramHasAttr(1, Attribute::StructRet) ||
Michael Kuperstein2ea81ba2015-12-28 14:39:21 +00002873 CS->paramHasAttr(1, Attribute::InReg) || Subtarget->isTargetMCU())
Sanjoy Dasb11b4402015-11-04 20:33:45 +00002874 return 0;
2875
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002876 return 4;
2877}
2878
2879bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
2880 auto &OutVals = CLI.OutVals;
2881 auto &OutFlags = CLI.OutFlags;
2882 auto &OutRegs = CLI.OutRegs;
2883 auto &Ins = CLI.Ins;
2884 auto &InRegs = CLI.InRegs;
2885 CallingConv::ID CC = CLI.CallConv;
2886 bool &IsTailCall = CLI.IsTailCall;
2887 bool IsVarArg = CLI.IsVarArg;
2888 const Value *Callee = CLI.Callee;
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00002889 MCSymbol *Symbol = CLI.Symbol;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002890
2891 bool Is64Bit = Subtarget->is64Bit();
2892 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
2893
2894 // Handle only C, fastcc, and webkit_js calling conventions for now.
2895 switch (CC) {
2896 default: return false;
2897 case CallingConv::C:
2898 case CallingConv::Fast:
2899 case CallingConv::WebKit_JS:
Manman Renf8bdd882016-04-05 22:41:47 +00002900 case CallingConv::Swift:
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002901 case CallingConv::X86_FastCall:
2902 case CallingConv::X86_64_Win64:
2903 case CallingConv::X86_64_SysV:
2904 break;
2905 }
2906
2907 // Allow SelectionDAG isel to handle tail calls.
2908 if (IsTailCall)
2909 return false;
2910
2911 // fastcc with -tailcallopt is intended to provide a guaranteed
2912 // tail call optimization. Fastisel doesn't know how to do that.
2913 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
2914 return false;
2915
2916 // Don't know how to handle Win64 varargs yet. Nothing special needed for
2917 // x86-32. Special handling for x86-64 is implemented.
2918 if (IsVarArg && IsWin64)
2919 return false;
2920
2921 // Don't know about inalloca yet.
2922 if (CLI.CS && CLI.CS->hasInAllocaArgument())
2923 return false;
2924
Manman Ren57518142016-04-11 21:08:06 +00002925 for (auto Flag : CLI.OutFlags)
2926 if (Flag.isSwiftError())
2927 return false;
2928
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002929 // Fast-isel doesn't know about callee-pop yet.
2930 if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
2931 TM.Options.GuaranteedTailCallOpt))
2932 return false;
2933
2934 SmallVector<MVT, 16> OutVTs;
2935 SmallVector<unsigned, 16> ArgRegs;
2936
2937 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
2938 // instruction. This is safe because it is common to all FastISel supported
2939 // calling conventions on x86.
2940 for (int i = 0, e = OutVals.size(); i != e; ++i) {
2941 Value *&Val = OutVals[i];
2942 ISD::ArgFlagsTy Flags = OutFlags[i];
2943 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
2944 if (CI->getBitWidth() < 32) {
2945 if (Flags.isSExt())
2946 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
2947 else
2948 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
2949 }
2950 }
2951
2952 // Passing bools around ends up doing a trunc to i1 and passing it.
2953 // Codegen this as an argument + "and 1".
2954 MVT VT;
2955 auto *TI = dyn_cast<TruncInst>(Val);
2956 unsigned ResultReg;
2957 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
2958 (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
2959 TI->hasOneUse()) {
2960 Value *PrevVal = TI->getOperand(0);
2961 ResultReg = getRegForValue(PrevVal);
2962
2963 if (!ResultReg)
2964 return false;
2965
2966 if (!isTypeLegal(PrevVal->getType(), VT))
2967 return false;
2968
2969 ResultReg =
2970 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
2971 } else {
2972 if (!isTypeLegal(Val->getType(), VT))
2973 return false;
2974 ResultReg = getRegForValue(Val);
2975 }
2976
2977 if (!ResultReg)
2978 return false;
2979
2980 ArgRegs.push_back(ResultReg);
2981 OutVTs.push_back(VT);
2982 }
2983
2984 // Analyze operands of the call, assigning locations to each operand.
