blob: 461fdac3c6c09c55de0d571592bb205f3730cbf3 [file] [log] [blame]
Chris Lattnerd934c702004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/ADT/STLExtras.h"
63#include "llvm/ADT/SmallPtrSet.h"
64#include "llvm/ADT/Statistic.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000065#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000066#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000067#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000068#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000069#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000070#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000071#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000074#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000075#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000076#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000078#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/Instructions.h"
80#include "llvm/IR/LLVMContext.h"
81#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000082#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000083#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000084#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000085#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000086#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000087#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000089using namespace llvm;
90
Chandler Carruthf1221bd2014-04-22 02:48:03 +000091#define DEBUG_TYPE "scalar-evolution"
92
Chris Lattner57ef9422006-12-19 22:30:33 +000093STATISTIC(NumArrayLenItCounts,
94 "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96 "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98 "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100 "Number of loops with trip counts computed by force");
101
Dan Gohmand78c4002008-05-13 00:00:25 +0000102static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000105 "symbolically execute a constant "
106 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000107 cl::init(100));
108
Benjamin Kramer214935e2012-10-26 17:31:32 +0000109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
Owen Anderson8ac477f2010-10-12 19:48:12 +0000114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115 "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000117INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chad Rosierc24b86f2011-12-01 03:08:23 +0000118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000120 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000121char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000122
123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
Dan Gohman3423e722009-06-30 20:13:32 +0000130
Manman Ren49d684e2012-09-12 05:06:18 +0000131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000132void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000133 print(dbgs());
134 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000135}
Manman Renc3366cc2012-09-06 19:55:56 +0000136#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000137
Dan Gohman534749b2010-11-17 22:27:42 +0000138void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000139 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000140 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000141 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000142 return;
143 case scTruncate: {
144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145 const SCEV *Op = Trunc->getOperand();
146 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147 << *Trunc->getType() << ")";
148 return;
149 }
150 case scZeroExtend: {
151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152 const SCEV *Op = ZExt->getOperand();
153 OS << "(zext " << *Op->getType() << " " << *Op << " to "
154 << *ZExt->getType() << ")";
155 return;
156 }
157 case scSignExtend: {
158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159 const SCEV *Op = SExt->getOperand();
160 OS << "(sext " << *Op->getType() << " " << *Op << " to "
161 << *SExt->getType() << ")";
162 return;
163 }
164 case scAddRecExpr: {
165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166 OS << "{" << *AR->getOperand(0);
167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168 OS << ",+," << *AR->getOperand(i);
169 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000170 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000171 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000172 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000173 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNW) &&
175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000177 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000178 OS << ">";
179 return;
180 }
181 case scAddExpr:
182 case scMulExpr:
183 case scUMaxExpr:
184 case scSMaxExpr: {
185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000186 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000187 switch (NAry->getSCEVType()) {
188 case scAddExpr: OpStr = " + "; break;
189 case scMulExpr: OpStr = " * "; break;
190 case scUMaxExpr: OpStr = " umax "; break;
191 case scSMaxExpr: OpStr = " smax "; break;
192 }
193 OS << "(";
194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195 I != E; ++I) {
196 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000197 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000198 OS << OpStr;
199 }
200 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000201 switch (NAry->getSCEVType()) {
202 case scAddExpr:
203 case scMulExpr:
204 if (NAry->getNoWrapFlags(FlagNUW))
205 OS << "<nuw>";
206 if (NAry->getNoWrapFlags(FlagNSW))
207 OS << "<nsw>";
208 }
Dan Gohman534749b2010-11-17 22:27:42 +0000209 return;
210 }
211 case scUDivExpr: {
212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214 return;
215 }
216 case scUnknown: {
217 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000218 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000219 if (U->isSizeOf(AllocTy)) {
220 OS << "sizeof(" << *AllocTy << ")";
221 return;
222 }
223 if (U->isAlignOf(AllocTy)) {
224 OS << "alignof(" << *AllocTy << ")";
225 return;
226 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000227
Chris Lattner229907c2011-07-18 04:54:35 +0000228 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000229 Constant *FieldNo;
230 if (U->isOffsetOf(CTy, FieldNo)) {
231 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000232 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000233 OS << ")";
234 return;
235 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000236
Dan Gohman534749b2010-11-17 22:27:42 +0000237 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000238 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000239 return;
240 }
241 case scCouldNotCompute:
242 OS << "***COULDNOTCOMPUTE***";
243 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000244 }
245 llvm_unreachable("Unknown SCEV kind!");
246}
247
Chris Lattner229907c2011-07-18 04:54:35 +0000248Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000249 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000250 case scConstant:
251 return cast<SCEVConstant>(this)->getType();
252 case scTruncate:
253 case scZeroExtend:
254 case scSignExtend:
255 return cast<SCEVCastExpr>(this)->getType();
256 case scAddRecExpr:
257 case scMulExpr:
258 case scUMaxExpr:
259 case scSMaxExpr:
260 return cast<SCEVNAryExpr>(this)->getType();
261 case scAddExpr:
262 return cast<SCEVAddExpr>(this)->getType();
263 case scUDivExpr:
264 return cast<SCEVUDivExpr>(this)->getType();
265 case scUnknown:
266 return cast<SCEVUnknown>(this)->getType();
267 case scCouldNotCompute:
268 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000269 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000270 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000271}
272
Dan Gohmanbe928e32008-06-18 16:23:07 +0000273bool SCEV::isZero() const {
274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275 return SC->getValue()->isZero();
276 return false;
277}
278
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000279bool SCEV::isOne() const {
280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281 return SC->getValue()->isOne();
282 return false;
283}
Chris Lattnerd934c702004-04-02 20:23:17 +0000284
Dan Gohman18a96bb2009-06-24 00:30:26 +0000285bool SCEV::isAllOnesValue() const {
286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
287 return SC->getValue()->isAllOnesValue();
288 return false;
289}
290
Andrew Trick881a7762012-01-07 00:27:31 +0000291/// isNonConstantNegative - Return true if the specified scev is negated, but
292/// not a constant.
293bool SCEV::isNonConstantNegative() const {
294 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
295 if (!Mul) return false;
296
297 // If there is a constant factor, it will be first.
298 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
299 if (!SC) return false;
300
301 // Return true if the value is negative, this matches things like (-42 * V).
302 return SC->getValue()->getValue().isNegative();
303}
304
Owen Anderson04052ec2009-06-22 21:57:23 +0000305SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000306 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000307
Chris Lattnerd934c702004-04-02 20:23:17 +0000308bool SCEVCouldNotCompute::classof(const SCEV *S) {
309 return S->getSCEVType() == scCouldNotCompute;
310}
311
Dan Gohmanaf752342009-07-07 17:06:11 +0000312const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000313 FoldingSetNodeID ID;
314 ID.AddInteger(scConstant);
315 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000316 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000318 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000319 UniqueSCEVs.InsertNode(S, IP);
320 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000321}
Chris Lattnerd934c702004-04-02 20:23:17 +0000322
Nick Lewycky31eaca52014-01-27 10:04:03 +0000323const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000324 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000325}
326
Dan Gohmanaf752342009-07-07 17:06:11 +0000327const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000328ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
329 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000330 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000331}
332
Dan Gohman24ceda82010-06-18 19:54:20 +0000333SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000334 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000335 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000340 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
341 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000342 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000343}
Chris Lattnerd934c702004-04-02 20:23:17 +0000344
Dan Gohman24ceda82010-06-18 19:54:20 +0000345SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000346 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000347 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000348 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
349 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000350 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000351}
352
Dan Gohman24ceda82010-06-18 19:54:20 +0000353SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000354 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000355 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000356 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
357 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000358 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000359}
360
Dan Gohman7cac9572010-08-02 23:49:30 +0000361void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000362 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000363 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000364
365 // Remove this SCEVUnknown from the uniquing map.
366 SE->UniqueSCEVs.RemoveNode(this);
367
368 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000369 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000370}
371
372void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000373 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000374 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000375
376 // Remove this SCEVUnknown from the uniquing map.
377 SE->UniqueSCEVs.RemoveNode(this);
378
379 // Update this SCEVUnknown to point to the new value. This is needed
380 // because there may still be outstanding SCEVs which still point to
381 // this SCEVUnknown.
382 setValPtr(New);
383}
384
Chris Lattner229907c2011-07-18 04:54:35 +0000385bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000386 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000387 if (VCE->getOpcode() == Instruction::PtrToInt)
388 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000389 if (CE->getOpcode() == Instruction::GetElementPtr &&
390 CE->getOperand(0)->isNullValue() &&
391 CE->getNumOperands() == 2)
392 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
393 if (CI->isOne()) {
394 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
395 ->getElementType();
396 return true;
397 }
Dan Gohmancf913832010-01-28 02:15:55 +0000398
399 return false;
400}
401
Chris Lattner229907c2011-07-18 04:54:35 +0000402bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000403 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000404 if (VCE->getOpcode() == Instruction::PtrToInt)
405 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000406 if (CE->getOpcode() == Instruction::GetElementPtr &&
407 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000408 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000409 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000410 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000411 if (!STy->isPacked() &&
412 CE->getNumOperands() == 3 &&
413 CE->getOperand(1)->isNullValue()) {
414 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
415 if (CI->isOne() &&
416 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000417 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000418 AllocTy = STy->getElementType(1);
419 return true;
420 }
421 }
422 }
Dan Gohmancf913832010-01-28 02:15:55 +0000423
424 return false;
425}
426
Chris Lattner229907c2011-07-18 04:54:35 +0000427bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000428 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000429 if (VCE->getOpcode() == Instruction::PtrToInt)
430 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
431 if (CE->getOpcode() == Instruction::GetElementPtr &&
432 CE->getNumOperands() == 3 &&
433 CE->getOperand(0)->isNullValue() &&
434 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000435 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000436 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
437 // Ignore vector types here so that ScalarEvolutionExpander doesn't
438 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000439 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 CTy = Ty;
441 FieldNo = CE->getOperand(2);
442 return true;
443 }
444 }
445
446 return false;
447}
448
Chris Lattnereb3e8402004-06-20 06:23:15 +0000449//===----------------------------------------------------------------------===//
450// SCEV Utilities
451//===----------------------------------------------------------------------===//
452
453namespace {
454 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
455 /// than the complexity of the RHS. This comparator is used to canonicalize
456 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000457 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000458 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000459 public:
Dan Gohman992db002010-07-23 21:18:55 +0000460 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000461
Dan Gohman27065672010-08-27 15:26:01 +0000462 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000463 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000464 return compare(LHS, RHS) < 0;
465 }
466
467 // Return negative, zero, or positive, if LHS is less than, equal to, or
468 // greater than RHS, respectively. A three-way result allows recursive
469 // comparisons to be more efficient.
