blob: 09dac60c31937e1382be02a3a319f7272e4e6bdf [file] [log] [blame]
Rui Ueyama0b289522016-02-25 18:43:51 +00001//===- ICF.cpp ------------------------------------------------------------===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000010// ICF is short for Identical Code Folding. This is a size optimization to
Rui Ueyama91ae8612016-12-01 19:45:22 +000011// identify and merge two or more read-only sections (typically functions)
12// that happened to have the same contents. It usually reduces output size
13// by a few percent.
Rui Ueyama0b289522016-02-25 18:43:51 +000014//
Rui Ueyama91ae8612016-12-01 19:45:22 +000015// In ICF, two sections are considered identical if they have the same
16// section flags, section data, and relocations. Relocations are tricky,
17// because two relocations are considered the same if they have the same
18// relocation types, values, and if they point to the same sections *in
19// terms of ICF*.
Rui Ueyama0b289522016-02-25 18:43:51 +000020//
Rui Ueyama91ae8612016-12-01 19:45:22 +000021// Here is an example. If foo and bar defined below are compiled to the
22// same machine instructions, ICF can and should merge the two, although
23// their relocations point to each other.
Rui Ueyama0b289522016-02-25 18:43:51 +000024//
25// void foo() { bar(); }
26// void bar() { foo(); }
27//
Rui Ueyama91ae8612016-12-01 19:45:22 +000028// If you merge the two, their relocations point to the same section and
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000029// thus you know they are mergeable, but how do you know they are
30// mergeable in the first place? This is not an easy problem to solve.
Rui Ueyama91ae8612016-12-01 19:45:22 +000031//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000032// What we are doing in LLD is to partition sections into equivalence
33// classes. Sections in the same equivalence class when the algorithm
34// terminates are considered identical. Here are details:
Rui Ueyama91ae8612016-12-01 19:45:22 +000035//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000036// 1. First, we partition sections using their hash values as keys. Hash
37// values contain section types, section contents and numbers of
38// relocations. During this step, relocation targets are not taken into
39// account. We just put sections that apparently differ into different
40// equivalence classes.
Rui Ueyama91ae8612016-12-01 19:45:22 +000041//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000042// 2. Next, for each equivalence class, we visit sections to compare
43// relocation targets. Relocation targets are considered equivalent if
44// their targets are in the same equivalence class. Sections with
45// different relocation targets are put into different equivalence
46// clases.
Rui Ueyama91ae8612016-12-01 19:45:22 +000047//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000048// 3. If we split an equivalence class in step 2, two relocations
49// previously target the same equivalence class may now target
50// different equivalence classes. Therefore, we repeat step 2 until a
51// convergence is obtained.
Rui Ueyama91ae8612016-12-01 19:45:22 +000052//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000053// 4. For each equivalence class C, pick an arbitrary section in C, and
54// merge all the other sections in C with it.
Rui Ueyama91ae8612016-12-01 19:45:22 +000055//
56// For small programs, this algorithm needs 3-5 iterations. For large
57// programs such as Chromium, it takes more than 20 iterations.
58//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000059// This algorithm was mentioned as an "optimistic algorithm" in [1],
60// though gold implements a different algorithm than this.
61//
Rui Ueyama91ae8612016-12-01 19:45:22 +000062// We parallelize each step so that multiple threads can work on different
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000063// equivalence classes concurrently. That gave us a large performance
64// boost when applying ICF on large programs. For example, MSVC link.exe
65// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
66// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
67// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
68// faster than MSVC or gold though.
