blob: 552dc83563e53ae91620de126011a79f0dbd1a2d [file] [log] [blame]
Michael Kruse138a3fb2017-08-04 22:51:23 +00001//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Derive information about array elements between statements ("Zones").
11//
12// The algorithms here work on the scatter space - the image space of the
13// schedule returned by Scop::getSchedule(). We call an element in that space a
14// "timepoint". Timepoints are lexicographically ordered such that we can
15// defined ranges in the scatter space. We use two flavors of such ranges:
16// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
17// space and is directly stored as isl_set.
18//
19// Zones are used to describe the space between timepoints as open sets, i.e.
20// they do not contain the extrema. Using isl rational sets to express these
21// would be overkill. We also cannot store them as the integer timepoints they
22// contain; the (nonempty) zone between 1 and 2 would be empty and
23// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
24// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
25// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
26// Instead, we store the "half-open" integer extrema, including the lower bound,
27// but excluding the upper bound. Examples:
28//
29// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
30// integer points 1 and 2, but not 0 or 3)
31//
32// * { [1] } represents the zone ]0,1[
33//
34// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
35//
36// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
37// speaking the integer points never belong to the zone. However, depending an
38// the interpretation, one might want to include them. Part of the
39// interpretation may not be known when the zone is constructed.
40//
41// Reads are assumed to always take place before writes, hence we can think of
42// reads taking place at the beginning of a timepoint and writes at the end.
43//
44// Let's assume that the zone represents the lifetime of a variable. That is,
45// the zone begins with a write that defines the value during its lifetime and
46// ends with the last read of that value. In the following we consider whether a
47// read/write at the beginning/ending of the lifetime zone should be within the
48// zone or outside of it.
49//
50// * A read at the timepoint that starts the live-range loads the previous
51// value. Hence, exclude the timepoint starting the zone.
52//
53// * A write at the timepoint that starts the live-range is not defined whether
54// it occurs before or after the write that starts the lifetime. We do not
55// allow this situation to occur. Hence, we include the timepoint starting the
56// zone to determine whether they are conflicting.
57//
58// * A read at the timepoint that ends the live-range reads the same variable.
59// We include the timepoint at the end of the zone to include that read into
60// the live-range. Doing otherwise would mean that the two reads access
61// different values, which would mean that the value they read are both alive
62// at the same time but occupy the same variable.
63//
64// * A write at the timepoint that ends the live-range starts a new live-range.
65// It must not be included in the live-range of the previous definition.
66//
67// All combinations of reads and writes at the endpoints are possible, but most
68// of the time only the write->read (for instance, a live-range from definition
69// to last use) and read->write (for instance, an unused range from last use to
70// overwrite) and combinations are interesting (half-open ranges). write->write
71// zones might be useful as well in some context to represent
72// output-dependencies.
73//
74// @see convertZoneToTimepoints
75//
76//
77// The code makes use of maps and sets in many different spaces. To not loose
78// track in which space a set or map is expected to be in, variables holding an
79// isl reference are usually annotated in the comments. They roughly follow isl
80// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
81// meaning as follows:
82//
83// * Space[] - An unspecified tuple. Used for function parameters such that the
84// function caller can use it for anything they like.
85//
86// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
87// isl_id_get_name: Stmt_<NameOfBasicBlock>
88// isl_id_get_user: Pointer to ScopStmt
89//
90// * Element[] - An array element as in the range part of
91// MemoryAccess::getAccessRelation()
92// isl_id_get_name: MemRef_<NameOfArrayVariable>
93// isl_id_get_user: Pointer to ScopArrayInfo
94//
95// * Scatter[] - Scatter space or space of timepoints
96// Has no tuple id
97//
98// * Zone[] - Range between timepoints as described above
99// Has no tuple id
100//
101// * ValInst[] - An llvm::Value as defined at a specific timepoint.
102//
103// A ValInst[] itself can be structured as one of:
104//
105// * [] - An unknown value.
106// Always zero dimensions
107// Has no tuple id
108//
109// * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
110// runtime content does not depend on the timepoint.
111// Always zero dimensions
112// isl_id_get_name: Val_<NameOfValue>
113// isl_id_get_user: A pointer to an llvm::Value
114//
115// * SCEV[...] - A synthesizable llvm::SCEV Expression.
116// In contrast to a Value[] is has at least one dimension per
117// SCEVAddRecExpr in the SCEV.
118//
119// * [Domain[] -> Value[]] - An llvm::Value that may change during the
120// Scop's execution.
121// The tuple itself has no id, but it wraps a map space holding a
122// statement instance which defines the llvm::Value as the map's domain
123// and llvm::Value itself as range.
124//
125// @see makeValInst()
126//
127// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
128// statement instance to a timepoint, aka a schedule. There is only one scatter
129// space, but most of the time multiple statements are processed in one set.
130// This is why most of the time isl_union_map has to be used.
131//
132// The basic algorithm works as follows:
133// At first we verify that the SCoP is compatible with this technique. For
134// instance, two writes cannot write to the same location at the same statement
135// instance because we cannot determine within the polyhedral model which one
136// comes first. Once this was verified, we compute zones at which an array
137// element is unused. This computation can fail if it takes too long. Then the
138// main algorithm is executed. Because every store potentially trails an unused
139// zone, we start at stores. We search for a scalar (MemoryKind::Value or
140// MemoryKind::PHI) that we can map to the array element overwritten by the
141// store, preferably one that is used by the store or at least the ScopStmt.
142// When it does not conflict with the lifetime of the values in the array
143// element, the map is applied and the unused zone updated as it is now used. We
144// continue to try to map scalars to the array element until there are no more
145// candidates to map. The algorithm is greedy in the sense that the first scalar
146// not conflicting will be mapped. Other scalars processed later that could have
147// fit the same unused zone will be rejected. As such the result depends on the
148// processing order.
