blob: 6aa786f11732b279d1c88f00e17ebcd03c00565d [file] [log] [blame]
Nate Begeman6cca84e2005-10-16 05:39:50 +00001//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
Chris Lattner43ff01e2005-08-17 19:33:03 +00002//
3// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattner43ff01e2005-08-17 19:33:03 +00007//
8//===----------------------------------------------------------------------===//
9//
Nate Begeman6cca84e2005-10-16 05:39:50 +000010// This file defines a pattern matching instruction selector for PowerPC,
Chris Lattner43ff01e2005-08-17 19:33:03 +000011// converting from a legalized dag to a PPC dag.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattnerbfca1ab2005-10-14 23:51:18 +000015#include "PPC.h"
Evan Cheng11424442011-07-26 00:24:13 +000016#include "MCTargetDesc/PPCPredicates.h"
Hal Finkel3ee2af72014-07-18 23:29:49 +000017#include "PPCMachineFunctionInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000018#include "PPCTargetMachine.h"
Chris Lattner45640392005-08-19 22:38:53 +000019#include "llvm/CodeGen/MachineFunction.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000020#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattnera10fff52007-12-31 04:13:23 +000021#include "llvm/CodeGen/MachineRegisterInfo.h"
Chris Lattner43ff01e2005-08-17 19:33:03 +000022#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SelectionDAGISel.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000024#include "llvm/IR/Constants.h"
25#include "llvm/IR/Function.h"
Chandler Carruth1fe21fc2013-01-19 08:03:47 +000026#include "llvm/IR/GlobalAlias.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/GlobalValue.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/Intrinsics.h"
Justin Hibbitsa88b6052014-11-12 15:16:30 +000030#include "llvm/IR/Module.h"
Hal Finkel940ab932014-02-28 00:27:01 +000031#include "llvm/Support/CommandLine.h"
Chris Lattner43ff01e2005-08-17 19:33:03 +000032#include "llvm/Support/Debug.h"
Torok Edwinfb8d6d52009-07-08 20:53:28 +000033#include "llvm/Support/ErrorHandling.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000034#include "llvm/Support/MathExtras.h"
Torok Edwinfb8d6d52009-07-08 20:53:28 +000035#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000036#include "llvm/Target/TargetOptions.h"
Chris Lattner43ff01e2005-08-17 19:33:03 +000037using namespace llvm;
38
Chandler Carruth84e68b22014-04-22 02:41:26 +000039#define DEBUG_TYPE "ppc-codegen"
40
Hal Finkel940ab932014-02-28 00:27:01 +000041// FIXME: Remove this once the bug has been fixed!
42cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
43cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
44
Hal Finkelc58ce412015-01-01 02:53:29 +000045cl::opt<bool> UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
46 cl::desc("use aggressive ppc isel for bit permutations"), cl::Hidden);
47cl::opt<bool> BPermRewriterNoMasking("ppc-bit-perm-rewriter-stress-rotates",
48 cl::desc("stress rotate selection in aggressive ppc isel for "
49 "bit permutations"), cl::Hidden);
50
Krzysztof Parzyszek2680b532013-02-13 17:40:07 +000051namespace llvm {
52 void initializePPCDAGToDAGISelPass(PassRegistry&);
53}
54
Chris Lattner43ff01e2005-08-17 19:33:03 +000055namespace {
Chris Lattner43ff01e2005-08-17 19:33:03 +000056 //===--------------------------------------------------------------------===//
Nate Begeman0b71e002005-10-18 00:28:58 +000057 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
Chris Lattner43ff01e2005-08-17 19:33:03 +000058 /// instructions for SelectionDAG operations.
59 ///
Nick Lewycky02d5f772009-10-25 06:33:48 +000060 class PPCDAGToDAGISel : public SelectionDAGISel {
Dan Gohman21cea8a2010-04-17 15:26:15 +000061 const PPCTargetMachine &TM;
Eric Christopher1b8e7632014-05-22 01:07:24 +000062 const PPCTargetLowering *PPCLowering;
63 const PPCSubtarget *PPCSubTarget;
Chris Lattner45640392005-08-19 22:38:53 +000064 unsigned GlobalBaseReg;
Chris Lattner43ff01e2005-08-17 19:33:03 +000065 public:
Dan Gohman56e3f632008-07-07 18:00:37 +000066 explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
Eric Christopherd9134482014-08-04 21:25:23 +000067 : SelectionDAGISel(tm), TM(tm),
68 PPCLowering(TM.getSubtargetImpl()->getTargetLowering()),
69 PPCSubTarget(TM.getSubtargetImpl()) {
Krzysztof Parzyszek2680b532013-02-13 17:40:07 +000070 initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
71 }
Andrew Trickc416ba62010-12-24 04:28:06 +000072
Craig Topper0d3fa922014-04-29 07:57:37 +000073 bool runOnMachineFunction(MachineFunction &MF) override {
Chris Lattner45640392005-08-19 22:38:53 +000074 // Make sure we re-emit a set of the global base reg if necessary
75 GlobalBaseReg = 0;
Eric Christopherd9134482014-08-04 21:25:23 +000076 PPCLowering = TM.getSubtargetImpl()->getTargetLowering();
Eric Christopher1b8e7632014-05-22 01:07:24 +000077 PPCSubTarget = TM.getSubtargetImpl();
Dan Gohman5ea74d52009-07-31 18:16:33 +000078 SelectionDAGISel::runOnMachineFunction(MF);
Andrew Trickc416ba62010-12-24 04:28:06 +000079
Eric Christopher1b8e7632014-05-22 01:07:24 +000080 if (!PPCSubTarget->isSVR4ABI())
Bill Schmidt38d94582012-10-10 20:54:15 +000081 InsertVRSaveCode(MF);
82
Chris Lattner1678a6c2006-03-16 18:25:23 +000083 return true;
Chris Lattner45640392005-08-19 22:38:53 +000084 }
Andrew Trickc416ba62010-12-24 04:28:06 +000085
Hal Finkel4edc66b2015-01-03 01:16:37 +000086 void PreprocessISelDAG() override;
Craig Topper0d3fa922014-04-29 07:57:37 +000087 void PostprocessISelDAG() override;
Bill Schmidtf5b474c2013-02-21 00:38:25 +000088
Chris Lattner43ff01e2005-08-17 19:33:03 +000089 /// getI32Imm - Return a target constant with the specified value, of type
90 /// i32.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +000091 inline SDValue getI32Imm(unsigned Imm) {
Owen Anderson9f944592009-08-11 20:47:22 +000092 return CurDAG->getTargetConstant(Imm, MVT::i32);
Chris Lattner43ff01e2005-08-17 19:33:03 +000093 }
Chris Lattner45640392005-08-19 22:38:53 +000094
Chris Lattner97b3da12006-06-27 00:04:13 +000095 /// getI64Imm - Return a target constant with the specified value, of type
96 /// i64.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +000097 inline SDValue getI64Imm(uint64_t Imm) {
Owen Anderson9f944592009-08-11 20:47:22 +000098 return CurDAG->getTargetConstant(Imm, MVT::i64);
Chris Lattner97b3da12006-06-27 00:04:13 +000099 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000100
Chris Lattner97b3da12006-06-27 00:04:13 +0000101 /// getSmallIPtrImm - Return a target constant of pointer type.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000102 inline SDValue getSmallIPtrImm(unsigned Imm) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000103 return CurDAG->getTargetConstant(Imm, PPCLowering->getPointerTy());
Chris Lattner97b3da12006-06-27 00:04:13 +0000104 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000105
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000106 /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
Nate Begemand31efd12006-09-22 05:01:56 +0000107 /// with any number of 0s on either side. The 1s are allowed to wrap from
108 /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
109 /// 0x0F0F0000 is not, since all 1s are not contiguous.
110 static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
111
112
113 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
114 /// rotate and mask opcode and mask operation.
Dale Johannesen86dcae12009-11-24 01:09:07 +0000115 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
Nate Begemand31efd12006-09-22 05:01:56 +0000116 unsigned &SH, unsigned &MB, unsigned &ME);
Andrew Trickc416ba62010-12-24 04:28:06 +0000117
Chris Lattner45640392005-08-19 22:38:53 +0000118 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
119 /// base register. Return the virtual register that holds this value.
Evan Cheng61413a32006-08-26 05:34:46 +0000120 SDNode *getGlobalBaseReg();
Andrew Trickc416ba62010-12-24 04:28:06 +0000121
Hal Finkelb5e9b042014-12-11 22:51:06 +0000122 SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
123
Chris Lattner43ff01e2005-08-17 19:33:03 +0000124 // Select - Convert the specified operand from a target-independent to a
125 // target-specific node if it hasn't already been changed.
Craig Topper0d3fa922014-04-29 07:57:37 +0000126 SDNode *Select(SDNode *N) override;
Andrew Trickc416ba62010-12-24 04:28:06 +0000127
Nate Begeman93c4bc62005-08-19 00:38:14 +0000128 SDNode *SelectBitfieldInsert(SDNode *N);
Hal Finkel8adf2252014-12-16 05:51:41 +0000129 SDNode *SelectBitPermutation(SDNode *N);
Nate Begeman93c4bc62005-08-19 00:38:14 +0000130
Chris Lattner2a1823d2005-08-21 18:50:37 +0000131 /// SelectCC - Select a comparison of the specified values with the
132 /// specified condition code, returning the CR# of the expression.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000133 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
Chris Lattner2a1823d2005-08-21 18:50:37 +0000134
Nate Begeman8e6a8af2005-12-19 23:25:09 +0000135 /// SelectAddrImm - Returns true if the address N can be represented by
136 /// a base register plus a signed 16-bit displacement [r+imm].
Chris Lattner0e023ea2010-09-21 20:31:19 +0000137 bool SelectAddrImm(SDValue N, SDValue &Disp,
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000138 SDValue &Base) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000139 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
Chris Lattnera801fced2006-11-08 02:15:41 +0000140 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000141
Chris Lattner6f5840c2006-11-16 00:41:37 +0000142 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
Ulrich Weigandd1b99d32013-03-22 14:58:17 +0000143 /// immediate field. Note that the operand at this point is already the
144 /// result of a prior SelectAddressRegImm call.
Chris Lattner0e023ea2010-09-21 20:31:19 +0000145 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
Ulrich Weigandd1b99d32013-03-22 14:58:17 +0000146 if (N.getOpcode() == ISD::TargetConstant ||
Hal Finkela86b0f22012-06-21 20:10:48 +0000147 N.getOpcode() == ISD::TargetGlobalAddress) {
Hal Finkel1cc27e42012-06-19 02:34:32 +0000148 Out = N;
149 return true;
150 }
151
152 return false;
153 }
154
Nate Begeman8e6a8af2005-12-19 23:25:09 +0000155 /// SelectAddrIdx - Given the specified addressed, check to see if it can be
156 /// represented as an indexed [r+r] operation. Returns false if it can
157 /// be represented by [r+imm], which are preferred.
Chris Lattner0e023ea2010-09-21 20:31:19 +0000158 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000159 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
Chris Lattnera801fced2006-11-08 02:15:41 +0000160 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000161
Nate Begeman8e6a8af2005-12-19 23:25:09 +0000162 /// SelectAddrIdxOnly - Given the specified addressed, force it to be
163 /// represented as an indexed [r+r] operation.
Chris Lattner0e023ea2010-09-21 20:31:19 +0000164 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000165 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
Chris Lattnera801fced2006-11-08 02:15:41 +0000166 }
Chris Lattnerc5292ec2005-08-21 22:31:09 +0000167
Ulrich Weigand9d980cb2013-05-16 17:58:02 +0000168 /// SelectAddrImmX4 - Returns true if the address N can be represented by
169 /// a base register plus a signed 16-bit displacement that is a multiple of 4.
170 /// Suitable for use by STD and friends.
171 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000172 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
Chris Lattnera801fced2006-11-08 02:15:41 +0000173 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000174
Hal Finkel756810f2013-03-21 21:37:52 +0000175 // Select an address into a single register.
176 bool SelectAddr(SDValue N, SDValue &Base) {
177 Base = N;
178 return true;
179 }
180
Chris Lattnera1ec1dd2006-02-24 02:13:12 +0000181 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
Dale Johannesen4a50e682009-08-18 00:18:39 +0000182 /// inline asm expressions. It is always correct to compute the value into
183 /// a register. The case of adding a (possibly relocatable) constant to a
184 /// register can be improved, but it is wrong to substitute Reg+Reg for
185 /// Reg in an asm, because the load or store opcode would have to change.
Hal Finkeld4338382014-12-03 23:40:13 +0000186 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
Craig Topper0d3fa922014-04-29 07:57:37 +0000187 char ConstraintCode,
188 std::vector<SDValue> &OutOps) override {
Hal Finkeld4338382014-12-03 23:40:13 +0000189 // We need to make sure that this one operand does not end up in r0
190 // (because we might end up lowering this as 0(%op)).
191 const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
192 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
193 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
194 SDValue NewOp =
195 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
196 SDLoc(Op), Op.getValueType(),
197 Op, RC), 0);
198
199 OutOps.push_back(NewOp);
Chris Lattnera1ec1dd2006-02-24 02:13:12 +0000200 return false;
201 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000202
Dan Gohman5ea74d52009-07-31 18:16:33 +0000203 void InsertVRSaveCode(MachineFunction &MF);
Chris Lattner1678a6c2006-03-16 18:25:23 +0000204
Craig Topper0d3fa922014-04-29 07:57:37 +0000205 const char *getPassName() const override {
Chris Lattner43ff01e2005-08-17 19:33:03 +0000206 return "PowerPC DAG->DAG Pattern Instruction Selection";
Andrew Trickc416ba62010-12-24 04:28:06 +0000207 }
208
Chris Lattner03e08ee2005-09-13 22:03:06 +0000209// Include the pieces autogenerated from the target description.
Chris Lattner0921e3b2005-10-14 23:37:35 +0000210#include "PPCGenDAGISel.inc"
Andrew Trickc416ba62010-12-24 04:28:06 +0000211
Chris Lattner259e6c72005-10-06 18:45:51 +0000212private:
Dan Gohmanea6f91f2010-01-05 01:24:18 +0000213 SDNode *SelectSETCC(SDNode *N);
Hal Finkel940ab932014-02-28 00:27:01 +0000214
215 void PeepholePPC64();
Hal Finkel4c6658f2014-12-12 23:59:36 +0000216 void PeepholePPC64ZExt();
Eric Christopher02e18042014-05-14 00:31:15 +0000217 void PeepholeCROps();
Hal Finkelb9989152014-02-28 06:11:16 +0000218
Hal Finkel4edc66b2015-01-03 01:16:37 +0000219 SDValue combineToCMPB(SDNode *N);
Hal Finkel200d2ad2015-01-05 21:10:24 +0000220 void foldBoolExts(SDValue &Res, SDNode *&N);
Hal Finkel4edc66b2015-01-03 01:16:37 +0000221
Hal Finkelb9989152014-02-28 06:11:16 +0000222 bool AllUsersSelectZero(SDNode *N);
223 void SwapAllSelectUsers(SDNode *N);
Chris Lattner43ff01e2005-08-17 19:33:03 +0000224 };
225}
226
Chris Lattner1678a6c2006-03-16 18:25:23 +0000227/// InsertVRSaveCode - Once the entire function has been instruction selected,
228/// all virtual registers are created and all machine instructions are built,
229/// check to see if we need to save/restore VRSAVE. If so, do it.
Dan Gohman5ea74d52009-07-31 18:16:33 +0000230void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
Chris Lattner02e2c182006-03-13 21:52:10 +0000231 // Check to see if this function uses vector registers, which means we have to
Andrew Trickc416ba62010-12-24 04:28:06 +0000232 // save and restore the VRSAVE register and update it with the regs we use.
Chris Lattner02e2c182006-03-13 21:52:10 +0000233 //
Dan Gohman4a618822010-02-10 16:03:48 +0000234 // In this case, there will be virtual registers of vector type created
Chris Lattner02e2c182006-03-13 21:52:10 +0000235 // by the scheduler. Detect them now.
Chris Lattner02e2c182006-03-13 21:52:10 +0000236 bool HasVectorVReg = false;
Jakob Stoklund Olesen4a7b48d2011-01-08 23:11:11 +0000237 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
238 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
239 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
Chris Lattner02e2c182006-03-13 21:52:10 +0000240 HasVectorVReg = true;
241 break;
242 }
Jakob Stoklund Olesen4a7b48d2011-01-08 23:11:11 +0000243 }
Chris Lattner1678a6c2006-03-16 18:25:23 +0000244 if (!HasVectorVReg) return; // nothing to do.
Andrew Trickc416ba62010-12-24 04:28:06 +0000245
Chris Lattner02e2c182006-03-13 21:52:10 +0000246 // If we have a vector register, we want to emit code into the entry and exit
247 // blocks to save and restore the VRSAVE register. We do this here (instead
248 // of marking all vector instructions as clobbering VRSAVE) for two reasons:
249 //
250 // 1. This (trivially) reduces the load on the register allocator, by not
251 // having to represent the live range of the VRSAVE register.
252 // 2. This (more significantly) allows us to create a temporary virtual
253 // register to hold the saved VRSAVE value, allowing this temporary to be
254 // register allocated, instead of forcing it to be spilled to the stack.
Chris Lattner1678a6c2006-03-16 18:25:23 +0000255
256 // Create two vregs - one to hold the VRSAVE register that is live-in to the
257 // function and one for the value after having bits or'd into it.
Chris Lattnera10fff52007-12-31 04:13:23 +0000258 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
259 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
Andrew Trickc416ba62010-12-24 04:28:06 +0000260
Eric Christopherd9134482014-08-04 21:25:23 +0000261 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
Chris Lattner1678a6c2006-03-16 18:25:23 +0000262 MachineBasicBlock &EntryBB = *Fn.begin();
Chris Lattner6f306d72010-04-02 20:16:16 +0000263 DebugLoc dl;
Chris Lattner1678a6c2006-03-16 18:25:23 +0000264 // Emit the following code into the entry block:
265 // InVRSAVE = MFVRSAVE
266 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
267 // MTVRSAVE UpdatedVRSAVE
268 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
Dale Johannesene9f623e2009-02-13 02:27:39 +0000269 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
270 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
Chris Lattnera98c6792008-01-07 01:56:04 +0000271 UpdatedVRSAVE).addReg(InVRSAVE);
Dale Johannesene9f623e2009-02-13 02:27:39 +0000272 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
Andrew Trickc416ba62010-12-24 04:28:06 +0000273
Chris Lattner1678a6c2006-03-16 18:25:23 +0000274 // Find all return blocks, outputting a restore in each epilog.
Chris Lattner1678a6c2006-03-16 18:25:23 +0000275 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
Evan Cheng7f8e5632011-12-07 07:15:52 +0000276 if (!BB->empty() && BB->back().isReturn()) {
Chris Lattner1678a6c2006-03-16 18:25:23 +0000277 IP = BB->end(); --IP;
Andrew Trickc416ba62010-12-24 04:28:06 +0000278
Chris Lattner1678a6c2006-03-16 18:25:23 +0000279 // Skip over all terminator instructions, which are part of the return
280 // sequence.
281 MachineBasicBlock::iterator I2 = IP;
Evan Cheng7f8e5632011-12-07 07:15:52 +0000282 while (I2 != BB->begin() && (--I2)->isTerminator())
Chris Lattner1678a6c2006-03-16 18:25:23 +0000283 IP = I2;
Andrew Trickc416ba62010-12-24 04:28:06 +0000284
Chris Lattner1678a6c2006-03-16 18:25:23 +0000285 // Emit: MTVRSAVE InVRSave
Dale Johannesene9f623e2009-02-13 02:27:39 +0000286 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
Andrew Trickc416ba62010-12-24 04:28:06 +0000287 }
Chris Lattner02e2c182006-03-13 21:52:10 +0000288 }
Chris Lattner259e6c72005-10-06 18:45:51 +0000289}
Chris Lattner8ae95252005-09-03 01:17:22 +0000290
Chris Lattner1678a6c2006-03-16 18:25:23 +0000291
Chris Lattner45640392005-08-19 22:38:53 +0000292/// getGlobalBaseReg - Output the instructions required to put the
293/// base address to use for accessing globals into a register.
294///
Evan Cheng61413a32006-08-26 05:34:46 +0000295SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
Chris Lattner45640392005-08-19 22:38:53 +0000296 if (!GlobalBaseReg) {
Eric Christopherd9134482014-08-04 21:25:23 +0000297 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
Chris Lattner45640392005-08-19 22:38:53 +0000298 // Insert the set of GlobalBaseReg into the first MBB of the function
Dan Gohmanfca89682009-08-15 02:07:36 +0000299 MachineBasicBlock &FirstMBB = MF->front();
Chris Lattner45640392005-08-19 22:38:53 +0000300 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000301 const Module *M = MF->getFunction()->getParent();
Chris Lattner6f306d72010-04-02 20:16:16 +0000302 DebugLoc dl;
Chris Lattner97b3da12006-06-27 00:04:13 +0000303
Eric Christopher1b8e7632014-05-22 01:07:24 +0000304 if (PPCLowering->getPointerTy() == MVT::i32) {
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000305 if (PPCSubTarget->isTargetELF()) {
Hal Finkel3ee2af72014-07-18 23:29:49 +0000306 GlobalBaseReg = PPC::R30;
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000307 if (M->getPICLevel() == PICLevel::Small) {
308 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
309 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
310 } else {
311 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
312 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
313 unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
314 BuildMI(FirstMBB, MBBI, dl,
315 TII.get(PPC::UpdateGBR)).addReg(GlobalBaseReg)
316 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
317 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
318 }
319 } else {
Hal Finkel3ee2af72014-07-18 23:29:49 +0000320 GlobalBaseReg =
321 RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000322 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
323 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
Hal Finkel3ee2af72014-07-18 23:29:49 +0000324 }
Chris Lattnerb5429252006-11-14 18:43:11 +0000325 } else {
Hal Finkel6daf2aa2014-03-06 01:28:23 +0000326 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
Cameron Zwarichdadd7332011-05-19 02:56:28 +0000327 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
Dale Johannesene9f623e2009-02-13 02:27:39 +0000328 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
Chris Lattnerb5429252006-11-14 18:43:11 +0000329 }
Chris Lattner45640392005-08-19 22:38:53 +0000330 }
Gabor Greif81d6a382008-08-31 15:37:04 +0000331 return CurDAG->getRegister(GlobalBaseReg,
Eric Christopher1b8e7632014-05-22 01:07:24 +0000332 PPCLowering->getPointerTy()).getNode();
Chris Lattner97b3da12006-06-27 00:04:13 +0000333}
334
335/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
336/// or 64-bit immediate, and if the value can be accurately represented as a
337/// sign extension from a 16-bit value. If so, this returns true and the
338/// immediate.
339static bool isIntS16Immediate(SDNode *N, short &Imm) {
340 if (N->getOpcode() != ISD::Constant)
341 return false;
342
Dan Gohmaneffb8942008-09-12 16:56:44 +0000343 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
Owen Anderson9f944592009-08-11 20:47:22 +0000344 if (N->getValueType(0) == MVT::i32)
Dan Gohmaneffb8942008-09-12 16:56:44 +0000345 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
Chris Lattner97b3da12006-06-27 00:04:13 +0000346 else
Dan Gohmaneffb8942008-09-12 16:56:44 +0000347 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
Chris Lattner97b3da12006-06-27 00:04:13 +0000348}
349
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000350static bool isIntS16Immediate(SDValue Op, short &Imm) {
Gabor Greiff304a7a2008-08-28 21:40:38 +0000351 return isIntS16Immediate(Op.getNode(), Imm);
Chris Lattner45640392005-08-19 22:38:53 +0000352}
353
354
Chris Lattner97b3da12006-06-27 00:04:13 +0000355/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
356/// operand. If so Imm will receive the 32-bit value.