69//
70// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
71// in the Gold Linker
72// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
Rui Ueyama0b289522016-02-25 18:43:51 +000073//
74//===----------------------------------------------------------------------===//
75
76#include "ICF.h"
77#include "Config.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000078#include "SymbolTable.h"
Rafael Espindolad26b52f2017-12-09 16:56:18 +000079#include "Symbols.h"
Bob Haarman4f5c8c22017-10-13 18:22:55 +000080#include "lld/Common/Threads.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000081#include "llvm/ADT/Hashing.h"
Zachary Turner264b5d92017-06-07 03:48:56 +000082#include "llvm/BinaryFormat/ELF.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000083#include "llvm/Object/ELF.h"
Rui Ueyamaa05134e2016-11-19 20:15:55 +000084#include <algorithm>
Rui Ueyama1b6bab02016-12-02 05:35:46 +000085#include <atomic>
Rui Ueyama0b289522016-02-25 18:43:51 +000086
87using namespace lld;
Rafael Espindolae0df00b2016-02-28 00:25:54 +000088using namespace lld::elf;
Rui Ueyama0b289522016-02-25 18:43:51 +000089using namespace llvm;
90using namespace llvm::ELF;
91using namespace llvm::object;
92
Rui Ueyamabd1f0632016-11-20 02:39:59 +000093namespace {
Rui Ueyama0b289522016-02-25 18:43:51 +000094template <class ELFT> class ICF {
Rui Ueyama0b289522016-02-25 18:43:51 +000095public:
Rui Ueyama4f8d21f2016-05-02 19:30:42 +000096 void run();
Rui Ueyama0b289522016-02-25 18:43:51 +000097
98private:
Rui Ueyama1b6bab02016-12-02 05:35:46 +000099 void segregate(size_t Begin, size_t End, bool Constant);
Rui Ueyama0b289522016-02-25 18:43:51 +0000100
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000101 template <class RelTy>
Peter Collingbournebfd51132017-06-12 00:05:54 +0000102 bool constantEq(const InputSection *A, ArrayRef<RelTy> RelsA,
103 const InputSection *B, ArrayRef<RelTy> RelsB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000104
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000105 template <class RelTy>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000106 bool variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
107 const InputSection *B, ArrayRef<RelTy> RelsB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000108
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000109 bool equalsConstant(const InputSection *A, const InputSection *B);
110 bool equalsVariable(const InputSection *A, const InputSection *B);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000111
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000112 size_t findBoundary(size_t Begin, size_t End);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000113
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000114 void forEachClassRange(size_t Begin, size_t End,
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000115 std::function<void(size_t, size_t)> Fn);
116
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000117 void forEachClass(std::function<void(size_t, size_t)> Fn);
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000118
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000119 std::vector<InputSection *> Sections;
Rui Ueyama045d8282016-12-04 16:33:13 +0000120
121 // We repeat the main loop while `Repeat` is true.
122 std::atomic<bool> Repeat;
123
124 // The main loop counter.
Rui Ueyamac1835312016-12-01 17:09:04 +0000125 int Cnt = 0;
Rui Ueyama045d8282016-12-04 16:33:13 +0000126
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000127 // We have two locations for equivalence classes. On the first iteration
128 // of the main loop, Class[0] has a valid value, and Class[1] contains
129 // garbage. We read equivalence classes from slot 0 and write to slot 1.
130 // So, Class[0] represents the current class, and Class[1] represents
131 // the next class. On each iteration, we switch their roles and use them
132 // alternately.
Rui Ueyama045d8282016-12-04 16:33:13 +0000133 //
134 // Why are we doing this? Recall that other threads may be working on
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000135 // other equivalence classes in parallel. They may read sections that we
136 // are updating. We cannot update equivalence classes in place because
137 // it breaks the invariance that all possibly-identical sections must be
138 // in the same equivalence class at any moment. In other words, the for
139 // loop to update equivalence classes is not atomic, and that is
140 // observable from other threads. By writing new classes to other
141 // places, we can keep the invariance.
Rui Ueyama045d8282016-12-04 16:33:13 +0000142 //
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000143 // Below, `Current` has the index of the current class, and `Next` has
144 // the index of the next class. If threading is enabled, they are either
145 // (0, 1) or (1, 0).