149//
150//===----------------------------------------------------------------------===//
151
152#include "polly/ZoneAlgo.h"
153#include "polly/ScopInfo.h"
154#include "polly/Support/GICHelper.h"
155#include "polly/Support/ISLTools.h"
156#include "polly/Support/VirtualInstruction.h"
Philip Pfaffe2813ce22017-11-17 11:34:29 +0000157#include "llvm/Support/raw_ostream.h"
Michael Kruse47281842017-08-28 20:39:07 +0000158#include "llvm/ADT/Statistic.h"
Michael Kruse138a3fb2017-08-04 22:51:23 +0000159
160#define DEBUG_TYPE "polly-zone"
161
Michael Kruse47281842017-08-28 20:39:07 +0000162STATISTIC(NumIncompatibleArrays, "Number of not zone-analyzable arrays");
163STATISTIC(NumCompatibleArrays, "Number of zone-analyzable arrays");
Michael Kruse68821a82017-10-31 16:11:46 +0000164STATISTIC(NumRecursivePHIs, "Number of recursive PHIs");
165STATISTIC(NumNormalizablePHIs, "Number of normalizable PHIs");
166STATISTIC(NumPHINormialization, "Number of PHI executed normalizations");
Michael Kruse47281842017-08-28 20:39:07 +0000167
Michael Kruse138a3fb2017-08-04 22:51:23 +0000168using namespace polly;
169using namespace llvm;
170
171static isl::union_map computeReachingDefinition(isl::union_map Schedule,
172 isl::union_map Writes,
173 bool InclDef, bool InclRedef) {
174 return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
175}
176
177/// Compute the reaching definition of a scalar.
178///
179/// Compared to computeReachingDefinition, there is just one element which is
180/// accessed and therefore only a set if instances that accesses that element is
181/// required.
182///
183/// @param Schedule { DomainWrite[] -> Scatter[] }
184/// @param Writes { DomainWrite[] }
185/// @param InclDef Include the timepoint of the definition to the result.
186/// @param InclRedef Include the timepoint of the overwrite into the result.
187///
188/// @return { Scatter[] -> DomainWrite[] }
189static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
190 isl::union_set Writes,
191 bool InclDef,
192 bool InclRedef) {
Michael Kruse138a3fb2017-08-04 22:51:23 +0000193 // { DomainWrite[] -> Element[] }
Tobias Grosser0dd42512017-08-21 14:19:40 +0000194 isl::union_map Defs = isl::union_map::from_domain(Writes);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000195
196 // { [Element[] -> Scatter[]] -> DomainWrite[] }
197 auto ReachDefs =
198 computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
199
200 // { Scatter[] -> DomainWrite[] }
Tobias Grosser0dd42512017-08-21 14:19:40 +0000201 return ReachDefs.curry().range().unwrap();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000202}
203
204/// Compute the reaching definition of a scalar.
205///
206/// This overload accepts only a single writing statement as an isl_map,
207/// consequently the result also is only a single isl_map.
208///
209/// @param Schedule { DomainWrite[] -> Scatter[] }
210/// @param Writes { DomainWrite[] }
211/// @param InclDef Include the timepoint of the definition to the result.
212/// @param InclRedef Include the timepoint of the overwrite into the result.
213///
214/// @return { Scatter[] -> DomainWrite[] }
215static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
216 isl::set Writes, bool InclDef,
217 bool InclRedef) {
Tobias Grosser0dd42512017-08-21 14:19:40 +0000218 isl::space DomainSpace = Writes.get_space();
219 isl::space ScatterSpace = getScatterSpace(Schedule);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000220
221 // { Scatter[] -> DomainWrite[] }
Tobias Grosser0dd42512017-08-21 14:19:40 +0000222 isl::union_map UMap = computeScalarReachingDefinition(
223 Schedule, isl::union_set(Writes), InclDef, InclRedef);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000224
Tobias Grosser0dd42512017-08-21 14:19:40 +0000225 isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000226 return singleton(UMap, ResultSpace);
227}
228
229isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
230 return give(isl_union_map_from_domain(Domain.take()));
231}
232
233/// Create a domain-to-unknown value mapping.
234///
235/// @see makeUnknownForDomain(isl::union_set)
236///
237/// @param Domain { Domain[] }
238///
239/// @return { Domain[] -> ValInst[] }
240static isl::map makeUnknownForDomain(isl::set Domain) {
241 return give(isl_map_from_domain(Domain.take()));
242}
243
Michael Kruse70af4f52017-08-07 18:40:29 +0000244/// Return whether @p Map maps to an unknown value.
245///
246/// @param { [] -> ValInst[] }
247static bool isMapToUnknown(const isl::map &Map) {
248 isl::space Space = Map.get_space().range();
249 return Space.has_tuple_id(isl::dim::set).is_false() &&
250 Space.is_wrapping().is_false() && Space.dim(isl::dim::set) == 0;
251}
252
Michael Krusece673582017-08-08 17:00:27 +0000253isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
Michael Kruse70af4f52017-08-07 18:40:29 +0000254 isl::union_map Result = isl::union_map::empty(UMap.get_space());
Michael Kruse630fc7b2017-08-09 11:21:40 +0000255 isl::stat Success = UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat {
Michael Kruse70af4f52017-08-07 18:40:29 +0000256 if (!isMapToUnknown(Map))
257 Result = Result.add_map(Map);
258 return isl::stat::ok;
259 });
Michael Kruse630fc7b2017-08-09 11:21:40 +0000260 if (Success != isl::stat::ok)
261 return {};
Michael Kruse70af4f52017-08-07 18:40:29 +0000262 return Result;
263}
264
Michael Kruse138a3fb2017-08-04 22:51:23 +0000265ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
266 : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
Tobias Grosser61bd3a42017-08-06 21:42:38 +0000267 Schedule(S->getSchedule()) {
Tobias Grosser31df6f32017-08-06 21:42:25 +0000268 auto Domains = S->getDomains();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000269
270 Schedule =
271 give(isl_union_map_intersect_domain(Schedule.take(), Domains.take()));
272 ParamSpace = give(isl_union_map_get_space(Schedule.keep()));
273 ScatterSpace = getScatterSpace(Schedule);
274}
275
Tobias Grosser2ef37812017-08-07 22:01:29 +0000276/// Check if all stores in @p Stmt store the very same value.