357static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
Owen Anderson9f944592009-08-11 20:47:22 +0000358 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
Dan Gohmaneffb8942008-09-12 16:56:44 +0000359 Imm = cast<ConstantSDNode>(N)->getZExtValue();
Nate Begeman72d6f882005-08-18 05:00:13 +0000360 return true;
361 }
362 return false;
363}
364
Chris Lattner97b3da12006-06-27 00:04:13 +0000365/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
366/// operand. If so Imm will receive the 64-bit value.
367static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
Owen Anderson9f944592009-08-11 20:47:22 +0000368 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
Dan Gohmaneffb8942008-09-12 16:56:44 +0000369 Imm = cast<ConstantSDNode>(N)->getZExtValue();
Chris Lattner97b3da12006-06-27 00:04:13 +0000370 return true;
371 }
372 return false;
373}
374
375// isInt32Immediate - This method tests to see if a constant operand.
376// If so Imm will receive the 32 bit value.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000377static bool isInt32Immediate(SDValue N, unsigned &Imm) {
Gabor Greiff304a7a2008-08-28 21:40:38 +0000378 return isInt32Immediate(N.getNode(), Imm);
Chris Lattner97b3da12006-06-27 00:04:13 +0000379}
380
381
382// isOpcWithIntImmediate - This method tests to see if the node is a specific
383// opcode and that it has a immediate integer right operand.
384// If so Imm will receive the 32 bit value.
385static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
Gabor Greif81d6a382008-08-31 15:37:04 +0000386 return N->getOpcode() == Opc
387 && isInt32Immediate(N->getOperand(1).getNode(), Imm);
Chris Lattner97b3da12006-06-27 00:04:13 +0000388}
389
Hal Finkelb5e9b042014-12-11 22:51:06 +0000390SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
391 SDLoc dl(SN);
392 int FI = cast<FrameIndexSDNode>(N)->getIndex();
393 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
394 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
395 if (SN->hasOneUse())
396 return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
397 getSmallIPtrImm(Offset));
398 return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
399 getSmallIPtrImm(Offset));
400}
401
Nate Begemand31efd12006-09-22 05:01:56 +0000402bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
Hal Finkelff3ea802013-07-11 16:31:51 +0000403 if (!Val)
404 return false;
405
Nate Begemanb3821a32005-08-18 07:30:46 +0000406 if (isShiftedMask_32(Val)) {
407 // look for the first non-zero bit
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000408 MB = countLeadingZeros(Val);
Nate Begemanb3821a32005-08-18 07:30:46 +0000409 // look for the first zero bit after the run of ones
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000410 ME = countLeadingZeros((Val - 1) ^ Val);
Nate Begemanb3821a32005-08-18 07:30:46 +0000411 return true;
Chris Lattner666512c2005-08-25 04:47:18 +0000412 } else {
413 Val = ~Val; // invert mask
414 if (isShiftedMask_32(Val)) {
415 // effectively look for the first zero bit
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000416 ME = countLeadingZeros(Val) - 1;
Chris Lattner666512c2005-08-25 04:47:18 +0000417 // effectively look for the first one bit after the run of zeros
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000418 MB = countLeadingZeros((Val - 1) ^ Val) + 1;
Chris Lattner666512c2005-08-25 04:47:18 +0000419 return true;
420 }
Nate Begemanb3821a32005-08-18 07:30:46 +0000421 }
422 // no run present
423 return false;
424}
425
Andrew Trickc416ba62010-12-24 04:28:06 +0000426bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
427 bool isShiftMask, unsigned &SH,
Nate Begemand31efd12006-09-22 05:01:56 +0000428 unsigned &MB, unsigned &ME) {
Nate Begeman92e77502005-10-19 00:05:37 +0000429 // Don't even go down this path for i64, since different logic will be
430 // necessary for rldicl/rldicr/rldimi.
Owen Anderson9f944592009-08-11 20:47:22 +0000431 if (N->getValueType(0) != MVT::i32)
Nate Begeman92e77502005-10-19 00:05:37 +0000432 return false;
433
Nate Begemanb3821a32005-08-18 07:30:46 +0000434 unsigned Shift = 32;
435 unsigned Indeterminant = ~0; // bit mask marking indeterminant results
436 unsigned Opcode = N->getOpcode();
Chris Lattnere413b602005-08-30 00:59:16 +0000437 if (N->getNumOperands() != 2 ||
Gabor Greiff304a7a2008-08-28 21:40:38 +0000438 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
Nate Begemanb3821a32005-08-18 07:30:46 +0000439 return false;
Andrew Trickc416ba62010-12-24 04:28:06 +0000440
Nate Begemanb3821a32005-08-18 07:30:46 +0000441 if (Opcode == ISD::SHL) {
442 // apply shift left to mask if it comes first
Dale Johannesen86dcae12009-11-24 01:09:07 +0000443 if (isShiftMask) Mask = Mask << Shift;
Nate Begemanb3821a32005-08-18 07:30:46 +0000444 // determine which bits are made indeterminant by shift
445 Indeterminant = ~(0xFFFFFFFFu << Shift);
Andrew Trickc416ba62010-12-24 04:28:06 +0000446 } else if (Opcode == ISD::SRL) {
Nate Begemanb3821a32005-08-18 07:30:46 +0000447 // apply shift right to mask if it comes first
Dale Johannesen86dcae12009-11-24 01:09:07 +0000448 if (isShiftMask) Mask = Mask >> Shift;
Nate Begemanb3821a32005-08-18 07:30:46 +0000449 // determine which bits are made indeterminant by shift
450 Indeterminant = ~(0xFFFFFFFFu >> Shift);
451 // adjust for the left rotate
452 Shift = 32 - Shift;
Nate Begemand31efd12006-09-22 05:01:56 +0000453 } else if (Opcode == ISD::ROTL) {
454 Indeterminant = 0;
Nate Begemanb3821a32005-08-18 07:30:46 +0000455 } else {
456 return false;
457 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000458
Nate Begemanb3821a32005-08-18 07:30:46 +0000459 // if the mask doesn't intersect any Indeterminant bits
460 if (Mask && !(Mask & Indeterminant)) {
Chris Lattnera2963392006-05-12 16:29:37 +0000461 SH = Shift & 31;
Nate Begemanb3821a32005-08-18 07:30:46 +0000462 // make sure the mask is still a mask (wrap arounds may not be)
463 return isRunOfOnes(Mask, MB, ME);
464 }
465 return false;
466}
467
Nate Begeman93c4bc62005-08-19 00:38:14 +0000468/// SelectBitfieldInsert - turn an or of two masked values into
469/// the rotate left word immediate then mask insert (rlwimi) instruction.
Nate Begeman0b71e002005-10-18 00:28:58 +0000470SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000471 SDValue Op0 = N->getOperand(0);
472 SDValue Op1 = N->getOperand(1);
Andrew Trickef9de2a2013-05-25 02:42:55 +0000473 SDLoc dl(N);
Andrew Trickc416ba62010-12-24 04:28:06 +0000474
Dan Gohmanf19609a2008-02-27 01:23:58 +0000475 APInt LKZ, LKO, RKZ, RKO;
Jay Foada0653a32014-05-14 21:14:37 +0000476 CurDAG->computeKnownBits(Op0, LKZ, LKO);
477 CurDAG->computeKnownBits(Op1, RKZ, RKO);
Andrew Trickc416ba62010-12-24 04:28:06 +0000478
Dan Gohmanf19609a2008-02-27 01:23:58 +0000479 unsigned TargetMask = LKZ.getZExtValue();
480 unsigned InsertMask = RKZ.getZExtValue();
Andrew Trickc416ba62010-12-24 04:28:06 +0000481
Nate Begeman9b6d4c22006-05-08 17:38:32 +0000482 if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
483 unsigned Op0Opc = Op0.getOpcode();
484 unsigned Op1Opc = Op1.getOpcode();
485 unsigned Value, SH = 0;
486 TargetMask = ~TargetMask;
487 InsertMask = ~InsertMask;
Nate Begeman1333cea2006-05-07 00:23:38 +0000488
Nate Begeman9b6d4c22006-05-08 17:38:32 +0000489 // If the LHS has a foldable shift and the RHS does not, then swap it to the
490 // RHS so that we can fold the shift into the insert.
Nate Begeman1333cea2006-05-07 00:23:38 +0000491 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
492 if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
493 Op0.getOperand(0).getOpcode() == ISD::SRL) {
494 if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
495 Op1.getOperand(0).getOpcode() != ISD::SRL) {
496 std::swap(Op0, Op1);
497 std::swap(Op0Opc, Op1Opc);
Nate Begeman9b6d4c22006-05-08 17:38:32 +0000498 std::swap(TargetMask, InsertMask);
Nate Begeman1333cea2006-05-07 00:23:38 +0000499 }
Nate Begeman93c4bc62005-08-19 00:38:14 +0000500 }
Nate Begeman9b6d4c22006-05-08 17:38:32 +0000501 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
502 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
503 Op1.getOperand(0).getOpcode() != ISD::SRL) {
504 std::swap(Op0, Op1);
505 std::swap(Op0Opc, Op1Opc);
506 std::swap(TargetMask, InsertMask);
507 }
Nate Begeman93c4bc62005-08-19 00:38:14 +0000508 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000509
Nate Begeman1333cea2006-05-07 00:23:38 +0000510 unsigned MB, ME;
Hal Finkelff3ea802013-07-11 16:31:51 +0000511 if (isRunOfOnes(InsertMask, MB, ME)) {
Dale Johannesen8495a502009-11-20 22:16:40 +0000512 SDValue Tmp1, Tmp2;
Nate Begeman1333cea2006-05-07 00:23:38 +0000513
514 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
Chris Lattner97b3da12006-06-27 00:04:13 +0000515 isInt32Immediate(Op1.getOperand(1), Value)) {
Nate Begeman1333cea2006-05-07 00:23:38 +0000516 Op1 = Op1.getOperand(0);
517 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
518 }
519 if (Op1Opc == ISD::AND) {
Hal Finkeld9963c72014-04-13 17:10:58 +0000520 // The AND mask might not be a constant, and we need to make sure that
521 // if we're going to fold the masking with the insert, all bits not
522 // know to be zero in the mask are known to be one.
523 APInt MKZ, MKO;
Jay Foada0653a32014-05-14 21:14:37 +0000524 CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
Hal Finkeld9963c72014-04-13 17:10:58 +0000525 bool CanFoldMask = InsertMask == MKO.getZExtValue();
526
Nate Begeman1333cea2006-05-07 00:23:38 +0000527 unsigned SHOpc = Op1.getOperand(0).getOpcode();
Hal Finkeld9963c72014-04-13 17:10:58 +0000528 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
Chris Lattner97b3da12006-06-27 00:04:13 +0000529 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
Eric Christopher02e18042014-05-14 00:31:15 +0000530 // Note that Value must be in range here (less than 32) because
531 // otherwise there would not be any bits set in InsertMask.
Nate Begeman1333cea2006-05-07 00:23:38 +0000532 Op1 = Op1.getOperand(0).getOperand(0);
533 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
Nate Begeman1333cea2006-05-07 00:23:38 +0000534 }
535 }
Dale Johannesen8495a502009-11-20 22:16:40 +0000536
Chris Lattnera2963392006-05-12 16:29:37 +0000537 SH &= 31;
Dale Johannesen8495a502009-11-20 22:16:40 +0000538 SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
Evan Chengc3acfc02006-08-27 08:14:06 +0000539 getI32Imm(ME) };
Michael Liaob53d8962013-04-19 22:22:57 +0000540 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
Nate Begeman93c4bc62005-08-19 00:38:14 +0000541 }
Nate Begeman93c4bc62005-08-19 00:38:14 +0000542 }
Craig Topper062a2ba2014-04-25 05:30:21 +0000543 return nullptr;
Nate Begeman93c4bc62005-08-19 00:38:14 +0000544}
545
Hal Finkelc58ce412015-01-01 02:53:29 +0000546// Predict the number of instructions that would be generated by calling
547// SelectInt64(N).
Hal Finkelca6375f2015-01-04 12:35:03 +0000548static unsigned SelectInt64CountDirect(int64_t Imm) {
Hal Finkelc58ce412015-01-01 02:53:29 +0000549 // Assume no remaining bits.
550 unsigned Remainder = 0;
551 // Assume no shift required.
552 unsigned Shift = 0;
553
554 // If it can't be represented as a 32 bit value.
555 if (!isInt<32>(Imm)) {
556 Shift = countTrailingZeros<uint64_t>(Imm);
557 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
558
559 // If the shifted value fits 32 bits.
560 if (isInt<32>(ImmSh)) {
561 // Go with the shifted value.
562 Imm = ImmSh;
563 } else {
564 // Still stuck with a 64 bit value.
565 Remainder = Imm;
566 Shift = 32;
567 Imm >>= 32;
568 }
569 }
570
571 // Intermediate operand.
572 unsigned Result = 0;
573
574 // Handle first 32 bits.
575 unsigned Lo = Imm & 0xFFFF;
576 unsigned Hi = (Imm >> 16) & 0xFFFF;
577
578 // Simple value.
579 if (isInt<16>(Imm)) {
580 // Just the Lo bits.
581 ++Result;
582 } else if (Lo) {
583 // Handle the Hi bits and Lo bits.
584 Result += 2;
585 } else {
586 // Just the Hi bits.
587 ++Result;
588 }
589
590 // If no shift, we're done.
591 if (!Shift) return Result;
592
593 // Shift for next step if the upper 32-bits were not zero.
594 if (Imm)
595 ++Result;
596
597 // Add in the last bits as required.
598 if ((Hi = (Remainder >> 16) & 0xFFFF))
599 ++Result;
600 if ((Lo = Remainder & 0xFFFF))
601 ++Result;
602
603 return Result;
604}
605
Hal Finkel241ba792015-01-04 15:43:55 +0000606static uint64_t Rot64(uint64_t Imm, unsigned R) {
607 return (Imm << R) | (Imm >> (64 - R));
608}
609
Hal Finkelca6375f2015-01-04 12:35:03 +0000610static unsigned SelectInt64Count(int64_t Imm) {
Hal Finkel241ba792015-01-04 15:43:55 +0000611 unsigned Count = SelectInt64CountDirect(Imm);
Hal Finkel2f618792015-01-05 03:41:38 +0000612 if (Count == 1)
613 return Count;
Hal Finkelca6375f2015-01-04 12:35:03 +0000614
Hal Finkel241ba792015-01-04 15:43:55 +0000615 for (unsigned r = 1; r < 63; ++r) {
Hal Finkel2f618792015-01-05 03:41:38 +0000616 uint64_t RImm = Rot64(Imm, r);
617 unsigned RCount = SelectInt64CountDirect(RImm) + 1;
618 Count = std::min(Count, RCount);
619
620 // See comments in SelectInt64 for an explanation of the logic below.
621 unsigned LS = findLastSet(RImm);
622 if (LS != r-1)
623 continue;
624
625 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
626 uint64_t RImmWithOnes = RImm | OnesMask;
627
628 RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
Hal Finkel241ba792015-01-04 15:43:55 +0000629 Count = std::min(Count, RCount);
630 }
Hal Finkelca6375f2015-01-04 12:35:03 +0000631
Hal Finkel241ba792015-01-04 15:43:55 +0000632 return Count;
Hal Finkelca6375f2015-01-04 12:35:03 +0000633}
634
Hal Finkelc58ce412015-01-01 02:53:29 +0000635// Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count
636// (above) needs to be kept in sync with this function.
Hal Finkelca6375f2015-01-04 12:35:03 +0000637static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
Hal Finkelc58ce412015-01-01 02:53:29 +0000638 // Assume no remaining bits.
639 unsigned Remainder = 0;
640 // Assume no shift required.
641 unsigned Shift = 0;
642
643 // If it can't be represented as a 32 bit value.
644 if (!isInt<32>(Imm)) {
645 Shift = countTrailingZeros<uint64_t>(Imm);
646 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
647
648 // If the shifted value fits 32 bits.
649 if (isInt<32>(ImmSh)) {
650 // Go with the shifted value.
651 Imm = ImmSh;
652 } else {
653 // Still stuck with a 64 bit value.
654 Remainder = Imm;
655 Shift = 32;
656 Imm >>= 32;
657 }
658 }
659
660 // Intermediate operand.
661 SDNode *Result;
662
663 // Handle first 32 bits.
664 unsigned Lo = Imm & 0xFFFF;
665 unsigned Hi = (Imm >> 16) & 0xFFFF;
666
667 auto getI32Imm = [CurDAG](unsigned Imm) {
668 return CurDAG->getTargetConstant(Imm, MVT::i32);
669 };
670
671 // Simple value.
672 if (isInt<16>(Imm)) {
673 // Just the Lo bits.
674 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
675 } else if (Lo) {
676 // Handle the Hi bits.
677 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
678 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
679 // And Lo bits.
680 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
681 SDValue(Result, 0), getI32Imm(Lo));
682 } else {
683 // Just the Hi bits.
684 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
685 }
686
687 // If no shift, we're done.
688 if (!Shift) return Result;
689
690 // Shift for next step if the upper 32-bits were not zero.
691 if (Imm) {
692 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
693 SDValue(Result, 0),
694 getI32Imm(Shift),
695 getI32Imm(63 - Shift));
696 }
697
698 // Add in the last bits as required.
699 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
700 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
701 SDValue(Result, 0), getI32Imm(Hi));
702 }
703 if ((Lo = Remainder & 0xFFFF)) {
704 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
705 SDValue(Result, 0), getI32Imm(Lo));
706 }
707
708 return Result;
709}
710
Hal Finkelca6375f2015-01-04 12:35:03 +0000711static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
Hal Finkel241ba792015-01-04 15:43:55 +0000712 unsigned Count = SelectInt64CountDirect(Imm);
Hal Finkel2f618792015-01-05 03:41:38 +0000713 if (Count == 1)
714 return SelectInt64Direct(CurDAG, dl, Imm);
715
Hal Finkel241ba792015-01-04 15:43:55 +0000716 unsigned RMin = 0;
Hal Finkelca6375f2015-01-04 12:35:03 +0000717
Hal Finkel2f618792015-01-05 03:41:38 +0000718 int64_t MatImm;
719 unsigned MaskEnd;
720
Hal Finkel241ba792015-01-04 15:43:55 +0000721 for (unsigned r = 1; r < 63; ++r) {
Hal Finkel2f618792015-01-05 03:41:38 +0000722 uint64_t RImm = Rot64(Imm, r);
723 unsigned RCount = SelectInt64CountDirect(RImm) + 1;
Hal Finkel241ba792015-01-04 15:43:55 +0000724 if (RCount < Count) {
725 Count = RCount;
726 RMin = r;
Hal Finkel2f618792015-01-05 03:41:38 +0000727 MatImm = RImm;
728 MaskEnd = 63;
729 }
730
731 // If the immediate to generate has many trailing zeros, it might be
732 // worthwhile to generate a rotated value with too many leading ones
733 // (because that's free with li/lis's sign-extension semantics), and then
734 // mask them off after rotation.
735
736 unsigned LS = findLastSet(RImm);
737 // We're adding (63-LS) higher-order ones, and we expect to mask them off
738 // after performing the inverse rotation by (64-r). So we need that:
739 // 63-LS == 64-r => LS == r-1
740 if (LS != r-1)
741 continue;
742
743 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
744 uint64_t RImmWithOnes = RImm | OnesMask;
745
746 RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
747 if (RCount < Count) {
748 Count = RCount;
749 RMin = r;
750 MatImm = RImmWithOnes;
751 MaskEnd = LS;
Hal Finkel241ba792015-01-04 15:43:55 +0000752 }
Hal Finkelca6375f2015-01-04 12:35:03 +0000753 }
754
Hal Finkel241ba792015-01-04 15:43:55 +0000755 if (!RMin)
756 return SelectInt64Direct(CurDAG, dl, Imm);
757
758 auto getI32Imm = [CurDAG](unsigned Imm) {
759 return CurDAG->getTargetConstant(Imm, MVT::i32);
760 };
761
Hal Finkel2f618792015-01-05 03:41:38 +0000762 SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0);
763 return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
764 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
Hal Finkelca6375f2015-01-04 12:35:03 +0000765}
766
Hal Finkelc58ce412015-01-01 02:53:29 +0000767// Select a 64-bit constant.
768static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) {
769 SDLoc dl(N);
770
771 // Get 64 bit value.
772 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
773 return SelectInt64(CurDAG, dl, Imm);
774}
775
Hal Finkel8adf2252014-12-16 05:51:41 +0000776namespace {
777class BitPermutationSelector {
778 struct ValueBit {
779 SDValue V;
780
781 // The bit number in the value, using a convention where bit 0 is the
782 // lowest-order bit.
783 unsigned Idx;
784
785 enum Kind {
786 ConstZero,
787 Variable
788 } K;
789
790 ValueBit(SDValue V, unsigned I, Kind K = Variable)
791 : V(V), Idx(I), K(K) {}
792 ValueBit(Kind K = Variable)
793 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
794
795 bool isZero() const {
796 return K == ConstZero;
797 }
798
799 bool hasValue() const {
800 return K == Variable;
801 }
802
803 SDValue getValue() const {
804 assert(hasValue() && "Cannot get the value of a constant bit");
805 return V;
806 }
807
808 unsigned getValueBitIndex() const {
809 assert(hasValue() && "Cannot get the value bit index of a constant bit");
810 return Idx;
811 }
812 };
813
814 // A bit group has the same underlying value and the same rotate factor.
815 struct BitGroup {
816 SDValue V;
817 unsigned RLAmt;
818 unsigned StartIdx, EndIdx;
819
Hal Finkelc58ce412015-01-01 02:53:29 +0000820 // This rotation amount assumes that the lower 32 bits of the quantity are
821 // replicated in the high 32 bits by the rotation operator (which is done
822 // by rlwinm and friends in 64-bit mode).
823 bool Repl32;
824 // Did converting to Repl32 == true change the rotation factor? If it did,
825 // it decreased it by 32.
826 bool Repl32CR;
827 // Was this group coalesced after setting Repl32 to true?
828 bool Repl32Coalesced;
829
Hal Finkel8adf2252014-12-16 05:51:41 +0000830 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
Hal Finkelc58ce412015-01-01 02:53:29 +0000831 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
832 Repl32Coalesced(false) {
Hal Finkel8adf2252014-12-16 05:51:41 +0000833 DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
834 " [" << S << ", " << E << "]\n");
835 }
836 };
837
838 // Information on each (Value, RLAmt) pair (like the number of groups
839 // associated with each) used to choose the lowering method.
840 struct ValueRotInfo {
841 SDValue V;
842 unsigned RLAmt;
843 unsigned NumGroups;
844 unsigned FirstGroupStartIdx;
Hal Finkelc58ce412015-01-01 02:53:29 +0000845 bool Repl32;
Hal Finkel8adf2252014-12-16 05:51:41 +0000846
847 ValueRotInfo()
Hal Finkelc58ce412015-01-01 02:53:29 +0000848 : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
849 Repl32(false) {}
Hal Finkel8adf2252014-12-16 05:51:41 +0000850
851 // For sorting (in reverse order) by NumGroups, and then by
852 // FirstGroupStartIdx.
853 bool operator < (const ValueRotInfo &Other) const {
Hal Finkelc58ce412015-01-01 02:53:29 +0000854 // We need to sort so that the non-Repl32 come first because, when we're
855 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
856 // masking operation.