470 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000471 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
472 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000473 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000474
Dan Gohman9ba542c2009-05-07 14:39:04 +0000475 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000476 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
477 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000478 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479
Dan Gohman24ceda82010-06-18 19:54:20 +0000480 // Aside from the getSCEVType() ordering, the particular ordering
481 // isn't very important except that it's beneficial to be consistent,
482 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000483 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000484 case scUnknown: {
485 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000486 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000487
488 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
489 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000490 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000491
492 // Order pointer values after integer values. This helps SCEVExpander
493 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 bool LIsPointer = LV->getType()->isPointerTy(),
495 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000496 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000497 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000498
499 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000500 unsigned LID = LV->getValueID(),
501 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000502 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000503 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000504
505 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000506 if (const Argument *LA = dyn_cast<Argument>(LV)) {
507 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000508 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
509 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000510 }
511
Dan Gohman27065672010-08-27 15:26:01 +0000512 // For instructions, compare their loop depth, and their operand
513 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000514 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
515 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000516
517 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 const BasicBlock *LParent = LInst->getParent(),
519 *RParent = RInst->getParent();
520 if (LParent != RParent) {
521 unsigned LDepth = LI->getLoopDepth(LParent),
522 RDepth = LI->getLoopDepth(RParent);
523 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000524 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000525 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000526
527 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000528 unsigned LNumOps = LInst->getNumOperands(),
529 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000530 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000531 }
532
Dan Gohman27065672010-08-27 15:26:01 +0000533 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000534 }
535
Dan Gohman27065672010-08-27 15:26:01 +0000536 case scConstant: {
537 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000539
540 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000541 const APInt &LA = LC->getValue()->getValue();
542 const APInt &RA = RC->getValue()->getValue();
543 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000544 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000545 return (int)LBitWidth - (int)RBitWidth;
546 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000547 }
548
Dan Gohman27065672010-08-27 15:26:01 +0000549 case scAddRecExpr: {
550 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000552
553 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000554 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
555 if (LLoop != RLoop) {
556 unsigned LDepth = LLoop->getLoopDepth(),
557 RDepth = RLoop->getLoopDepth();
558 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000559 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000560 }
Dan Gohman27065672010-08-27 15:26:01 +0000561
562 // Addrec complexity grows with operand count.
563 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
564 if (LNumOps != RNumOps)
565 return (int)LNumOps - (int)RNumOps;
566
567 // Lexicographically compare.
568 for (unsigned i = 0; i != LNumOps; ++i) {
569 long X = compare(LA->getOperand(i), RA->getOperand(i));
570 if (X != 0)
571 return X;
572 }
573
574 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000575 }
576
Dan Gohman27065672010-08-27 15:26:01 +0000577 case scAddExpr:
578 case scMulExpr:
579 case scSMaxExpr:
580 case scUMaxExpr: {
581 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000582 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000583
584 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000585 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000586 if (LNumOps != RNumOps)
587 return (int)LNumOps - (int)RNumOps;
588
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 for (unsigned i = 0; i != LNumOps; ++i) {
590 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000591 return 1;
592 long X = compare(LC->getOperand(i), RC->getOperand(i));
593 if (X != 0)
594 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000595 }
Dan Gohman27065672010-08-27 15:26:01 +0000596 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000597 }
598
Dan Gohman27065672010-08-27 15:26:01 +0000599 case scUDivExpr: {
600 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000602
603 // Lexicographically compare udiv expressions.
604 long X = compare(LC->getLHS(), RC->getLHS());
605 if (X != 0)
606 return X;
607 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000608 }
609
Dan Gohman27065672010-08-27 15:26:01 +0000610 case scTruncate:
611 case scZeroExtend:
612 case scSignExtend: {
613 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000614 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000615
616 // Compare cast expressions by operand.
617 return compare(LC->getOperand(), RC->getOperand());
618 }
619
Benjamin Kramer987b8502014-02-11 19:02:55 +0000620 case scCouldNotCompute:
621 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000622 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000623 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000624 }
625 };
626}
627
628/// GroupByComplexity - Given a list of SCEV objects, order them by their
629/// complexity, and group objects of the same complexity together by value.
630/// When this routine is finished, we know that any duplicates in the vector are
631/// consecutive and that complexity is monotonically increasing.
632///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000633/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000634/// results from this routine. In other words, we don't want the results of
635/// this to depend on where the addresses of various SCEV objects happened to
636/// land in memory.
637///
Dan Gohmanaf752342009-07-07 17:06:11 +0000638static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000639 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000640 if (Ops.size() < 2) return; // Noop
641 if (Ops.size() == 2) {
642 // This is the common case, which also happens to be trivially simple.
643 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000644 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
645 if (SCEVComplexityCompare(LI)(RHS, LHS))
646 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000647 return;
648 }
649
Dan Gohman24ceda82010-06-18 19:54:20 +0000650 // Do the rough sort by complexity.
651 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
652
653 // Now that we are sorted by complexity, group elements of the same
654 // complexity. Note that this is, at worst, N^2, but the vector is likely to
655 // be extremely short in practice. Note that we take this approach because we
656 // do not want to depend on the addresses of the objects we are grouping.
657 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
658 const SCEV *S = Ops[i];
659 unsigned Complexity = S->getSCEVType();
660
661 // If there are any objects of the same complexity and same value as this
662 // one, group them.
663 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
664 if (Ops[j] == S) { // Found a duplicate.
665 // Move it to immediately after i'th element.
666 std::swap(Ops[i+1], Ops[j]);
667 ++i; // no need to rescan it.
668 if (i == e-2) return; // Done!
669 }
670 }
671 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000672}
673
Chris Lattnerd934c702004-04-02 20:23:17 +0000674
Chris Lattnerd934c702004-04-02 20:23:17 +0000675
676//===----------------------------------------------------------------------===//
677// Simple SCEV method implementations
678//===----------------------------------------------------------------------===//
679
Eli Friedman61f67622008-08-04 23:49:06 +0000680/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000681/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000682static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000683 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000684 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000685 // Handle the simplest case efficiently.
686 if (K == 1)
687 return SE.getTruncateOrZeroExtend(It, ResultTy);
688
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000689 // We are using the following formula for BC(It, K):
690 //
691 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
692 //
Eli Friedman61f67622008-08-04 23:49:06 +0000693 // Suppose, W is the bitwidth of the return value. We must be prepared for
694 // overflow. Hence, we must assure that the result of our computation is
695 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
696 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000697 //
Eli Friedman61f67622008-08-04 23:49:06 +0000698 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000699 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000700 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
701 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000702 //
Eli Friedman61f67622008-08-04 23:49:06 +0000703 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000704 //
Eli Friedman61f67622008-08-04 23:49:06 +0000705 // This formula is trivially equivalent to the previous formula. However,
706 // this formula can be implemented much more efficiently. The trick is that
707 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
708 // arithmetic. To do exact division in modular arithmetic, all we have
709 // to do is multiply by the inverse. Therefore, this step can be done at
710 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000711 //
Eli Friedman61f67622008-08-04 23:49:06 +0000712 // The next issue is how to safely do the division by 2^T. The way this
713 // is done is by doing the multiplication step at a width of at least W + T
714 // bits. This way, the bottom W+T bits of the product are accurate. Then,
715 // when we perform the division by 2^T (which is equivalent to a right shift
716 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
717 // truncated out after the division by 2^T.
718 //
719 // In comparison to just directly using the first formula, this technique
720 // is much more efficient; using the first formula requires W * K bits,
721 // but this formula less than W + K bits. Also, the first formula requires
722 // a division step, whereas this formula only requires multiplies and shifts.
723 //
724 // It doesn't matter whether the subtraction step is done in the calculation
725 // width or the input iteration count's width; if the subtraction overflows,
726 // the result must be zero anyway. We prefer here to do it in the width of
727 // the induction variable because it helps a lot for certain cases; CodeGen
728 // isn't smart enough to ignore the overflow, which leads to much less
729 // efficient code if the width of the subtraction is wider than the native
730 // register width.
731 //
732 // (It's possible to not widen at all by pulling out factors of 2 before
733 // the multiplication; for example, K=2 can be calculated as
734 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
735 // extra arithmetic, so it's not an obvious win, and it gets
736 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000737
Eli Friedman61f67622008-08-04 23:49:06 +0000738 // Protection from insane SCEVs; this bound is conservative,
739 // but it probably doesn't matter.
740 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000741 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000742
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000743 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000744
Eli Friedman61f67622008-08-04 23:49:06 +0000745 // Calculate K! / 2^T and T; we divide out the factors of two before
746 // multiplying for calculating K! / 2^T to avoid overflow.
747 // Other overflow doesn't matter because we only care about the bottom
748 // W bits of the result.