2985 SmallVector<CCValAssign, 16> ArgLocs;
2986 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
2987
2988 // Allocate shadow area for Win64
2989 if (IsWin64)
2990 CCInfo.AllocateStack(32, 8);
2991
2992 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
2993
2994 // Get a count of how many bytes are to be pushed on the stack.
Jeroen Ketema740f9d72015-09-29 10:12:57 +00002995 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002996
2997 // Issue CALLSEQ_START
2998 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
2999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
Michael Kuperstein13fbd452015-02-01 16:56:04 +00003000 .addImm(NumBytes).addImm(0);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003001
3002 // Walk the register/memloc assignments, inserting copies/loads.
Eric Christophera1c535b2015-02-02 23:03:45 +00003003 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003004 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3005 CCValAssign const &VA = ArgLocs[i];
3006 const Value *ArgVal = OutVals[VA.getValNo()];
3007 MVT ArgVT = OutVTs[VA.getValNo()];
3008
3009 if (ArgVT == MVT::x86mmx)
3010 return false;
3011
3012 unsigned ArgReg = ArgRegs[VA.getValNo()];
3013
3014 // Promote the value if needed.
3015 switch (VA.getLocInfo()) {
3016 case CCValAssign::Full: break;
3017 case CCValAssign::SExt: {
3018 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3019 "Unexpected extend");
David Majnemer2c5aeab2016-05-04 00:22:23 +00003020
3021 if (ArgVT.SimpleTy == MVT::i1)
3022 return false;
3023
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003024 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3025 ArgVT, ArgReg);
3026 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3027 ArgVT = VA.getLocVT();
3028 break;
3029 }
3030 case CCValAssign::ZExt: {
3031 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3032 "Unexpected extend");
David Majnemer2c5aeab2016-05-04 00:22:23 +00003033
3034 // Handle zero-extension from i1 to i8, which is common.
3035 if (ArgVT.SimpleTy == MVT::i1) {
3036 // Set the high bits to zero.
3037 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3038 ArgVT = MVT::i8;
3039
3040 if (ArgReg == 0)
3041 return false;
3042 }
3043
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003044 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3045 ArgVT, ArgReg);
3046 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3047 ArgVT = VA.getLocVT();
3048 break;
3049 }
3050 case CCValAssign::AExt: {
3051 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3052 "Unexpected extend");
3053 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3054 ArgVT, ArgReg);
3055 if (!Emitted)
3056 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3057 ArgVT, ArgReg);
3058 if (!Emitted)
3059 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3060 ArgVT, ArgReg);
3061
3062 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3063 ArgVT = VA.getLocVT();
3064 break;
3065 }
3066 case CCValAssign::BCvt: {
3067 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3068 /*TODO: Kill=*/false);
3069 assert(ArgReg && "Failed to emit a bitcast!");
3070 ArgVT = VA.getLocVT();
3071 break;
3072 }
3073 case CCValAssign::VExt:
3074 // VExt has not been implemented, so this should be impossible to reach
3075 // for now. However, fallback to Selection DAG isel once implemented.
3076 return false;
3077 case CCValAssign::AExtUpper:
3078 case CCValAssign::SExtUpper:
3079 case CCValAssign::ZExtUpper:
3080 case CCValAssign::FPExt:
3081 llvm_unreachable("Unexpected loc info!");
3082 case CCValAssign::Indirect:
3083 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3084 // support this.
3085 return false;
3086 }
3087
3088 if (VA.isRegLoc()) {
3089 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3090 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3091 OutRegs.push_back(VA.getLocReg());
3092 } else {
3093 assert(VA.isMemLoc());
3094
3095 // Don't emit stores for undef values.