857 if (Repl32 < Other.Repl32)
858 return true;
859 else if (Repl32 > Other.Repl32)
860 return false;
861 else if (NumGroups > Other.NumGroups)
Hal Finkel8adf2252014-12-16 05:51:41 +0000862 return true;
863 else if (NumGroups < Other.NumGroups)
864 return false;
865 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
866 return true;
867 return false;
868 }
869 };
870
871 // Return true if something interesting was deduced, return false if we're
872 // providing only a generic representation of V (or something else likewise
873 // uninteresting for instruction selection).
874 bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
875 switch (V.getOpcode()) {
876 default: break;
877 case ISD::ROTL:
878 if (isa<ConstantSDNode>(V.getOperand(1))) {
879 unsigned RotAmt = V.getConstantOperandVal(1);
880
881 SmallVector<ValueBit, 64> LHSBits(Bits.size());
882 getValueBits(V.getOperand(0), LHSBits);
883
884 for (unsigned i = 0; i < Bits.size(); ++i)
885 Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
886
887 return true;
888 }
889 break;
890 case ISD::SHL:
891 if (isa<ConstantSDNode>(V.getOperand(1))) {
892 unsigned ShiftAmt = V.getConstantOperandVal(1);
893
894 SmallVector<ValueBit, 64> LHSBits(Bits.size());
895 getValueBits(V.getOperand(0), LHSBits);
896
897 for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
898 Bits[i] = LHSBits[i - ShiftAmt];
899
900 for (unsigned i = 0; i < ShiftAmt; ++i)
901 Bits[i] = ValueBit(ValueBit::ConstZero);
902
903 return true;
904 }
905 break;
906 case ISD::SRL:
907 if (isa<ConstantSDNode>(V.getOperand(1))) {
908 unsigned ShiftAmt = V.getConstantOperandVal(1);
909
910 SmallVector<ValueBit, 64> LHSBits(Bits.size());
911 getValueBits(V.getOperand(0), LHSBits);
912
913 for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
914 Bits[i] = LHSBits[i + ShiftAmt];
915
916 for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
917 Bits[i] = ValueBit(ValueBit::ConstZero);
918
919 return true;
920 }
921 break;
922 case ISD::AND:
923 if (isa<ConstantSDNode>(V.getOperand(1))) {
924 uint64_t Mask = V.getConstantOperandVal(1);
925
926 SmallVector<ValueBit, 64> LHSBits(Bits.size());
927 bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
928
929 for (unsigned i = 0; i < Bits.size(); ++i)
930 if (((Mask >> i) & 1) == 1)
931 Bits[i] = LHSBits[i];
932 else
933 Bits[i] = ValueBit(ValueBit::ConstZero);
934
935 // Mark this as interesting, only if the LHS was also interesting. This
936 // prevents the overall procedure from matching a single immediate 'and'
937 // (which is non-optimal because such an and might be folded with other
938 // things if we don't select it here).
939 return LHSTrivial;
940 }
941 break;
942 case ISD::OR: {
943 SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
944 getValueBits(V.getOperand(0), LHSBits);
945 getValueBits(V.getOperand(1), RHSBits);
946
947 bool AllDisjoint = true;
948 for (unsigned i = 0; i < Bits.size(); ++i)
949 if (LHSBits[i].isZero())
950 Bits[i] = RHSBits[i];
951 else if (RHSBits[i].isZero())
952 Bits[i] = LHSBits[i];
953 else {
954 AllDisjoint = false;
955 break;
956 }
957
958 if (!AllDisjoint)
959 break;
960
961 return true;
962 }
963 }
964
965 for (unsigned i = 0; i < Bits.size(); ++i)
966 Bits[i] = ValueBit(V, i);
967
968 return false;
969 }
970
971 // For each value (except the constant ones), compute the left-rotate amount
972 // to get it from its original to final position.
973 void computeRotationAmounts() {
974 HasZeros = false;
975 RLAmt.resize(Bits.size());
976 for (unsigned i = 0; i < Bits.size(); ++i)
977 if (Bits[i].hasValue()) {
978 unsigned VBI = Bits[i].getValueBitIndex();
979 if (i >= VBI)
980 RLAmt[i] = i - VBI;
981 else
982 RLAmt[i] = Bits.size() - (VBI - i);
983 } else if (Bits[i].isZero()) {
984 HasZeros = true;
985 RLAmt[i] = UINT32_MAX;
986 } else {
987 llvm_unreachable("Unknown value bit type");
988 }
989 }
990
991 // Collect groups of consecutive bits with the same underlying value and
Hal Finkelc58ce412015-01-01 02:53:29 +0000992 // rotation factor. If we're doing late masking, we ignore zeros, otherwise
993 // they break up groups.
994 void collectBitGroups(bool LateMask) {
Hal Finkel8adf2252014-12-16 05:51:41 +0000995 BitGroups.clear();
996
997 unsigned LastRLAmt = RLAmt[0];
998 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
999 unsigned LastGroupStartIdx = 0;
1000 for (unsigned i = 1; i < Bits.size(); ++i) {
1001 unsigned ThisRLAmt = RLAmt[i];
1002 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
Hal Finkelc58ce412015-01-01 02:53:29 +00001003 if (LateMask && !ThisValue) {
1004 ThisValue = LastValue;
1005 ThisRLAmt = LastRLAmt;
1006 // If we're doing late masking, then the first bit group always starts
1007 // at zero (even if the first bits were zero).
1008 if (BitGroups.empty())
1009 LastGroupStartIdx = 0;
1010 }
Hal Finkel8adf2252014-12-16 05:51:41 +00001011
1012 // If this bit has the same underlying value and the same rotate factor as
1013 // the last one, then they're part of the same group.
1014 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1015 continue;
1016
1017 if (LastValue.getNode())
1018 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1019 i-1));
1020 LastRLAmt = ThisRLAmt;
1021 LastValue = ThisValue;
1022 LastGroupStartIdx = i;
1023 }
1024 if (LastValue.getNode())
1025 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1026 Bits.size()-1));
1027
1028 if (BitGroups.empty())
1029 return;
1030
1031 // We might be able to combine the first and last groups.
1032 if (BitGroups.size() > 1) {
1033 // If the first and last groups are the same, then remove the first group
1034 // in favor of the last group, making the ending index of the last group
1035 // equal to the ending index of the to-be-removed first group.
1036 if (BitGroups[0].StartIdx == 0 &&
1037 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1038 BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1039 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
Hal Finkelc58ce412015-01-01 02:53:29 +00001040 DEBUG(dbgs() << "\tcombining final bit group with inital one\n");
Hal Finkel8adf2252014-12-16 05:51:41 +00001041 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1042 BitGroups.erase(BitGroups.begin());
1043 }
1044 }
1045 }
1046
1047 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1048 // associated with each. If there is a degeneracy, pick the one that occurs
1049 // first (in the final value).
1050 void collectValueRotInfo() {
1051 ValueRots.clear();
1052
1053 for (auto &BG : BitGroups) {
Hal Finkelc58ce412015-01-01 02:53:29 +00001054 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1055 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
Hal Finkel8adf2252014-12-16 05:51:41 +00001056 VRI.V = BG.V;
1057 VRI.RLAmt = BG.RLAmt;
Hal Finkelc58ce412015-01-01 02:53:29 +00001058 VRI.Repl32 = BG.Repl32;
Hal Finkel8adf2252014-12-16 05:51:41 +00001059 VRI.NumGroups += 1;
1060 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1061 }
1062
1063 // Now that we've collected the various ValueRotInfo instances, we need to
1064 // sort them.
1065 ValueRotsVec.clear();
1066 for (auto &I : ValueRots) {
1067 ValueRotsVec.push_back(I.second);
1068 }
1069 std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
1070 }
1071
Hal Finkelc58ce412015-01-01 02:53:29 +00001072 // In 64-bit mode, rlwinm and friends have a rotation operator that
1073 // replicates the low-order 32 bits into the high-order 32-bits. The mask
1074 // indices of these instructions can only be in the lower 32 bits, so they
1075 // can only represent some 64-bit bit groups. However, when they can be used,
1076 // the 32-bit replication can be used to represent, as a single bit group,
1077 // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1078 // groups when possible. Returns true if any of the bit groups were
1079 // converted.
1080 void assignRepl32BitGroups() {
1081 // If we have bits like this:
1082 //
1083 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1084 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
1085 // Groups: | RLAmt = 8 | RLAmt = 40 |
1086 //
1087 // But, making use of a 32-bit operation that replicates the low-order 32
1088 // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1089 // of 8.
1090
1091 auto IsAllLow32 = [this](BitGroup & BG) {
1092 if (BG.StartIdx <= BG.EndIdx) {
1093 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1094 if (!Bits[i].hasValue())
1095 continue;
1096 if (Bits[i].getValueBitIndex() >= 32)
1097 return false;
1098 }
1099 } else {
1100 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1101 if (!Bits[i].hasValue())
1102 continue;
1103 if (Bits[i].getValueBitIndex() >= 32)
1104 return false;
1105 }
1106 for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1107 if (!Bits[i].hasValue())
1108 continue;
1109 if (Bits[i].getValueBitIndex() >= 32)
1110 return false;
1111 }
1112 }
1113
1114 return true;
1115 };
1116
1117 for (auto &BG : BitGroups) {
1118 if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1119 if (IsAllLow32(BG)) {
1120 if (BG.RLAmt >= 32) {
1121 BG.RLAmt -= 32;
1122 BG.Repl32CR = true;
1123 }
1124
1125 BG.Repl32 = true;
1126
1127 DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
1128 BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
1129 " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1130 }
1131 }
1132 }
1133
1134 // Now walk through the bit groups, consolidating where possible.
1135 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1136 // We might want to remove this bit group by merging it with the previous
1137 // group (which might be the ending group).
1138 auto IP = (I == BitGroups.begin()) ?
1139 std::prev(BitGroups.end()) : std::prev(I);
1140 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1141 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1142
1143 DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
1144 I->V.getNode() << " RLAmt = " << I->RLAmt <<
1145 " [" << I->StartIdx << ", " << I->EndIdx <<
1146 "] with group with range [" <<
1147 IP->StartIdx << ", " << IP->EndIdx << "]\n");
1148
1149 IP->EndIdx = I->EndIdx;
1150 IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1151 IP->Repl32Coalesced = true;
1152 I = BitGroups.erase(I);
1153 continue;
1154 } else {
1155 // There is a special case worth handling: If there is a single group
1156 // covering the entire upper 32 bits, and it can be merged with both
1157 // the next and previous groups (which might be the same group), then
1158 // do so. If it is the same group (so there will be only one group in
1159 // total), then we need to reverse the order of the range so that it
1160 // covers the entire 64 bits.
1161 if (I->StartIdx == 32 && I->EndIdx == 63) {
1162 assert(std::next(I) == BitGroups.end() &&
1163 "bit group ends at index 63 but there is another?");
1164 auto IN = BitGroups.begin();
1165
1166 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1167 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1168 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1169 IsAllLow32(*I)) {
1170
1171 DEBUG(dbgs() << "\tcombining bit group for " <<
1172 I->V.getNode() << " RLAmt = " << I->RLAmt <<
1173 " [" << I->StartIdx << ", " << I->EndIdx <<
1174 "] with 32-bit replicated groups with ranges [" <<
1175 IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
1176 IN->StartIdx << ", " << IN->EndIdx << "]\n");
1177
1178 if (IP == IN) {
1179 // There is only one other group; change it to cover the whole
1180 // range (backward, so that it can still be Repl32 but cover the
1181 // whole 64-bit range).
1182 IP->StartIdx = 31;
1183 IP->EndIdx = 30;
1184 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1185 IP->Repl32Coalesced = true;
1186 I = BitGroups.erase(I);
1187 } else {
1188 // There are two separate groups, one before this group and one
1189 // after us (at the beginning). We're going to remove this group,
1190 // but also the group at the very beginning.
1191 IP->EndIdx = IN->EndIdx;
1192 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1193 IP->Repl32Coalesced = true;
1194 I = BitGroups.erase(I);
1195 BitGroups.erase(BitGroups.begin());
1196 }
1197
1198 // This must be the last group in the vector (and we might have
1199 // just invalidated the iterator above), so break here.
1200 break;
1201 }
1202 }
1203 }
1204
1205 ++I;
1206 }
1207 }
1208
Hal Finkel8adf2252014-12-16 05:51:41 +00001209 SDValue getI32Imm(unsigned Imm) {
1210 return CurDAG->getTargetConstant(Imm, MVT::i32);
1211 }
1212
Hal Finkelc58ce412015-01-01 02:53:29 +00001213 uint64_t getZerosMask() {
1214 uint64_t Mask = 0;
1215 for (unsigned i = 0; i < Bits.size(); ++i) {
1216 if (Bits[i].hasValue())
1217 continue;
Hal Finkelddf8d7d2015-01-01 19:33:59 +00001218 Mask |= (UINT64_C(1) << i);
Hal Finkelc58ce412015-01-01 02:53:29 +00001219 }
1220
1221 return ~Mask;
1222 }
1223
Hal Finkel8adf2252014-12-16 05:51:41 +00001224 // Depending on the number of groups for a particular value, it might be
1225 // better to rotate, mask explicitly (using andi/andis), and then or the
1226 // result. Select this part of the result first.
Hal Finkelc58ce412015-01-01 02:53:29 +00001227 void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
1228 if (BPermRewriterNoMasking)
1229 return;
Hal Finkel8adf2252014-12-16 05:51:41 +00001230
1231 for (ValueRotInfo &VRI : ValueRotsVec) {
1232 unsigned Mask = 0;
1233 for (unsigned i = 0; i < Bits.size(); ++i) {
1234 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1235 continue;
1236 if (RLAmt[i] != VRI.RLAmt)
1237 continue;
1238 Mask |= (1u << i);
1239 }
1240
1241 // Compute the masks for andi/andis that would be necessary.
1242 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1243 assert((ANDIMask != 0 || ANDISMask != 0) &&
1244 "No set bits in mask for value bit groups");
1245 bool NeedsRotate = VRI.RLAmt != 0;
1246
1247 // We're trying to minimize the number of instructions. If we have one
1248 // group, using one of andi/andis can break even. If we have three
1249 // groups, we can use both andi and andis and break even (to use both
1250 // andi and andis we also need to or the results together). We need four
1251 // groups if we also need to rotate. To use andi/andis we need to do more
1252 // than break even because rotate-and-mask instructions tend to be easier
1253 // to schedule.
1254
1255 // FIXME: We've biased here against using andi/andis, which is right for
1256 // POWER cores, but not optimal everywhere. For example, on the A2,
1257 // andi/andis have single-cycle latency whereas the rotate-and-mask
1258 // instructions take two cycles, and it would be better to bias toward
1259 // andi/andis in break-even cases.
1260
1261 unsigned NumAndInsts = (unsigned) NeedsRotate +
1262 (unsigned) (ANDIMask != 0) +
1263 (unsigned) (ANDISMask != 0) +
1264 (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1265 (unsigned) (bool) Res;
Hal Finkelc58ce412015-01-01 02:53:29 +00001266
1267 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1268 " RL: " << VRI.RLAmt << ":" <<
1269 "\n\t\t\tisel using masking: " << NumAndInsts <<
1270 " using rotates: " << VRI.NumGroups << "\n");
1271
Hal Finkel8adf2252014-12-16 05:51:41 +00001272 if (NumAndInsts >= VRI.NumGroups)
1273 continue;
1274
Hal Finkelc58ce412015-01-01 02:53:29 +00001275 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1276
1277 if (InstCnt) *InstCnt += NumAndInsts;
1278
Hal Finkel8adf2252014-12-16 05:51:41 +00001279 SDValue VRot;
1280 if (VRI.RLAmt) {
1281 SDValue Ops[] =
1282 { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
1283 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1284 Ops), 0);
1285 } else {
1286 VRot = VRI.V;
1287 }
1288
1289 SDValue ANDIVal, ANDISVal;
1290 if (ANDIMask != 0)
1291 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1292 VRot, getI32Imm(ANDIMask)), 0);
1293 if (ANDISMask != 0)
1294 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1295 VRot, getI32Imm(ANDISMask)), 0);
1296
1297 SDValue TotalVal;
1298 if (!ANDIVal)
1299 TotalVal = ANDISVal;
1300 else if (!ANDISVal)
1301 TotalVal = ANDIVal;
1302 else
1303 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1304 ANDIVal, ANDISVal), 0);
1305
1306 if (!Res)
1307 Res = TotalVal;
1308 else
1309 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1310 Res, TotalVal), 0);
1311
1312 // Now, remove all groups with this underlying value and rotation
1313 // factor.
1314 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1315 if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
1316 I = BitGroups.erase(I);
1317 else
1318 ++I;
1319 }
1320 }
1321 }
1322
1323 // Instruction selection for the 32-bit case.
Hal Finkelc58ce412015-01-01 02:53:29 +00001324 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
Hal Finkel8adf2252014-12-16 05:51:41 +00001325 SDLoc dl(N);
1326 SDValue Res;
1327
Hal Finkelc58ce412015-01-01 02:53:29 +00001328 if (InstCnt) *InstCnt = 0;
1329
Hal Finkel8adf2252014-12-16 05:51:41 +00001330 // Take care of cases that should use andi/andis first.
Hal Finkelc58ce412015-01-01 02:53:29 +00001331 SelectAndParts32(dl, Res, InstCnt);
Hal Finkel8adf2252014-12-16 05:51:41 +00001332
1333 // If we've not yet selected a 'starting' instruction, and we have no zeros
1334 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1335 // number of groups), and start with this rotated value.
Hal Finkelc58ce412015-01-01 02:53:29 +00001336 if ((!HasZeros || LateMask) && !Res) {
Hal Finkel8adf2252014-12-16 05:51:41 +00001337 ValueRotInfo &VRI = ValueRotsVec[0];
1338 if (VRI.RLAmt) {
Hal Finkelc58ce412015-01-01 02:53:29 +00001339 if (InstCnt) *InstCnt += 1;
Hal Finkel8adf2252014-12-16 05:51:41 +00001340 SDValue Ops[] =
1341 { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
1342 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1343 } else {
1344 Res = VRI.V;
1345 }
1346
1347 // Now, remove all groups with this underlying value and rotation factor.
1348 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1349 if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
1350 I = BitGroups.erase(I);
1351 else
1352 ++I;
1353 }
1354 }
1355
Hal Finkelc58ce412015-01-01 02:53:29 +00001356 if (InstCnt) *InstCnt += BitGroups.size();
1357
Hal Finkel8adf2252014-12-16 05:51:41 +00001358 // Insert the other groups (one at a time).
1359 for (auto &BG : BitGroups) {
Hal Finkelc58ce412015-01-01 02:53:29 +00001360 if (!Res) {
Hal Finkel8adf2252014-12-16 05:51:41 +00001361 SDValue Ops[] =
1362 { BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
1363 getI32Imm(Bits.size() - BG.StartIdx - 1) };
1364 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1365 } else {
1366 SDValue Ops[] =
1367 { Res, BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
1368 getI32Imm(Bits.size() - BG.StartIdx - 1) };
1369 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1370 }
1371 }
1372
Hal Finkelc58ce412015-01-01 02:53:29 +00001373 if (LateMask) {
1374 unsigned Mask = (unsigned) getZerosMask();
1375
1376 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1377 assert((ANDIMask != 0 || ANDISMask != 0) &&
1378 "No set bits in zeros mask?");
1379
1380 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1381 (unsigned) (ANDISMask != 0) +
1382 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1383
1384 SDValue ANDIVal, ANDISVal;
1385 if (ANDIMask != 0)
1386 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1387 Res, getI32Imm(ANDIMask)), 0);
1388 if (ANDISMask != 0)
1389 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1390 Res, getI32Imm(ANDISMask)), 0);
1391
1392 if (!ANDIVal)
1393 Res = ANDISVal;
1394 else if (!ANDISVal)
1395 Res = ANDIVal;
1396 else
1397 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1398 ANDIVal, ANDISVal), 0);
1399 }
1400
Hal Finkel8adf2252014-12-16 05:51:41 +00001401 return Res.getNode();
1402 }
1403
Hal Finkelc58ce412015-01-01 02:53:29 +00001404 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1405 unsigned MaskStart, unsigned MaskEnd,
1406 bool IsIns) {
1407 // In the notation used by the instructions, 'start' and 'end' are reversed
1408 // because bits are counted from high to low order.
1409 unsigned InstMaskStart = 64 - MaskEnd - 1,
1410 InstMaskEnd = 64 - MaskStart - 1;
1411
1412 if (Repl32)
1413 return 1;
1414
1415 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1416 InstMaskEnd == 63 - RLAmt)
1417 return 1;
1418
1419 return 2;
1420 }
1421
1422 // For 64-bit values, not all combinations of rotates and masks are
1423 // available. Produce one if it is available.
1424 SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32,
1425 unsigned MaskStart, unsigned MaskEnd,
1426 unsigned *InstCnt = nullptr) {
1427 // In the notation used by the instructions, 'start' and 'end' are reversed
1428 // because bits are counted from high to low order.
1429 unsigned InstMaskStart = 64 - MaskEnd - 1,
1430 InstMaskEnd = 64 - MaskStart - 1;
1431
1432 if (InstCnt) *InstCnt += 1;
1433
1434 if (Repl32) {
1435 // This rotation amount assumes that the lower 32 bits of the quantity
1436 // are replicated in the high 32 bits by the rotation operator (which is
1437 // done by rlwinm and friends).
1438 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1439 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1440 SDValue Ops[] =
1441 { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
1442 getI32Imm(InstMaskEnd - 32) };
1443 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1444 Ops), 0);
1445 }
1446
1447 if (InstMaskEnd == 63) {
1448 SDValue Ops[] =
1449 { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
1450 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1451 }
1452
1453 if (InstMaskStart == 0) {
1454 SDValue Ops[] =
1455 { V, getI32Imm(RLAmt), getI32Imm(InstMaskEnd) };
1456 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1457 }
1458
1459 if (InstMaskEnd == 63 - RLAmt) {
1460 SDValue Ops[] =
1461 { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
1462 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1463 }
1464
1465 // We cannot do this with a single instruction, so we'll use two. The
1466 // problem is that we're not free to choose both a rotation amount and mask
1467 // start and end independently. We can choose an arbitrary mask start and
1468 // end, but then the rotation amount is fixed. Rotation, however, can be
1469 // inverted, and so by applying an "inverse" rotation first, we can get the
1470 // desired result.
1471 if (InstCnt) *InstCnt += 1;
1472
1473 // The rotation mask for the second instruction must be MaskStart.
1474 unsigned RLAmt2 = MaskStart;
1475 // The first instruction must rotate V so that the overall rotation amount
1476 // is RLAmt.
1477 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1478 if (RLAmt1)
1479 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1480 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
1481 }
1482
1483 // For 64-bit values, not all combinations of rotates and masks are
1484 // available. Produce a rotate-mask-and-insert if one is available.
1485 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt,
1486 bool Repl32, unsigned MaskStart,
1487 unsigned MaskEnd, unsigned *InstCnt = nullptr) {
1488 // In the notation used by the instructions, 'start' and 'end' are reversed
1489 // because bits are counted from high to low order.
1490 unsigned InstMaskStart = 64 - MaskEnd - 1,
1491 InstMaskEnd = 64 - MaskStart - 1;
1492
1493 if (InstCnt) *InstCnt += 1;
1494
1495 if (Repl32) {
1496 // This rotation amount assumes that the lower 32 bits of the quantity
1497 // are replicated in the high 32 bits by the rotation operator (which is
1498 // done by rlwinm and friends).