749 APInt OddFactorial(W, 1);
750 unsigned T = 1;
751 for (unsigned i = 3; i <= K; ++i) {
752 APInt Mult(W, i);
753 unsigned TwoFactors = Mult.countTrailingZeros();
754 T += TwoFactors;
755 Mult = Mult.lshr(TwoFactors);
756 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +0000757 }
Nick Lewyckyed169d52008-06-13 04:38:55 +0000758
Eli Friedman61f67622008-08-04 23:49:06 +0000759 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +0000760 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +0000761
Dan Gohman8b0a4192010-03-01 17:49:51 +0000762 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +0000763 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +0000764
765 // Calculate the multiplicative inverse of K! / 2^T;
766 // this multiplication factor will perform the exact division by
767 // K! / 2^T.
768 APInt Mod = APInt::getSignedMinValue(W+1);
769 APInt MultiplyFactor = OddFactorial.zext(W+1);
770 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
771 MultiplyFactor = MultiplyFactor.trunc(W);
772
773 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +0000774 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +0000775 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +0000776 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +0000777 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +0000778 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +0000779 Dividend = SE.getMulExpr(Dividend,
780 SE.getTruncateOrZeroExtend(S, CalculationTy));
781 }
782
783 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +0000784 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +0000785
786 // Truncate the result, and divide by K! / 2^T.
787
788 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
789 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +0000790}
791
Chris Lattnerd934c702004-04-02 20:23:17 +0000792/// evaluateAtIteration - Return the value of this chain of recurrences at
793/// the specified iteration number. We can evaluate this recurrence by
794/// multiplying each element in the chain by the binomial coefficient
795/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
796///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000797/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +0000798///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000799/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +0000800///
Dan Gohmanaf752342009-07-07 17:06:11 +0000801const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +0000802 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +0000803 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +0000804 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000805 // The computation is correct in the face of overflow provided that the
806 // multiplication is performed _after_ the evaluation of the binomial
807 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +0000808 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +0000809 if (isa<SCEVCouldNotCompute>(Coeff))
810 return Coeff;
811
812 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +0000813 }
814 return Result;
815}
816
Chris Lattnerd934c702004-04-02 20:23:17 +0000817//===----------------------------------------------------------------------===//
818// SCEV Expression folder implementations
819//===----------------------------------------------------------------------===//
820
Dan Gohmanaf752342009-07-07 17:06:11 +0000821const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +0000822 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000823 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +0000824 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +0000825 assert(isSCEVable(Ty) &&
826 "This is not a conversion to a SCEVable type!");
827 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +0000828
Dan Gohman3a302cb2009-07-13 20:50:19 +0000829 FoldingSetNodeID ID;
830 ID.AddInteger(scTruncate);
831 ID.AddPointer(Op);
832 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +0000833 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +0000834 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
835
Dan Gohman3423e722009-06-30 20:13:32 +0000836 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +0000837 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +0000838 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +0000839 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +0000840
Dan Gohman79af8542009-04-22 16:20:48 +0000841 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +0000842 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +0000843 return getTruncateExpr(ST->getOperand(), Ty);
844
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000845 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +0000846 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000847 return getTruncateOrSignExtend(SS->getOperand(), Ty);
848
849 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +0000850 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000851 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
852
Nick Lewycky5143f0f2011-01-19 16:59:46 +0000853 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
854 // eliminate all the truncates.
855 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
856 SmallVector<const SCEV *, 4> Operands;
857 bool hasTrunc = false;
858 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
859 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
860 hasTrunc = isa<SCEVTruncateExpr>(S);
861 Operands.push_back(S);
862 }
863 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +0000864 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +0000865 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +0000866 }
867
Nick Lewycky5c901f32011-01-19 18:56:00 +0000868 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
869 // eliminate all the truncates.
870 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
871 SmallVector<const SCEV *, 4> Operands;
872 bool hasTrunc = false;
873 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
874 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
875 hasTrunc = isa<SCEVTruncateExpr>(S);
876 Operands.push_back(S);
877 }
878 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +0000879 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +0000880 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +0000881 }
882
Dan Gohman5a728c92009-06-18 16:24:47 +0000883 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +0000884 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +0000885 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +0000886 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +0000887 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +0000888 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +0000889 }
890
Dan Gohman89dd42a2010-06-25 18:47:08 +0000891 // The cast wasn't folded; create an explicit cast node. We can reuse
892 // the existing insert position since if we get here, we won't have
893 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +0000894 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
895 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000896 UniqueSCEVs.InsertNode(S, IP);
897 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +0000898}
899
Dan Gohmanaf752342009-07-07 17:06:11 +0000900const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +0000901 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000902 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +0000903 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +0000904 assert(isSCEVable(Ty) &&
905 "This is not a conversion to a SCEVable type!");
906 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +0000907
Dan Gohman3423e722009-06-30 20:13:32 +0000908 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +0000909 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
910 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +0000911 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +0000912
Dan Gohman79af8542009-04-22 16:20:48 +0000913 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +0000914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +0000915 return getZeroExtendExpr(SZ->getOperand(), Ty);
916
Dan Gohman74a0ba12009-07-13 20:55:53 +0000917 // Before doing any expensive analysis, check to see if we've already
918 // computed a SCEV for this Op and Ty.
919 FoldingSetNodeID ID;
920 ID.AddInteger(scZeroExtend);
921 ID.AddPointer(Op);
922 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +0000923 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +0000924 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
925
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000926 // zext(trunc(x)) --> zext(x) or x or trunc(x)
927 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
928 // It's possible the bits taken off by the truncate were all zero bits. If
929 // so, we should be able to simplify this further.
930 const SCEV *X = ST->getOperand();
931 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000932 unsigned TruncBits = getTypeSizeInBits(ST->getType());
933 unsigned NewBits = getTypeSizeInBits(Ty);
934 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +0000935 CR.zextOrTrunc(NewBits)))
936 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000937 }
938
Dan Gohman76466372009-04-27 20:16:15 +0000939 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +0000940 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +0000941 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +0000942 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +0000943 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +0000944 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +0000945 const SCEV *Start = AR->getStart();
946 const SCEV *Step = AR->getStepRecurrence(*this);
947 unsigned BitWidth = getTypeSizeInBits(AR->getType());
948 const Loop *L = AR->getLoop();
949
Dan Gohman62ef6a72009-07-25 01:22:26 +0000950 // If we have special knowledge that this addrec won't overflow,
951 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +0000952 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +0000953 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
954 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000955 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +0000956
Dan Gohman76466372009-04-27 20:16:15 +0000957 // Check whether the backedge-taken count is SCEVCouldNotCompute.
958 // Note that this serves two purposes: It filters out loops that are
959 // simply not analyzable, and it covers the case where this code is
960 // being called from within backedge-taken count analysis, such that
961 // attempting to ask for the backedge-taken count would likely result
962 // in infinite recursion. In the later case, the analysis code will
963 // cope with a conservative value, and it will take care to purge
964 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +0000965 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +0000966 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +0000967 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +0000968 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +0000969
970 // Check whether the backedge-taken count can be losslessly casted to
971 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +0000972 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +0000973 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +0000974 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +0000975 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
976 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +0000977 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +0000978 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +0000979 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000980 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
981 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
982 const SCEV *WideMaxBECount =
983 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +0000984 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000985 getAddExpr(WideStart,
986 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +0000987 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000988 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000989 // Cache knowledge of AR NUW, which is propagated to this AddRec.
990 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +0000991 // Return the expression with the addrec on the outside.
992 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
993 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000994 L, AR->getNoWrapFlags());
995 }
Dan Gohman76466372009-04-27 20:16:15 +0000996 // Similar to above, only this time treat the step value as signed.
997 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +0000998 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000999 getAddExpr(WideStart,
1000 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001001 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001002 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001003 // Cache knowledge of AR NW, which is propagated to this AddRec.
1004 // Negative step causes unsigned wrap, but it still can't self-wrap.
1005 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001006 // Return the expression with the addrec on the outside.
1007 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1008 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001009 L, AR->getNoWrapFlags());
1010 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001011 }
1012
1013 // If the backedge is guarded by a comparison with the pre-inc value
1014 // the addrec is safe. Also, if the entry is guarded by a comparison
1015 // with the start value and the backedge is guarded by a comparison
1016 // with the post-inc value, the addrec is safe.
1017 if (isKnownPositive(Step)) {
1018 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1019 getUnsignedRange(Step).getUnsignedMax());
1020 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001021 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001022 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001023 AR->getPostIncExpr(*this), N))) {
1024 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1025 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001026 // Return the expression with the addrec on the outside.
1027 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1028 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001029 L, AR->getNoWrapFlags());
1030 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001031 } else if (isKnownNegative(Step)) {
1032 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1033 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001034 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1035 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001036 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001037 AR->getPostIncExpr(*this), N))) {
1038 // Cache knowledge of AR NW, which is propagated to this AddRec.
1039 // Negative step causes unsigned wrap, but it still can't self-wrap.
1040 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1041 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001042 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1043 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001044 L, AR->getNoWrapFlags());
1045 }
Dan Gohman76466372009-04-27 20:16:15 +00001046 }
1047 }
1048 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001049
Dan Gohman74a0ba12009-07-13 20:55:53 +00001050 // The cast wasn't folded; create an explicit cast node.
1051 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001052 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001053 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1054 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001055 UniqueSCEVs.InsertNode(S, IP);
1056 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001057}
1058
Andrew Trick812276e2011-05-31 21:17:47 +00001059// Get the limit of a recurrence such that incrementing by Step cannot cause
1060// signed overflow as long as the value of the recurrence within the loop does
1061// not exceed this limit before incrementing.