277///
Michael Kruse8756b3f2017-08-09 09:29:15 +0000278/// This covers a special situation occurring in Polybench's
279/// covariance/correlation (which is typical for algorithms that cover symmetric
280/// matrices):
281///
282/// for (int i = 0; i < n; i += 1)
283/// for (int j = 0; j <= i; j += 1) {
284/// double x = ...;
285/// C[i][j] = x;
286/// C[j][i] = x;
287/// }
288///
289/// For i == j, the same value is written twice to the same element.Double
290/// writes to the same element are not allowed in DeLICM because its algorithm
291/// does not see which of the writes is effective.But if its the same value
292/// anyway, it doesn't matter.
293///
294/// LLVM passes, however, cannot simplify this because the write is necessary
295/// for i != j (unless it would add a condition for one of the writes to occur
296/// only if i != j).
297///
Tobias Grosser2ef37812017-08-07 22:01:29 +0000298/// TODO: In the future we may want to extent this to make the checks
299/// specific to different memory locations.
300static bool onlySameValueWrites(ScopStmt *Stmt) {
301 Value *V = nullptr;
302
303 for (auto *MA : *Stmt) {
304 if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
305 !MA->isOriginalArrayKind())
306 continue;
307
308 if (!V) {
309 V = MA->getAccessValue();
310 continue;
311 }
312
313 if (V != MA->getAccessValue())
314 return false;
315 }
316 return true;
317}
318
Michael Kruse47281842017-08-28 20:39:07 +0000319void ZoneAlgorithm::collectIncompatibleElts(ScopStmt *Stmt,
320 isl::union_set &IncompatibleElts,
321 isl::union_set &AllElts) {
Michael Kruse138a3fb2017-08-04 22:51:23 +0000322 auto Stores = makeEmptyUnionMap();
323 auto Loads = makeEmptyUnionMap();
324
325 // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
326 // order.
327 for (auto *MA : *Stmt) {
Michael Kruseff426d92017-10-31 12:50:25 +0000328 if (!MA->isOriginalArrayKind())
Michael Kruse138a3fb2017-08-04 22:51:23 +0000329 continue;
330
Michael Kruse47281842017-08-28 20:39:07 +0000331 isl::map AccRelMap = getAccessRelationFor(MA);
332 isl::union_map AccRel = AccRelMap;
333
334 // To avoid solving any ILP problems, always add entire arrays instead of
335 // just the elements that are accessed.
336 auto ArrayElts = isl::set::universe(AccRelMap.get_space().range());
337 AllElts = AllElts.add_set(ArrayElts);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000338
339 if (MA->isRead()) {
340 // Reject load after store to same location.
341 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
Michael Krusee983e6b2017-08-28 11:22:23 +0000342 DEBUG(dbgs() << "Load after store of same element in same statement\n");
Michael Kruse138a3fb2017-08-04 22:51:23 +0000343 OptimizationRemarkMissed R(PassName, "LoadAfterStore",
344 MA->getAccessInstruction());
345 R << "load after store of same element in same statement";
346 R << " (previous stores: " << Stores;
347 R << ", loading: " << AccRel << ")";
348 S->getFunction().getContext().diagnose(R);
Michael Kruse47281842017-08-28 20:39:07 +0000349
350 IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000351 }
352
353 Loads = give(isl_union_map_union(Loads.take(), AccRel.take()));
354
355 continue;
356 }
357
Michael Kruse138a3fb2017-08-04 22:51:23 +0000358 // In region statements the order is less clear, eg. the load and store
359 // might be in a boxed loop.
360 if (Stmt->isRegionStmt() &&
361 !isl_union_map_is_disjoint(Loads.keep(), AccRel.keep())) {
Michael Krusee983e6b2017-08-28 11:22:23 +0000362 DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n");
Michael Kruse138a3fb2017-08-04 22:51:23 +0000363 OptimizationRemarkMissed R(PassName, "StoreInSubregion",
364 MA->getAccessInstruction());
365 R << "store is in a non-affine subregion";
366 S->getFunction().getContext().diagnose(R);
Michael Kruse47281842017-08-28 20:39:07 +0000367
368 IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000369 }
370
371 // Do not allow more than one store to the same location.