1499 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1500 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1501 SDValue Ops[] =
1502 { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
1503 getI32Imm(InstMaskEnd - 32) };
1504 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
1505 Ops), 0);
1506 }
1507
1508 if (InstMaskEnd == 63 - RLAmt) {
1509 SDValue Ops[] =
1510 { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
1511 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
1512 }
1513
1514 // We cannot do this with a single instruction, so we'll use two. The
1515 // problem is that we're not free to choose both a rotation amount and mask
1516 // start and end independently. We can choose an arbitrary mask start and
1517 // end, but then the rotation amount is fixed. Rotation, however, can be
1518 // inverted, and so by applying an "inverse" rotation first, we can get the
1519 // desired result.
1520 if (InstCnt) *InstCnt += 1;
1521
1522 // The rotation mask for the second instruction must be MaskStart.
1523 unsigned RLAmt2 = MaskStart;
1524 // The first instruction must rotate V so that the overall rotation amount
1525 // is RLAmt.
1526 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1527 if (RLAmt1)
1528 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1529 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
1530 }
1531
1532 void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
1533 if (BPermRewriterNoMasking)
1534 return;
1535
1536 // The idea here is the same as in the 32-bit version, but with additional
1537 // complications from the fact that Repl32 might be true. Because we
1538 // aggressively convert bit groups to Repl32 form (which, for small
1539 // rotation factors, involves no other change), and then coalesce, it might
1540 // be the case that a single 64-bit masking operation could handle both
1541 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
1542 // form allowed coalescing, then we must use a 32-bit rotaton in order to
1543 // completely capture the new combined bit group.
1544
1545 for (ValueRotInfo &VRI : ValueRotsVec) {
1546 uint64_t Mask = 0;
1547
1548 // We need to add to the mask all bits from the associated bit groups.
1549 // If Repl32 is false, we need to add bits from bit groups that have
1550 // Repl32 true, but are trivially convertable to Repl32 false. Such a
1551 // group is trivially convertable if it overlaps only with the lower 32
1552 // bits, and the group has not been coalesced.
1553 auto MatchingBG = [VRI](BitGroup &BG) {
1554 if (VRI.V != BG.V)
1555 return false;
1556
1557 unsigned EffRLAmt = BG.RLAmt;
1558 if (!VRI.Repl32 && BG.Repl32) {
1559 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
1560 !BG.Repl32Coalesced) {
1561 if (BG.Repl32CR)
1562 EffRLAmt += 32;
1563 } else {
1564 return false;
1565 }
1566 } else if (VRI.Repl32 != BG.Repl32) {
1567 return false;
1568 }
1569
1570 if (VRI.RLAmt != EffRLAmt)
1571 return false;
1572
1573 return true;
1574 };
1575
1576 for (auto &BG : BitGroups) {
1577 if (!MatchingBG(BG))
1578 continue;
1579
1580 if (BG.StartIdx <= BG.EndIdx) {
1581 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
Hal Finkelddf8d7d2015-01-01 19:33:59 +00001582 Mask |= (UINT64_C(1) << i);
Hal Finkelc58ce412015-01-01 02:53:29 +00001583 } else {
1584 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
Hal Finkelddf8d7d2015-01-01 19:33:59 +00001585 Mask |= (UINT64_C(1) << i);
Hal Finkelc58ce412015-01-01 02:53:29 +00001586 for (unsigned i = 0; i <= BG.EndIdx; ++i)
Hal Finkelddf8d7d2015-01-01 19:33:59 +00001587 Mask |= (UINT64_C(1) << i);
Hal Finkelc58ce412015-01-01 02:53:29 +00001588 }
1589 }
1590
1591 // We can use the 32-bit andi/andis technique if the mask does not
1592 // require any higher-order bits. This can save an instruction compared
1593 // to always using the general 64-bit technique.
1594 bool Use32BitInsts = isUInt<32>(Mask);
1595 // Compute the masks for andi/andis that would be necessary.
1596 unsigned ANDIMask = (Mask & UINT16_MAX),
1597 ANDISMask = (Mask >> 16) & UINT16_MAX;
1598
1599 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
1600
1601 unsigned NumAndInsts = (unsigned) NeedsRotate +
1602 (unsigned) (bool) Res;
1603 if (Use32BitInsts)
1604 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
1605 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1606 else
1607 NumAndInsts += SelectInt64Count(Mask) + /* and */ 1;
1608
1609 unsigned NumRLInsts = 0;
1610 bool FirstBG = true;
1611 for (auto &BG : BitGroups) {
1612 if (!MatchingBG(BG))
1613 continue;
1614 NumRLInsts +=
1615 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
1616 !FirstBG);
1617 FirstBG = false;
1618 }
1619
1620 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1621 " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
1622 "\n\t\t\tisel using masking: " << NumAndInsts <<
1623 " using rotates: " << NumRLInsts << "\n");
1624
1625 // When we'd use andi/andis, we bias toward using the rotates (andi only
1626 // has a record form, and is cracked on POWER cores). However, when using
1627 // general 64-bit constant formation, bias toward the constant form,
1628 // because that exposes more opportunities for CSE.
1629 if (NumAndInsts > NumRLInsts)
1630 continue;
1631 if (Use32BitInsts && NumAndInsts == NumRLInsts)
1632 continue;
1633
1634 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1635
1636 if (InstCnt) *InstCnt += NumAndInsts;
1637
1638 SDValue VRot;
1639 // We actually need to generate a rotation if we have a non-zero rotation
1640 // factor or, in the Repl32 case, if we care about any of the
1641 // higher-order replicated bits. In the latter case, we generate a mask
1642 // backward so that it actually includes the entire 64 bits.
1643 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
1644 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1645 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
1646 else
1647 VRot = VRI.V;
1648
1649 SDValue TotalVal;
1650 if (Use32BitInsts) {
1651 assert((ANDIMask != 0 || ANDISMask != 0) &&
1652 "No set bits in mask when using 32-bit ands for 64-bit value");
1653
1654 SDValue ANDIVal, ANDISVal;
1655 if (ANDIMask != 0)
1656 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1657 VRot, getI32Imm(ANDIMask)), 0);
1658 if (ANDISMask != 0)
1659 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1660 VRot, getI32Imm(ANDISMask)), 0);
1661
1662 if (!ANDIVal)
1663 TotalVal = ANDISVal;
1664 else if (!ANDISVal)
1665 TotalVal = ANDIVal;
1666 else
1667 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1668 ANDIVal, ANDISVal), 0);
1669 } else {
1670 TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
1671 TotalVal =
1672 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1673 VRot, TotalVal), 0);
1674 }
1675
1676 if (!Res)
1677 Res = TotalVal;
1678 else
1679 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1680 Res, TotalVal), 0);
1681
1682 // Now, remove all groups with this underlying value and rotation
1683 // factor.
1684 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1685 if (MatchingBG(*I))
1686 I = BitGroups.erase(I);
1687 else
1688 ++I;
1689 }
1690 }
1691 }
1692
1693 // Instruction selection for the 64-bit case.
1694 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
1695 SDLoc dl(N);
1696 SDValue Res;
1697
1698 if (InstCnt) *InstCnt = 0;
1699
1700 // Take care of cases that should use andi/andis first.
1701 SelectAndParts64(dl, Res, InstCnt);
1702
1703 // If we've not yet selected a 'starting' instruction, and we have no zeros
1704 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1705 // number of groups), and start with this rotated value.
1706 if ((!HasZeros || LateMask) && !Res) {
1707 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
1708 // groups will come first, and so the VRI representing the largest number
1709 // of groups might not be first (it might be the first Repl32 groups).
1710 unsigned MaxGroupsIdx = 0;
1711 if (!ValueRotsVec[0].Repl32) {
1712 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
1713 if (ValueRotsVec[i].Repl32) {
1714 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
1715 MaxGroupsIdx = i;
1716 break;
1717 }
1718 }
1719
1720 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
1721 bool NeedsRotate = false;
1722 if (VRI.RLAmt) {
1723 NeedsRotate = true;
1724 } else if (VRI.Repl32) {
1725 for (auto &BG : BitGroups) {
1726 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
1727 BG.Repl32 != VRI.Repl32)
1728 continue;
1729
1730 // We don't need a rotate if the bit group is confined to the lower
1731 // 32 bits.
1732 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
1733 continue;
1734
1735 NeedsRotate = true;
1736 break;
1737 }
1738 }
1739
1740 if (NeedsRotate)
1741 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1742 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
1743 InstCnt);
1744 else
1745 Res = VRI.V;
1746
1747 // Now, remove all groups with this underlying value and rotation factor.
1748 if (Res)
1749 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1750 if (I->V == VRI.V && I->RLAmt == VRI.RLAmt && I->Repl32 == VRI.Repl32)
1751 I = BitGroups.erase(I);
1752 else
1753 ++I;
1754 }
1755 }
1756
1757 // Because 64-bit rotates are more flexible than inserts, we might have a
1758 // preference regarding which one we do first (to save one instruction).
1759 if (!Res)
1760 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
1761 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1762 false) <
1763 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1764 true)) {
1765 if (I != BitGroups.begin()) {
1766 BitGroup BG = *I;
1767 BitGroups.erase(I);
1768 BitGroups.insert(BitGroups.begin(), BG);
1769 }
1770
1771 break;
1772 }
1773 }
1774
1775 // Insert the other groups (one at a time).
1776 for (auto &BG : BitGroups) {
1777 if (!Res)
1778 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
1779 BG.EndIdx, InstCnt);
1780 else
1781 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
1782 BG.StartIdx, BG.EndIdx, InstCnt);
1783 }
1784
1785 if (LateMask) {
1786 uint64_t Mask = getZerosMask();
1787
1788 // We can use the 32-bit andi/andis technique if the mask does not
1789 // require any higher-order bits. This can save an instruction compared
1790 // to always using the general 64-bit technique.
1791 bool Use32BitInsts = isUInt<32>(Mask);
1792 // Compute the masks for andi/andis that would be necessary.
1793 unsigned ANDIMask = (Mask & UINT16_MAX),
1794 ANDISMask = (Mask >> 16) & UINT16_MAX;
1795
1796 if (Use32BitInsts) {
1797 assert((ANDIMask != 0 || ANDISMask != 0) &&
1798 "No set bits in mask when using 32-bit ands for 64-bit value");
1799
1800 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1801 (unsigned) (ANDISMask != 0) +
1802 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1803
1804 SDValue ANDIVal, ANDISVal;
1805 if (ANDIMask != 0)
1806 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1807 Res, getI32Imm(ANDIMask)), 0);
1808 if (ANDISMask != 0)
1809 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1810 Res, getI32Imm(ANDISMask)), 0);
1811
1812 if (!ANDIVal)
1813 Res = ANDISVal;
1814 else if (!ANDISVal)
1815 Res = ANDIVal;
1816 else
1817 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1818 ANDIVal, ANDISVal), 0);
1819 } else {
1820 if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1;
1821
1822 SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
1823 Res =
1824 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1825 Res, MaskVal), 0);
1826 }
1827 }
1828
1829 return Res.getNode();
1830 }
1831
1832 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
1833 // Fill in BitGroups.
1834 collectBitGroups(LateMask);
1835 if (BitGroups.empty())
1836 return nullptr;
1837
1838 // For 64-bit values, figure out when we can use 32-bit instructions.
1839 if (Bits.size() == 64)
1840 assignRepl32BitGroups();
1841
1842 // Fill in ValueRotsVec.
1843 collectValueRotInfo();
1844
1845 if (Bits.size() == 32) {
1846 return Select32(N, LateMask, InstCnt);
1847 } else {
1848 assert(Bits.size() == 64 && "Not 64 bits here?");
1849 return Select64(N, LateMask, InstCnt);
1850 }
1851
1852 return nullptr;
1853 }
1854
Hal Finkel8adf2252014-12-16 05:51:41 +00001855 SmallVector<ValueBit, 64> Bits;
1856
1857 bool HasZeros;
1858 SmallVector<unsigned, 64> RLAmt;
1859
1860 SmallVector<BitGroup, 16> BitGroups;
1861
1862 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
1863 SmallVector<ValueRotInfo, 16> ValueRotsVec;
1864
1865 SelectionDAG *CurDAG;
1866
1867public:
1868 BitPermutationSelector(SelectionDAG *DAG)
1869 : CurDAG(DAG) {}
1870
1871 // Here we try to match complex bit permutations into a set of
1872 // rotate-and-shift/shift/and/or instructions, using a set of heuristics
1873 // known to produce optimial code for common cases (like i32 byte swapping).
1874 SDNode *Select(SDNode *N) {
1875 Bits.resize(N->getValueType(0).getSizeInBits());
1876 if (!getValueBits(SDValue(N, 0), Bits))
1877 return nullptr;
1878
1879 DEBUG(dbgs() << "Considering bit-permutation-based instruction"
1880 " selection for: ");
1881 DEBUG(N->dump(CurDAG));
1882
1883 // Fill it RLAmt and set HasZeros.
1884 computeRotationAmounts();
1885
Hal Finkelc58ce412015-01-01 02:53:29 +00001886 if (!HasZeros)
1887 return Select(N, false);
Hal Finkel8adf2252014-12-16 05:51:41 +00001888
Hal Finkelc58ce412015-01-01 02:53:29 +00001889 // We currently have two techniques for handling results with zeros: early
1890 // masking (the default) and late masking. Late masking is sometimes more
1891 // efficient, but because the structure of the bit groups is different, it
1892 // is hard to tell without generating both and comparing the results. With
1893 // late masking, we ignore zeros in the resulting value when inserting each
1894 // set of bit groups, and then mask in the zeros at the end. With early
1895 // masking, we only insert the non-zero parts of the result at every step.
Hal Finkel8adf2252014-12-16 05:51:41 +00001896
Hal Finkelc58ce412015-01-01 02:53:29 +00001897 unsigned InstCnt, InstCntLateMask;
1898 DEBUG(dbgs() << "\tEarly masking:\n");
1899 SDNode *RN = Select(N, false, &InstCnt);
1900 DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
1901
1902 DEBUG(dbgs() << "\tLate masking:\n");
1903 SDNode *RNLM = Select(N, true, &InstCntLateMask);
1904 DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
1905 " instructions\n");
1906
1907 if (InstCnt <= InstCntLateMask) {
1908 DEBUG(dbgs() << "\tUsing early-masking for isel\n");
1909 return RN;
Hal Finkel8adf2252014-12-16 05:51:41 +00001910 }
1911
Hal Finkelc58ce412015-01-01 02:53:29 +00001912 DEBUG(dbgs() << "\tUsing late-masking for isel\n");
1913 return RNLM;
Hal Finkel8adf2252014-12-16 05:51:41 +00001914 }
1915};
1916} // anonymous namespace
1917
1918SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) {
1919 if (N->getValueType(0) != MVT::i32 &&
1920 N->getValueType(0) != MVT::i64)
1921 return nullptr;
1922
Hal Finkelc58ce412015-01-01 02:53:29 +00001923 if (!UseBitPermRewriter)
1924 return nullptr;
1925
Hal Finkel8adf2252014-12-16 05:51:41 +00001926 switch (N->getOpcode()) {
1927 default: break;
1928 case ISD::ROTL:
1929 case ISD::SHL:
1930 case ISD::SRL:
1931 case ISD::AND:
1932 case ISD::OR: {
1933 BitPermutationSelector BPS(CurDAG);
1934 return BPS.Select(N);
1935 }
1936 }
1937
1938 return nullptr;
1939}
1940
Chris Lattner2a1823d2005-08-21 18:50:37 +00001941/// SelectCC - Select a comparison of the specified values with the specified
1942/// condition code, returning the CR# of the expression.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00001943SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
Andrew Trickef9de2a2013-05-25 02:42:55 +00001944 ISD::CondCode CC, SDLoc dl) {
Chris Lattner2a1823d2005-08-21 18:50:37 +00001945 // Always select the LHS.
Chris Lattner97b3da12006-06-27 00:04:13 +00001946 unsigned Opc;
Andrew Trickc416ba62010-12-24 04:28:06 +00001947
Owen Anderson9f944592009-08-11 20:47:22 +00001948 if (LHS.getValueType() == MVT::i32) {
Chris Lattner9a40cca2006-06-27 00:10:13 +00001949 unsigned Imm;
Chris Lattneraa3926b2006-09-20 04:25:47 +00001950 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
1951 if (isInt32Immediate(RHS, Imm)) {
1952 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
Benjamin Kramer2788f792010-03-29 21:13:41 +00001953 if (isUInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001954 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
1955 getI32Imm(Imm & 0xFFFF)), 0);
Chris Lattneraa3926b2006-09-20 04:25:47 +00001956 // If this is a 16-bit signed immediate, fold it.
Benjamin Kramer2788f792010-03-29 21:13:41 +00001957 if (isInt<16>((int)Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001958 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
1959 getI32Imm(Imm & 0xFFFF)), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00001960
Chris Lattneraa3926b2006-09-20 04:25:47 +00001961 // For non-equality comparisons, the default code would materialize the
1962 // constant, then compare against it, like this:
1963 // lis r2, 4660
Andrew Trickc416ba62010-12-24 04:28:06 +00001964 // ori r2, r2, 22136
Chris Lattneraa3926b2006-09-20 04:25:47 +00001965 // cmpw cr0, r3, r2
1966 // Since we are just comparing for equality, we can emit this instead:
1967 // xoris r0,r3,0x1234
1968 // cmplwi cr0,r0,0x5678
1969 // beq cr0,L6
Dan Gohman32f71d72009-09-25 18:54:59 +00001970 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
1971 getI32Imm(Imm >> 16)), 0);
1972 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
1973 getI32Imm(Imm & 0xFFFF)), 0);
Chris Lattneraa3926b2006-09-20 04:25:47 +00001974 }
1975 Opc = PPC::CMPLW;
1976 } else if (ISD::isUnsignedIntSetCC(CC)) {
Benjamin Kramer2788f792010-03-29 21:13:41 +00001977 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001978 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
1979 getI32Imm(Imm & 0xFFFF)), 0);
Chris Lattner97b3da12006-06-27 00:04:13 +00001980 Opc = PPC::CMPLW;
1981 } else {
1982 short SImm;
1983 if (isIntS16Immediate(RHS, SImm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001984 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
1985 getI32Imm((int)SImm & 0xFFFF)),
Chris Lattner97b3da12006-06-27 00:04:13 +00001986 0);
1987 Opc = PPC::CMPW;
1988 }
Owen Anderson9f944592009-08-11 20:47:22 +00001989 } else if (LHS.getValueType() == MVT::i64) {
Chris Lattner97b3da12006-06-27 00:04:13 +00001990 uint64_t Imm;
Chris Lattnerda9b1a92006-09-20 04:33:27 +00001991 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
Gabor Greiff304a7a2008-08-28 21:40:38 +00001992 if (isInt64Immediate(RHS.getNode(), Imm)) {
Chris Lattnerda9b1a92006-09-20 04:33:27 +00001993 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
Benjamin Kramer2788f792010-03-29 21:13:41 +00001994 if (isUInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001995 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
1996 getI32Imm(Imm & 0xFFFF)), 0);
Chris Lattnerda9b1a92006-09-20 04:33:27 +00001997 // If this is a 16-bit signed immediate, fold it.
Benjamin Kramer2788f792010-03-29 21:13:41 +00001998 if (isInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001999 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2000 getI32Imm(Imm & 0xFFFF)), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002001
Chris Lattnerda9b1a92006-09-20 04:33:27 +00002002 // For non-equality comparisons, the default code would materialize the
2003 // constant, then compare against it, like this:
2004 // lis r2, 4660
Andrew Trickc416ba62010-12-24 04:28:06 +00002005 // ori r2, r2, 22136
Chris Lattnerda9b1a92006-09-20 04:33:27 +00002006 // cmpd cr0, r3, r2
2007 // Since we are just comparing for equality, we can emit this instead:
2008 // xoris r0,r3,0x1234
2009 // cmpldi cr0,r0,0x5678
2010 // beq cr0,L6
Benjamin Kramer2788f792010-03-29 21:13:41 +00002011 if (isUInt<32>(Imm)) {
Dan Gohman32f71d72009-09-25 18:54:59 +00002012 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
2013 getI64Imm(Imm >> 16)), 0);
2014 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
2015 getI64Imm(Imm & 0xFFFF)), 0);
Chris Lattnerda9b1a92006-09-20 04:33:27 +00002016 }
2017 }
2018 Opc = PPC::CMPLD;
2019 } else if (ISD::isUnsignedIntSetCC(CC)) {
Benjamin Kramer2788f792010-03-29 21:13:41 +00002020 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00002021 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2022 getI64Imm(Imm & 0xFFFF)), 0);
Chris Lattner97b3da12006-06-27 00:04:13 +00002023 Opc = PPC::CMPLD;
2024 } else {
2025 short SImm;
2026 if (isIntS16Immediate(RHS, SImm))
Dan Gohman32f71d72009-09-25 18:54:59 +00002027 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2028 getI64Imm(SImm & 0xFFFF)),
Chris Lattner97b3da12006-06-27 00:04:13 +00002029 0);
2030 Opc = PPC::CMPD;
2031 }
Owen Anderson9f944592009-08-11 20:47:22 +00002032 } else if (LHS.getValueType() == MVT::f32) {
Chris Lattner97b3da12006-06-27 00:04:13 +00002033 Opc = PPC::FCMPUS;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002034 } else {
Owen Anderson9f944592009-08-11 20:47:22 +00002035 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
Eric Christopher1b8e7632014-05-22 01:07:24 +00002036 Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002037 }
Dan Gohman32f71d72009-09-25 18:54:59 +00002038 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
Chris Lattner2a1823d2005-08-21 18:50:37 +00002039}
2040
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002041static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
Chris Lattner2a1823d2005-08-21 18:50:37 +00002042 switch (CC) {
Chris Lattner630bbce2006-05-25 16:54:16 +00002043 case ISD::SETUEQ:
Dale Johannesen160be0f2008-11-07 22:54:33 +00002044 case ISD::SETONE:
2045 case ISD::SETOLE:
2046 case ISD::SETOGE:
Torok Edwinfbcc6632009-07-14 16:55:14 +00002047 llvm_unreachable("Should be lowered by legalize!");
2048 default: llvm_unreachable("Unknown condition!");
Dale Johannesen160be0f2008-11-07 22:54:33 +00002049 case ISD::SETOEQ:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002050 case ISD::SETEQ: return PPC::PRED_EQ;
Chris Lattner630bbce2006-05-25 16:54:16 +00002051 case ISD::SETUNE:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002052 case ISD::SETNE: return PPC::PRED_NE;
Dale Johannesen160be0f2008-11-07 22:54:33 +00002053 case ISD::SETOLT:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002054 case ISD::SETLT: return PPC::PRED_LT;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002055 case ISD::SETULE:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002056 case ISD::SETLE: return PPC::PRED_LE;
Dale Johannesen160be0f2008-11-07 22:54:33 +00002057 case ISD::SETOGT:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002058 case ISD::SETGT: return PPC::PRED_GT;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002059 case ISD::SETUGE:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002060 case ISD::SETGE: return PPC::PRED_GE;
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002061 case ISD::SETO: return PPC::PRED_NU;
2062 case ISD::SETUO: return PPC::PRED_UN;
Dale Johannesen160be0f2008-11-07 22:54:33 +00002063 // These two are invalid for floating point. Assume we have int.
2064 case ISD::SETULT: return PPC::PRED_LT;
2065 case ISD::SETUGT: return PPC::PRED_GT;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002066 }
Chris Lattner2a1823d2005-08-21 18:50:37 +00002067}
2068
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002069/// getCRIdxForSetCC - Return the index of the condition register field
2070/// associated with the SetCC condition, and whether or not the field is
2071/// treated as inverted. That is, lt = 0; ge = 0 inverted.