1062static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1063 ICmpInst::Predicate *Pred,
1064 ScalarEvolution *SE) {
1065 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1066 if (SE->isKnownPositive(Step)) {
1067 *Pred = ICmpInst::ICMP_SLT;
1068 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1069 SE->getSignedRange(Step).getSignedMax());
1070 }
1071 if (SE->isKnownNegative(Step)) {
1072 *Pred = ICmpInst::ICMP_SGT;
1073 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1074 SE->getSignedRange(Step).getSignedMin());
1075 }
Craig Topper9f008862014-04-15 04:59:12 +00001076 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001077}
1078
1079// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1080// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1081// or postincrement sibling. This allows normalizing a sign extended AddRec as
1082// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1083// result, the expression "Step + sext(PreIncAR)" is congruent with
1084// "sext(PostIncAR)"
1085static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001086 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001087 ScalarEvolution *SE) {
1088 const Loop *L = AR->getLoop();
1089 const SCEV *Start = AR->getStart();
1090 const SCEV *Step = AR->getStepRecurrence(*SE);
1091
1092 // Check for a simple looking step prior to loop entry.
1093 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001094 if (!SA)
Craig Topper9f008862014-04-15 04:59:12 +00001095 return nullptr;
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001096
1097 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1098 // subtraction is expensive. For this purpose, perform a quick and dirty
1099 // difference, by checking for Step in the operand list.
1100 SmallVector<const SCEV *, 4> DiffOps;
Tobias Grosser924221c2014-05-07 06:07:47 +00001101 for (const SCEV *Op : SA->operands())
1102 if (Op != Step)
1103 DiffOps.push_back(Op);
1104
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001105 if (DiffOps.size() == SA->getNumOperands())
Craig Topper9f008862014-04-15 04:59:12 +00001106 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001107
1108 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1109 // same three conditions that getSignExtendedExpr checks.
1110
1111 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001112 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001113 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1114 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1115
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001116 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001117 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001118
1119 // 2. Direct overflow check on the step operation's expression.
1120 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001121 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001122 const SCEV *OperandExtendedStart =
1123 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1124 SE->getSignExtendExpr(Step, WideTy));
1125 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1126 // Cache knowledge of PreAR NSW.
1127 if (PreAR)
1128 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1129 // FIXME: this optimization needs a unit test
1130 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1131 return PreStart;
1132 }
1133
1134 // 3. Loop precondition.
1135 ICmpInst::Predicate Pred;
1136 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1137
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001138 if (OverflowLimit &&
1139 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001140 return PreStart;
1141 }
Craig Topper9f008862014-04-15 04:59:12 +00001142 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001143}
1144
1145// Get the normalized sign-extended expression for this AddRec's Start.
1146static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001147 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001148 ScalarEvolution *SE) {
1149 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1150 if (!PreStart)
1151 return SE->getSignExtendExpr(AR->getStart(), Ty);
1152
1153 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1154 SE->getSignExtendExpr(PreStart, Ty));
1155}
1156
Dan Gohmanaf752342009-07-07 17:06:11 +00001157const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001158 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001159 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001160 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001161 assert(isSCEVable(Ty) &&
1162 "This is not a conversion to a SCEVable type!");
1163 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001164
Dan Gohman3423e722009-06-30 20:13:32 +00001165 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001166 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1167 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001168 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001169
Dan Gohman79af8542009-04-22 16:20:48 +00001170 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001172 return getSignExtendExpr(SS->getOperand(), Ty);
1173
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001174 // sext(zext(x)) --> zext(x)
1175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1176 return getZeroExtendExpr(SZ->getOperand(), Ty);
1177
Dan Gohman74a0ba12009-07-13 20:55:53 +00001178 // Before doing any expensive analysis, check to see if we've already
1179 // computed a SCEV for this Op and Ty.
1180 FoldingSetNodeID ID;
1181 ID.AddInteger(scSignExtend);
1182 ID.AddPointer(Op);
1183 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001184 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1186
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001187 // If the input value is provably positive, build a zext instead.
1188 if (isKnownNonNegative(Op))
1189 return getZeroExtendExpr(Op, Ty);
1190
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001191 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1193 // It's possible the bits taken off by the truncate were all sign bits. If
1194 // so, we should be able to simplify this further.
1195 const SCEV *X = ST->getOperand();
1196 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001197 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1198 unsigned NewBits = getTypeSizeInBits(Ty);
1199 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001200 CR.sextOrTrunc(NewBits)))
1201 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001202 }
1203
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001204 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1205 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1206 if (SA->getNumOperands() == 2) {
1207 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1208 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1209 if (SMul && SC1) {
1210 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1211 APInt C1 = SC1->getValue()->getValue();
1212 APInt C2 = SC2->getValue()->getValue();
1213 APInt CDiff = C2 - C1;
1214 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1215 CDiff.isStrictlyPositive() && C2.isPowerOf2())
1216 return getAddExpr(getSignExtendExpr(SC1, Ty),
1217 getSignExtendExpr(SMul, Ty));
1218 }
1219 }
1220 }
1221 }
Dan Gohman76466372009-04-27 20:16:15 +00001222 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001223 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001224 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001225 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001226 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001227 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001228 const SCEV *Start = AR->getStart();
1229 const SCEV *Step = AR->getStepRecurrence(*this);
1230 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1231 const Loop *L = AR->getLoop();
1232
Dan Gohman62ef6a72009-07-25 01:22:26 +00001233 // If we have special knowledge that this addrec won't overflow,
1234 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001235 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001236 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001237 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001238 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001239
Dan Gohman76466372009-04-27 20:16:15 +00001240 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1241 // Note that this serves two purposes: It filters out loops that are
1242 // simply not analyzable, and it covers the case where this code is
1243 // being called from within backedge-taken count analysis, such that
1244 // attempting to ask for the backedge-taken count would likely result
1245 // in infinite recursion. In the later case, the analysis code will
1246 // cope with a conservative value, and it will take care to purge
1247 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001248 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001249 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001250 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001251 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001252
1253 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001254 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001255 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001256 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001257 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001258 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1259 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001260 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001261 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001262 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001263 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1264 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1265 const SCEV *WideMaxBECount =
1266 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001267 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001268 getAddExpr(WideStart,
1269 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001270 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001271 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001272 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1273 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001274 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001275 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001276 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001277 L, AR->getNoWrapFlags());
1278 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001279 // Similar to above, only this time treat the step value as unsigned.
1280 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001281 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001282 getAddExpr(WideStart,
1283 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001284 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001285 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001286 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1287 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001288 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001289 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001290 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001291 L, AR->getNoWrapFlags());
1292 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001293 }
1294
1295 // If the backedge is guarded by a comparison with the pre-inc value
1296 // the addrec is safe. Also, if the entry is guarded by a comparison
1297 // with the start value and the backedge is guarded by a comparison
1298 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001299 ICmpInst::Predicate Pred;
1300 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1301 if (OverflowLimit &&
1302 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1303 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1304 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1305 OverflowLimit)))) {
1306 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1307 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1308 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1309 getSignExtendExpr(Step, Ty),
1310 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001311 }
1312 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001313 // If Start and Step are constants, check if we can apply this
1314 // transformation:
1315 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1316 auto SC1 = dyn_cast<SCEVConstant>(Start);
1317 auto SC2 = dyn_cast<SCEVConstant>(Step);
1318 if (SC1 && SC2) {
1319 APInt C1 = SC1->getValue()->getValue();
1320 APInt C2 = SC2->getValue()->getValue();
1321 APInt CDiff = C2 - C1;
1322 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1323 CDiff.isStrictlyPositive() && C2.isPowerOf2()) {
1324 Start = getSignExtendExpr(Start, Ty);
1325 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1326 L, AR->getNoWrapFlags());
1327 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1328 }
1329 }
Dan Gohman76466372009-04-27 20:16:15 +00001330 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001331
Dan Gohman74a0ba12009-07-13 20:55:53 +00001332 // The cast wasn't folded; create an explicit cast node.
1333 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001334 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001335 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1336 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001337 UniqueSCEVs.InsertNode(S, IP);
1338 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001339}
1340
Dan Gohman8db2edc2009-06-13 15:56:47 +00001341/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1342/// unspecified bits out to the given type.
1343///
Dan Gohmanaf752342009-07-07 17:06:11 +00001344const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001345 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001346 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1347 "This is not an extending conversion!");
1348 assert(isSCEVable(Ty) &&
1349 "This is not a conversion to a SCEVable type!");
1350 Ty = getEffectiveSCEVType(Ty);
1351
1352 // Sign-extend negative constants.
1353 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1354 if (SC->getValue()->getValue().isNegative())
1355 return getSignExtendExpr(Op, Ty);
1356
1357 // Peel off a truncate cast.
1358 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001359 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001360 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1361 return getAnyExtendExpr(NewOp, Ty);
1362 return getTruncateOrNoop(NewOp, Ty);
1363 }
1364
1365 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001366 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001367 if (!isa<SCEVZeroExtendExpr>(ZExt))
1368 return ZExt;
1369
1370 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001371 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001372 if (!isa<SCEVSignExtendExpr>(SExt))
1373 return SExt;
1374
Dan Gohman51ad99d2010-01-21 02:09:26 +00001375 // Force the cast to be folded into the operands of an addrec.
1376 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1377 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001378 for (const SCEV *Op : AR->operands())
1379 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001380 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001381 }
1382
Dan Gohman8db2edc2009-06-13 15:56:47 +00001383 // If the expression is obviously signed, use the sext cast value.
1384 if (isa<SCEVSMaxExpr>(Op))
1385 return SExt;
1386
1387 // Absent any other information, use the zext cast value.
1388 return ZExt;
1389}
1390
Dan Gohman038d02e2009-06-14 22:58:51 +00001391/// CollectAddOperandsWithScales - Process the given Ops list, which is
1392/// a list of operands to be added under the given scale, update the given
1393/// map. This is a helper function for getAddRecExpr. As an example of
1394/// what it does, given a sequence of operands that would form an add
1395/// expression like this:
1396///
Tobias Grosserba49e422014-03-05 10:37:17 +00001397/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001398///
1399/// where A and B are constants, update the map with these values:
1400///
1401/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1402///
1403/// and add 13 + A*B*29 to AccumulatedConstant.