Rui Ueyama045d8282016-12-04 16:33:13 +0000146 //
147 // Note on single-thread: if that's the case, they are always (0, 0)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000148 // because we can safely read the next class without worrying about race
Rui Ueyama045d8282016-12-04 16:33:13 +0000149 // conditions. Using the same location makes this algorithm converge
150 // faster because it uses results of the same iteration earlier.
151 int Current = 0;
152 int Next = 0;
Rui Ueyama0b289522016-02-25 18:43:51 +0000153};
154}
Rui Ueyama0b289522016-02-25 18:43:51 +0000155
Rui Ueyama0b289522016-02-25 18:43:51 +0000156// Returns a hash value for S. Note that the information about
157// relocation targets is not included in the hash value.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000158template <class ELFT> static uint32_t getHash(InputSection *S) {
Rui Ueyama274aa2f2017-10-02 01:21:07 +0000159 return hash_combine(S->Flags, S->getSize(), S->NumRelocations, S->Data);
Rui Ueyama0b289522016-02-25 18:43:51 +0000160}
161
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000162// Returns true if section S is subject of ICF.
Rui Ueyama536a2672017-02-27 02:32:08 +0000163static bool isEligible(InputSection *S) {
Rui Ueyama0b289522016-02-25 18:43:51 +0000164 // .init and .fini contains instructions that must be executed to
165 // initialize and finalize the process. They cannot and should not
166 // be merged.
Rui Ueyama13ed0b62017-02-28 22:42:49 +0000167 return S->Live && (S->Flags & SHF_ALLOC) && (S->Flags & SHF_EXECINSTR) &&
168 !(S->Flags & SHF_WRITE) && S->Name != ".init" && S->Name != ".fini";
Rui Ueyama0b289522016-02-25 18:43:51 +0000169}
170
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000171// Split an equivalence class into smaller classes.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000172template <class ELFT>
173void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
174 // This loop rearranges sections in [Begin, End) so that all sections
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000175 // that are equal in terms of equals{Constant,Variable} are contiguous
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000176 // in [Begin, End).
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000177 //
178 // The algorithm is quadratic in the worst case, but that is not an
179 // issue in practice because the number of the distinct sections in
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000180 // each range is usually very small.
Rui Ueyamac1835312016-12-01 17:09:04 +0000181
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000182 while (Begin < End) {
183 // Divide [Begin, End) into two. Let Mid be the start index of the
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000184 // second group.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000185 auto Bound =
186 std::stable_partition(Sections.begin() + Begin + 1,
187 Sections.begin() + End, [&](InputSection *S) {
188 if (Constant)
189 return equalsConstant(Sections[Begin], S);
190 return equalsVariable(Sections[Begin], S);
191 });
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000192 size_t Mid = Bound - Sections.begin();
Rui Ueyama0b289522016-02-25 18:43:51 +0000193
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000194 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
Rui Ueyamac9df1722017-01-15 02:34:42 +0000195 // updating the sections in [Begin, Mid). We use Mid as an equivalence
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000196 // class ID because every group ends with a unique index.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000197 for (size_t I = Begin; I < Mid; ++I)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000198 Sections[I]->Class[Next] = Mid;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000199
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000200 // If we created a group, we need to iterate the main loop again.
201 if (Mid != End)
202 Repeat = true;
203
204 Begin = Mid;
Rui Ueyama0b289522016-02-25 18:43:51 +0000205 }
206}
207
208// Compare two lists of relocations.