Ulrich Weigand47e93282013-07-03 15:13:30 +00002072static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
Chris Lattner89f36e62008-01-08 06:46:30 +00002073 Invert = false;
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002074 switch (CC) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002075 default: llvm_unreachable("Unknown condition!");
Chris Lattner89f36e62008-01-08 06:46:30 +00002076 case ISD::SETOLT:
2077 case ISD::SETLT: return 0; // Bit #0 = SETOLT
2078 case ISD::SETOGT:
2079 case ISD::SETGT: return 1; // Bit #1 = SETOGT
2080 case ISD::SETOEQ:
2081 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
2082 case ISD::SETUO: return 3; // Bit #3 = SETUO
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002083 case ISD::SETUGE:
Chris Lattner89f36e62008-01-08 06:46:30 +00002084 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002085 case ISD::SETULE:
Chris Lattner89f36e62008-01-08 06:46:30 +00002086 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
Chris Lattner1fbb0d32006-05-25 18:06:16 +00002087 case ISD::SETUNE:
Chris Lattner89f36e62008-01-08 06:46:30 +00002088 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
2089 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
Andrew Trickc416ba62010-12-24 04:28:06 +00002090 case ISD::SETUEQ:
2091 case ISD::SETOGE:
2092 case ISD::SETOLE:
Dale Johannesen160be0f2008-11-07 22:54:33 +00002093 case ISD::SETONE:
Torok Edwinfbcc6632009-07-14 16:55:14 +00002094 llvm_unreachable("Invalid branch code: should be expanded by legalize");
Dale Johannesen160be0f2008-11-07 22:54:33 +00002095 // These are invalid for floating point. Assume integer.
2096 case ISD::SETULT: return 0;
2097 case ISD::SETUGT: return 1;
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002098 }
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002099}
Chris Lattnerc5292ec2005-08-21 22:31:09 +00002100
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002101// getVCmpInst: return the vector compare instruction for the specified
2102// vector type and condition code. Since this is for altivec specific code,
2103// only support the altivec types (v16i8, v8i16, v4i32, and v4f32).
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002104static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
2105 bool HasVSX, bool &Swap, bool &Negate) {
2106 Swap = false;
2107 Negate = false;
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002108
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002109 if (VecVT.isFloatingPoint()) {
2110 /* Handle some cases by swapping input operands. */
2111 switch (CC) {
2112 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
2113 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2114 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
2115 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
2116 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2117 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
2118 default: break;
2119 }
2120 /* Handle some cases by negating the result. */
2121 switch (CC) {
2122 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2123 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
2124 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
2125 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
2126 default: break;
2127 }
2128 /* We have instructions implementing the remaining cases. */
2129 switch (CC) {
2130 case ISD::SETEQ:
2131 case ISD::SETOEQ:
2132 if (VecVT == MVT::v4f32)
2133 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
2134 else if (VecVT == MVT::v2f64)
2135 return PPC::XVCMPEQDP;
2136 break;
2137 case ISD::SETGT:
2138 case ISD::SETOGT:
2139 if (VecVT == MVT::v4f32)
2140 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
2141 else if (VecVT == MVT::v2f64)
2142 return PPC::XVCMPGTDP;
2143 break;
2144 case ISD::SETGE:
2145 case ISD::SETOGE:
2146 if (VecVT == MVT::v4f32)
2147 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
2148 else if (VecVT == MVT::v2f64)
2149 return PPC::XVCMPGEDP;
2150 break;
2151 default:
2152 break;
2153 }
2154 llvm_unreachable("Invalid floating-point vector compare condition");
2155 } else {
2156 /* Handle some cases by swapping input operands. */
2157 switch (CC) {
2158 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
2159 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2160 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2161 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
2162 default: break;
2163 }
2164 /* Handle some cases by negating the result. */
2165 switch (CC) {
2166 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2167 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
2168 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
2169 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
2170 default: break;
2171 }
2172 /* We have instructions implementing the remaining cases. */
2173 switch (CC) {
2174 case ISD::SETEQ:
2175 case ISD::SETUEQ:
2176 if (VecVT == MVT::v16i8)
2177 return PPC::VCMPEQUB;
2178 else if (VecVT == MVT::v8i16)
2179 return PPC::VCMPEQUH;
2180 else if (VecVT == MVT::v4i32)
2181 return PPC::VCMPEQUW;
2182 break;
2183 case ISD::SETGT:
2184 if (VecVT == MVT::v16i8)
2185 return PPC::VCMPGTSB;
2186 else if (VecVT == MVT::v8i16)
2187 return PPC::VCMPGTSH;
2188 else if (VecVT == MVT::v4i32)
2189 return PPC::VCMPGTSW;
2190 break;
2191 case ISD::SETUGT:
2192 if (VecVT == MVT::v16i8)
2193 return PPC::VCMPGTUB;
2194 else if (VecVT == MVT::v8i16)
2195 return PPC::VCMPGTUH;
2196 else if (VecVT == MVT::v4i32)
2197 return PPC::VCMPGTUW;
2198 break;
2199 default:
2200 break;
2201 }
2202 llvm_unreachable("Invalid integer vector compare condition");
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002203 }
2204}
2205
Dan Gohmanea6f91f2010-01-05 01:24:18 +00002206SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002207 SDLoc dl(N);
Chris Lattner491b8292005-10-06 19:03:35 +00002208 unsigned Imm;
2209 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
Roman Divacky254f8212011-06-20 15:28:39 +00002210 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
2211 bool isPPC64 = (PtrVT == MVT::i64);
2212
Eric Christopher1b8e7632014-05-22 01:07:24 +00002213 if (!PPCSubTarget->useCRBits() &&
Hal Finkel940ab932014-02-28 00:27:01 +00002214 isInt32Immediate(N->getOperand(1), Imm)) {
Chris Lattner491b8292005-10-06 19:03:35 +00002215 // We can codegen setcc op, imm very efficiently compared to a brcond.
2216 // Check for those cases here.
2217 // setcc op, 0
2218 if (Imm == 0) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002219 SDValue Op = N->getOperand(0);
Chris Lattner491b8292005-10-06 19:03:35 +00002220 switch (CC) {
Chris Lattnere2969492005-10-21 21:17:10 +00002221 default: break;
Evan Chengc3acfc02006-08-27 08:14:06 +00002222 case ISD::SETEQ: {
Dan Gohman32f71d72009-09-25 18:54:59 +00002223 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002224 SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
Craig Topper481fb282014-04-27 19:21:11 +00002225 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Evan Chengc3acfc02006-08-27 08:14:06 +00002226 }
Chris Lattnere2969492005-10-21 21:17:10 +00002227 case ISD::SETNE: {
Roman Divacky254f8212011-06-20 15:28:39 +00002228 if (isPPC64) break;
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002229 SDValue AD =
Chris Lattner3e5fbd72010-12-21 02:38:05 +00002230 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Dan Gohman32f71d72009-09-25 18:54:59 +00002231 Op, getI32Imm(~0U)), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002232 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
Evan Cheng34b70ee2006-08-26 08:00:10 +00002233 AD.getValue(1));
Chris Lattner491b8292005-10-06 19:03:35 +00002234 }
Evan Chengc3acfc02006-08-27 08:14:06 +00002235 case ISD::SETLT: {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002236 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Craig Topper481fb282014-04-27 19:21:11 +00002237 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Evan Chengc3acfc02006-08-27 08:14:06 +00002238 }
Chris Lattnere2969492005-10-21 21:17:10 +00002239 case ISD::SETGT: {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002240 SDValue T =
Dan Gohman32f71d72009-09-25 18:54:59 +00002241 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
2242 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002243 SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Craig Topper481fb282014-04-27 19:21:11 +00002244 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Chris Lattnere2969492005-10-21 21:17:10 +00002245 }
2246 }
Chris Lattner491b8292005-10-06 19:03:35 +00002247 } else if (Imm == ~0U) { // setcc op, -1
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002248 SDValue Op = N->getOperand(0);
Chris Lattner491b8292005-10-06 19:03:35 +00002249 switch (CC) {
Chris Lattnere2969492005-10-21 21:17:10 +00002250 default: break;
2251 case ISD::SETEQ:
Roman Divacky254f8212011-06-20 15:28:39 +00002252 if (isPPC64) break;
Chris Lattner3e5fbd72010-12-21 02:38:05 +00002253 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Dan Gohman32f71d72009-09-25 18:54:59 +00002254 Op, getI32Imm(1)), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002255 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2256 SDValue(CurDAG->getMachineNode(PPC::LI, dl,
Dan Gohman32f71d72009-09-25 18:54:59 +00002257 MVT::i32,
2258 getI32Imm(0)), 0),
Dale Johannesenf08a47b2009-02-04 23:02:30 +00002259 Op.getValue(1));
Chris Lattnere2969492005-10-21 21:17:10 +00002260 case ISD::SETNE: {
Roman Divacky254f8212011-06-20 15:28:39 +00002261 if (isPPC64) break;
Dan Gohman32f71d72009-09-25 18:54:59 +00002262 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
Chris Lattner3e5fbd72010-12-21 02:38:05 +00002263 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Dan Gohman32f71d72009-09-25 18:54:59 +00002264 Op, getI32Imm(~0U));
Owen Anderson9f944592009-08-11 20:47:22 +00002265 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002266 Op, SDValue(AD, 1));
Chris Lattner491b8292005-10-06 19:03:35 +00002267 }
Chris Lattnere2969492005-10-21 21:17:10 +00002268 case ISD::SETLT: {
Dan Gohman32f71d72009-09-25 18:54:59 +00002269 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
2270 getI32Imm(1)), 0);
2271 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
2272 Op), 0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002273 SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Craig Topper481fb282014-04-27 19:21:11 +00002274 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Chris Lattnere2969492005-10-21 21:17:10 +00002275 }
Evan Chengc3acfc02006-08-27 08:14:06 +00002276 case ISD::SETGT: {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002277 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Michael Liaob53d8962013-04-19 22:22:57 +00002278 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
Dale Johannesenf08a47b2009-02-04 23:02:30 +00002279 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002280 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
Evan Cheng34b70ee2006-08-26 08:00:10 +00002281 getI32Imm(1));
Chris Lattnere2969492005-10-21 21:17:10 +00002282 }
Evan Chengc3acfc02006-08-27 08:14:06 +00002283 }
Chris Lattner491b8292005-10-06 19:03:35 +00002284 }
2285 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002286
Adhemerval Zanellafe3f7932012-10-08 18:59:53 +00002287 SDValue LHS = N->getOperand(0);
2288 SDValue RHS = N->getOperand(1);
2289
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002290 // Altivec Vector compare instructions do not set any CR register by default and
2291 // vector compare operations return the same type as the operands.
Adhemerval Zanellafe3f7932012-10-08 18:59:53 +00002292 if (LHS.getValueType().isVector()) {
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002293 EVT VecVT = LHS.getValueType();
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002294 bool Swap, Negate;
2295 unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
2296 PPCSubTarget->hasVSX(), Swap, Negate);
2297 if (Swap)
2298 std::swap(LHS, RHS);
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002299
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002300 if (Negate) {
2301 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
2302 return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR :
2303 PPC::VNOR,
2304 VecVT, VCmp, VCmp);
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002305 }
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002306
2307 return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
Adhemerval Zanellafe3f7932012-10-08 18:59:53 +00002308 }
2309
Eric Christopher1b8e7632014-05-22 01:07:24 +00002310 if (PPCSubTarget->useCRBits())
Craig Topper062a2ba2014-04-25 05:30:21 +00002311 return nullptr;
Hal Finkel940ab932014-02-28 00:27:01 +00002312
Chris Lattner491b8292005-10-06 19:03:35 +00002313 bool Inv;
Ulrich Weigand47e93282013-07-03 15:13:30 +00002314 unsigned Idx = getCRIdxForSetCC(CC, Inv);
Adhemerval Zanellafe3f7932012-10-08 18:59:53 +00002315 SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002316 SDValue IntCR;
Andrew Trickc416ba62010-12-24 04:28:06 +00002317
Chris Lattner491b8292005-10-06 19:03:35 +00002318 // Force the ccreg into CR7.
Owen Anderson9f944592009-08-11 20:47:22 +00002319 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
Andrew Trickc416ba62010-12-24 04:28:06 +00002320
Craig Topper062a2ba2014-04-25 05:30:21 +00002321 SDValue InFlag(nullptr, 0); // Null incoming flag value.
Andrew Trickc416ba62010-12-24 04:28:06 +00002322 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
Chris Lattnerbd099102005-12-01 03:50:19 +00002323 InFlag).getValue(1);
Andrew Trickc416ba62010-12-24 04:28:06 +00002324
Ulrich Weigandd5ebc622013-07-03 17:05:42 +00002325 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
2326 CCReg), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002327
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002328 SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
Evan Chengc3acfc02006-08-27 08:14:06 +00002329 getI32Imm(31), getI32Imm(31) };
Ulrich Weigand47e93282013-07-03 15:13:30 +00002330 if (!Inv)
Craig Topper481fb282014-04-27 19:21:11 +00002331 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Chris Lattner89f36e62008-01-08 06:46:30 +00002332
2333 // Get the specified bit.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002334 SDValue Tmp =
Michael Liaob53d8962013-04-19 22:22:57 +00002335 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
Ulrich Weigand47e93282013-07-03 15:13:30 +00002336 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
Chris Lattner491b8292005-10-06 19:03:35 +00002337}
Chris Lattner502a3692005-10-06 18:56:10 +00002338
Chris Lattner318622f2005-10-06 19:07:45 +00002339
Chris Lattner43ff01e2005-08-17 19:33:03 +00002340// Select - Convert the specified operand from a target-independent to a
2341// target-specific node if it hasn't already been changed.
Dan Gohmanea6f91f2010-01-05 01:24:18 +00002342SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002343 SDLoc dl(N);
Tim Northover31d093c2013-09-22 08:21:56 +00002344 if (N->isMachineOpcode()) {
2345 N->setNodeId(-1);
Craig Topper062a2ba2014-04-25 05:30:21 +00002346 return nullptr; // Already selected.
Tim Northover31d093c2013-09-22 08:21:56 +00002347 }
Chris Lattner08c319f2005-09-29 00:59:32 +00002348
Hal Finkel51b3fd12014-09-02 06:23:54 +00002349 // In case any misguided DAG-level optimizations form an ADD with a
2350 // TargetConstant operand, crash here instead of miscompiling (by selecting
2351 // an r+r add instead of some kind of r+i add).
2352 if (N->getOpcode() == ISD::ADD &&
2353 N->getOperand(1).getOpcode() == ISD::TargetConstant)
2354 llvm_unreachable("Invalid ADD with TargetConstant operand");
2355
Hal Finkel8adf2252014-12-16 05:51:41 +00002356 // Try matching complex bit permutations before doing anything else.
2357 if (SDNode *NN = SelectBitPermutation(N))
2358 return NN;
2359
Chris Lattner43ff01e2005-08-17 19:33:03 +00002360 switch (N->getOpcode()) {
Chris Lattner498915d2005-09-07 23:45:15 +00002361 default: break;
Andrew Trickc416ba62010-12-24 04:28:06 +00002362
Jim Laskey095e6f32006-12-12 13:23:43 +00002363 case ISD::Constant: {
Hal Finkelc58ce412015-01-01 02:53:29 +00002364 if (N->getValueType(0) == MVT::i64)
2365 return SelectInt64(CurDAG, N);
Jim Laskey095e6f32006-12-12 13:23:43 +00002366 break;
2367 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002368
Hal Finkel940ab932014-02-28 00:27:01 +00002369 case ISD::SETCC: {
2370 SDNode *SN = SelectSETCC(N);
2371 if (SN)
2372 return SN;
2373 break;
2374 }
Evan Cheng6dc90ca2006-02-09 00:37:58 +00002375 case PPCISD::GlobalBaseReg:
Evan Cheng61413a32006-08-26 05:34:46 +00002376 return getGlobalBaseReg();
Andrew Trickc416ba62010-12-24 04:28:06 +00002377
Hal Finkelb5e9b042014-12-11 22:51:06 +00002378 case ISD::FrameIndex:
2379 return getFrameIndex(N, N);
Chris Lattner6961fc72006-03-26 10:06:40 +00002380
Ulrich Weigandd5ebc622013-07-03 17:05:42 +00002381 case PPCISD::MFOCRF: {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002382 SDValue InFlag = N->getOperand(1);
Ulrich Weigandd5ebc622013-07-03 17:05:42 +00002383 return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
2384 N->getOperand(0), InFlag);
Chris Lattner6961fc72006-03-26 10:06:40 +00002385 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002386
Hal Finkelbbdee932014-12-02 22:01:00 +00002387 case PPCISD::READ_TIME_BASE: {
2388 return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
2389 MVT::Other, N->getOperand(0));
2390 }
2391
Hal Finkel13d104b2014-12-11 18:37:52 +00002392 case PPCISD::SRA_ADDZE: {
2393 SDValue N0 = N->getOperand(0);
2394 SDValue ShiftAmt =
2395 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
2396 getConstantIntValue(), N->getValueType(0));
2397 if (N->getValueType(0) == MVT::i64) {
2398 SDNode *Op =
2399 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
2400 N0, ShiftAmt);
2401 return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64,
2402 SDValue(Op, 0), SDValue(Op, 1));
2403 } else {
2404 assert(N->getValueType(0) == MVT::i32 &&
2405 "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
2406 SDNode *Op =
2407 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
2408 N0, ShiftAmt);
2409 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2410 SDValue(Op, 0), SDValue(Op, 1));
Chris Lattnerdc664572005-08-25 17:50:06 +00002411 }
Chris Lattner6e184f22005-08-25 22:04:30 +00002412 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002413
Chris Lattnerce645542006-11-10 02:08:47 +00002414 case ISD::LOAD: {
2415 // Handle preincrement loads.
Dan Gohmanea6f91f2010-01-05 01:24:18 +00002416 LoadSDNode *LD = cast<LoadSDNode>(N);
Owen Anderson53aa7a92009-08-10 22:56:29 +00002417 EVT LoadedVT = LD->getMemoryVT();
Andrew Trickc416ba62010-12-24 04:28:06 +00002418
Chris Lattnerce645542006-11-10 02:08:47 +00002419 // Normal loads are handled by code generated from the .td file.
2420 if (LD->getAddressingMode() != ISD::PRE_INC)
2421 break;
Andrew Trickc416ba62010-12-24 04:28:06 +00002422
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002423 SDValue Offset = LD->getOffset();
Ulrich Weigandd1b99d32013-03-22 14:58:17 +00002424 if (Offset.getOpcode() == ISD::TargetConstant ||
Chris Lattnerc5102bf2006-11-11 04:53:30 +00002425 Offset.getOpcode() == ISD::TargetGlobalAddress) {
Andrew Trickc416ba62010-12-24 04:28:06 +00002426
Chris Lattner474b5b72006-11-15 19:55:13 +00002427 unsigned Opcode;
2428 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
Owen Anderson9f944592009-08-11 20:47:22 +00002429 if (LD->getValueType(0) != MVT::i64) {
Chris Lattner474b5b72006-11-15 19:55:13 +00002430 // Handle PPC32 integer and normal FP loads.
Owen Anderson9f944592009-08-11 20:47:22 +00002431 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2432 switch (LoadedVT.getSimpleVT().SimpleTy) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002433 default: llvm_unreachable("Invalid PPC load type!");
Owen Anderson9f944592009-08-11 20:47:22 +00002434 case MVT::f64: Opcode = PPC::LFDU; break;
2435 case MVT::f32: Opcode = PPC::LFSU; break;
2436 case MVT::i32: Opcode = PPC::LWZU; break;
2437 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
2438 case MVT::i1:
2439 case MVT::i8: Opcode = PPC::LBZU; break;
Chris Lattner474b5b72006-11-15 19:55:13 +00002440 }
2441 } else {
Owen Anderson9f944592009-08-11 20:47:22 +00002442 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2443 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2444 switch (LoadedVT.getSimpleVT().SimpleTy) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002445 default: llvm_unreachable("Invalid PPC load type!");
Owen Anderson9f944592009-08-11 20:47:22 +00002446 case MVT::i64: Opcode = PPC::LDU; break;
2447 case MVT::i32: Opcode = PPC::LWZU8; break;
2448 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
2449 case MVT::i1:
2450 case MVT::i8: Opcode = PPC::LBZU8; break;
Chris Lattner474b5b72006-11-15 19:55:13 +00002451 }
2452 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002453
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002454 SDValue Chain = LD->getChain();
2455 SDValue Base = LD->getBasePtr();
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002456 SDValue Ops[] = { Offset, Base, Chain };
Dan Gohman32f71d72009-09-25 18:54:59 +00002457 return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
Eric Christopher1b8e7632014-05-22 01:07:24 +00002458 PPCLowering->getPointerTy(),
Michael Liaob53d8962013-04-19 22:22:57 +00002459 MVT::Other, Ops);
Chris Lattnerce645542006-11-10 02:08:47 +00002460 } else {
Hal Finkelca542be2012-06-20 15:43:03 +00002461 unsigned Opcode;
2462 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2463 if (LD->getValueType(0) != MVT::i64) {
2464 // Handle PPC32 integer and normal FP loads.
2465 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2466 switch (LoadedVT.getSimpleVT().SimpleTy) {
2467 default: llvm_unreachable("Invalid PPC load type!");
2468 case MVT::f64: Opcode = PPC::LFDUX; break;
2469 case MVT::f32: Opcode = PPC::LFSUX; break;
2470 case MVT::i32: Opcode = PPC::LWZUX; break;
2471 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
2472 case MVT::i1:
2473 case MVT::i8: Opcode = PPC::LBZUX; break;
2474 }
2475 } else {
2476 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2477 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
2478 "Invalid sext update load");
2479 switch (LoadedVT.getSimpleVT().SimpleTy) {
2480 default: llvm_unreachable("Invalid PPC load type!");
2481 case MVT::i64: Opcode = PPC::LDUX; break;
2482 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
2483 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
2484 case MVT::i1:
2485 case MVT::i8: Opcode = PPC::LBZUX8; break;
2486 }
2487 }
2488
2489 SDValue Chain = LD->getChain();
2490 SDValue Base = LD->getBasePtr();
Ulrich Weigande90b0222013-03-22 14:58:48 +00002491 SDValue Ops[] = { Base, Offset, Chain };
Hal Finkelca542be2012-06-20 15:43:03 +00002492 return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
Eric Christopher1b8e7632014-05-22 01:07:24 +00002493 PPCLowering->getPointerTy(),
Michael Liaob53d8962013-04-19 22:22:57 +00002494 MVT::Other, Ops);
Chris Lattnerce645542006-11-10 02:08:47 +00002495 }
2496 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002497
Nate Begemanb3821a32005-08-18 07:30:46 +00002498 case ISD::AND: {
Nate Begemand31efd12006-09-22 05:01:56 +00002499 unsigned Imm, Imm2, SH, MB, ME;
Hal Finkele39526a2012-08-28 02:10:15 +00002500 uint64_t Imm64;
Nate Begemand31efd12006-09-22 05:01:56 +00002501
Nate Begemanb3821a32005-08-18 07:30:46 +00002502 // If this is an and of a value rotated between 0 and 31 bits and then and'd
2503 // with a mask, emit rlwinm
Chris Lattner97b3da12006-06-27 00:04:13 +00002504 if (isInt32Immediate(N->getOperand(1), Imm) &&
Gabor Greiff304a7a2008-08-28 21:40:38 +00002505 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002506 SDValue Val = N->getOperand(0).getOperand(0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002507 SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
Craig Topper481fb282014-04-27 19:21:11 +00002508 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Nate Begemanb3821a32005-08-18 07:30:46 +00002509 }
Nate Begemand31efd12006-09-22 05:01:56 +00002510 // If this is just a masked value where the input is not handled above, and
2511 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
2512 if (isInt32Immediate(N->getOperand(1), Imm) &&
Andrew Trickc416ba62010-12-24 04:28:06 +00002513 isRunOfOnes(Imm, MB, ME) &&
Nate Begemand31efd12006-09-22 05:01:56 +00002514 N->getOperand(0).getOpcode() != ISD::ROTL) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002515 SDValue Val = N->getOperand(0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002516 SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
Craig Topper481fb282014-04-27 19:21:11 +00002517 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Nate Begemand31efd12006-09-22 05:01:56 +00002518 }
Hal Finkele39526a2012-08-28 02:10:15 +00002519 // If this is a 64-bit zero-extension mask, emit rldicl.