1404/// This will allow getAddRecExpr to produce this:
1405///
1406/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1407///
1408/// This form often exposes folding opportunities that are hidden in
1409/// the original operand list.
1410///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001411/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001412/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1413/// the common case where no interesting opportunities are present, and
1414/// is also used as a check to avoid infinite recursion.
1415///
1416static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001417CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001418 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001419 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001420 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001421 const APInt &Scale,
1422 ScalarEvolution &SE) {
1423 bool Interesting = false;
1424
Dan Gohman45073042010-06-18 19:12:32 +00001425 // Iterate over the add operands. They are sorted, with constants first.
1426 unsigned i = 0;
1427 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1428 ++i;
1429 // Pull a buried constant out to the outside.
1430 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1431 Interesting = true;
1432 AccumulatedConstant += Scale * C->getValue()->getValue();
1433 }
1434
1435 // Next comes everything else. We're especially interested in multiplies
1436 // here, but they're in the middle, so just visit the rest with one loop.
1437 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001438 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1439 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1440 APInt NewScale =
1441 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1442 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1443 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001444 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001445 Interesting |=
1446 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001447 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001448 NewScale, SE);
1449 } else {
1450 // A multiplication of a constant with some other value. Update
1451 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001452 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1453 const SCEV *Key = SE.getMulExpr(MulOps);
1454 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001455 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001456 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001457 NewOps.push_back(Pair.first->first);
1458 } else {
1459 Pair.first->second += NewScale;
1460 // The map already had an entry for this value, which may indicate
1461 // a folding opportunity.
1462 Interesting = true;
1463 }
1464 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001465 } else {
1466 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001467 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001468 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001469 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001470 NewOps.push_back(Pair.first->first);
1471 } else {
1472 Pair.first->second += Scale;
1473 // The map already had an entry for this value, which may indicate
1474 // a folding opportunity.
1475 Interesting = true;
1476 }
1477 }
1478 }
1479
1480 return Interesting;
1481}
1482
1483namespace {
1484 struct APIntCompare {
1485 bool operator()(const APInt &LHS, const APInt &RHS) const {
1486 return LHS.ult(RHS);
1487 }
1488 };
1489}
1490
Dan Gohman4d5435d2009-05-24 23:45:28 +00001491/// getAddExpr - Get a canonical add expression, or something simpler if
1492/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001493const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001494 SCEV::NoWrapFlags Flags) {
1495 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1496 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001497 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001498 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001499#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001500 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001501 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001502 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001503 "SCEVAddExpr operand types don't match!");
1504#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001505
Andrew Trick8b55b732011-03-14 16:50:06 +00001506 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001507 // And vice-versa.
1508 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1509 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1510 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001511 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001512 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1513 E = Ops.end(); I != E; ++I)
1514 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001515 All = false;
1516 break;
1517 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001518 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001519 }
1520
Chris Lattnerd934c702004-04-02 20:23:17 +00001521 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001522 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001523
1524 // If there are any constants, fold them together.
1525 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001526 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001527 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001528 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001529 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001530 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001531 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1532 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001533 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001534 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001535 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001536 }
1537
1538 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001539 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001540 Ops.erase(Ops.begin());
1541 --Idx;
1542 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001543
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001544 if (Ops.size() == 1) return Ops[0];
1545 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001546
Dan Gohman15871f22010-08-27 21:39:59 +00001547 // Okay, check to see if the same value occurs in the operand list more than
1548 // once. If so, merge them together into an multiply expression. Since we
1549 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001550 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001551 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001552 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001553 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001554 // Scan ahead to count how many equal operands there are.
1555 unsigned Count = 2;
1556 while (i+Count != e && Ops[i+Count] == Ops[i])
1557 ++Count;
1558 // Merge the values into a multiply.
1559 const SCEV *Scale = getConstant(Ty, Count);
1560 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1561 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001562 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001563 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001564 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001565 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001566 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001567 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001568 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001569 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001570
Dan Gohman2e55cc52009-05-08 21:03:19 +00001571 // Check for truncates. If all the operands are truncated from the same
1572 // type, see if factoring out the truncate would permit the result to be
1573 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1574 // if the contents of the resulting outer trunc fold to something simple.
1575 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1576 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001577 Type *DstType = Trunc->getType();
1578 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001579 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001580 bool Ok = true;
1581 // Check all the operands to see if they can be represented in the
1582 // source type of the truncate.
1583 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1584 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1585 if (T->getOperand()->getType() != SrcType) {
1586 Ok = false;
1587 break;
1588 }
1589 LargeOps.push_back(T->getOperand());
1590 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001591 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001592 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001593 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001594 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1595 if (const SCEVTruncateExpr *T =
1596 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1597 if (T->getOperand()->getType() != SrcType) {
1598 Ok = false;
1599 break;
1600 }
1601 LargeMulOps.push_back(T->getOperand());
1602 } else if (const SCEVConstant *C =
1603 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001604 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001605 } else {
1606 Ok = false;
1607 break;
1608 }
1609 }
1610 if (Ok)
1611 LargeOps.push_back(getMulExpr(LargeMulOps));
1612 } else {
1613 Ok = false;
1614 break;
1615 }
1616 }
1617 if (Ok) {
1618 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001619 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001620 // If it folds to something simple, use it. Otherwise, don't.
1621 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1622 return getTruncateExpr(Fold, DstType);
1623 }
1624 }
1625
1626 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001627 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1628 ++Idx;
1629
1630 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001631 if (Idx < Ops.size()) {
1632 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001633 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001634 // If we have an add, expand the add operands onto the end of the operands
1635 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001636 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001637 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001638 DeletedAdd = true;
1639 }
1640
1641 // If we deleted at least one add, we added operands to the end of the list,
1642 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001643 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001644 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001645 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001646 }
1647
1648 // Skip over the add expression until we get to a multiply.
1649 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1650 ++Idx;
1651
Dan Gohman038d02e2009-06-14 22:58:51 +00001652 // Check to see if there are any folding opportunities present with
1653 // operands multiplied by constant values.
1654 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1655 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001656 DenseMap<const SCEV *, APInt> M;
1657 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001658 APInt AccumulatedConstant(BitWidth, 0);
1659 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001660 Ops.data(), Ops.size(),
1661 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001662 // Some interesting folding opportunity is present, so its worthwhile to
1663 // re-generate the operands list. Group the operands by constant scale,
1664 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001665 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001666 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001667 E = NewOps.end(); I != E; ++I)
1668 MulOpLists[M.find(*I)->second].push_back(*I);
1669 // Re-generate the operands list.
1670 Ops.clear();
1671 if (AccumulatedConstant != 0)
1672 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001673 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1674 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001675 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001676 Ops.push_back(getMulExpr(getConstant(I->first),
1677 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001678 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001679 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001680 if (Ops.size() == 1)
1681 return Ops[0];
1682 return getAddExpr(Ops);
1683 }
1684 }
1685
Chris Lattnerd934c702004-04-02 20:23:17 +00001686 // If we are adding something to a multiply expression, make sure the
1687 // something is not already an operand of the multiply. If so, merge it into
1688 // the multiply.
1689 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001690 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001691 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00001692 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00001693 if (isa<SCEVConstant>(MulOpSCEV))
1694 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00001695 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00001696 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001697 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00001698 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001699 if (Mul->getNumOperands() != 2) {
1700 // If the multiply has more than two operands, we must get the
1701 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00001702 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1703 Mul->op_begin()+MulOp);
1704 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001705 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001706 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00001707 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00001708 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00001709 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00001710 if (Ops.size() == 2) return OuterMul;
1711 if (AddOp < Idx) {
1712 Ops.erase(Ops.begin()+AddOp);
1713 Ops.erase(Ops.begin()+Idx-1);
1714 } else {
1715 Ops.erase(Ops.begin()+Idx);
1716 Ops.erase(Ops.begin()+AddOp-1);
1717 }
1718 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00001719 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001720 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001721
Chris Lattnerd934c702004-04-02 20:23:17 +00001722 // Check this multiply against other multiplies being added together.
1723 for (unsigned OtherMulIdx = Idx+1;
1724 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1725 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001726 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001727 // If MulOp occurs in OtherMul, we can fold the two multiplies
1728 // together.
1729 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1730 OMulOp != e; ++OMulOp)
1731 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1732 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00001733 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001734 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001735 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001736 Mul->op_begin()+MulOp);
1737 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001738 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001739 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001740 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001741 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001742 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001743 OtherMul->op_begin()+OMulOp);
1744 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001745 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001746 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001747 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1748 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00001749 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00001750 Ops.erase(Ops.begin()+Idx);
1751 Ops.erase(Ops.begin()+OtherMulIdx-1);
1752 Ops.push_back(OuterMul);
1753 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001754 }
1755 }
1756 }
1757 }
1758
1759 // If there are any add recurrences in the operands list, see if any other
1760 // added values are loop invariant. If so, we can fold them into the
1761 // recurrence.
1762 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1763 ++Idx;
1764
1765 // Scan over all recurrences, trying to fold loop invariants into them.
1766 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1767 // Scan all of the other operands to this add and add them to the vector if
1768 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00001769 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00001770 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001771 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00001772 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00001773 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001774 LIOps.push_back(Ops[i]);
1775 Ops.erase(Ops.begin()+i);
1776 --i; --e;
1777 }
1778
1779 // If we found some loop invariants, fold them into the recurrence.
1780 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00001781 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00001782 LIOps.push_back(AddRec->getStart());
1783
Dan Gohmanaf752342009-07-07 17:06:11 +00001784 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00001785 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001786 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001787
Dan Gohman16206132010-06-30 07:16:37 +00001788 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00001789 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001790 // Always propagate NW.