3096 if (isa<UndefValue>(ArgVal))
3097 continue;
3098
3099 unsigned LocMemOffset = VA.getLocMemOffset();
3100 X86AddressMode AM;
3101 AM.Base.Reg = RegInfo->getStackRegister();
3102 AM.Disp = LocMemOffset;
3103 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3104 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3105 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00003106 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3107 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003108 if (Flags.isByVal()) {
3109 X86AddressMode SrcAM;
3110 SrcAM.Base.Reg = ArgReg;
3111 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3112 return false;
3113 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3114 // If this is a really simple value, emit this with the Value* version
3115 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3116 // as it can cause us to reevaluate the argument.
3117 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3118 return false;
3119 } else {
3120 bool ValIsKill = hasTrivialKill(ArgVal);
3121 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3122 return false;
3123 }
3124 }
3125 }
3126
3127 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3128 // GOT pointer.
3129 if (Subtarget->isPICStyleGOT()) {
3130 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3131 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3132 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3133 }
3134
3135 if (Is64Bit && IsVarArg && !IsWin64) {
3136 // From AMD64 ABI document:
3137 // For calls that may call functions that use varargs or stdargs
3138 // (prototype-less calls or calls to functions containing ellipsis (...) in
3139 // the declaration) %al is used as hidden argument to specify the number
3140 // of SSE registers used. The contents of %al do not need to match exactly
3141 // the number of registers, but must be an ubound on the number of SSE
3142 // registers used and is in the range 0 - 8 inclusive.
3143
3144 // Count the number of XMM registers allocated.
3145 static const MCPhysReg XMMArgRegs[] = {
3146 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3147 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3148 };
Tim Northover3b6b7ca2015-02-21 02:11:17 +00003149 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003150 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3151 && "SSE registers cannot be used when SSE is disabled");
3152 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3153 X86::AL).addImm(NumXMMRegs);
3154 }
3155
3156 // Materialize callee address in a register. FIXME: GV address can be
3157 // handled with a CALLpcrel32 instead.
3158 X86AddressMode CalleeAM;
3159 if (!X86SelectCallAddress(Callee, CalleeAM))
3160 return false;
3161
3162 unsigned CalleeOp = 0;
3163 const GlobalValue *GV = nullptr;
3164 if (CalleeAM.GV != nullptr) {
3165 GV = CalleeAM.GV;
3166 } else if (CalleeAM.Base.Reg != 0) {
3167 CalleeOp = CalleeAM.Base.Reg;
3168 } else
3169 return false;
3170
3171 // Issue the call.
3172 MachineInstrBuilder MIB;
3173 if (CalleeOp) {
3174 // Register-indirect call.
3175 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3176 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3177 .addReg(CalleeOp);
3178 } else {
3179 // Direct call.
3180 assert(GV && "Not a direct call");
3181 unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
3182
3183 // See if we need any target-specific flags on the GV operand.
Rafael Espindola46107b92016-05-19 18:49:29 +00003184 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
Asaf Badouh89406d12016-04-20 08:32:57 +00003185 // Ignore NonLazyBind attribute in FastISel
3186 if (OpFlags == X86II::MO_GOTPCREL)
3187 OpFlags = 0;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003188
3189 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00003190 if (Symbol)
3191 MIB.addSym(Symbol, OpFlags);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003192 else
3193 MIB.addGlobalAddress(GV, 0, OpFlags);
3194 }
3195
3196 // Add a register mask operand representing the call-preserved registers.
3197 // Proper defs for return values will be added by setPhysRegsDeadExcept().
Eric Christopher9deb75d2015-03-11 22:42:13 +00003198 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003199
3200 // Add an implicit use GOT pointer in EBX.
3201 if (Subtarget->isPICStyleGOT())
3202 MIB.addReg(X86::EBX, RegState::Implicit);
3203
3204 if (Is64Bit && IsVarArg && !IsWin64)
3205 MIB.addReg(X86::AL, RegState::Implicit);
3206
3207 // Add implicit physical register uses to the call.