2520 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
2521 isMask_64(Imm64)) {
2522 SDValue Val = N->getOperand(0);
2523 MB = 64 - CountTrailingOnes_64(Imm64);
Hal Finkel22498fa2013-11-20 01:10:15 +00002524 SH = 0;
2525
2526 // If the operand is a logical right shift, we can fold it into this
2527 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
2528 // for n <= mb. The right shift is really a left rotate followed by a
2529 // mask, and this mask is a more-restrictive sub-mask of the mask implied
2530 // by the shift.
2531 if (Val.getOpcode() == ISD::SRL &&
2532 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
2533 assert(Imm < 64 && "Illegal shift amount");
2534 Val = Val.getOperand(0);
2535 SH = 64 - Imm;
2536 }
2537
2538 SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB) };
Craig Topper481fb282014-04-27 19:21:11 +00002539 return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
Hal Finkele39526a2012-08-28 02:10:15 +00002540 }
Nate Begemand31efd12006-09-22 05:01:56 +00002541 // AND X, 0 -> 0, not "rlwinm 32".
2542 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002543 ReplaceUses(SDValue(N, 0), N->getOperand(1));
Craig Topper062a2ba2014-04-25 05:30:21 +00002544 return nullptr;
Nate Begemand31efd12006-09-22 05:01:56 +00002545 }
Nate Begeman9aea6e42005-12-24 01:00:15 +00002546 // ISD::OR doesn't get all the bitfield insertion fun.
2547 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
Andrew Trickc416ba62010-12-24 04:28:06 +00002548 if (isInt32Immediate(N->getOperand(1), Imm) &&
Nate Begeman9aea6e42005-12-24 01:00:15 +00002549 N->getOperand(0).getOpcode() == ISD::OR &&
Chris Lattner97b3da12006-06-27 00:04:13 +00002550 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
Chris Lattner20c88df2006-01-05 18:32:49 +00002551 unsigned MB, ME;
Nate Begeman9aea6e42005-12-24 01:00:15 +00002552 Imm = ~(Imm^Imm2);
2553 if (isRunOfOnes(Imm, MB, ME)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002554 SDValue Ops[] = { N->getOperand(0).getOperand(0),
Evan Chengc3acfc02006-08-27 08:14:06 +00002555 N->getOperand(0).getOperand(1),
2556 getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
Michael Liaob53d8962013-04-19 22:22:57 +00002557 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
Nate Begeman9aea6e42005-12-24 01:00:15 +00002558 }
2559 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002560
Chris Lattner1de57062005-09-29 23:33:31 +00002561 // Other cases are autogenerated.
2562 break;
Nate Begemanb3821a32005-08-18 07:30:46 +00002563 }
Hal Finkelb5e9b042014-12-11 22:51:06 +00002564 case ISD::OR: {
Owen Anderson9f944592009-08-11 20:47:22 +00002565 if (N->getValueType(0) == MVT::i32)
Chris Lattnerbc485fd2006-08-15 23:48:22 +00002566 if (SDNode *I = SelectBitfieldInsert(N))
2567 return I;
Andrew Trickc416ba62010-12-24 04:28:06 +00002568
Hal Finkelb5e9b042014-12-11 22:51:06 +00002569 short Imm;
2570 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2571 isIntS16Immediate(N->getOperand(1), Imm)) {
2572 APInt LHSKnownZero, LHSKnownOne;
2573 CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
2574
2575 // If this is equivalent to an add, then we can fold it with the
2576 // FrameIndex calculation.
2577 if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL)
2578 return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2579 }
2580
Chris Lattner1de57062005-09-29 23:33:31 +00002581 // Other cases are autogenerated.
2582 break;
Hal Finkelb5e9b042014-12-11 22:51:06 +00002583 }
2584 case ISD::ADD: {
2585 short Imm;
2586 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2587 isIntS16Immediate(N->getOperand(1), Imm))
2588 return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2589
2590 break;
2591 }
Nate Begeman33acb2c2005-08-18 23:38:00 +00002592 case ISD::SHL: {
2593 unsigned Imm, SH, MB, ME;
Gabor Greiff304a7a2008-08-28 21:40:38 +00002594 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
Nate Begeman9f3c26c2005-10-19 18:42:01 +00002595 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002596 SDValue Ops[] = { N->getOperand(0).getOperand(0),
Evan Chengc3acfc02006-08-27 08:14:06 +00002597 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
Craig Topper481fb282014-04-27 19:21:11 +00002598 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Nate Begeman9eaa6ba2005-10-19 01:12:32 +00002599 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002600
Nate Begeman9f3c26c2005-10-19 18:42:01 +00002601 // Other cases are autogenerated.
2602 break;
Nate Begeman33acb2c2005-08-18 23:38:00 +00002603 }
2604 case ISD::SRL: {
2605 unsigned Imm, SH, MB, ME;
Gabor Greiff304a7a2008-08-28 21:40:38 +00002606 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
Andrew Trickc416ba62010-12-24 04:28:06 +00002607 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002608 SDValue Ops[] = { N->getOperand(0).getOperand(0),
Evan Chengc3acfc02006-08-27 08:14:06 +00002609 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
Craig Topper481fb282014-04-27 19:21:11 +00002610 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Nate Begeman9eaa6ba2005-10-19 01:12:32 +00002611 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002612
Nate Begeman9f3c26c2005-10-19 18:42:01 +00002613 // Other cases are autogenerated.
2614 break;
Nate Begeman33acb2c2005-08-18 23:38:00 +00002615 }
Hal Finkel940ab932014-02-28 00:27:01 +00002616 // FIXME: Remove this once the ANDI glue bug is fixed:
2617 case PPCISD::ANDIo_1_EQ_BIT:
2618 case PPCISD::ANDIo_1_GT_BIT: {
2619 if (!ANDIGlueBug)
2620 break;
2621
2622 EVT InVT = N->getOperand(0).getValueType();
2623 assert((InVT == MVT::i64 || InVT == MVT::i32) &&
2624 "Invalid input type for ANDIo_1_EQ_BIT");
2625
2626 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
2627 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
2628 N->getOperand(0),
2629 CurDAG->getTargetConstant(1, InVT)), 0);
2630 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2631 SDValue SRIdxVal =
2632 CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
2633 PPC::sub_eq : PPC::sub_gt, MVT::i32);
2634
2635 return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
2636 CR0Reg, SRIdxVal,
2637 SDValue(AndI.getNode(), 1) /* glue */);
2638 }
Chris Lattnerbec817c2005-08-26 18:46:49 +00002639 case ISD::SELECT_CC: {
2640 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
Roman Divacky254f8212011-06-20 15:28:39 +00002641 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
2642 bool isPPC64 = (PtrVT == MVT::i64);
Andrew Trickc416ba62010-12-24 04:28:06 +00002643
Hal Finkel940ab932014-02-28 00:27:01 +00002644 // If this is a select of i1 operands, we'll pattern match it.
Eric Christopher1b8e7632014-05-22 01:07:24 +00002645 if (PPCSubTarget->useCRBits() &&
Hal Finkel940ab932014-02-28 00:27:01 +00002646 N->getOperand(0).getValueType() == MVT::i1)
2647 break;
2648
Chris Lattner97b3da12006-06-27 00:04:13 +00002649 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
Roman Divacky254f8212011-06-20 15:28:39 +00002650 if (!isPPC64)
2651 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2652 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
2653 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
2654 if (N1C->isNullValue() && N3C->isNullValue() &&
2655 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
2656 // FIXME: Implement this optzn for PPC64.
2657 N->getValueType(0) == MVT::i32) {
2658 SDNode *Tmp =
2659 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2660 N->getOperand(0), getI32Imm(~0U));
2661 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
2662 SDValue(Tmp, 0), N->getOperand(0),
2663 SDValue(Tmp, 1));
2664 }
Chris Lattner9b577f12005-08-26 21:23:58 +00002665
Dale Johannesenab8e4422009-02-06 19:16:40 +00002666 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
Hal Finkel940ab932014-02-28 00:27:01 +00002667
2668 if (N->getValueType(0) == MVT::i1) {
2669 // An i1 select is: (c & t) | (!c & f).
2670 bool Inv;
2671 unsigned Idx = getCRIdxForSetCC(CC, Inv);
2672
2673 unsigned SRI;
2674 switch (Idx) {
2675 default: llvm_unreachable("Invalid CC index");
2676 case 0: SRI = PPC::sub_lt; break;
2677 case 1: SRI = PPC::sub_gt; break;
2678 case 2: SRI = PPC::sub_eq; break;
2679 case 3: SRI = PPC::sub_un; break;
2680 }
2681
2682 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
2683
2684 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
2685 CCBit, CCBit), 0);
2686 SDValue C = Inv ? NotCCBit : CCBit,
2687 NotC = Inv ? CCBit : NotCCBit;
2688
2689 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2690 C, N->getOperand(2)), 0);
2691 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2692 NotC, N->getOperand(3)), 0);
2693
2694 return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
2695 }
2696
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002697 unsigned BROpc = getPredicateForSetCC(CC);
Chris Lattner9b577f12005-08-26 21:23:58 +00002698
Chris Lattnerd3eee1a2005-10-01 01:35:02 +00002699 unsigned SelectCCOp;
Owen Anderson9f944592009-08-11 20:47:22 +00002700 if (N->getValueType(0) == MVT::i32)
Chris Lattner97b3da12006-06-27 00:04:13 +00002701 SelectCCOp = PPC::SELECT_CC_I4;
Owen Anderson9f944592009-08-11 20:47:22 +00002702 else if (N->getValueType(0) == MVT::i64)
Chris Lattner97b3da12006-06-27 00:04:13 +00002703 SelectCCOp = PPC::SELECT_CC_I8;
Owen Anderson9f944592009-08-11 20:47:22 +00002704 else if (N->getValueType(0) == MVT::f32)
Chris Lattnerd3eee1a2005-10-01 01:35:02 +00002705 SelectCCOp = PPC::SELECT_CC_F4;
Owen Anderson9f944592009-08-11 20:47:22 +00002706 else if (N->getValueType(0) == MVT::f64)
Bill Schmidt9c54bbd2014-10-22 16:58:20 +00002707 if (PPCSubTarget->hasVSX())
2708 SelectCCOp = PPC::SELECT_CC_VSFRC;
2709 else
2710 SelectCCOp = PPC::SELECT_CC_F8;
Bill Schmidt61e65232014-10-22 13:13:40 +00002711 else if (N->getValueType(0) == MVT::v2f64 ||
2712 N->getValueType(0) == MVT::v2i64)
2713 SelectCCOp = PPC::SELECT_CC_VSRC;
Chris Lattner0a3d1bb2006-04-08 22:45:08 +00002714 else
2715 SelectCCOp = PPC::SELECT_CC_VRRC;
2716
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002717 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
Evan Chengc3acfc02006-08-27 08:14:06 +00002718 getI32Imm(BROpc) };
Craig Topper481fb282014-04-27 19:21:11 +00002719 return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
Chris Lattnerbec817c2005-08-26 18:46:49 +00002720 }
Hal Finkel732f0f72014-03-26 12:49:28 +00002721 case ISD::VSELECT:
Eric Christopher1b8e7632014-05-22 01:07:24 +00002722 if (PPCSubTarget->hasVSX()) {
Hal Finkel732f0f72014-03-26 12:49:28 +00002723 SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
Craig Topper481fb282014-04-27 19:21:11 +00002724 return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
Hal Finkel732f0f72014-03-26 12:49:28 +00002725 }
2726
2727 break;
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002728 case ISD::VECTOR_SHUFFLE:
Eric Christopher1b8e7632014-05-22 01:07:24 +00002729 if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002730 N->getValueType(0) == MVT::v2i64)) {
2731 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
2732
2733 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
2734 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
2735 unsigned DM[2];
2736
2737 for (int i = 0; i < 2; ++i)
2738 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
2739 DM[i] = 0;
2740 else
2741 DM[i] = 1;
2742
Bill Schmidt30144352014-12-09 16:52:29 +00002743 // For little endian, we must swap the input operands and adjust
2744 // the mask elements (reverse and invert them).
2745 if (PPCSubTarget->isLittleEndian()) {
2746 std::swap(Op1, Op2);
2747 unsigned tmp = DM[0];
2748 DM[0] = 1 - DM[1];
2749 DM[1] = 1 - tmp;
2750 }
2751
Hal Finkel2583b062014-03-28 20:24:55 +00002752 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), MVT::i32);
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002753
2754 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
2755 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
2756 isa<LoadSDNode>(Op1.getOperand(0))) {
2757 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
2758 SDValue Base, Offset;
2759
2760 if (LD->isUnindexed() &&
2761 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
2762 SDValue Chain = LD->getChain();
2763 SDValue Ops[] = { Base, Offset, Chain };
2764 return CurDAG->SelectNodeTo(N, PPC::LXVDSX,
Craig Topper481fb282014-04-27 19:21:11 +00002765 N->getValueType(0), Ops);
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002766 }
2767 }
2768
2769 SDValue Ops[] = { Op1, Op2, DMV };
Craig Topper481fb282014-04-27 19:21:11 +00002770 return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002771 }
2772
2773 break;
Hal Finkel25c19922013-05-15 21:37:41 +00002774 case PPCISD::BDNZ:
2775 case PPCISD::BDZ: {
Eric Christopher1b8e7632014-05-22 01:07:24 +00002776 bool IsPPC64 = PPCSubTarget->isPPC64();
Hal Finkel25c19922013-05-15 21:37:41 +00002777 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
2778 return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
2779 (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
2780 (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
Craig Topper481fb282014-04-27 19:21:11 +00002781 MVT::Other, Ops);
Hal Finkel25c19922013-05-15 21:37:41 +00002782 }
Chris Lattnerbe9377a2006-11-17 22:37:34 +00002783 case PPCISD::COND_BRANCH: {
Dan Gohman7a638a82008-11-05 17:16:24 +00002784 // Op #0 is the Chain.
Chris Lattnerbe9377a2006-11-17 22:37:34 +00002785 // Op #1 is the PPC::PRED_* number.
2786 // Op #2 is the CR#
2787 // Op #3 is the Dest MBB
Dan Gohmanf14b77e2008-11-05 04:14:16 +00002788 // Op #4 is the Flag.
Evan Cheng58d1eac2007-06-29 01:25:06 +00002789 // Prevent PPC::PRED_* from being selected into LI.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002790 SDValue Pred =
Dan Gohmaneffb8942008-09-12 16:56:44 +00002791 getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002792 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
Chris Lattnerbe9377a2006-11-17 22:37:34 +00002793 N->getOperand(0), N->getOperand(4) };
Craig Topper481fb282014-04-27 19:21:11 +00002794 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
Chris Lattnerbe9377a2006-11-17 22:37:34 +00002795 }
Nate Begemanbb01d4f2006-03-17 01:40:33 +00002796 case ISD::BR_CC: {
Chris Lattner2a1823d2005-08-21 18:50:37 +00002797 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
Hal Finkel940ab932014-02-28 00:27:01 +00002798 unsigned PCC = getPredicateForSetCC(CC);
2799
2800 if (N->getOperand(2).getValueType() == MVT::i1) {
2801 unsigned Opc;
2802 bool Swap;
2803 switch (PCC) {
2804 default: llvm_unreachable("Unexpected Boolean-operand predicate");
2805 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
2806 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
2807 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
2808 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
2809 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
2810 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
2811 }
2812
2813 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
2814 N->getOperand(Swap ? 3 : 2),
2815 N->getOperand(Swap ? 2 : 3)), 0);
2816 return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
2817 BitComp, N->getOperand(4), N->getOperand(0));
2818 }
2819
Dale Johannesenab8e4422009-02-06 19:16:40 +00002820 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
Hal Finkel940ab932014-02-28 00:27:01 +00002821 SDValue Ops[] = { getI32Imm(PCC), CondCode,
Evan Chengc3acfc02006-08-27 08:14:06 +00002822 N->getOperand(4), N->getOperand(0) };
Craig Topper481fb282014-04-27 19:21:11 +00002823 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
Chris Lattner2a1823d2005-08-21 18:50:37 +00002824 }
Nate Begeman4ca2ea52006-04-22 18:53:45 +00002825 case ISD::BRIND: {
Chris Lattnerb055c872006-06-10 01:15:02 +00002826 // FIXME: Should custom lower this.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002827 SDValue Chain = N->getOperand(0);
2828 SDValue Target = N->getOperand(1);
Owen Anderson9f944592009-08-11 20:47:22 +00002829 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
Roman Divackya4a59ae2011-06-03 15:47:49 +00002830 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
Hal Finkel528ff4b2011-12-08 04:36:44 +00002831 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
Dan Gohman32f71d72009-09-25 18:54:59 +00002832 Chain), 0);
Roman Divackya4a59ae2011-06-03 15:47:49 +00002833 return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
Nate Begeman4ca2ea52006-04-22 18:53:45 +00002834 }
Bill Schmidt34627e32012-11-27 17:35:46 +00002835 case PPCISD::TOC_ENTRY: {
Justin Hibbitsa88b6052014-11-12 15:16:30 +00002836 assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
2837 "Only supported for 64-bit ABI and 32-bit SVR4");
Hal Finkel3ee2af72014-07-18 23:29:49 +00002838 if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
2839 SDValue GA = N->getOperand(0);
2840 return CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
2841 N->getOperand(1));
Justin Hibbits3476db42014-08-28 04:40:55 +00002842 }
Bill Schmidt34627e32012-11-27 17:35:46 +00002843
Bill Schmidt27917782013-02-21 17:12:27 +00002844 // For medium and large code model, we generate two instructions as
2845 // described below. Otherwise we allow SelectCodeCommon to handle this,
Ulrich Weigandc8c2ea22014-10-31 10:33:14 +00002846 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
Bill Schmidt27917782013-02-21 17:12:27 +00002847 CodeModel::Model CModel = TM.getCodeModel();
2848 if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
Bill Schmidt34627e32012-11-27 17:35:46 +00002849 break;
2850
Bill Schmidt5d82f092014-06-16 21:36:02 +00002851 // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
2852 // If it is an externally defined symbol, a symbol with common linkage,
2853 // a non-local function address, or a jump table address, or if we are
2854 // generating code for large code model, we generate:
Bill Schmidt34627e32012-11-27 17:35:46 +00002855 // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
2856 // Otherwise we generate:
2857 // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
2858 SDValue GA = N->getOperand(0);
2859 SDValue TOCbase = N->getOperand(1);
2860 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
2861 TOCbase, GA);
2862
Ulrich Weigandc8c2ea22014-10-31 10:33:14 +00002863 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
2864 CModel == CodeModel::Large)
Bill Schmidt34627e32012-11-27 17:35:46 +00002865 return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
2866 SDValue(Tmp, 0));
2867
2868 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
2869 const GlobalValue *GValue = G->getGlobal();
Bill Schmidt5d82f092014-06-16 21:36:02 +00002870 if ((GValue->getType()->getElementType()->isFunctionTy() &&
2871 (GValue->isDeclaration() || GValue->isWeakForLinker())) ||
Rafael Espindola04902862014-05-29 15:41:38 +00002872 GValue->isDeclaration() || GValue->hasCommonLinkage() ||
2873 GValue->hasAvailableExternallyLinkage())
Bill Schmidt34627e32012-11-27 17:35:46 +00002874 return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
2875 SDValue(Tmp, 0));
2876 }
2877
2878 return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
2879 SDValue(Tmp, 0), GA);
2880 }
Hal Finkel7c8ae532014-07-25 17:47:22 +00002881 case PPCISD::PPC32_PICGOT: {
2882 // Generate a PIC-safe GOT reference.
2883 assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
2884 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
2885 return CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(), MVT::i32);
2886 }
Bill Schmidt51e79512013-02-20 15:50:31 +00002887 case PPCISD::VADD_SPLAT: {
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002888 // This expands into one of three sequences, depending on whether
2889 // the first operand is odd or even, positive or negative.
Bill Schmidt51e79512013-02-20 15:50:31 +00002890 assert(isa<ConstantSDNode>(N->getOperand(0)) &&
2891 isa<ConstantSDNode>(N->getOperand(1)) &&
2892 "Invalid operand on VADD_SPLAT!");
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002893
2894 int Elt = N->getConstantOperandVal(0);
Bill Schmidt51e79512013-02-20 15:50:31 +00002895 int EltSize = N->getConstantOperandVal(1);
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002896 unsigned Opc1, Opc2, Opc3;
Bill Schmidt51e79512013-02-20 15:50:31 +00002897 EVT VT;
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002898
Bill Schmidt51e79512013-02-20 15:50:31 +00002899 if (EltSize == 1) {
2900 Opc1 = PPC::VSPLTISB;
2901 Opc2 = PPC::VADDUBM;
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002902 Opc3 = PPC::VSUBUBM;
Bill Schmidt51e79512013-02-20 15:50:31 +00002903 VT = MVT::v16i8;
2904 } else if (EltSize == 2) {
2905 Opc1 = PPC::VSPLTISH;
2906 Opc2 = PPC::VADDUHM;
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002907 Opc3 = PPC::VSUBUHM;
Bill Schmidt51e79512013-02-20 15:50:31 +00002908 VT = MVT::v8i16;
2909 } else {
2910 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
2911 Opc1 = PPC::VSPLTISW;
2912 Opc2 = PPC::VADDUWM;
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002913 Opc3 = PPC::VSUBUWM;
Bill Schmidt51e79512013-02-20 15:50:31 +00002914 VT = MVT::v4i32;
2915 }
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002916
2917 if ((Elt & 1) == 0) {
2918 // Elt is even, in the range [-32,-18] + [16,30].
2919 //
2920 // Convert: VADD_SPLAT elt, size
2921 // Into: tmp = VSPLTIS[BHW] elt
2922 // VADDU[BHW]M tmp, tmp
2923 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
2924 SDValue EltVal = getI32Imm(Elt >> 1);
2925 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2926 SDValue TmpVal = SDValue(Tmp, 0);
2927 return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
2928
2929 } else if (Elt > 0) {
2930 // Elt is odd and positive, in the range [17,31].
2931 //
2932 // Convert: VADD_SPLAT elt, size
2933 // Into: tmp1 = VSPLTIS[BHW] elt-16
2934 // tmp2 = VSPLTIS[BHW] -16
2935 // VSUBU[BHW]M tmp1, tmp2
2936 SDValue EltVal = getI32Imm(Elt - 16);
2937 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2938 EltVal = getI32Imm(-16);
2939 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2940 return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
2941 SDValue(Tmp2, 0));
2942
2943 } else {
2944 // Elt is odd and negative, in the range [-31,-17].
2945 //
2946 // Convert: VADD_SPLAT elt, size
2947 // Into: tmp1 = VSPLTIS[BHW] elt+16
2948 // tmp2 = VSPLTIS[BHW] -16
2949 // VADDU[BHW]M tmp1, tmp2
2950 SDValue EltVal = getI32Imm(Elt + 16);
2951 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2952 EltVal = getI32Imm(-16);
2953 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2954 return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
2955 SDValue(Tmp2, 0));
2956 }
Bill Schmidt51e79512013-02-20 15:50:31 +00002957 }
Chris Lattner43ff01e2005-08-17 19:33:03 +00002958 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002959
Dan Gohmanea6f91f2010-01-05 01:24:18 +00002960 return SelectCode(N);
Chris Lattner43ff01e2005-08-17 19:33:03 +00002961}
2962
Hal Finkel4edc66b2015-01-03 01:16:37 +00002963// If the target supports the cmpb instruction, do the idiom recognition here.