1791 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00001792 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00001793
Chris Lattnerd934c702004-04-02 20:23:17 +00001794 // If all of the other operands were loop invariant, we are done.
1795 if (Ops.size() == 1) return NewRec;
1796
Nick Lewyckydb66b822011-09-06 05:08:09 +00001797 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00001798 for (unsigned i = 0;; ++i)
1799 if (Ops[i] == AddRec) {
1800 Ops[i] = NewRec;
1801 break;
1802 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00001803 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001804 }
1805
1806 // Okay, if there weren't any loop invariants to be folded, check to see if
1807 // there are multiple AddRec's with the same loop induction variable being
1808 // added together. If so, we can fold them.
1809 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00001810 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1811 ++OtherIdx)
1812 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1813 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1814 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1815 AddRec->op_end());
1816 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1817 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00001818 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00001819 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00001820 if (OtherAddRec->getLoop() == AddRecLoop) {
1821 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1822 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00001823 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00001824 AddRecOps.append(OtherAddRec->op_begin()+i,
1825 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00001826 break;
1827 }
Dan Gohman028c1812010-08-29 14:53:34 +00001828 AddRecOps[i] = getAddExpr(AddRecOps[i],
1829 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00001830 }
1831 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00001832 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001833 // Step size has changed, so we cannot guarantee no self-wraparound.
1834 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00001835 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001836 }
1837
1838 // Otherwise couldn't fold anything into this recurrence. Move onto the
1839 // next one.
1840 }
1841
1842 // Okay, it looks like we really DO need an add expr. Check to see if we
1843 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001844 FoldingSetNodeID ID;
1845 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001846 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1847 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00001848 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00001849 SCEVAddExpr *S =
1850 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1851 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00001852 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1853 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00001854 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1855 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00001856 UniqueSCEVs.InsertNode(S, IP);
1857 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001858 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001859 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001860}
1861
Nick Lewycky287682e2011-10-04 06:51:26 +00001862static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1863 uint64_t k = i*j;
1864 if (j > 1 && k / j != i) Overflow = true;
1865 return k;
1866}
1867
1868/// Compute the result of "n choose k", the binomial coefficient. If an
1869/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00001870/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00001871static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1872 // We use the multiplicative formula:
1873 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1874 // At each iteration, we take the n-th term of the numeral and divide by the
1875 // (k-n)th term of the denominator. This division will always produce an
1876 // integral result, and helps reduce the chance of overflow in the
1877 // intermediate computations. However, we can still overflow even when the
1878 // final result would fit.
1879
1880 if (n == 0 || n == k) return 1;
1881 if (k > n) return 0;
1882
1883 if (k > n/2)
1884 k = n-k;
1885
1886 uint64_t r = 1;
1887 for (uint64_t i = 1; i <= k; ++i) {
1888 r = umul_ov(r, n-(i-1), Overflow);
1889 r /= i;
1890 }
1891 return r;
1892}
1893
Dan Gohman4d5435d2009-05-24 23:45:28 +00001894/// getMulExpr - Get a canonical multiply expression, or something simpler if
1895/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001896const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001897 SCEV::NoWrapFlags Flags) {
1898 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1899 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001900 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00001901 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001902#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001903 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001904 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00001905 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001906 "SCEVMulExpr operand types don't match!");
1907#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001908
Andrew Trick8b55b732011-03-14 16:50:06 +00001909 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001910 // And vice-versa.
1911 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1912 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1913 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001914 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001915 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1916 E = Ops.end(); I != E; ++I)
1917 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001918 All = false;
1919 break;
1920 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001921 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001922 }
1923
Chris Lattnerd934c702004-04-02 20:23:17 +00001924 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001925 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001926
1927 // If there are any constants, fold them together.
1928 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001929 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001930
1931 // C1*(C2+V) -> C1*C2 + C1*V
1932 if (Ops.size() == 2)
Dan Gohmana30370b2009-05-04 22:02:23 +00001933 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattnerd934c702004-04-02 20:23:17 +00001934 if (Add->getNumOperands() == 2 &&
1935 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohmana37eaf22007-10-22 18:31:58 +00001936 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1937 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001938
Chris Lattnerd934c702004-04-02 20:23:17 +00001939 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00001940 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001941 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00001942 ConstantInt *Fold = ConstantInt::get(getContext(),
1943 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001944 RHSC->getValue()->getValue());
1945 Ops[0] = getConstant(Fold);
1946 Ops.erase(Ops.begin()+1); // Erase the folded element
1947 if (Ops.size() == 1) return Ops[0];
1948 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001949 }
1950
1951 // If we are left with a constant one being multiplied, strip it off.
1952 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1953 Ops.erase(Ops.begin());
1954 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00001955 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001956 // If we have a multiply of zero, it will always be zero.
1957 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00001958 } else if (Ops[0]->isAllOnesValue()) {
1959 // If we have a mul by -1 of an add, try distributing the -1 among the
1960 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00001961 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001962 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1963 SmallVector<const SCEV *, 4> NewOps;
1964 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00001965 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1966 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001967 const SCEV *Mul = getMulExpr(Ops[0], *I);
1968 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1969 NewOps.push_back(Mul);
1970 }
1971 if (AnyFolded)
1972 return getAddExpr(NewOps);
1973 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00001974 else if (const SCEVAddRecExpr *
1975 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1976 // Negation preserves a recurrence's no self-wrap property.
1977 SmallVector<const SCEV *, 4> Operands;
1978 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1979 E = AddRec->op_end(); I != E; ++I) {
1980 Operands.push_back(getMulExpr(Ops[0], *I));
1981 }
1982 return getAddRecExpr(Operands, AddRec->getLoop(),
1983 AddRec->getNoWrapFlags(SCEV::FlagNW));
1984 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001985 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001986 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00001987
1988 if (Ops.size() == 1)
1989 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00001990 }
1991
1992 // Skip over the add expression until we get to a multiply.
1993 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1994 ++Idx;
1995
Chris Lattnerd934c702004-04-02 20:23:17 +00001996 // If there are mul operands inline them all into this expression.
1997 if (Idx < Ops.size()) {
1998 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001999 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002000 // If we have an mul, expand the mul operands onto the end of the operands
2001 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002002 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002003 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002004 DeletedMul = true;
2005 }
2006
2007 // If we deleted at least one mul, we added operands to the end of the list,
2008 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002009 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002010 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002011 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002012 }
2013
2014 // If there are any add recurrences in the operands list, see if any other
2015 // added values are loop invariant. If so, we can fold them into the
2016 // recurrence.
2017 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2018 ++Idx;
2019
2020 // Scan over all recurrences, trying to fold loop invariants into them.
2021 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2022 // Scan all of the other operands to this mul and add them to the vector if
2023 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002024 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002025 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002026 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002027 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002028 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002029 LIOps.push_back(Ops[i]);
2030 Ops.erase(Ops.begin()+i);
2031 --i; --e;
2032 }
2033
2034 // If we found some loop invariants, fold them into the recurrence.
2035 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002036 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002037 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002038 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002039 const SCEV *Scale = getMulExpr(LIOps);
2040 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2041 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002042
Dan Gohman16206132010-06-30 07:16:37 +00002043 // Build the new addrec. Propagate the NUW and NSW flags if both the
2044 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002045 //
2046 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002047 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002048 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2049 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002050
2051 // If all of the other operands were loop invariant, we are done.
2052 if (Ops.size() == 1) return NewRec;
2053
Nick Lewyckydb66b822011-09-06 05:08:09 +00002054 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002055 for (unsigned i = 0;; ++i)
2056 if (Ops[i] == AddRec) {
2057 Ops[i] = NewRec;
2058 break;
2059 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002060 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002061 }
2062
2063 // Okay, if there weren't any loop invariants to be folded, check to see if
2064 // there are multiple AddRec's with the same loop induction variable being
2065 // multiplied together. If so, we can fold them.
2066 for (unsigned OtherIdx = Idx+1;
Dan Gohmanf01a5ee2010-08-31 22:52:12 +00002067 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002068 ++OtherIdx) {
Andrew Trick946f76b2012-05-30 03:35:17 +00002069 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2070 continue;
2071
2072 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2073 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2074 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2075 // ]]],+,...up to x=2n}.
2076 // Note that the arguments to choose() are always integers with values
2077 // known at compile time, never SCEV objects.
2078 //
2079 // The implementation avoids pointless extra computations when the two
2080 // addrec's are of different length (mathematically, it's equivalent to
2081 // an infinite stream of zeros on the right).
2082 bool OpsModified = false;
2083 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2084 ++OtherIdx) {
2085 const SCEVAddRecExpr *OtherAddRec =
2086 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2087 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2088 continue;
2089
2090 bool Overflow = false;
2091 Type *Ty = AddRec->getType();
2092 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2093 SmallVector<const SCEV*, 7> AddRecOps;
2094 for (int x = 0, xe = AddRec->getNumOperands() +
2095 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2096 const SCEV *Term = getConstant(Ty, 0);
2097 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2098 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2099 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2100 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2101 z < ze && !Overflow; ++z) {
2102 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2103 uint64_t Coeff;
2104 if (LargerThan64Bits)
2105 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2106 else
2107 Coeff = Coeff1*Coeff2;
2108 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2109 const SCEV *Term1 = AddRec->getOperand(y-z);
2110 const SCEV *Term2 = OtherAddRec->getOperand(z);
2111 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohmanf01a5ee2010-08-31 22:52:12 +00002112 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002113 }
2114 AddRecOps.push_back(Term);
2115 }
2116 if (!Overflow) {
2117 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2118 SCEV::FlagAnyWrap);
2119 if (Ops.size() == 2) return NewAddRec;
Andrew Tricka3f90432012-05-30 03:35:20 +00002120 Ops[Idx] = NewAddRec;
Andrew Trick946f76b2012-05-30 03:35:17 +00002121 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2122 OpsModified = true;
Andrew Tricka3f90432012-05-30 03:35:20 +00002123 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2124 if (!AddRec)
2125 break;
Andrew Trick946f76b2012-05-30 03:35:17 +00002126 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002127 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002128 if (OpsModified)
2129 return getMulExpr(Ops);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002130 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002131
2132 // Otherwise couldn't fold anything into this recurrence. Move onto the
2133 // next one.