Michael Krusea9033aa2017-08-09 09:29:09 +0000372 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep()) &&
373 !onlySameValueWrites(Stmt)) {
Michael Krusee983e6b2017-08-28 11:22:23 +0000374 DEBUG(dbgs() << "WRITE after WRITE to same element\n");
Michael Kruse138a3fb2017-08-04 22:51:23 +0000375 OptimizationRemarkMissed R(PassName, "StoreAfterStore",
376 MA->getAccessInstruction());
Michael Krusea9033aa2017-08-09 09:29:09 +0000377 R << "store after store of same element in same statement";
378 R << " (previous stores: " << Stores;
379 R << ", storing: " << AccRel << ")";
380 S->getFunction().getContext().diagnose(R);
Michael Kruse47281842017-08-28 20:39:07 +0000381
382 IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000383 }
384
385 Stores = give(isl_union_map_union(Stores.take(), AccRel.take()));
386 }
Michael Kruse138a3fb2017-08-04 22:51:23 +0000387}
388
389void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
390 assert(MA->isLatestArrayKind());
391 assert(MA->isRead());
Michael Kruse70af4f52017-08-07 18:40:29 +0000392 ScopStmt *Stmt = MA->getStatement();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000393
394 // { DomainRead[] -> Element[] }
Michael Kruse47281842017-08-28 20:39:07 +0000395 auto AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000396 AllReads = give(isl_union_map_add_map(AllReads.take(), AccRel.copy()));
Michael Kruse70af4f52017-08-07 18:40:29 +0000397
398 if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
399 // { DomainRead[] -> ValInst[] }
400 isl::map LoadValInst = makeValInst(
401 Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());
402
403 // { DomainRead[] -> [Element[] -> DomainRead[]] }
404 isl::map IncludeElement =
405 give(isl_map_curry(isl_map_domain_map(AccRel.take())));
406
407 // { [Element[] -> DomainRead[]] -> ValInst[] }
408 isl::map EltLoadValInst =
409 give(isl_map_apply_domain(LoadValInst.take(), IncludeElement.take()));
410
411 AllReadValInst = give(
412 isl_union_map_add_map(AllReadValInst.take(), EltLoadValInst.take()));
413 }
Michael Kruse138a3fb2017-08-04 22:51:23 +0000414}
415
Michael Kruse68821a82017-10-31 16:11:46 +0000416isl::union_map ZoneAlgorithm::getWrittenValue(MemoryAccess *MA,
417 isl::map AccRel) {
Michael Krusebd84ce82017-09-06 12:40:55 +0000418 if (!MA->isMustWrite())
419 return {};
420
421 Value *AccVal = MA->getAccessValue();
422 ScopStmt *Stmt = MA->getStatement();
423 Instruction *AccInst = MA->getAccessInstruction();
424
425 // Write a value to a single element.
426 auto L = MA->isOriginalArrayKind() ? LI->getLoopFor(AccInst->getParent())
427 : Stmt->getSurroundingLoop();
428 if (AccVal &&
429 AccVal->getType() == MA->getLatestScopArrayInfo()->getElementType() &&
Michael Kruseef8325b2017-09-18 17:43:50 +0000430 AccRel.is_single_valued().is_true())
Michael Kruse68821a82017-10-31 16:11:46 +0000431 return makeNormalizedValInst(AccVal, Stmt, L);
Michael Krusebd84ce82017-09-06 12:40:55 +0000432
433 // memset(_, '0', ) is equivalent to writing the null value to all touched
434 // elements. isMustWrite() ensures that all of an element's bytes are
435 // overwritten.
436 if (auto *Memset = dyn_cast<MemSetInst>(AccInst)) {
437 auto *WrittenConstant = dyn_cast<Constant>(Memset->getValue());
438 Type *Ty = MA->getLatestScopArrayInfo()->getElementType();
439 if (WrittenConstant && WrittenConstant->isZeroValue()) {
440 Constant *Zero = Constant::getNullValue(Ty);
Michael Kruse68821a82017-10-31 16:11:46 +0000441 return makeNormalizedValInst(Zero, Stmt, L);
Michael Krusebd84ce82017-09-06 12:40:55 +0000442 }
443 }
444
445 return {};
446}
447
Michael Kruse138a3fb2017-08-04 22:51:23 +0000448void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
449 assert(MA->isLatestArrayKind());
450 assert(MA->isWrite());
451 auto *Stmt = MA->getStatement();
452
453 // { Domain[] -> Element[] }
Michael Kruse983fa9b2017-10-24 16:40:34 +0000454 isl::map AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000455
456 if (MA->isMustWrite())
Michael Kruse983fa9b2017-10-24 16:40:34 +0000457 AllMustWrites = AllMustWrites.add_map(AccRel);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000458
459 if (MA->isMayWrite())
Michael Kruse983fa9b2017-10-24 16:40:34 +0000460 AllMayWrites = AllMayWrites.add_map(AccRel);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000461
462 // { Domain[] -> ValInst[] }
Michael Kruse68821a82017-10-31 16:11:46 +0000463 isl::union_map WriteValInstance = getWrittenValue(MA, AccRel);
Michael Krusebd84ce82017-09-06 12:40:55 +0000464 if (!WriteValInstance)
465 WriteValInstance = makeUnknownForDomain(Stmt);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000466
467 // { Domain[] -> [Element[] -> Domain[]] }
Michael Kruse983fa9b2017-10-24 16:40:34 +0000468 isl::map IncludeElement = AccRel.domain_map().curry();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000469
470 // { [Element[] -> DomainWrite[]] -> ValInst[] }
Michael Kruse68821a82017-10-31 16:11:46 +0000471 isl::union_map EltWriteValInst =
472 WriteValInstance.apply_domain(IncludeElement);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000473
Michael Kruse68821a82017-10-31 16:11:46 +0000474 AllWriteValInst = AllWriteValInst.unite(EltWriteValInst);
475}
476
477/// Return whether @p PHI refers (also transitively through other PHIs) to
478/// itself.
479///
480/// loop:
481/// %phi1 = phi [0, %preheader], [%phi1, %loop]
482/// br i1 %c, label %loop, label %exit
483///
484/// exit:
485/// %phi2 = phi [%phi1, %bb]
486///
487/// In this example, %phi1 is recursive, but %phi2 is not.