3208 for (auto Reg : OutRegs)
3209 MIB.addReg(Reg, RegState::Implicit);
3210
3211 // Issue CALLSEQ_END
3212 unsigned NumBytesForCalleeToPop =
3213 computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
3214 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3216 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3217
3218 // Now handle call return values.
3219 SmallVector<CCValAssign, 16> RVLocs;
3220 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3221 CLI.RetTy->getContext());
3222 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3223
3224 // Copy all of the result registers out of their specified physreg.
3225 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3226 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3227 CCValAssign &VA = RVLocs[i];
3228 EVT CopyVT = VA.getValVT();
3229 unsigned CopyReg = ResultReg + i;
3230
3231 // If this is x86-64, and we disabled SSE, we can't return FP values
3232 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3233 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3234 report_fatal_error("SSE register return with SSE disabled");
3235 }
3236
3237 // If we prefer to use the value in xmm registers, copy it out as f80 and
3238 // use a truncate to move it from fp stack reg to xmm reg.
3239 if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
3240 isScalarFPTypeInSSEReg(VA.getValVT())) {
3241 CopyVT = MVT::f80;
3242 CopyReg = createResultReg(&X86::RFP80RegClass);
3243 }
3244
3245 // Copy out the result.
3246 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3247 TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
3248 InRegs.push_back(VA.getLocReg());
3249
3250 // Round the f80 to the right size, which also moves it to the appropriate
3251 // xmm register. This is accomplished by storing the f80 value in memory
3252 // and then loading it back.
3253 if (CopyVT != VA.getValVT()) {
3254 EVT ResVT = VA.getValVT();
3255 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3256 unsigned MemSize = ResVT.getSizeInBits()/8;
3257 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3258 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3259 TII.get(Opc)), FI)
3260 .addReg(CopyReg);
3261 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3262 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3263 TII.get(Opc), ResultReg + i), FI);
3264 }
3265 }
3266
3267 CLI.ResultReg = ResultReg;
3268 CLI.NumResultRegs = RVLocs.size();
3269 CLI.Call = MIB;
3270
3271 return true;
3272}
3273
3274bool
3275X86FastISel::fastSelectInstruction(const Instruction *I) {
3276 switch (I->getOpcode()) {
3277 default: break;
3278 case Instruction::Load:
3279 return X86SelectLoad(I);
3280 case Instruction::Store:
3281 return X86SelectStore(I);
3282 case Instruction::Ret:
3283 return X86SelectRet(I);
3284 case Instruction::ICmp:
3285 case Instruction::FCmp:
3286 return X86SelectCmp(I);
3287 case Instruction::ZExt:
3288 return X86SelectZExt(I);
3289 case Instruction::Br:
3290 return X86SelectBranch(I);
3291 case Instruction::LShr:
3292 case Instruction::AShr:
3293 case Instruction::Shl:
3294 return X86SelectShift(I);
3295 case Instruction::SDiv:
3296 case Instruction::UDiv:
3297 case Instruction::SRem:
3298 case Instruction::URem:
3299 return X86SelectDivRem(I);
3300 case Instruction::Select:
3301 return X86SelectSelect(I);
3302 case Instruction::Trunc:
3303 return X86SelectTrunc(I);
3304 case Instruction::FPExt:
3305 return X86SelectFPExt(I);
3306 case Instruction::FPTrunc:
3307 return X86SelectFPTrunc(I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00003308 case Instruction::SIToFP:
3309 return X86SelectSIToFP(I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003310 case Instruction::IntToPtr: // Deliberate fall-through.
3311 case Instruction::PtrToInt: {
Mehdi Amini44ede332015-07-09 02:09:04 +00003312 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3313 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003314 if (DstVT.bitsGT(SrcVT))
3315 return X86SelectZExt(I);
3316 if (DstVT.bitsLT(SrcVT))
3317 return X86SelectTrunc(I);
3318 unsigned Reg = getRegForValue(I->getOperand(0));
3319 if (Reg == 0) return false;
3320 updateValueMap(I, Reg);
3321 return true;
3322 }
Andrea Di Biagio77f62652015-10-02 16:08:05 +00003323 case Instruction::BitCast: {
3324 // Select SSE2/AVX bitcasts between 128/256 bit vector types.