2134 }
2135
2136 // Okay, it looks like we really DO need an mul expr. Check to see if we
2137 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002138 FoldingSetNodeID ID;
2139 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002140 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2141 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002142 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002143 SCEVMulExpr *S =
2144 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2145 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002146 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2147 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002148 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2149 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002150 UniqueSCEVs.InsertNode(S, IP);
2151 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002152 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002153 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002154}
2155
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002156/// getUDivExpr - Get a canonical unsigned division expression, or something
2157/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002158const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2159 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002160 assert(getEffectiveSCEVType(LHS->getType()) ==
2161 getEffectiveSCEVType(RHS->getType()) &&
2162 "SCEVUDivExpr operand types don't match!");
2163
Dan Gohmana30370b2009-05-04 22:02:23 +00002164 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002165 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002166 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002167 // If the denominator is zero, the result of the udiv is undefined. Don't
2168 // try to analyze it, because the resolution chosen here may differ from
2169 // the resolution chosen in other parts of the compiler.
2170 if (!RHSC->getValue()->isZero()) {
2171 // Determine if the division can be folded into the operands of
2172 // its operands.
2173 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002174 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002175 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002176 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002177 // For non-power-of-two values, effectively round the value up to the
2178 // nearest power of two.
2179 if (!RHSC->getValue()->getValue().isPowerOf2())
2180 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002181 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002182 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2184 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002185 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2186 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2187 const APInt &StepInt = Step->getValue()->getValue();
2188 const APInt &DivInt = RHSC->getValue()->getValue();
2189 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002190 getZeroExtendExpr(AR, ExtTy) ==
2191 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2192 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002193 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002194 SmallVector<const SCEV *, 4> Operands;
2195 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2196 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002197 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002198 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002199 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002200 /// Get a canonical UDivExpr for a recurrence.
2201 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2202 // We can currently only fold X%N if X is constant.
2203 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2204 if (StartC && !DivInt.urem(StepInt) &&
2205 getZeroExtendExpr(AR, ExtTy) ==
2206 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2207 getZeroExtendExpr(Step, ExtTy),
2208 AR->getLoop(), SCEV::FlagAnyWrap)) {
2209 const APInt &StartInt = StartC->getValue()->getValue();
2210 const APInt &StartRem = StartInt.urem(StepInt);
2211 if (StartRem != 0)
2212 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2213 AR->getLoop(), SCEV::FlagNW);
2214 }
2215 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002216 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2217 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2218 SmallVector<const SCEV *, 4> Operands;
2219 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2220 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2221 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2222 // Find an operand that's safely divisible.
2223 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2224 const SCEV *Op = M->getOperand(i);
2225 const SCEV *Div = getUDivExpr(Op, RHSC);
2226 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2227 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2228 M->op_end());
2229 Operands[i] = Div;
2230 return getMulExpr(Operands);
2231 }
2232 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002233 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002234 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002235 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002236 SmallVector<const SCEV *, 4> Operands;
2237 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2238 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2239 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2240 Operands.clear();
2241 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2242 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2243 if (isa<SCEVUDivExpr>(Op) ||
2244 getMulExpr(Op, RHS) != A->getOperand(i))
2245 break;
2246 Operands.push_back(Op);
2247 }
2248 if (Operands.size() == A->getNumOperands())
2249 return getAddExpr(Operands);
2250 }
2251 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002252
Dan Gohmanacd700a2010-04-22 01:35:11 +00002253 // Fold if both operands are constant.
2254 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2255 Constant *LHSCV = LHSC->getValue();
2256 Constant *RHSCV = RHSC->getValue();
2257 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2258 RHSCV)));
2259 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002260 }
2261 }
2262
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002263 FoldingSetNodeID ID;
2264 ID.AddInteger(scUDivExpr);
2265 ID.AddPointer(LHS);
2266 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002267 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002268 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002269 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2270 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002271 UniqueSCEVs.InsertNode(S, IP);
2272 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002273}
2274
Nick Lewycky31eaca52014-01-27 10:04:03 +00002275static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2276 APInt A = C1->getValue()->getValue().abs();
2277 APInt B = C2->getValue()->getValue().abs();
2278 uint32_t ABW = A.getBitWidth();
2279 uint32_t BBW = B.getBitWidth();
2280
2281 if (ABW > BBW)
2282 B = B.zext(ABW);
2283 else if (ABW < BBW)
2284 A = A.zext(BBW);
2285
2286 return APIntOps::GreatestCommonDivisor(A, B);
2287}
2288
2289/// getUDivExactExpr - Get a canonical unsigned division expression, or
2290/// something simpler if possible. There is no representation for an exact udiv
2291/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2292/// We can't do this when it's not exact because the udiv may be clearing bits.
2293const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2294 const SCEV *RHS) {
2295 // TODO: we could try to find factors in all sorts of things, but for now we
2296 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2297 // end of this file for inspiration.
2298
2299 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2300 if (!Mul)
2301 return getUDivExpr(LHS, RHS);
2302
2303 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2304 // If the mulexpr multiplies by a constant, then that constant must be the
2305 // first element of the mulexpr.
2306 if (const SCEVConstant *LHSCst =
2307 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2308 if (LHSCst == RHSCst) {
2309 SmallVector<const SCEV *, 2> Operands;
2310 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2311 return getMulExpr(Operands);
2312 }
2313
2314 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2315 // that there's a factor provided by one of the other terms. We need to
2316 // check.
2317 APInt Factor = gcd(LHSCst, RHSCst);
2318 if (!Factor.isIntN(1)) {
2319 LHSCst = cast<SCEVConstant>(
2320 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2321 RHSCst = cast<SCEVConstant>(
2322 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2323 SmallVector<const SCEV *, 2> Operands;
2324 Operands.push_back(LHSCst);
2325 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2326 LHS = getMulExpr(Operands);
2327 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002328 Mul = dyn_cast<SCEVMulExpr>(LHS);
2329 if (!Mul)
2330 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002331 }
2332 }
2333 }
2334
2335 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2336 if (Mul->getOperand(i) == RHS) {
2337 SmallVector<const SCEV *, 2> Operands;
2338 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2339 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2340 return getMulExpr(Operands);
2341 }
2342 }
2343
2344 return getUDivExpr(LHS, RHS);
2345}
Chris Lattnerd934c702004-04-02 20:23:17 +00002346
Dan Gohman4d5435d2009-05-24 23:45:28 +00002347/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2348/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002349const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2350 const Loop *L,
2351 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002352 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002353 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002354 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002355 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002356 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002357 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002358 }
2359
2360 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002361 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002362}
2363
Dan Gohman4d5435d2009-05-24 23:45:28 +00002364/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2365/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002366const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002367ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002368 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002369 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002370#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002371 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002372 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002373 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002374 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002375 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002376 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002377 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002378#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002379
Dan Gohmanbe928e32008-06-18 16:23:07 +00002380 if (Operands.back()->isZero()) {
2381 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002382 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002383 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002384
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002385 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2386 // use that information to infer NUW and NSW flags. However, computing a
2387 // BE count requires calling getAddRecExpr, so we may not yet have a
2388 // meaningful BE count at this point (and if we don't, we'd be stuck
2389 // with a SCEVCouldNotCompute as the cached BE count).
2390
Andrew Trick8b55b732011-03-14 16:50:06 +00002391 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002392 // And vice-versa.
2393 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2394 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2395 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002396 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002397 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2398 E = Operands.end(); I != E; ++I)
2399 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002400 All = false;
2401 break;
2402 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002403 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002404 }
2405
Dan Gohman223a5d22008-08-08 18:33:12 +00002406 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002407 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002408 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002409 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002410 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002411 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002412 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002413 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002414 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002415 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002416 // AddRecs require their operands be loop-invariant with respect to their
2417 // loops. Don't perform this transformation if it would break this
2418 // requirement.
2419 bool AllInvariant = true;
2420 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002421 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002422 AllInvariant = false;
2423 break;
2424 }
2425 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002426 // Create a recurrence for the outer loop with the same step size.
2427 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002428 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2429 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002430 SCEV::NoWrapFlags OuterFlags =
2431 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002432
2433 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002434 AllInvariant = true;
2435 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002436 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002437 AllInvariant = false;
2438 break;
2439 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002440 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002441 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002442 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002443 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2444 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002445 SCEV::NoWrapFlags InnerFlags =
2446 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002447 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2448 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002449 }
2450 // Reset Operands to its original state.
2451 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002452 }
2453 }
2454
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002455 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2456 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002457 FoldingSetNodeID ID;
2458 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002459 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2460 ID.AddPointer(Operands[i]);
2461 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002462 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002463 SCEVAddRecExpr *S =
2464 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2465 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002466 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2467 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002468 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2469 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002470 UniqueSCEVs.InsertNode(S, IP);
2471 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002472 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002473 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002474}
2475
Dan Gohmanabd17092009-06-24 14:49:00 +00002476const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2477 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002478 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002479 Ops.push_back(LHS);
2480 Ops.push_back(RHS);
2481 return getSMaxExpr(Ops);
2482}
2483
Dan Gohmanaf752342009-07-07 17:06:11 +00002484const SCEV *
2485ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002486 assert(!Ops.empty() && "Cannot get empty smax!");
2487 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002488#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002489 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002490 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002491 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002492 "SCEVSMaxExpr operand types don't match!");
2493#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002494
2495 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002496 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002497
2498 // If there are any constants, fold them together.