488static bool isRecursivePHI(const PHINode *PHI) {
489 SmallVector<const PHINode *, 8> Worklist;
490 SmallPtrSet<const PHINode *, 8> Visited;
491 Worklist.push_back(PHI);
492
493 while (!Worklist.empty()) {
494 const PHINode *Cur = Worklist.pop_back_val();
495
496 if (Visited.count(Cur))
497 continue;
498 Visited.insert(Cur);
499
500 for (const Use &Incoming : Cur->incoming_values()) {
501 Value *IncomingVal = Incoming.get();
502 auto *IncomingPHI = dyn_cast<PHINode>(IncomingVal);
503 if (!IncomingPHI)
504 continue;
505
506 if (IncomingPHI == PHI)
507 return true;
508 Worklist.push_back(IncomingPHI);
509 }
510 }
511 return false;
512}
513
514isl::union_map ZoneAlgorithm::computePerPHI(const ScopArrayInfo *SAI) {
515 // TODO: If the PHI has an incoming block from before the SCoP, it is not
516 // represented in any ScopStmt.
517
518 auto *PHI = cast<PHINode>(SAI->getBasePtr());
519 auto It = PerPHIMaps.find(PHI);
520 if (It != PerPHIMaps.end())
521 return It->second;
522
523 assert(SAI->isPHIKind());
524
525 // { DomainPHIWrite[] -> Scatter[] }
526 isl::union_map PHIWriteScatter = makeEmptyUnionMap();
527
528 // Collect all incoming block timepoints.
529 for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
530 isl::map Scatter = getScatterFor(MA);
531 PHIWriteScatter = PHIWriteScatter.add_map(Scatter);
532 }
533
534 // { DomainPHIRead[] -> Scatter[] }
535 isl::map PHIReadScatter = getScatterFor(S->getPHIRead(SAI));
536
537 // { DomainPHIRead[] -> Scatter[] }
538 isl::map BeforeRead = beforeScatter(PHIReadScatter, true);
539
540 // { Scatter[] }
541 isl::set WriteTimes = singleton(PHIWriteScatter.range(), ScatterSpace);
542
543 // { DomainPHIRead[] -> Scatter[] }
544 isl::map PHIWriteTimes = BeforeRead.intersect_range(WriteTimes);
545 isl::map LastPerPHIWrites = PHIWriteTimes.lexmax();
546
547 // { DomainPHIRead[] -> DomainPHIWrite[] }
548 isl::union_map Result =
549 isl::union_map(LastPerPHIWrites).apply_range(PHIWriteScatter.reverse());
550 assert(!Result.is_single_valued().is_false());
551 assert(!Result.is_injective().is_false());
552
553 PerPHIMaps.insert({PHI, Result});
554 return Result;
Michael Kruse138a3fb2017-08-04 22:51:23 +0000555}
556
557isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
558 return give(isl_union_set_empty(ParamSpace.copy()));
559}
560
561isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
562 return give(isl_union_map_empty(ParamSpace.copy()));
563}
564
Michael Kruse47281842017-08-28 20:39:07 +0000565void ZoneAlgorithm::collectCompatibleElts() {
566 // First find all the incompatible elements, then take the complement.
567 // We compile the list of compatible (rather than incompatible) elements so
568 // users can intersect with the list, not requiring a subtract operation. It
569 // also allows us to define a 'universe' of all elements and makes it more
570 // explicit in which array elements can be used.
571 isl::union_set AllElts = makeEmptyUnionSet();
572 isl::union_set IncompatibleElts = makeEmptyUnionSet();
573
574 for (auto &Stmt : *S)
575 collectIncompatibleElts(&Stmt, IncompatibleElts, AllElts);
576
577 NumIncompatibleArrays += isl_union_set_n_set(IncompatibleElts.keep());
578 CompatibleElts = AllElts.subtract(IncompatibleElts);
579 NumCompatibleArrays += isl_union_set_n_set(CompatibleElts.keep());
Michael Kruse138a3fb2017-08-04 22:51:23 +0000580}
581
582isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
Tobias Grosserdcf8d692017-08-06 16:39:52 +0000583 isl::space ResultSpace = give(isl_space_map_from_domain_and_range(
584 Stmt->getDomainSpace().release(), ScatterSpace.copy()));
Michael Kruse138a3fb2017-08-04 22:51:23 +0000585 return give(isl_union_map_extract_map(Schedule.keep(), ResultSpace.take()));
586}
587
588isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
589 return getScatterFor(MA->getStatement());
590}
591
592isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
593 return give(isl_union_map_intersect_domain(Schedule.copy(), Domain.take()));
594}
595
596isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
597 auto ResultSpace = give(isl_space_map_from_domain_and_range(
598 isl_set_get_space(Domain.keep()), ScatterSpace.copy()));
599 auto UDomain = give(isl_union_set_from_set(Domain.copy()));
600 auto UResult = getScatterFor(std::move(UDomain));
601 auto Result = singleton(std::move(UResult), std::move(ResultSpace));
602 assert(!Result || isl_set_is_equal(give(isl_map_domain(Result.copy())).keep(),
603 Domain.keep()) == isl_bool_true);
604 return Result;
605}
606
607isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
Tobias Grosserdcf8d692017-08-06 16:39:52 +0000608 return Stmt->getDomain().remove_redundancies();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000609}
610
611isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
612 return getDomainFor(MA->getStatement());
613}
614
615isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
616 auto Domain = getDomainFor(MA);
617 auto AccRel = MA->getLatestAccessRelation();
618 return give(isl_map_intersect_domain(AccRel.take(), Domain.take()));
619}
620
621isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
622 auto &Result = ScalarReachDefZone[Stmt];
623 if (Result)
624 return Result;
625
626 auto Domain = getDomainFor(Stmt);
627 Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
628 simplify(Result);
629
630 return Result;
631}
632
633isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
634 auto DomId = give(isl_set_get_tuple_id(DomainDef.keep()));
635 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.keep()));
636
637 auto StmtResult = getScalarReachingDefinition(Stmt);
638
639 return give(isl_map_intersect_range(StmtResult.take(), DomainDef.take()));
640}
641
642isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
643 return ::makeUnknownForDomain(getDomainFor(Stmt));
644}
645
646isl::id ZoneAlgorithm::makeValueId(Value *V) {
647 if (!V)
648 return nullptr;
649
650 auto &Id = ValueIds[V];
651 if (Id.is_null()) {
652 auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
653 std::string(), UseInstructionNames);
654 Id = give(isl_id_alloc(IslCtx.get(), Name.c_str(), V));
655 }
656 return Id;
657}
658
659isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
660 auto Result = give(isl_space_set_from_params(ParamSpace.copy()));
661 return give(isl_space_set_tuple_id(Result.take(), isl_dim_set,
662 makeValueId(V).take()));
663}
664
665isl::set ZoneAlgorithm::makeValueSet(Value *V) {
666 auto Space = makeValueSpace(V);
667 return give(isl_set_universe(Space.take()));
668}
669
670isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
671 bool IsCertain) {
672 // If the definition/write is conditional, the value at the location could
673 // be either the written value or the old value. Since we cannot know which
674 // one, consider the value to be unknown.