3325 if (!Subtarget->hasSSE2())
3326 return false;
3327
3328 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3329 EVT DstVT = TLI.getValueType(DL, I->getType());
3330
3331 if (!SrcVT.isSimple() || !DstVT.isSimple())
3332 return false;
3333
3334 if (!SrcVT.is128BitVector() &&
3335 !(Subtarget->hasAVX() && SrcVT.is256BitVector()))
3336 return false;
3337
3338 unsigned Reg = getRegForValue(I->getOperand(0));
3339 if (Reg == 0)
3340 return false;
3341
3342 // No instruction is needed for conversion. Reuse the register used by
3343 // the fist operand.
3344 updateValueMap(I, Reg);
3345 return true;
3346 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003347 }
3348
3349 return false;
3350}
3351
3352unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3353 if (VT > MVT::i64)
3354 return 0;
3355
3356 uint64_t Imm = CI->getZExtValue();
3357 if (Imm == 0) {
3358 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3359 switch (VT.SimpleTy) {
3360 default: llvm_unreachable("Unexpected value type");
3361 case MVT::i1:
3362 case MVT::i8:
3363 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3364 X86::sub_8bit);
3365 case MVT::i16:
3366 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3367 X86::sub_16bit);
3368 case MVT::i32:
3369 return SrcReg;
3370 case MVT::i64: {
3371 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3372 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3373 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3374 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3375 return ResultReg;
3376 }
3377 }
3378 }
3379
3380 unsigned Opc = 0;
3381 switch (VT.SimpleTy) {
3382 default: llvm_unreachable("Unexpected value type");
3383 case MVT::i1: VT = MVT::i8; // fall-through
3384 case MVT::i8: Opc = X86::MOV8ri; break;
3385 case MVT::i16: Opc = X86::MOV16ri; break;
3386 case MVT::i32: Opc = X86::MOV32ri; break;
3387 case MVT::i64: {
3388 if (isUInt<32>(Imm))
3389 Opc = X86::MOV32ri;
3390 else if (isInt<32>(Imm))
3391 Opc = X86::MOV64ri32;
3392 else
3393 Opc = X86::MOV64ri;
3394 break;
3395 }
3396 }
3397 if (VT == MVT::i64 && Opc == X86::MOV32ri) {
3398 unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
3399 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3400 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3401 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3402 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3403 return ResultReg;
3404 }
3405 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3406}
3407
3408unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3409 if (CFP->isNullValue())
3410 return fastMaterializeFloatZero(CFP);
3411
3412 // Can't handle alternate code models yet.
3413 CodeModel::Model CM = TM.getCodeModel();
3414 if (CM != CodeModel::Small && CM != CodeModel::Large)
3415 return 0;
3416
3417 // Get opcode and regclass of the output for the given load instruction.
3418 unsigned Opc = 0;
3419 const TargetRegisterClass *RC = nullptr;
3420 switch (VT.SimpleTy) {
3421 default: return 0;
3422 case MVT::f32:
3423 if (X86ScalarSSEf32) {
3424 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3425 RC = &X86::FR32RegClass;
3426 } else {
3427 Opc = X86::LD_Fp32m;
3428 RC = &X86::RFP32RegClass;
3429 }
3430 break;
3431 case MVT::f64:
3432 if (X86ScalarSSEf64) {
3433 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3434 RC = &X86::FR64RegClass;
3435 } else {
3436 Opc = X86::LD_Fp64m;
3437 RC = &X86::RFP64RegClass;
3438 }
3439 break;
3440 case MVT::f80:
3441 // No f80 support yet.
3442 return 0;
3443 }
3444
3445 // MachineConstantPool wants an explicit alignment.