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000209template <class ELFT>
210template <class RelTy>
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000211bool ICF<ELFT>::constantEq(const InputSection *SecA, ArrayRef<RelTy> RA,
212 const InputSection *SecB, ArrayRef<RelTy> RB) {
213 if (RA.size() != RB.size())
214 return false;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000215
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000216 for (size_t I = 0; I < RA.size(); ++I) {
217 if (RA[I].r_offset != RB[I].r_offset ||
218 RA[I].getType(Config->IsMips64EL) != RB[I].getType(Config->IsMips64EL))
219 return false;
220
221 uint64_t AddA = getAddend<ELFT>(RA[I]);
222 uint64_t AddB = getAddend<ELFT>(RB[I]);
223
Rui Ueyamaf52496e2017-11-03 21:21:47 +0000224 Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
225 Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000226 if (&SA == &SB) {
227 if (AddA == AddB)
228 continue;
229 return false;
230 }
Peter Collingbournebfd51132017-06-12 00:05:54 +0000231
Peter Collingbournee9a9e0a2017-11-06 04:35:31 +0000232 auto *DA = dyn_cast<Defined>(&SA);
233 auto *DB = dyn_cast<Defined>(&SB);
Peter Collingbournebfd51132017-06-12 00:05:54 +0000234 if (!DA || !DB)
235 return false;
236
237 // Relocations referring to absolute symbols are constant-equal if their
238 // values are equal.
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000239 if (!DA->Section && !DB->Section && DA->Value + AddA == DB->Value + AddB)
240 continue;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000241 if (!DA->Section || !DB->Section)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000242 return false;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000243
244 if (DA->Section->kind() != DB->Section->kind())
245 return false;
246
247 // Relocations referring to InputSections are constant-equal if their
248 // section offsets are equal.
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000249 if (isa<InputSection>(DA->Section)) {
250 if (DA->Value + AddA == DB->Value + AddB)
251 continue;
252 return false;
253 }
Peter Collingbournebfd51132017-06-12 00:05:54 +0000254
255 // Relocations referring to MergeInputSections are constant-equal if their
256 // offsets in the output section are equal.
257 auto *X = dyn_cast<MergeInputSection>(DA->Section);
258 if (!X)
259 return false;
260 auto *Y = cast<MergeInputSection>(DB->Section);
261 if (X->getParent() != Y->getParent())
262 return false;
263
264 uint64_t OffsetA =
265 SA.isSection() ? X->getOffset(AddA) : X->getOffset(DA->Value) + AddA;
266 uint64_t OffsetB =
267 SB.isSection() ? Y->getOffset(AddB) : Y->getOffset(DB->Value) + AddB;
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000268 if (OffsetA != OffsetB)
269 return false;
270 }
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000271
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000272 return true;
Rui Ueyama0b289522016-02-25 18:43:51 +0000273}
274
275// Compare "non-moving" part of two InputSections, namely everything
276// except relocation targets.
277template <class ELFT>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000278bool ICF<ELFT>::equalsConstant(const InputSection *A, const InputSection *B) {
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000279 if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
Rafael Espindola76b6bd32017-03-08 15:44:30 +0000280 A->getSize() != B->getSize() || A->Data != B->Data)
Rui Ueyama0b289522016-02-25 18:43:51 +0000281 return false;
282
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000283 if (A->AreRelocsRela)
Peter Collingbournebfd51132017-06-12 00:05:54 +0000284 return constantEq(A, A->template relas<ELFT>(), B,
285 B->template relas<ELFT>());
286 return constantEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
Rui Ueyama0b289522016-02-25 18:43:51 +0000287}
288
Rui Ueyama7bed9ee2016-11-20 23:15:54 +0000289// Compare two lists of relocations. Returns true if all pairs of
290// relocations point to the same section in terms of ICF.
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000291template <class ELFT>
292template <class RelTy>
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000293bool ICF<ELFT>::variableEq(const InputSection *SecA, ArrayRef<RelTy> RA,
294 const InputSection *SecB, ArrayRef<RelTy> RB) {
295 assert(RA.size() == RB.size());
296
297 for (size_t I = 0; I < RA.size(); ++I) {
Rui Ueyama91ae8612016-12-01 19:45:22 +0000298 // The two sections must be identical.