675 if (!IsCertain)
676 return makeUnknownForDomain(UserStmt);
677
678 auto DomainUse = getDomainFor(UserStmt);
679 auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
680 switch (VUse.getKind()) {
681 case VirtualUse::Constant:
682 case VirtualUse::Block:
683 case VirtualUse::Hoisted:
684 case VirtualUse::ReadOnly: {
685 // The definition does not depend on the statement which uses it.
686 auto ValSet = makeValueSet(Val);
687 return give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
688 }
689
690 case VirtualUse::Synthesizable: {
691 auto *ScevExpr = VUse.getScevExpr();
692 auto UseDomainSpace = give(isl_set_get_space(DomainUse.keep()));
693
694 // Construct the SCEV space.
695 // TODO: Add only the induction variables referenced in SCEVAddRecExpr
696 // expressions, not just all of them.
697 auto ScevId = give(isl_id_alloc(UseDomainSpace.get_ctx().get(), nullptr,
698 const_cast<SCEV *>(ScevExpr)));
699 auto ScevSpace =
700 give(isl_space_drop_dims(UseDomainSpace.copy(), isl_dim_set, 0, 0));
701 ScevSpace = give(
702 isl_space_set_tuple_id(ScevSpace.take(), isl_dim_set, ScevId.copy()));
703
704 // { DomainUse[] -> ScevExpr[] }
705 auto ValInst = give(isl_map_identity(isl_space_map_from_domain_and_range(
706 UseDomainSpace.copy(), ScevSpace.copy())));
707 return ValInst;
708 }
709
710 case VirtualUse::Intra: {
711 // Definition and use is in the same statement. We do not need to compute
712 // a reaching definition.
713
714 // { llvm::Value }
715 auto ValSet = makeValueSet(Val);
716
717 // { UserDomain[] -> llvm::Value }
718 auto ValInstSet =
719 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
720
721 // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
722 auto Result = give(isl_map_reverse(isl_map_domain_map(ValInstSet.take())));
723 simplify(Result);
724 return Result;
725 }
726
727 case VirtualUse::Inter: {
728 // The value is defined in a different statement.
729
730 auto *Inst = cast<Instruction>(Val);
731 auto *ValStmt = S->getStmtFor(Inst);
732
733 // If the llvm::Value is defined in a removed Stmt, we cannot derive its
734 // domain. We could use an arbitrary statement, but this could result in
735 // different ValInst[] for the same llvm::Value.
736 if (!ValStmt)
737 return ::makeUnknownForDomain(DomainUse);
738
739 // { DomainDef[] }
740 auto DomainDef = getDomainFor(ValStmt);
741
742 // { Scatter[] -> DomainDef[] }
743 auto ReachDef = getScalarReachingDefinition(DomainDef);
744
745 // { DomainUse[] -> Scatter[] }
746 auto UserSched = getScatterFor(DomainUse);
747
748 // { DomainUse[] -> DomainDef[] }
749 auto UsedInstance =
750 give(isl_map_apply_range(UserSched.take(), ReachDef.take()));
751
752 // { llvm::Value }
753 auto ValSet = makeValueSet(Val);
754
755 // { DomainUse[] -> llvm::Value[] }
756 auto ValInstSet =
757 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
758
759 // { DomainUse[] -> [DomainDef[] -> llvm::Value] }
760 auto Result =
761 give(isl_map_range_product(UsedInstance.take(), ValInstSet.take()));
762
763 simplify(Result);
764 return Result;
765 }
766 }
767 llvm_unreachable("Unhandled use type");
768}
769
Michael Kruse68821a82017-10-31 16:11:46 +0000770/// Remove all computed PHIs out of @p Input and replace by their incoming
771/// value.
772///
773/// @param Input { [] -> ValInst[] }
774/// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear
775/// on the LHS of @p NormalizeMap.
776/// @param NormalizeMap { ValInst[] -> ValInst[] }
777static isl::union_map normalizeValInst(isl::union_map Input,
778 const DenseSet<PHINode *> &ComputedPHIs,
779 isl::union_map NormalizeMap) {
780 isl::union_map Result = isl::union_map::empty(Input.get_space());
781 Input.foreach_map(
782 [&Result, &ComputedPHIs, &NormalizeMap](isl::map Map) -> isl::stat {
783 isl::space Space = Map.get_space();
784 isl::space RangeSpace = Space.range();
785
786 // Instructions within the SCoP are always wrapped. Non-wrapped tuples
787 // are therefore invariant in the SCoP and don't need normalization.