3446 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3447 if (Align == 0) {
3448 // Alignment of vector types. FIXME!
3449 Align = DL.getTypeAllocSize(CFP->getType());
3450 }
3451
3452 // x86-32 PIC requires a PIC base register for constant pools.
3453 unsigned PICBase = 0;
Rafael Espindolac7e98132016-05-20 12:20:10 +00003454 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3455 if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003456 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
Rafael Espindolac7e98132016-05-20 12:20:10 +00003457 else if (OpFlag == X86II::MO_GOTOFF)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003458 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
Rafael Espindolac7e98132016-05-20 12:20:10 +00003459 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003460 PICBase = X86::RIP;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003461
3462 // Create the load from the constant pool.
3463 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3464 unsigned ResultReg = createResultReg(RC);
3465
3466 if (CM == CodeModel::Large) {
3467 unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3469 AddrReg)
3470 .addConstantPoolIndex(CPI, 0, OpFlag);
3471 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3472 TII.get(Opc), ResultReg);
3473 addDirectMem(MIB, AddrReg);
3474 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00003475 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3476 MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003477 MIB->addMemOperand(*FuncInfo.MF, MMO);
3478 return ResultReg;
3479 }
3480
3481 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3482 TII.get(Opc), ResultReg),
3483 CPI, PICBase, OpFlag);
3484 return ResultReg;
3485}
3486
3487unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3488 // Can't handle alternate code models yet.
3489 if (TM.getCodeModel() != CodeModel::Small)
3490 return 0;
3491
3492 // Materialize addresses with LEA/MOV instructions.
3493 X86AddressMode AM;
3494 if (X86SelectAddress(GV, AM)) {
3495 // If the expression is just a basereg, then we're done, otherwise we need
3496 // to emit an LEA.
3497 if (AM.BaseType == X86AddressMode::RegBase &&
3498 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3499 return AM.Base.Reg;
3500
3501 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3502 if (TM.getRelocationModel() == Reloc::Static &&
Mehdi Amini44ede332015-07-09 02:09:04 +00003503 TLI.getPointerTy(DL) == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003504 // The displacement code could be more than 32 bits away so we need to use
3505 // an instruction with a 64 bit immediate
3506 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3507 ResultReg)
3508 .addGlobalAddress(GV);
3509 } else {
Mehdi Amini44ede332015-07-09 02:09:04 +00003510 unsigned Opc =
3511 TLI.getPointerTy(DL) == MVT::i32
3512 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3513 : X86::LEA64r;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003514 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3515 TII.get(Opc), ResultReg), AM);
3516 }
3517 return ResultReg;
3518 }
3519 return 0;
3520}
3521
3522unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
Mehdi Amini44ede332015-07-09 02:09:04 +00003523 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003524
3525 // Only handle simple types.
3526 if (!CEVT.isSimple())
3527 return 0;
3528 MVT VT = CEVT.getSimpleVT();
3529
3530 if (const auto *CI = dyn_cast<ConstantInt>(C))
3531 return X86MaterializeInt(CI, VT);
3532 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3533 return X86MaterializeFP(CFP, VT);
3534 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3535 return X86MaterializeGV(GV, VT);
3536
3537 return 0;
3538}
3539
3540unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3541 // Fail on dynamic allocas. At this point, getRegForValue has already
3542 // checked its CSE maps, so if we're here trying to handle a dynamic
3543 // alloca, we're not going to succeed. X86SelectAddress has a
3544 // check for dynamic allocas, because it's called directly from
3545 // various places, but targetMaterializeAlloca also needs a check
3546 // in order to avoid recursion between getRegForValue,
3547 // X86SelectAddrss, and targetMaterializeAlloca.