2964// We don't do this as a DAG combine because we don't want to do it as nodes
2965// are being combined (because we might miss part of the eventual idiom). We
2966// don't want to do it during instruction selection because we want to reuse
2967// the logic for lowering the masking operations already part of the
2968// instruction selector.
2969SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
2970 SDLoc dl(N);
2971
2972 assert(N->getOpcode() == ISD::OR &&
2973 "Only OR nodes are supported for CMPB");
2974
2975 SDValue Res;
2976 if (!PPCSubTarget->hasCMPB())
2977 return Res;
2978
2979 if (N->getValueType(0) != MVT::i32 &&
2980 N->getValueType(0) != MVT::i64)
2981 return Res;
2982
2983 EVT VT = N->getValueType(0);
2984
2985 SDValue RHS, LHS;
2986 bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
2987 uint64_t Mask = 0, Alt = 0;
2988
2989 auto IsByteSelectCC = [this](SDValue O, unsigned &b,
2990 uint64_t &Mask, uint64_t &Alt,
2991 SDValue &LHS, SDValue &RHS) {
2992 if (O.getOpcode() != ISD::SELECT_CC)
2993 return false;
2994 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
2995
2996 if (!isa<ConstantSDNode>(O.getOperand(2)) ||
2997 !isa<ConstantSDNode>(O.getOperand(3)))
2998 return false;
2999
3000 uint64_t PM = O.getConstantOperandVal(2);
3001 uint64_t PAlt = O.getConstantOperandVal(3);
3002 for (b = 0; b < 8; ++b) {
3003 uint64_t Mask = UINT64_C(0xFF) << (8*b);
3004 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
3005 break;
3006 }
3007
3008 if (b == 8)
3009 return false;
3010 Mask |= PM;
3011 Alt |= PAlt;
3012
3013 if (!isa<ConstantSDNode>(O.getOperand(1)) ||
3014 O.getConstantOperandVal(1) != 0) {
3015 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
3016 if (Op0.getOpcode() == ISD::TRUNCATE)
3017 Op0 = Op0.getOperand(0);
3018 if (Op1.getOpcode() == ISD::TRUNCATE)
3019 Op1 = Op1.getOperand(0);
3020
3021 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
3022 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
3023 isa<ConstantSDNode>(Op0.getOperand(1))) {
3024
3025 unsigned Bits = Op0.getValueType().getSizeInBits();
3026 if (b != Bits/8-1)
3027 return false;
3028 if (Op0.getConstantOperandVal(1) != Bits-8)
3029 return false;
3030
3031 LHS = Op0.getOperand(0);
3032 RHS = Op1.getOperand(0);
3033 return true;
3034 }
3035
3036 // When we have small integers (i16 to be specific), the form present
3037 // post-legalization uses SETULT in the SELECT_CC for the
3038 // higher-order byte, depending on the fact that the
3039 // even-higher-order bytes are known to all be zero, for example:
3040 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
3041 // (so when the second byte is the same, because all higher-order
3042 // bits from bytes 3 and 4 are known to be zero, the result of the
3043 // xor can be at most 255)
3044 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
3045 isa<ConstantSDNode>(O.getOperand(1))) {
3046
3047 uint64_t ULim = O.getConstantOperandVal(1);
3048 if (ULim != (UINT64_C(1) << b*8))
3049 return false;
3050
3051 // Now we need to make sure that the upper bytes are known to be
3052 // zero.
3053 unsigned Bits = Op0.getValueType().getSizeInBits();
3054 if (!CurDAG->MaskedValueIsZero(Op0,
3055 APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
3056 return false;
3057
3058 LHS = Op0.getOperand(0);
3059 RHS = Op0.getOperand(1);
3060 return true;
3061 }
3062
3063 return false;
3064 }
3065
3066 if (CC != ISD::SETEQ)
3067 return false;
3068
3069 SDValue Op = O.getOperand(0);
3070 if (Op.getOpcode() == ISD::AND) {
3071 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3072 return false;
3073 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
3074 return false;
3075
3076 SDValue XOR = Op.getOperand(0);
3077 if (XOR.getOpcode() == ISD::TRUNCATE)
3078 XOR = XOR.getOperand(0);
3079 if (XOR.getOpcode() != ISD::XOR)
3080 return false;
3081
3082 LHS = XOR.getOperand(0);
3083 RHS = XOR.getOperand(1);
3084 return true;
3085 } else if (Op.getOpcode() == ISD::SRL) {
3086 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3087 return false;
3088 unsigned Bits = Op.getValueType().getSizeInBits();
3089 if (b != Bits/8-1)
3090 return false;
3091 if (Op.getConstantOperandVal(1) != Bits-8)
3092 return false;
3093
3094 SDValue XOR = Op.getOperand(0);
3095 if (XOR.getOpcode() == ISD::TRUNCATE)
3096 XOR = XOR.getOperand(0);
3097 if (XOR.getOpcode() != ISD::XOR)
3098 return false;
3099
3100 LHS = XOR.getOperand(0);
3101 RHS = XOR.getOperand(1);
3102 return true;
3103 }
3104
3105 return false;
3106 };
3107
3108 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
3109 while (!Queue.empty()) {
3110 SDValue V = Queue.pop_back_val();
3111
3112 for (const SDValue &O : V.getNode()->ops()) {
3113 unsigned b;
3114 uint64_t M = 0, A = 0;
3115 SDValue OLHS, ORHS;
3116 if (O.getOpcode() == ISD::OR) {
3117 Queue.push_back(O);
3118 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
3119 if (!LHS) {
3120 LHS = OLHS;
3121 RHS = ORHS;
3122 BytesFound[b] = true;
3123 Mask |= M;
3124 Alt |= A;
3125 } else if ((LHS == ORHS && RHS == OLHS) ||
3126 (RHS == ORHS && LHS == OLHS)) {
3127 BytesFound[b] = true;
3128 Mask |= M;
3129 Alt |= A;
3130 } else {
3131 return Res;
3132 }
3133 } else {
3134 return Res;
3135 }
3136 }
3137 }
3138
3139 unsigned LastB = 0, BCnt = 0;
3140 for (unsigned i = 0; i < 8; ++i)
3141 if (BytesFound[LastB]) {
3142 ++BCnt;
3143 LastB = i;
3144 }
3145
3146 if (!LastB || BCnt < 2)
3147 return Res;
3148
3149 // Because we'll be zero-extending the output anyway if don't have a specific
3150 // value for each input byte (via the Mask), we can 'anyext' the inputs.
3151 if (LHS.getValueType() != VT) {
3152 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
3153 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
3154 }
3155
3156 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
3157
3158 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
3159 if (NonTrivialMask && !Alt) {
3160 // Res = Mask & CMPB
3161 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, CurDAG->getConstant(Mask, VT));
3162 } else if (Alt) {
3163 // Res = (CMPB & Mask) | (~CMPB & Alt)
3164 // Which, as suggested here:
3165 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
3166 // can be written as:
3167 // Res = Alt ^ ((Alt ^ Mask) & CMPB)
3168 // useful because the (Alt ^ Mask) can be pre-computed.
3169 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
3170 CurDAG->getConstant(Mask ^ Alt, VT));
3171 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, CurDAG->getConstant(Alt, VT));
3172 }
3173
3174 return Res;
3175}
3176
Hal Finkel200d2ad2015-01-05 21:10:24 +00003177// When CR bit registers are enabled, an extension of an i1 variable to a i32
3178// or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
3179// involves constant materialization of a 0 or a 1 or both. If the result of
3180// the extension is then operated upon by some operator that can be constant
3181// folded with a constant 0 or 1, and that constant can be materialized using
3182// only one instruction (like a zero or one), then we should fold in those
3183// operations with the select.
3184void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
3185 if (!PPCSubTarget->useCRBits())
3186 return;
3187
3188 if (N->getOpcode() != ISD::ZERO_EXTEND &&
3189 N->getOpcode() != ISD::SIGN_EXTEND &&
3190 N->getOpcode() != ISD::ANY_EXTEND)
3191 return;
3192
3193 if (N->getOperand(0).getValueType() != MVT::i1)
3194 return;
3195
3196 if (!N->hasOneUse())
3197 return;
3198
3199 SDLoc dl(N);
3200 EVT VT = N->getValueType(0);
3201 SDValue Cond = N->getOperand(0);
3202 SDValue ConstTrue =
3203 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, VT);
3204 SDValue ConstFalse = CurDAG->getConstant(0, VT);
3205
3206 do {
3207 SDNode *User = *N->use_begin();
3208 if (User->getNumOperands() != 2)
3209 break;
3210
3211 auto TryFold = [this, N, User](SDValue Val) {
3212 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
3213 SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
3214 SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
3215
3216 return CurDAG->FoldConstantArithmetic(User->getOpcode(),
3217 User->getValueType(0),
3218 O0.getNode(), O1.getNode());
3219 };
3220
3221 SDValue TrueRes = TryFold(ConstTrue);
3222 if (!TrueRes)
3223 break;
3224 SDValue FalseRes = TryFold(ConstFalse);
3225 if (!FalseRes)
3226 break;
3227
3228 // For us to materialize these using one instruction, we must be able to
3229 // represent them as signed 16-bit integers.
3230 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
3231 False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
3232 if (!isInt<16>(True) || !isInt<16>(False))
3233 break;
3234
3235 // We can replace User with a new SELECT node, and try again to see if we
3236 // can fold the select with its user.
3237 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
3238 N = User;
3239 ConstTrue = TrueRes;
3240 ConstFalse = FalseRes;
3241 } while (N->hasOneUse());
3242}
3243
Hal Finkel4edc66b2015-01-03 01:16:37 +00003244void PPCDAGToDAGISel::PreprocessISelDAG() {
3245 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3246 ++Position;
3247
3248 bool MadeChange = false;
3249 while (Position != CurDAG->allnodes_begin()) {
3250 SDNode *N = --Position;
3251 if (N->use_empty())
3252 continue;
3253
3254 SDValue Res;
3255 switch (N->getOpcode()) {
3256 default: break;
3257 case ISD::OR:
3258 Res = combineToCMPB(N);
3259 break;
3260 }
3261
Hal Finkel200d2ad2015-01-05 21:10:24 +00003262 if (!Res)
3263 foldBoolExts(Res, N);
3264
Hal Finkel4edc66b2015-01-03 01:16:37 +00003265 if (Res) {
3266 DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
3267 DEBUG(N->dump(CurDAG));
3268 DEBUG(dbgs() << "\nNew: ");
3269 DEBUG(Res.getNode()->dump(CurDAG));
3270 DEBUG(dbgs() << "\n");
3271
3272 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
3273 MadeChange = true;
3274 }
3275 }
3276
3277 if (MadeChange)
3278 CurDAG->RemoveDeadNodes();
3279}
3280
Hal Finkel860fa902014-01-02 22:09:39 +00003281/// PostprocessISelDAG - Perform some late peephole optimizations
Bill Schmidtf5b474c2013-02-21 00:38:25 +00003282/// on the DAG representation.
3283void PPCDAGToDAGISel::PostprocessISelDAG() {
3284
3285 // Skip peepholes at -O0.
3286 if (TM.getOptLevel() == CodeGenOpt::None)
3287 return;
3288
Hal Finkel940ab932014-02-28 00:27:01 +00003289 PeepholePPC64();
Eric Christopher02e18042014-05-14 00:31:15 +00003290 PeepholeCROps();
Hal Finkel4c6658f2014-12-12 23:59:36 +00003291 PeepholePPC64ZExt();
Hal Finkel940ab932014-02-28 00:27:01 +00003292}
3293
Hal Finkelb9989152014-02-28 06:11:16 +00003294// Check if all users of this node will become isel where the second operand
3295// is the constant zero. If this is so, and if we can negate the condition,
3296// then we can flip the true and false operands. This will allow the zero to
3297// be folded with the isel so that we don't need to materialize a register
3298// containing zero.
3299bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
3300 // If we're not using isel, then this does not matter.
Eric Christopher1b8e7632014-05-22 01:07:24 +00003301 if (!PPCSubTarget->hasISEL())
Hal Finkelb9989152014-02-28 06:11:16 +00003302 return false;
3303
3304 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3305 UI != UE; ++UI) {
3306 SDNode *User = *UI;
3307 if (!User->isMachineOpcode())
3308 return false;
3309 if (User->getMachineOpcode() != PPC::SELECT_I4 &&
3310 User->getMachineOpcode() != PPC::SELECT_I8)
3311 return false;
3312
3313 SDNode *Op2 = User->getOperand(2).getNode();
3314 if (!Op2->isMachineOpcode())
3315 return false;
3316
3317 if (Op2->getMachineOpcode() != PPC::LI &&
3318 Op2->getMachineOpcode() != PPC::LI8)
3319 return false;
3320
3321 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
3322 if (!C)
3323 return false;
3324
3325 if (!C->isNullValue())
3326 return false;
3327 }
3328
3329 return true;
3330}
3331
3332void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
3333 SmallVector<SDNode *, 4> ToReplace;
3334 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3335 UI != UE; ++UI) {
3336 SDNode *User = *UI;
3337 assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
3338 User->getMachineOpcode() == PPC::SELECT_I8) &&
3339 "Must have all select users");
3340 ToReplace.push_back(User);
3341 }
3342
3343 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
3344 UE = ToReplace.end(); UI != UE; ++UI) {
3345 SDNode *User = *UI;
3346 SDNode *ResNode =
3347 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
3348 User->getValueType(0), User->getOperand(0),
3349 User->getOperand(2),
3350 User->getOperand(1));
3351
3352 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
3353 DEBUG(User->dump(CurDAG));
3354 DEBUG(dbgs() << "\nNew: ");
3355 DEBUG(ResNode->dump(CurDAG));
3356 DEBUG(dbgs() << "\n");
3357
3358 ReplaceUses(User, ResNode);
3359 }
3360}
3361
Eric Christopher02e18042014-05-14 00:31:15 +00003362void PPCDAGToDAGISel::PeepholeCROps() {
Hal Finkel940ab932014-02-28 00:27:01 +00003363 bool IsModified;
3364 do {
3365 IsModified = false;
3366 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
3367 E = CurDAG->allnodes_end(); I != E; ++I) {
3368 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
3369 if (!MachineNode || MachineNode->use_empty())
3370 continue;
3371 SDNode *ResNode = MachineNode;
3372
3373 bool Op1Set = false, Op1Unset = false,
3374 Op1Not = false,
3375 Op2Set = false, Op2Unset = false,
3376 Op2Not = false;
3377
3378 unsigned Opcode = MachineNode->getMachineOpcode();
3379 switch (Opcode) {
3380 default: break;
3381 case PPC::CRAND:
3382 case PPC::CRNAND:
3383 case PPC::CROR:
3384 case PPC::CRXOR:
3385 case PPC::CRNOR:
3386 case PPC::CREQV:
3387 case PPC::CRANDC:
3388 case PPC::CRORC: {
3389 SDValue Op = MachineNode->getOperand(1);
3390 if (Op.isMachineOpcode()) {
3391 if (Op.getMachineOpcode() == PPC::CRSET)
3392 Op2Set = true;
3393 else if (Op.getMachineOpcode() == PPC::CRUNSET)
3394 Op2Unset = true;
3395 else if (Op.getMachineOpcode() == PPC::CRNOR &&
3396 Op.getOperand(0) == Op.getOperand(1))
3397 Op2Not = true;
3398 }
3399 } // fallthrough
3400 case PPC::BC:
3401 case PPC::BCn:
3402 case PPC::SELECT_I4:
3403 case PPC::SELECT_I8:
3404 case PPC::SELECT_F4:
3405 case PPC::SELECT_F8:
Bill Schmidt61e65232014-10-22 13:13:40 +00003406 case PPC::SELECT_VRRC:
Bill Schmidt9c54bbd2014-10-22 16:58:20 +00003407 case PPC::SELECT_VSFRC:
Bill Schmidt61e65232014-10-22 13:13:40 +00003408 case PPC::SELECT_VSRC: {
Hal Finkel940ab932014-02-28 00:27:01 +00003409 SDValue Op = MachineNode->getOperand(0);
3410 if (Op.isMachineOpcode()) {
3411 if (Op.getMachineOpcode() == PPC::CRSET)
3412 Op1Set = true;
3413 else if (Op.getMachineOpcode() == PPC::CRUNSET)
3414 Op1Unset = true;
3415 else if (Op.getMachineOpcode() == PPC::CRNOR &&
3416 Op.getOperand(0) == Op.getOperand(1))
3417 Op1Not = true;
3418 }
3419 }
3420 break;
3421 }
3422
Hal Finkelb9989152014-02-28 06:11:16 +00003423 bool SelectSwap = false;
Hal Finkel940ab932014-02-28 00:27:01 +00003424 switch (Opcode) {
3425 default: break;
3426 case PPC::CRAND:
3427 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3428 // x & x = x
3429 ResNode = MachineNode->getOperand(0).getNode();
3430 else if (Op1Set)
3431 // 1 & y = y
3432 ResNode = MachineNode->getOperand(1).getNode();
3433 else if (Op2Set)
3434 // x & 1 = x
3435 ResNode = MachineNode->getOperand(0).getNode();
3436 else if (Op1Unset || Op2Unset)
3437 // x & 0 = 0 & y = 0
3438 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3439 MVT::i1);
3440 else if (Op1Not)
3441 // ~x & y = andc(y, x)
3442 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3443 MVT::i1, MachineNode->getOperand(1),
3444 MachineNode->getOperand(0).
3445 getOperand(0));
3446 else if (Op2Not)
3447 // x & ~y = andc(x, y)
3448 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3449 MVT::i1, MachineNode->getOperand(0),
3450 MachineNode->getOperand(1).
3451 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003452 else if (AllUsersSelectZero(MachineNode))
3453 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3454 MVT::i1, MachineNode->getOperand(0),
3455 MachineNode->getOperand(1)),
3456 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003457 break;
3458 case PPC::CRNAND:
3459 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3460 // nand(x, x) -> nor(x, x)
3461 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3462 MVT::i1, MachineNode->getOperand(0),
3463 MachineNode->getOperand(0));
3464 else if (Op1Set)
3465 // nand(1, y) -> nor(y, y)
3466 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3467 MVT::i1, MachineNode->getOperand(1),
3468 MachineNode->getOperand(1));
3469 else if (Op2Set)
3470 // nand(x, 1) -> nor(x, x)
3471 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3472 MVT::i1, MachineNode->getOperand(0),
3473 MachineNode->getOperand(0));
3474 else if (Op1Unset || Op2Unset)
3475 // nand(x, 0) = nand(0, y) = 1
3476 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3477 MVT::i1);
3478 else if (Op1Not)
3479 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
3480 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3481 MVT::i1, MachineNode->getOperand(0).
3482 getOperand(0),
3483 MachineNode->getOperand(1));
3484 else if (Op2Not)
3485 // nand(x, ~y) = ~x | y = orc(y, x)
3486 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3487 MVT::i1, MachineNode->getOperand(1).
3488 getOperand(0),
3489 MachineNode->getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003490 else if (AllUsersSelectZero(MachineNode))
3491 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3492 MVT::i1, MachineNode->getOperand(0),
3493 MachineNode->getOperand(1)),
3494 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003495 break;
3496 case PPC::CROR:
3497 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3498 // x | x = x
3499 ResNode = MachineNode->getOperand(0).getNode();
3500 else if (Op1Set || Op2Set)
3501 // x | 1 = 1 | y = 1
3502 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3503 MVT::i1);
3504 else if (Op1Unset)
3505 // 0 | y = y
3506 ResNode = MachineNode->getOperand(1).getNode();
3507 else if (Op2Unset)
3508 // x | 0 = x
3509 ResNode = MachineNode->getOperand(0).getNode();
3510 else if (Op1Not)
3511 // ~x | y = orc(y, x)
3512 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3513 MVT::i1, MachineNode->getOperand(1),
3514 MachineNode->getOperand(0).
3515 getOperand(0));
3516 else if (Op2Not)
3517 // x | ~y = orc(x, y)
3518 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3519 MVT::i1, MachineNode->getOperand(0),
3520 MachineNode->getOperand(1).
3521 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003522 else if (AllUsersSelectZero(MachineNode))
3523 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3524 MVT::i1, MachineNode->getOperand(0),
3525 MachineNode->getOperand(1)),
3526 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003527 break;
3528 case PPC::CRXOR:
3529 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3530 // xor(x, x) = 0
3531 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3532 MVT::i1);
3533 else if (Op1Set)
3534 // xor(1, y) -> nor(y, y)
3535 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3536 MVT::i1, MachineNode->getOperand(1),
3537 MachineNode->getOperand(1));
3538 else if (Op2Set)
3539 // xor(x, 1) -> nor(x, x)
3540 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3541 MVT::i1, MachineNode->getOperand(0),
3542 MachineNode->getOperand(0));
3543 else if (Op1Unset)
3544 // xor(0, y) = y
3545 ResNode = MachineNode->getOperand(1).getNode();
3546 else if (Op2Unset)
3547 // xor(x, 0) = x
3548 ResNode = MachineNode->getOperand(0).getNode();
3549 else if (Op1Not)
3550 // xor(~x, y) = eqv(x, y)
3551 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3552 MVT::i1, MachineNode->getOperand(0).
3553 getOperand(0),
3554 MachineNode->getOperand(1));
3555 else if (Op2Not)
3556 // xor(x, ~y) = eqv(x, y)
3557 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3558 MVT::i1, MachineNode->getOperand(0),
3559 MachineNode->getOperand(1).
3560 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003561 else if (AllUsersSelectZero(MachineNode))
3562 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3563 MVT::i1, MachineNode->getOperand(0),
3564 MachineNode->getOperand(1)),
3565 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003566 break;
3567 case PPC::CRNOR:
3568 if (Op1Set || Op2Set)
3569 // nor(1, y) -> 0
3570 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3571 MVT::i1);
3572 else if (Op1Unset)
3573 // nor(0, y) = ~y -> nor(y, y)
3574 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3575 MVT::i1, MachineNode->getOperand(1),
3576 MachineNode->getOperand(1));
3577 else if (Op2Unset)
3578 // nor(x, 0) = ~x
3579 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3580 MVT::i1, MachineNode->getOperand(0),
3581 MachineNode->getOperand(0));
3582 else if (Op1Not)
3583 // nor(~x, y) = andc(x, y)
3584 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3585 MVT::i1, MachineNode->getOperand(0).
3586 getOperand(0),
3587 MachineNode->getOperand(1));
3588 else if (Op2Not)
3589 // nor(x, ~y) = andc(y, x)
3590 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3591 MVT::i1, MachineNode->getOperand(1).
3592 getOperand(0),
3593 MachineNode->getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003594 else if (AllUsersSelectZero(MachineNode))
3595 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3596 MVT::i1, MachineNode->getOperand(0),
3597 MachineNode->getOperand(1)),
3598 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003599 break;
3600 case PPC::CREQV:
3601 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3602 // eqv(x, x) = 1
3603 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3604 MVT::i1);
3605 else if (Op1Set)
3606 // eqv(1, y) = y
3607 ResNode = MachineNode->getOperand(1).getNode();
3608 else if (Op2Set)
3609 // eqv(x, 1) = x
3610 ResNode = MachineNode->getOperand(0).getNode();
3611 else if (Op1Unset)
3612 // eqv(0, y) = ~y -> nor(y, y)
3613 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3614 MVT::i1, MachineNode->getOperand(1),
3615 MachineNode->getOperand(1));
3616 else if (Op2Unset)
3617 // eqv(x, 0) = ~x
3618 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3619 MVT::i1, MachineNode->getOperand(0),
3620 MachineNode->getOperand(0));
3621 else if (Op1Not)
3622 // eqv(~x, y) = xor(x, y)
3623 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3624 MVT::i1, MachineNode->getOperand(0).