788 if (!RangeSpace.is_wrapping()) {
789 Result = Result.add_map(Map);
790 return isl::stat::ok;
791 }
792
793 auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
794 RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));
795
796 // If no normalization is necessary, then the ValInst stands for itself.
797 if (!ComputedPHIs.count(PHI)) {
798 Result = Result.add_map(Map);
799 return isl::stat::ok;
800 }
801
802 // Otherwise, apply the normalization.
803 isl::union_map Mapped = isl::union_map(Map).apply_range(NormalizeMap);
804 Result = Result.unite(Mapped);
805 NumPHINormialization++;
806 return isl::stat::ok;
807 });
808 return Result;
809}
810
811isl::union_map ZoneAlgorithm::makeNormalizedValInst(llvm::Value *Val,
812 ScopStmt *UserStmt,
813 llvm::Loop *Scope,
814 bool IsCertain) {
815 isl::map ValInst = makeValInst(Val, UserStmt, Scope, IsCertain);
816 isl::union_map Normalized =
817 normalizeValInst(ValInst, ComputedPHIs, NormalizeMap);
818 return Normalized;
819}
820
Michael Kruse47281842017-08-28 20:39:07 +0000821bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess *MA) {
822 if (!MA)
823 return false;
824 if (!MA->isLatestArrayKind())
825 return false;
826 Instruction *AccInst = MA->getAccessInstruction();
827 return isa<StoreInst>(AccInst) || isa<LoadInst>(AccInst);
828}
829
Michael Kruse68821a82017-10-31 16:11:46 +0000830bool ZoneAlgorithm::isNormalizable(MemoryAccess *MA) {
831 assert(MA->isRead());
832
833 // Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ
834 // MemoryAccess.
835 if (!MA->isOriginalPHIKind())
836 return false;
837
838 // Exclude recursive PHIs, normalizing them would require a transitive
839 // closure.
840 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
841 if (RecursivePHIs.count(PHI))
842 return false;
843
844 // Ensure that each incoming value can be represented by a ValInst[].
845 // We do represent values from statements associated to multiple incoming
846 // value by the PHI itself, but we do not handle this case yet (especially
847 // isNormalized()) when normalizing.
848 const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
849 auto Incomings = S->getPHIIncomings(SAI);
850 for (MemoryAccess *Incoming : Incomings) {
851 if (Incoming->getIncoming().size() != 1)
852 return false;
853 }
854
855 return true;
856}
857
858bool ZoneAlgorithm::isNormalized(isl::map Map) {
859 isl::space Space = Map.get_space();
860 isl::space RangeSpace = Space.range();
861
862 if (!RangeSpace.is_wrapping())
863 return true;
864
865 auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
866 RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));
867 if (!PHI)
868 return true;
869
870 auto *IncomingStmt = static_cast<ScopStmt *>(
871 RangeSpace.unwrap().get_tuple_id(isl::dim::in).get_user());
872 MemoryAccess *PHIRead = IncomingStmt->lookupPHIReadOf(PHI);
873 if (!isNormalizable(PHIRead))
874 return true;
875
876 return false;
877}
878
879bool ZoneAlgorithm::isNormalized(isl::union_map UMap) {
880 auto Result = UMap.foreach_map([this](isl::map Map) -> isl::stat {
881 if (isNormalized(Map))
882 return isl::stat::ok;
883 return isl::stat::error;
884 });
885 return Result == isl::stat::ok;
886}
887
Michael Kruse138a3fb2017-08-04 22:51:23 +0000888void ZoneAlgorithm::computeCommon() {
889 AllReads = makeEmptyUnionMap();
890 AllMayWrites = makeEmptyUnionMap();
891 AllMustWrites = makeEmptyUnionMap();
892 AllWriteValInst = makeEmptyUnionMap();
Michael Kruse70af4f52017-08-07 18:40:29 +0000893 AllReadValInst = makeEmptyUnionMap();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000894
Michael Kruse68821a82017-10-31 16:11:46 +0000895 // Default to empty, i.e. no normalization/replacement is taking place. Call
896 // computeNormalizedPHIs() to initialize.
897 NormalizeMap = makeEmptyUnionMap();
898 ComputedPHIs.clear();
899
Michael Kruse138a3fb2017-08-04 22:51:23 +0000900 for (auto &Stmt : *S) {
901 for (auto *MA : Stmt) {
902 if (!MA->isLatestArrayKind())
903 continue;
904
905 if (MA->isRead())
906 addArrayReadAccess(MA);
907
908 if (MA->isWrite())
909 addArrayWriteAccess(MA);
910 }
911 }
912
913 // { DomainWrite[] -> Element[] }
Michael Kruse70af4f52017-08-07 18:40:29 +0000914 AllWrites =
Michael Kruse138a3fb2017-08-04 22:51:23 +0000915 give(isl_union_map_union(AllMustWrites.copy(), AllMayWrites.copy()));
916
917 // { [Element[] -> Zone[]] -> DomainWrite[] }
918 WriteReachDefZone =
919 computeReachingDefinition(Schedule, AllWrites, false, true);
920 simplify(WriteReachDefZone);
921}
922
Michael Kruse68821a82017-10-31 16:11:46 +0000923void ZoneAlgorithm::computeNormalizedPHIs() {
924 // Determine which PHIs can reference themselves. They are excluded from
925 // normalization to avoid problems with transitive closures.
926 for (ScopStmt &Stmt : *S) {
927 for (MemoryAccess *MA : Stmt) {
928 if (!MA->isPHIKind())
929 continue;
930 if (!MA->isRead())
931 continue;
932
933 // TODO: Can be more efficient since isRecursivePHI can theoretically
934 // determine recursiveness for multiple values and/or cache results.