3548 if (!FuncInfo.StaticAllocaMap.count(C))
3549 return 0;
3550 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3551
3552 X86AddressMode AM;
3553 if (!X86SelectAddress(C, AM))
3554 return 0;
Mehdi Amini44ede332015-07-09 02:09:04 +00003555 unsigned Opc =
3556 TLI.getPointerTy(DL) == MVT::i32
3557 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3558 : X86::LEA64r;
3559 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003560 unsigned ResultReg = createResultReg(RC);
3561 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3562 TII.get(Opc), ResultReg), AM);
3563 return ResultReg;
3564}
3565
3566unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3567 MVT VT;
3568 if (!isTypeLegal(CF->getType(), VT))
3569 return 0;
3570
3571 // Get opcode and regclass for the given zero.
3572 unsigned Opc = 0;
3573 const TargetRegisterClass *RC = nullptr;
3574 switch (VT.SimpleTy) {
3575 default: return 0;
3576 case MVT::f32:
3577 if (X86ScalarSSEf32) {
3578 Opc = X86::FsFLD0SS;
3579 RC = &X86::FR32RegClass;
3580 } else {
3581 Opc = X86::LD_Fp032;
3582 RC = &X86::RFP32RegClass;
3583 }
3584 break;
3585 case MVT::f64:
3586 if (X86ScalarSSEf64) {
3587 Opc = X86::FsFLD0SD;
3588 RC = &X86::FR64RegClass;
3589 } else {
3590 Opc = X86::LD_Fp064;
3591 RC = &X86::RFP64RegClass;
3592 }
3593 break;
3594 case MVT::f80:
3595 // No f80 support yet.
3596 return 0;
3597 }
3598
3599 unsigned ResultReg = createResultReg(RC);
3600 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3601 return ResultReg;
3602}
3603
3604
3605bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3606 const LoadInst *LI) {
3607 const Value *Ptr = LI->getPointerOperand();
3608 X86AddressMode AM;
3609 if (!X86SelectAddress(Ptr, AM))
3610 return false;
3611
3612 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3613
3614 unsigned Size = DL.getTypeAllocSize(LI->getType());
3615 unsigned Alignment = LI->getAlignment();
3616
3617 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3618 Alignment = DL.getABITypeAlignment(LI->getType());
3619
3620 SmallVector<MachineOperand, 8> AddrOps;
3621 AM.getFullAddress(AddrOps);
3622
Keno Fischere70b31f2015-06-08 20:09:58 +00003623 MachineInstr *Result = XII.foldMemoryOperandImpl(
3624 *FuncInfo.MF, MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3625 /*AllowCommute=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003626 if (!Result)
3627 return false;
3628
Pete Cooperd31583d2015-05-06 21:37:19 +00003629 // The index register could be in the wrong register class. Unfortunately,
3630 // foldMemoryOperandImpl could have commuted the instruction so its not enough
3631 // to just look at OpNo + the offset to the index reg. We actually need to
3632 // scan the instruction to find the index reg and see if its the correct reg
3633 // class.
Matthias Braune41e1462015-05-29 02:56:46 +00003634 unsigned OperandNo = 0;
3635 for (MachineInstr::mop_iterator I = Result->operands_begin(),
3636 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3637 MachineOperand &MO = *I;
3638 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
Pete Cooperd31583d2015-05-06 21:37:19 +00003639 continue;
3640 // Found the index reg, now try to rewrite it.
Pete Cooperd31583d2015-05-06 21:37:19 +00003641 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
Matthias Braune41e1462015-05-29 02:56:46 +00003642 MO.getReg(), OperandNo);
3643 if (IndexReg == MO.getReg())
Pete Cooperd31583d2015-05-06 21:37:19 +00003644 continue;
Matthias Braune41e1462015-05-29 02:56:46 +00003645 MO.setReg(IndexReg);
Pete Cooperd31583d2015-05-06 21:37:19 +00003646 }
3647
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003648 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003649 MI->eraseFromParent();
3650 return true;
3651}
3652
3653
3654namespace llvm {
3655 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
3656 const TargetLibraryInfo *libInfo) {
3657 return new X86FastISel(funcInfo, libInfo);
3658 }
3659}