Rui Ueyamaf52496e2017-11-03 21:21:47 +0000299 Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
300 Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
Rafael Espindola67d72c02016-03-11 12:06:30 +0000301 if (&SA == &SB)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000302 continue;
Rui Ueyama0b289522016-02-25 18:43:51 +0000303
Peter Collingbournee9a9e0a2017-11-06 04:35:31 +0000304 auto *DA = cast<Defined>(&SA);
305 auto *DB = cast<Defined>(&SB);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000306
Peter Collingbournebfd51132017-06-12 00:05:54 +0000307 // We already dealt with absolute and non-InputSection symbols in
308 // constantEq, and for InputSections we have already checked everything
309 // except the equivalence class.
310 if (!DA->Section)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000311 continue;
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000312 auto *X = dyn_cast<InputSection>(DA->Section);
Peter Collingbournebfd51132017-06-12 00:05:54 +0000313 if (!X)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000314 continue;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000315 auto *Y = cast<InputSection>(DB->Section);
Rui Ueyamac1835312016-12-01 17:09:04 +0000316
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000317 // Ineligible sections are in the special equivalence class 0.
318 // They can never be the same in terms of the equivalence class.
319 if (X->Class[Current] == 0)
Rui Ueyama83ec6812016-12-02 17:23:58 +0000320 return false;
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000321 if (X->Class[Current] != Y->Class[Current])
322 return false;
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000323 };
324
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000325 return true;
Rui Ueyama0b289522016-02-25 18:43:51 +0000326}
327
328// Compare "moving" part of two InputSections, namely relocation targets.
329template <class ELFT>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000330bool ICF<ELFT>::equalsVariable(const InputSection *A, const InputSection *B) {
Rafael Espindola9f0c4bb2016-11-10 14:53:24 +0000331 if (A->AreRelocsRela)
Rafael Espindolab4c9b812017-02-23 02:28:28 +0000332 return variableEq(A, A->template relas<ELFT>(), B,
333 B->template relas<ELFT>());
334 return variableEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
Rui Ueyama0b289522016-02-25 18:43:51 +0000335}
336
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000337template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000338 uint32_t Class = Sections[Begin]->Class[Current];
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000339 for (size_t I = Begin + 1; I < End; ++I)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000340 if (Class != Sections[I]->Class[Current])
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000341 return I;
342 return End;
343}
344
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000345// Sections in the same equivalence class are contiguous in Sections
346// vector. Therefore, Sections vector can be considered as contiguous
347// groups of sections, grouped by the class.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000348//
349// This function calls Fn on every group that starts within [Begin, End).
Rui Ueyamac9df1722017-01-15 02:34:42 +0000350// Note that a group must start in that range but doesn't necessarily
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000351// have to end before End.
352template <class ELFT>
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000353void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End,
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000354 std::function<void(size_t, size_t)> Fn) {
355 if (Begin > 0)
356 Begin = findBoundary(Begin - 1, End);
357
358 while (Begin < End) {
359 size_t Mid = findBoundary(Begin, Sections.size());
360 Fn(Begin, Mid);
361 Begin = Mid;
362 }
363}
364
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000365// Call Fn on each equivalence class.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000366template <class ELFT>
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000367void ICF<ELFT>::forEachClass(std::function<void(size_t, size_t)> Fn) {
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000368 // If threading is disabled or the number of sections are
369 // too small to use threading, call Fn sequentially.
Bob Haarman4f5c8c22017-10-13 18:22:55 +0000370 if (!ThreadsEnabled || Sections.size() < 1024) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000371 forEachClassRange(0, Sections.size(), Fn);
Rui Ueyama045d8282016-12-04 16:33:13 +0000372 ++Cnt;
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000373 return;
374 }
375
Rui Ueyama045d8282016-12-04 16:33:13 +0000376 Current = Cnt % 2;
377 Next = (Cnt + 1) % 2;
378
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000379 // Split sections into 256 shards and call Fn in parallel.