3625 getOperand(0),
3626 MachineNode->getOperand(1));
3627 else if (Op2Not)
3628 // eqv(x, ~y) = xor(x, y)
3629 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3630 MVT::i1, MachineNode->getOperand(0),
3631 MachineNode->getOperand(1).
3632 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003633 else if (AllUsersSelectZero(MachineNode))
3634 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3635 MVT::i1, MachineNode->getOperand(0),
3636 MachineNode->getOperand(1)),
3637 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003638 break;
3639 case PPC::CRANDC:
3640 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3641 // andc(x, x) = 0
3642 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3643 MVT::i1);
3644 else if (Op1Set)
3645 // andc(1, y) = ~y
3646 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3647 MVT::i1, MachineNode->getOperand(1),
3648 MachineNode->getOperand(1));
3649 else if (Op1Unset || Op2Set)
3650 // andc(0, y) = andc(x, 1) = 0
3651 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3652 MVT::i1);
3653 else if (Op2Unset)
3654 // andc(x, 0) = x
3655 ResNode = MachineNode->getOperand(0).getNode();
3656 else if (Op1Not)
3657 // andc(~x, y) = ~(x | y) = nor(x, y)
3658 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3659 MVT::i1, MachineNode->getOperand(0).
3660 getOperand(0),
3661 MachineNode->getOperand(1));
3662 else if (Op2Not)
3663 // andc(x, ~y) = x & y
3664 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3665 MVT::i1, MachineNode->getOperand(0),
3666 MachineNode->getOperand(1).
3667 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003668 else if (AllUsersSelectZero(MachineNode))
3669 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3670 MVT::i1, MachineNode->getOperand(1),
3671 MachineNode->getOperand(0)),
3672 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003673 break;
3674 case PPC::CRORC:
3675 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3676 // orc(x, x) = 1
3677 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3678 MVT::i1);
3679 else if (Op1Set || Op2Unset)
3680 // orc(1, y) = orc(x, 0) = 1
3681 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3682 MVT::i1);
3683 else if (Op2Set)
3684 // orc(x, 1) = x
3685 ResNode = MachineNode->getOperand(0).getNode();
3686 else if (Op1Unset)
3687 // orc(0, y) = ~y
3688 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3689 MVT::i1, MachineNode->getOperand(1),
3690 MachineNode->getOperand(1));
3691 else if (Op1Not)
3692 // orc(~x, y) = ~(x & y) = nand(x, y)
3693 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3694 MVT::i1, MachineNode->getOperand(0).
3695 getOperand(0),
3696 MachineNode->getOperand(1));
3697 else if (Op2Not)
3698 // orc(x, ~y) = x | y
3699 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3700 MVT::i1, MachineNode->getOperand(0),
3701 MachineNode->getOperand(1).
3702 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003703 else if (AllUsersSelectZero(MachineNode))
3704 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3705 MVT::i1, MachineNode->getOperand(1),
3706 MachineNode->getOperand(0)),
3707 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003708 break;
3709 case PPC::SELECT_I4:
3710 case PPC::SELECT_I8:
3711 case PPC::SELECT_F4:
3712 case PPC::SELECT_F8:
3713 case PPC::SELECT_VRRC:
Bill Schmidt9c54bbd2014-10-22 16:58:20 +00003714 case PPC::SELECT_VSFRC:
Bill Schmidt61e65232014-10-22 13:13:40 +00003715 case PPC::SELECT_VSRC:
Hal Finkel940ab932014-02-28 00:27:01 +00003716 if (Op1Set)
3717 ResNode = MachineNode->getOperand(1).getNode();
3718 else if (Op1Unset)
3719 ResNode = MachineNode->getOperand(2).getNode();
3720 else if (Op1Not)
3721 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
3722 SDLoc(MachineNode),
3723 MachineNode->getValueType(0),
3724 MachineNode->getOperand(0).
3725 getOperand(0),
3726 MachineNode->getOperand(2),
3727 MachineNode->getOperand(1));
3728 break;
3729 case PPC::BC:
3730 case PPC::BCn:
3731 if (Op1Not)
3732 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
3733 PPC::BC,
3734 SDLoc(MachineNode),
3735 MVT::Other,
3736 MachineNode->getOperand(0).
3737 getOperand(0),
3738 MachineNode->getOperand(1),
3739 MachineNode->getOperand(2));
3740 // FIXME: Handle Op1Set, Op1Unset here too.
3741 break;
3742 }
3743
Hal Finkelb9989152014-02-28 06:11:16 +00003744 // If we're inverting this node because it is used only by selects that
3745 // we'd like to swap, then swap the selects before the node replacement.
3746 if (SelectSwap)
3747 SwapAllSelectUsers(MachineNode);
3748
Hal Finkel940ab932014-02-28 00:27:01 +00003749 if (ResNode != MachineNode) {
3750 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
3751 DEBUG(MachineNode->dump(CurDAG));
3752 DEBUG(dbgs() << "\nNew: ");
3753 DEBUG(ResNode->dump(CurDAG));
3754 DEBUG(dbgs() << "\n");
3755
3756 ReplaceUses(MachineNode, ResNode);
3757 IsModified = true;
3758 }
3759 }
3760 if (IsModified)
3761 CurDAG->RemoveDeadNodes();
3762 } while (IsModified);
3763}
3764
Hal Finkel4c6658f2014-12-12 23:59:36 +00003765// Gather the set of 32-bit operations that are known to have their
3766// higher-order 32 bits zero, where ToPromote contains all such operations.
3767static bool PeepholePPC64ZExtGather(SDValue Op32,
3768 SmallPtrSetImpl<SDNode *> &ToPromote) {
3769 if (!Op32.isMachineOpcode())
3770 return false;
3771
3772 // First, check for the "frontier" instructions (those that will clear the
3773 // higher-order 32 bits.
3774
3775 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
3776 // around. If it does not, then these instructions will clear the
3777 // higher-order bits.
3778 if ((Op32.getMachineOpcode() == PPC::RLWINM ||
3779 Op32.getMachineOpcode() == PPC::RLWNM) &&
3780 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
3781 ToPromote.insert(Op32.getNode());
3782 return true;
3783 }
3784
3785 // SLW and SRW always clear the higher-order bits.
3786 if (Op32.getMachineOpcode() == PPC::SLW ||
3787 Op32.getMachineOpcode() == PPC::SRW) {
3788 ToPromote.insert(Op32.getNode());
3789 return true;
3790 }
3791
3792 // For LI and LIS, we need the immediate to be positive (so that it is not
3793 // sign extended).
3794 if (Op32.getMachineOpcode() == PPC::LI ||
3795 Op32.getMachineOpcode() == PPC::LIS) {
3796 if (!isUInt<15>(Op32.getConstantOperandVal(0)))
3797 return false;
3798
3799 ToPromote.insert(Op32.getNode());
3800 return true;
3801 }
3802
Hal Finkel4e2c7822015-01-05 18:09:06 +00003803 // LHBRX and LWBRX always clear the higher-order bits.
3804 if (Op32.getMachineOpcode() == PPC::LHBRX ||
3805 Op32.getMachineOpcode() == PPC::LWBRX) {
3806 ToPromote.insert(Op32.getNode());
3807 return true;
3808 }
3809
Hal Finkel49557f12015-01-05 18:52:29 +00003810 // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
3811 if (Op32.getMachineOpcode() == PPC::CNTLZW) {
3812 ToPromote.insert(Op32.getNode());
3813 return true;
3814 }
3815
Hal Finkel4c6658f2014-12-12 23:59:36 +00003816 // Next, check for those instructions we can look through.
3817
3818 // Assuming the mask does not wrap around, then the higher-order bits are
3819 // taken directly from the first operand.
3820 if (Op32.getMachineOpcode() == PPC::RLWIMI &&
3821 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
3822 SmallPtrSet<SDNode *, 16> ToPromote1;
3823 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
3824 return false;
3825
3826 ToPromote.insert(Op32.getNode());
3827 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3828 return true;
3829 }
3830
3831 // For OR, the higher-order bits are zero if that is true for both operands.
3832 // For SELECT_I4, the same is true (but the relevant operand numbers are
3833 // shifted by 1).
3834 if (Op32.getMachineOpcode() == PPC::OR ||
3835 Op32.getMachineOpcode() == PPC::SELECT_I4) {
3836 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
3837 SmallPtrSet<SDNode *, 16> ToPromote1;
3838 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
3839 return false;
3840 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
3841 return false;
3842
3843 ToPromote.insert(Op32.getNode());
3844 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3845 return true;
3846 }
3847
3848 // For ORI and ORIS, we need the higher-order bits of the first operand to be
3849 // zero, and also for the constant to be positive (so that it is not sign
3850 // extended).
3851 if (Op32.getMachineOpcode() == PPC::ORI ||
3852 Op32.getMachineOpcode() == PPC::ORIS) {
3853 SmallPtrSet<SDNode *, 16> ToPromote1;
3854 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
3855 return false;
3856 if (!isUInt<15>(Op32.getConstantOperandVal(1)))
3857 return false;
3858
3859 ToPromote.insert(Op32.getNode());
3860 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3861 return true;
3862 }
3863
3864 // The higher-order bits of AND are zero if that is true for at least one of
3865 // the operands.
3866 if (Op32.getMachineOpcode() == PPC::AND) {
3867 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
3868 bool Op0OK =
3869 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
3870 bool Op1OK =
3871 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
3872 if (!Op0OK && !Op1OK)
3873 return false;
3874
3875 ToPromote.insert(Op32.getNode());
3876
3877 if (Op0OK)
3878 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3879
3880 if (Op1OK)
3881 ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
3882
3883 return true;
3884 }
3885
3886 // For ANDI and ANDIS, the higher-order bits are zero if either that is true
3887 // of the first operand, or if the second operand is positive (so that it is
3888 // not sign extended).
3889 if (Op32.getMachineOpcode() == PPC::ANDIo ||
3890 Op32.getMachineOpcode() == PPC::ANDISo) {
3891 SmallPtrSet<SDNode *, 16> ToPromote1;
3892 bool Op0OK =
3893 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
3894 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
3895 if (!Op0OK && !Op1OK)
3896 return false;
3897
3898 ToPromote.insert(Op32.getNode());
3899
3900 if (Op0OK)
3901 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3902
3903 return true;
3904 }
3905
3906 return false;
3907}
3908
3909void PPCDAGToDAGISel::PeepholePPC64ZExt() {
3910 if (!PPCSubTarget->isPPC64())
3911 return;
3912
3913 // When we zero-extend from i32 to i64, we use a pattern like this:
3914 // def : Pat<(i64 (zext i32:$in)),
3915 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
3916 // 0, 32)>;
3917 // There are several 32-bit shift/rotate instructions, however, that will
3918 // clear the higher-order bits of their output, rendering the RLDICL
3919 // unnecessary. When that happens, we remove it here, and redefine the
3920 // relevant 32-bit operation to be a 64-bit operation.
3921
3922 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3923 ++Position;
3924
3925 bool MadeChange = false;
3926 while (Position != CurDAG->allnodes_begin()) {
3927 SDNode *N = --Position;
3928 // Skip dead nodes and any non-machine opcodes.
3929 if (N->use_empty() || !N->isMachineOpcode())
3930 continue;
3931
3932 if (N->getMachineOpcode() != PPC::RLDICL)
3933 continue;
3934
3935 if (N->getConstantOperandVal(1) != 0 ||
3936 N->getConstantOperandVal(2) != 32)
3937 continue;
3938
3939 SDValue ISR = N->getOperand(0);
3940 if (!ISR.isMachineOpcode() ||
3941 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
3942 continue;
3943
3944 if (!ISR.hasOneUse())
3945 continue;
3946
3947 if (ISR.getConstantOperandVal(2) != PPC::sub_32)
3948 continue;
3949
3950 SDValue IDef = ISR.getOperand(0);
3951 if (!IDef.isMachineOpcode() ||
3952 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
3953 continue;
3954
3955 // We now know that we're looking at a canonical i32 -> i64 zext. See if we
3956 // can get rid of it.
3957
3958 SDValue Op32 = ISR->getOperand(1);
3959 if (!Op32.isMachineOpcode())
3960 continue;
3961
3962 // There are some 32-bit instructions that always clear the high-order 32
3963 // bits, there are also some instructions (like AND) that we can look
3964 // through.
3965 SmallPtrSet<SDNode *, 16> ToPromote;
3966 if (!PeepholePPC64ZExtGather(Op32, ToPromote))
3967 continue;
3968
3969 // If the ToPromote set contains nodes that have uses outside of the set
3970 // (except for the original INSERT_SUBREG), then abort the transformation.
3971 bool OutsideUse = false;
3972 for (SDNode *PN : ToPromote) {
3973 for (SDNode *UN : PN->uses()) {
3974 if (!ToPromote.count(UN) && UN != ISR.getNode()) {
3975 OutsideUse = true;
3976 break;
3977 }
3978 }
3979
3980 if (OutsideUse)
3981 break;
3982 }
3983 if (OutsideUse)
3984 continue;
3985
3986 MadeChange = true;
3987
3988 // We now know that this zero extension can be removed by promoting to
3989 // nodes in ToPromote to 64-bit operations, where for operations in the
3990 // frontier of the set, we need to insert INSERT_SUBREGs for their
3991 // operands.
3992 for (SDNode *PN : ToPromote) {
3993 unsigned NewOpcode;
3994 switch (PN->getMachineOpcode()) {
3995 default:
3996 llvm_unreachable("Don't know the 64-bit variant of this instruction");
3997 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break;
3998 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break;
3999 case PPC::SLW: NewOpcode = PPC::SLW8; break;
4000 case PPC::SRW: NewOpcode = PPC::SRW8; break;
4001 case PPC::LI: NewOpcode = PPC::LI8; break;
4002 case PPC::LIS: NewOpcode = PPC::LIS8; break;
Hal Finkel4e2c7822015-01-05 18:09:06 +00004003 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break;
4004 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break;
Hal Finkel49557f12015-01-05 18:52:29 +00004005 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break;
Hal Finkel4c6658f2014-12-12 23:59:36 +00004006 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
4007 case PPC::OR: NewOpcode = PPC::OR8; break;
4008 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
4009 case PPC::ORI: NewOpcode = PPC::ORI8; break;
4010 case PPC::ORIS: NewOpcode = PPC::ORIS8; break;
4011 case PPC::AND: NewOpcode = PPC::AND8; break;
4012 case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break;
4013 case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break;
4014 }
4015
4016 // Note: During the replacement process, the nodes will be in an
4017 // inconsistent state (some instructions will have operands with values
4018 // of the wrong type). Once done, however, everything should be right
4019 // again.
4020
4021 SmallVector<SDValue, 4> Ops;
4022 for (const SDValue &V : PN->ops()) {
4023 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
4024 !isa<ConstantSDNode>(V)) {
4025 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
4026 SDNode *ReplOp =
4027 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
4028 ISR.getNode()->getVTList(), ReplOpOps);
4029 Ops.push_back(SDValue(ReplOp, 0));
4030 } else {
4031 Ops.push_back(V);
4032 }
4033 }
4034
4035 // Because all to-be-promoted nodes only have users that are other
4036 // promoted nodes (or the original INSERT_SUBREG), we can safely replace
4037 // the i32 result value type with i64.
4038
4039 SmallVector<EVT, 2> NewVTs;
4040 SDVTList VTs = PN->getVTList();
4041 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
4042 if (VTs.VTs[i] == MVT::i32)
4043 NewVTs.push_back(MVT::i64);
4044 else
4045 NewVTs.push_back(VTs.VTs[i]);
4046
4047 DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
4048 DEBUG(PN->dump(CurDAG));
4049
4050 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
4051
4052 DEBUG(dbgs() << "\nNew: ");
4053 DEBUG(PN->dump(CurDAG));
4054 DEBUG(dbgs() << "\n");
4055 }
4056
4057 // Now we replace the original zero extend and its associated INSERT_SUBREG
4058 // with the value feeding the INSERT_SUBREG (which has now been promoted to
4059 // return an i64).
4060
4061 DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
4062 DEBUG(N->dump(CurDAG));
4063 DEBUG(dbgs() << "\nNew: ");
4064 DEBUG(Op32.getNode()->dump(CurDAG));
4065 DEBUG(dbgs() << "\n");
4066
4067 ReplaceUses(N, Op32.getNode());
4068 }
4069
4070 if (MadeChange)
4071 CurDAG->RemoveDeadNodes();
4072}
4073
Hal Finkel940ab932014-02-28 00:27:01 +00004074void PPCDAGToDAGISel::PeepholePPC64() {
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004075 // These optimizations are currently supported only for 64-bit SVR4.
Eric Christopher1b8e7632014-05-22 01:07:24 +00004076 if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004077 return;
4078
4079 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4080 ++Position;
4081
4082 while (Position != CurDAG->allnodes_begin()) {
4083 SDNode *N = --Position;
4084 // Skip dead nodes and any non-machine opcodes.
4085 if (N->use_empty() || !N->isMachineOpcode())
4086 continue;
4087
4088 unsigned FirstOp;
4089 unsigned StorageOpcode = N->getMachineOpcode();
4090
4091 switch (StorageOpcode) {
4092 default: continue;
4093
4094 case PPC::LBZ:
4095 case PPC::LBZ8:
4096 case PPC::LD:
4097 case PPC::LFD:
4098 case PPC::LFS:
4099 case PPC::LHA:
4100 case PPC::LHA8:
4101 case PPC::LHZ:
4102 case PPC::LHZ8:
4103 case PPC::LWA:
4104 case PPC::LWZ:
4105 case PPC::LWZ8:
4106 FirstOp = 0;
4107 break;
4108
4109 case PPC::STB:
4110 case PPC::STB8:
4111 case PPC::STD:
4112 case PPC::STFD:
4113 case PPC::STFS:
4114 case PPC::STH:
4115 case PPC::STH8:
4116 case PPC::STW:
4117 case PPC::STW8:
4118 FirstOp = 1;
4119 break;
4120 }
4121
4122 // If this is a load or store with a zero offset, we may be able to
4123 // fold an add-immediate into the memory operation.
4124 if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
4125 N->getConstantOperandVal(FirstOp) != 0)
4126 continue;
4127
4128 SDValue Base = N->getOperand(FirstOp + 1);
4129 if (!Base.isMachineOpcode())
4130 continue;
4131
4132 unsigned Flags = 0;
4133 bool ReplaceFlags = true;
4134
4135 // When the feeding operation is an add-immediate of some sort,
4136 // determine whether we need to add relocation information to the
4137 // target flags on the immediate operand when we fold it into the
4138 // load instruction.
4139 //
4140 // For something like ADDItocL, the relocation information is
4141 // inferred from the opcode; when we process it in the AsmPrinter,
4142 // we add the necessary relocation there. A load, though, can receive
4143 // relocation from various flavors of ADDIxxx, so we need to carry
4144 // the relocation information in the target flags.
4145 switch (Base.getMachineOpcode()) {
4146 default: continue;
4147
4148 case PPC::ADDI8:
Ulrich Weigand35f9fdf2013-03-26 10:55:20 +00004149 case PPC::ADDI:
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004150 // In some cases (such as TLS) the relocation information
4151 // is already in place on the operand, so copying the operand
4152 // is sufficient.
4153 ReplaceFlags = false;
4154 // For these cases, the immediate may not be divisible by 4, in
4155 // which case the fold is illegal for DS-form instructions. (The
4156 // other cases provide aligned addresses and are always safe.)
4157 if ((StorageOpcode == PPC::LWA ||
4158 StorageOpcode == PPC::LD ||
4159 StorageOpcode == PPC::STD) &&
4160 (!isa<ConstantSDNode>(Base.getOperand(1)) ||
4161 Base.getConstantOperandVal(1) % 4 != 0))
4162 continue;
4163 break;
4164 case PPC::ADDIdtprelL:
Ulrich Weigandd51c09f2013-06-21 14:42:20 +00004165 Flags = PPCII::MO_DTPREL_LO;
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004166 break;
4167 case PPC::ADDItlsldL:
Ulrich Weigandd51c09f2013-06-21 14:42:20 +00004168 Flags = PPCII::MO_TLSLD_LO;
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004169 break;
4170 case PPC::ADDItocL:
Ulrich Weigandd51c09f2013-06-21 14:42:20 +00004171 Flags = PPCII::MO_TOC_LO;
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004172 break;
4173 }
4174
4175 // We found an opportunity. Reverse the operands from the add
4176 // immediate and substitute them into the load or store. If
4177 // needed, update the target flags for the immediate operand to
4178 // reflect the necessary relocation information.
4179 DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
4180 DEBUG(Base->dump(CurDAG));
4181 DEBUG(dbgs() << "\nN: ");
4182 DEBUG(N->dump(CurDAG));
4183 DEBUG(dbgs() << "\n");
4184
4185 SDValue ImmOpnd = Base.getOperand(1);
4186
4187 // If the relocation information isn't already present on the
4188 // immediate operand, add it now.
4189 if (ReplaceFlags) {
Bill Schmidt49498da2013-02-21 14:35:42 +00004190 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
Andrew Trickef9de2a2013-05-25 02:42:55 +00004191 SDLoc dl(GA);
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004192 const GlobalValue *GV = GA->getGlobal();
Bill Schmidt48fc20a2013-07-01 20:52:27 +00004193 // We can't perform this optimization for data whose alignment
4194 // is insufficient for the instruction encoding.
4195 if (GV->getAlignment() < 4 &&
4196 (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
4197 StorageOpcode == PPC::LWA)) {
4198 DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
4199 continue;
4200 }
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004201 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
Bill Schmidt836c45b2013-02-21 17:26:05 +00004202 } else if (ConstantPoolSDNode *CP =
4203 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
Bill Schmidt49498da2013-02-21 14:35:42 +00004204 const Constant *C = CP->getConstVal();
4205 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
4206 CP->getAlignment(),
4207 0, Flags);
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004208 }
4209 }
4210
4211 if (FirstOp == 1) // Store
4212 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
4213 Base.getOperand(0), N->getOperand(3));
4214 else // Load
4215 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
4216 N->getOperand(2));
4217
4218 // The add-immediate may now be dead, in which case remove it.
4219 if (Base.getNode()->use_empty())
4220 CurDAG->RemoveDeadNode(Base.getNode());
4221 }
4222}
Chris Lattner43ff01e2005-08-17 19:33:03 +00004223
Chris Lattnerb055c872006-06-10 01:15:02 +00004224
Andrew Trickc416ba62010-12-24 04:28:06 +00004225/// createPPCISelDag - This pass converts a legalized DAG into a
Chris Lattner43ff01e2005-08-17 19:33:03 +00004226/// PowerPC-specific DAG, ready for instruction scheduling.
4227///
Evan Cheng2dd2c652006-03-13 23:20:37 +00004228FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
Nate Begeman0b71e002005-10-18 00:28:58 +00004229 return new PPCDAGToDAGISel(TM);
Chris Lattner43ff01e2005-08-17 19:33:03 +00004230}
4231
Krzysztof Parzyszek2680b532013-02-13 17:40:07 +00004232static void initializePassOnce(PassRegistry &Registry) {
4233 const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
Craig Topper062a2ba2014-04-25 05:30:21 +00004234 PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID,
4235 nullptr, false, false);
Krzysztof Parzyszek2680b532013-02-13 17:40:07 +00004236 Registry.registerPass(*PI, true);
4237}
4238
4239void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
4240 CALL_ONCE_INITIALIZATION(initializePassOnce);
4241}
4242