935 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
936 if (isRecursivePHI(PHI)) {
937 NumRecursivePHIs++;
938 RecursivePHIs.insert(PHI);
939 }
940 }
941 }
942
943 // { PHIValInst[] -> IncomingValInst[] }
944 isl::union_map AllPHIMaps = makeEmptyUnionMap();
945
946 // Discover new PHIs and try to normalize them.
947 DenseSet<PHINode *> AllPHIs;
948 for (ScopStmt &Stmt : *S) {
949 for (MemoryAccess *MA : Stmt) {
950 if (!MA->isOriginalPHIKind())
951 continue;
952 if (!MA->isRead())
953 continue;
954 if (!isNormalizable(MA))
955 continue;
956
957 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
958 const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
959
960 // { PHIDomain[] -> PHIValInst[] }
961 isl::map PHIValInst = makeValInst(PHI, &Stmt, Stmt.getSurroundingLoop());
962
963 // { IncomingDomain[] -> IncomingValInst[] }
964 isl::union_map IncomingValInsts = makeEmptyUnionMap();
965
966 // Get all incoming values.
967 for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
968 ScopStmt *IncomingStmt = MA->getStatement();
969
970 auto Incoming = MA->getIncoming();
971 assert(Incoming.size() == 1 && "The incoming value must be "
972 "representable by something else than "
973 "the PHI itself");
974 Value *IncomingVal = Incoming[0].second;
975
976 // { IncomingDomain[] -> IncomingValInst[] }
977 isl::map IncomingValInst = makeValInst(
978 IncomingVal, IncomingStmt, IncomingStmt->getSurroundingLoop());
979
980 IncomingValInsts = IncomingValInsts.add_map(IncomingValInst);
981 }
982
983 // Determine which instance of the PHI statement corresponds to which
984 // incoming value.
985 // { PHIDomain[] -> IncomingDomain[] }
986 isl::union_map PerPHI = computePerPHI(SAI);
987
988 // { PHIValInst[] -> IncomingValInst[] }
989 isl::union_map PHIMap =
990 PerPHI.apply_domain(PHIValInst).apply_range(IncomingValInsts);
991 assert(!PHIMap.is_single_valued().is_false());
992
993 // Resolve transitiveness: The incoming value of the newly discovered PHI
994 // may reference a previously normalized PHI. At the same time, already
995 // normalized PHIs might be normalized to the new PHI. At the end, none of
996 // the PHIs may appear on the right-hand-side of the normalization map.
997 PHIMap = normalizeValInst(PHIMap, AllPHIs, AllPHIMaps);
998 AllPHIs.insert(PHI);
999 AllPHIMaps = normalizeValInst(AllPHIMaps, AllPHIs, PHIMap);
1000
1001 AllPHIMaps = AllPHIMaps.unite(PHIMap);
1002 NumNormalizablePHIs++;
1003 }
1004 }
1005 simplify(AllPHIMaps);
1006
1007 // Apply the normalization.
1008 ComputedPHIs = AllPHIs;
1009 NormalizeMap = AllPHIMaps;
1010
1011 assert(!NormalizeMap || isNormalized(NormalizeMap));
1012}
1013
Michael Kruse138a3fb2017-08-04 22:51:23 +00001014void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
1015 OS.indent(Indent) << "After accesses {\n";
1016 for (auto &Stmt : *S) {
1017 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
1018 for (auto *MA : Stmt)
1019 MA->print(OS);
1020 }
1021 OS.indent(Indent) << "}\n";
1022}
Michael Kruse70af4f52017-08-07 18:40:29 +00001023
1024isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
1025 // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
1026 isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());
1027
1028 // { [Element[] -> DomainWrite[]] -> ValInst[] }
1029 isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
1030
1031 // { [Element[] -> Zone[]] -> ValInst[] }
1032 return EltReachdDef.apply_range(AllKnownWriteValInst);
1033}
1034
1035isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
1036 // { Element[] }
1037 isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());
1038
1039 // { Element[] -> Scatter[] }
1040 isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
1041 AllAccessedElts, isl::set::universe(ScatterSpace));
1042
1043 // This assumes there are no "holes" in
1044 // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
1045 // before the first write or that are not written at all.
1046 // { Element[] -> Scatter[] }
1047 isl::union_set NonReachDef =
1048 EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());
1049
1050 // { [Element[] -> Zone[]] -> ReachDefId[] }
1051 isl::union_map DefZone =
1052 WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));
1053
1054 // { [Element[] -> Scatter[]] -> Element[] }
1055 isl::union_map EltZoneElt = EltZoneUniverse.domain_map();
1056
1057 // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
1058 isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);
1059
1060 // { Element[] -> [Zone[] -> ReachDefId[]] }
1061 isl::union_map EltDefZone = DefZone.curry();
1062
1063 // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
1064 isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);
1065
1066 // { [Element[] -> Scatter[]] -> DomainRead[] }
1067 isl::union_map Reads = AllReads.range_product(Schedule).reverse();
1068
1069 // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
1070 isl::union_map ReadsElt = EltZoneElt.range_product(Reads);
1071
1072 // { [Element[] -> Scatter[]] -> ValInst[] }
1073 isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);
1074
1075 // { [Element[] -> ReachDefId[]] -> ValInst[] }
1076 isl::union_map DefidKnown =
1077 DefZoneEltDefId.apply_domain(ScatterKnown).reverse();
1078
1079 // { [Element[] -> Zone[]] -> ValInst[] }
1080 return DefZoneEltDefId.apply_range(DefidKnown);
1081}
1082
1083isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
1084 bool FromRead) const {
1085 isl::union_map Result = makeEmptyUnionMap();
1086
1087 if (FromWrite)
1088 Result = Result.unite(computeKnownFromMustWrites());
1089
1090 if (FromRead)
1091 Result = Result.unite(computeKnownFromLoad());
1092
1093 simplify(Result);
1094 return Result;
1095}