380 size_t NumShards = 256;
381 size_t Step = Sections.size() / NumShards;
Rui Ueyama33d903d2017-05-10 20:02:19 +0000382 parallelForEachN(0, NumShards, [&](size_t I) {
Rui Ueyamaf04c0482017-05-24 19:22:34 +0000383 size_t End = (I == NumShards - 1) ? Sections.size() : (I + 1) * Step;
384 forEachClassRange(I * Step, End, Fn);
Rui Ueyama4995afd2017-03-22 23:03:35 +0000385 });
Rui Ueyama045d8282016-12-04 16:33:13 +0000386 ++Cnt;
Rui Ueyamac1835312016-12-01 17:09:04 +0000387}
388
Rui Ueyama0b289522016-02-25 18:43:51 +0000389// The main function of ICF.
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000390template <class ELFT> void ICF<ELFT>::run() {
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000391 // Collect sections to merge.
Rui Ueyama536a2672017-02-27 02:32:08 +0000392 for (InputSectionBase *Sec : InputSections)
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000393 if (auto *S = dyn_cast<InputSection>(Sec))
Rui Ueyama536a2672017-02-27 02:32:08 +0000394 if (isEligible(S))
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000395 Sections.push_back(S);
396
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000397 // Initially, we use hash values to partition sections.
Rui Ueyama274aa2f2017-10-02 01:21:07 +0000398 parallelForEach(Sections, [&](InputSection *S) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000399 // Set MSB to 1 to avoid collisions with non-hash IDs.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000400 S->Class[0] = getHash<ELFT>(S) | (1 << 31);
Rui Ueyama274aa2f2017-10-02 01:21:07 +0000401 });
Rui Ueyama0b289522016-02-25 18:43:51 +0000402
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000403 // From now on, sections in Sections vector are ordered so that sections
404 // in the same equivalence class are consecutive in the vector.
Rui Ueyamae2dfbc12016-11-19 23:14:23 +0000405 std::stable_sort(Sections.begin(), Sections.end(),
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000406 [](InputSection *A, InputSection *B) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000407 return A->Class[0] < B->Class[0];
Rui Ueyama0b289522016-02-25 18:43:51 +0000408 });
409
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000410 // Compare static contents and assign unique IDs for each static content.
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000411 forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000412
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000413 // Split groups by comparing relocations until convergence is obtained.
414 do {
415 Repeat = false;
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000416 forEachClass(
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000417 [&](size_t Begin, size_t End) { segregate(Begin, End, false); });
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000418 } while (Repeat);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000419
420 log("ICF needed " + Twine(Cnt) + " iterations");
Rui Ueyama0b289522016-02-25 18:43:51 +0000421
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000422 // Merge sections by the equivalence class.
423 forEachClass([&](size_t Begin, size_t End) {
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000424 if (End - Begin == 1)
425 return;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000426
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000427 log("selected " + Sections[Begin]->Name);
428 for (size_t I = Begin + 1; I < End; ++I) {
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000429 log(" removed " + Sections[I]->Name);
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000430 Sections[Begin]->replace(Sections[I]);
Rui Ueyama0b289522016-02-25 18:43:51 +0000431 }
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000432 });
Peter Smithcec1e262017-04-13 08:52:58 +0000433
434 // Mark ARM Exception Index table sections that refer to folded code
435 // sections as not live. These sections have an implict dependency
436 // via the link order dependency.
437 if (Config->EMachine == EM_ARM)
438 for (InputSectionBase *Sec : InputSections)
439 if (auto *S = dyn_cast<InputSection>(Sec))
440 if (S->Flags & SHF_LINK_ORDER)
441 S->Live = S->getLinkOrderDep()->Live;
Rui Ueyama0b289522016-02-25 18:43:51 +0000442}
443
444// ICF entry point function.
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000445template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
Rui Ueyama0b289522016-02-25 18:43:51 +0000446
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000447template void elf::doIcf<ELF32LE>();
448template void elf::doIcf<ELF32BE>();
449template void elf::doIcf<ELF64LE>();
450template void elf::doIcf<ELF64BE>();