2499 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002500 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002501 ++Idx;
2502 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002503 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002504 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002505 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002506 APIntOps::smax(LHSC->getValue()->getValue(),
2507 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002508 Ops[0] = getConstant(Fold);
2509 Ops.erase(Ops.begin()+1); // Erase the folded element
2510 if (Ops.size() == 1) return Ops[0];
2511 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002512 }
2513
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002514 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002515 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2516 Ops.erase(Ops.begin());
2517 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002518 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2519 // If we have an smax with a constant maximum-int, it will always be
2520 // maximum-int.
2521 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002522 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002523
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002524 if (Ops.size() == 1) return Ops[0];
2525 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002526
2527 // Find the first SMax
2528 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2529 ++Idx;
2530
2531 // Check to see if one of the operands is an SMax. If so, expand its operands
2532 // onto our operand list, and recurse to simplify.
2533 if (Idx < Ops.size()) {
2534 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002535 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002536 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002537 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002538 DeletedSMax = true;
2539 }
2540
2541 if (DeletedSMax)
2542 return getSMaxExpr(Ops);
2543 }
2544
2545 // Okay, check to see if the same value occurs in the operand list twice. If
2546 // so, delete one. Since we sorted the list, these values are required to
2547 // be adjacent.
2548 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002549 // X smax Y smax Y --> X smax Y
2550 // X smax Y --> X, if X is always greater than Y
2551 if (Ops[i] == Ops[i+1] ||
2552 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2553 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2554 --i; --e;
2555 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002556 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2557 --i; --e;
2558 }
2559
2560 if (Ops.size() == 1) return Ops[0];
2561
2562 assert(!Ops.empty() && "Reduced smax down to nothing!");
2563
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002564 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002565 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002566 FoldingSetNodeID ID;
2567 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002568 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2569 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002570 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002571 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002572 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2573 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002574 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2575 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002576 UniqueSCEVs.InsertNode(S, IP);
2577 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002578}
2579
Dan Gohmanabd17092009-06-24 14:49:00 +00002580const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2581 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002582 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002583 Ops.push_back(LHS);
2584 Ops.push_back(RHS);
2585 return getUMaxExpr(Ops);
2586}
2587
Dan Gohmanaf752342009-07-07 17:06:11 +00002588const SCEV *
2589ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002590 assert(!Ops.empty() && "Cannot get empty umax!");
2591 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002592#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002593 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002594 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002595 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002596 "SCEVUMaxExpr operand types don't match!");
2597#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002598
2599 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002600 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002601
2602 // If there are any constants, fold them together.
2603 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002604 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002605 ++Idx;
2606 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002607 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002608 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002609 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002610 APIntOps::umax(LHSC->getValue()->getValue(),
2611 RHSC->getValue()->getValue()));
2612 Ops[0] = getConstant(Fold);
2613 Ops.erase(Ops.begin()+1); // Erase the folded element
2614 if (Ops.size() == 1) return Ops[0];
2615 LHSC = cast<SCEVConstant>(Ops[0]);
2616 }
2617
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002618 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002619 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2620 Ops.erase(Ops.begin());
2621 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002622 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2623 // If we have an umax with a constant maximum-int, it will always be
2624 // maximum-int.
2625 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002626 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002627
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002628 if (Ops.size() == 1) return Ops[0];
2629 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002630
2631 // Find the first UMax
2632 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2633 ++Idx;
2634
2635 // Check to see if one of the operands is a UMax. If so, expand its operands
2636 // onto our operand list, and recurse to simplify.
2637 if (Idx < Ops.size()) {
2638 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002639 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002640 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002641 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002642 DeletedUMax = true;
2643 }
2644
2645 if (DeletedUMax)
2646 return getUMaxExpr(Ops);
2647 }
2648
2649 // Okay, check to see if the same value occurs in the operand list twice. If
2650 // so, delete one. Since we sorted the list, these values are required to
2651 // be adjacent.
2652 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002653 // X umax Y umax Y --> X umax Y
2654 // X umax Y --> X, if X is always greater than Y
2655 if (Ops[i] == Ops[i+1] ||
2656 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2657 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2658 --i; --e;
2659 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002660 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2661 --i; --e;
2662 }
2663
2664 if (Ops.size() == 1) return Ops[0];
2665
2666 assert(!Ops.empty() && "Reduced umax down to nothing!");
2667
2668 // Okay, it looks like we really DO need a umax expr. Check to see if we
2669 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002670 FoldingSetNodeID ID;
2671 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002672 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2673 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002674 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002675 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002676 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2677 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002678 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2679 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002680 UniqueSCEVs.InsertNode(S, IP);
2681 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002682}
2683
Dan Gohmanabd17092009-06-24 14:49:00 +00002684const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2685 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002686 // ~smax(~x, ~y) == smin(x, y).
2687 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2688}
2689
Dan Gohmanabd17092009-06-24 14:49:00 +00002690const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2691 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002692 // ~umax(~x, ~y) == umin(x, y)
2693 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2694}
2695
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002696const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002697 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002698 // constant expression and then folding it back into a ConstantInt.
2699 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002700 if (DL)
2701 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00002702
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002703 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2704 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002705 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002706 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00002707 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002708 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002709 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2710}
2711
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002712const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2713 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002714 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002715 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002716 // constant expression and then folding it back into a ConstantInt.
2717 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002718 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002719 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002720 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002721 }
Dan Gohman11862a62010-04-12 23:03:26 +00002722
Dan Gohmancf913832010-01-28 02:15:55 +00002723 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2724 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002725 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002726 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002727
Matt Arsenault4ed49b52013-10-21 18:08:09 +00002728 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00002729 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002730}
2731
Dan Gohmanaf752342009-07-07 17:06:11 +00002732const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00002733 // Don't attempt to do anything other than create a SCEVUnknown object
2734 // here. createSCEV only calls getUnknown after checking for all other
2735 // interesting possibilities, and any other code that calls getUnknown
2736 // is doing so in order to hide a value from SCEV canonicalization.
2737
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002738 FoldingSetNodeID ID;
2739 ID.AddInteger(scUnknown);
2740 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00002741 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00002742 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2743 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2744 "Stale SCEVUnknown in uniquing map!");
2745 return S;
2746 }
2747 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2748 FirstUnknown);
2749 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002750 UniqueSCEVs.InsertNode(S, IP);
2751 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00002752}
2753
Chris Lattnerd934c702004-04-02 20:23:17 +00002754//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00002755// Basic SCEV Analysis and PHI Idiom Recognition Code
2756//
2757
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002758/// isSCEVable - Test if values of the given type are analyzable within
2759/// the SCEV framework. This primarily includes integer types, and it
2760/// can optionally include pointer types if the ScalarEvolution class
2761/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00002762bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002763 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00002764 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002765}
2766
2767/// getTypeSizeInBits - Return the size in bits of the specified type,
2768/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00002769uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002770 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2771
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002772 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002773 if (DL)
2774 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002775
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002776 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00002777 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002778 return Ty->getPrimitiveSizeInBits();
2779
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002780 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002781 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00002782 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002783 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002784}
2785
2786/// getEffectiveSCEVType - Return a type with the same bitwidth as
2787/// the given type and which represents how SCEV will treat the given
2788/// type, for which isSCEVable must return true. For pointer types,
2789/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00002790Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002791 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2792
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002793 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002794 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002795 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002796
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002797 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00002798 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002799
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002800 if (DL)
2801 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002802
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002803 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002804 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00002805}
Chris Lattnerd934c702004-04-02 20:23:17 +00002806
Dan Gohmanaf752342009-07-07 17:06:11 +00002807const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002808 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00002809}
2810
Shuxin Yangefc4c012013-07-08 17:33:13 +00002811namespace {
2812 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2813 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2814 // is set iff if find such SCEVUnknown.
2815 //
2816 struct FindInvalidSCEVUnknown {
2817 bool FindOne;
2818 FindInvalidSCEVUnknown() { FindOne = false; }
2819 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00002820 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00002821 case scConstant:
2822 return false;
2823 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00002824 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00002825 FindOne = true;
2826 return false;
2827 default:
2828 return true;
2829 }
2830 }
2831 bool isDone() const { return FindOne; }
2832 };
2833}
2834
2835bool ScalarEvolution::checkValidity(const SCEV *S) const {
2836 FindInvalidSCEVUnknown F;
2837 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2838 ST.visitAll(S);
2839
2840 return !F.FindOne;
2841}
2842
Chris Lattnerd934c702004-04-02 20:23:17 +00002843/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2844/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00002845const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002846 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00002847
Shuxin Yangefc4c012013-07-08 17:33:13 +00002848 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2849 if (I != ValueExprMap.end()) {
2850 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00002851 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00002852 return S;
2853 else
2854 ValueExprMap.erase(I);
2855 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002856 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00002857
2858 // The process of creating a SCEV for V may have caused other SCEVs
2859 // to have been created, so it's necessary to insert the new entry
2860 // from scratch, rather than trying to remember the insert position
2861 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00002862 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00002863 return S;
2864}
2865
Dan Gohman0a40ad92009-04-16 03:18:22 +00002866/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2867///
Dan Gohmanaf752342009-07-07 17:06:11 +00002868const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00002869 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00002870 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00002871 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002872
Chris Lattner229907c2011-07-18 04:54:35 +00002873 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00002874 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00002875 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00002876 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002877}
2878
2879/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00002880const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00002881 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00002882 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00002883 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002884
Chris Lattner229907c2011-07-18 04:54:35 +00002885 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00002886 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00002887 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00002888 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002889 return getMinusSCEV(AllOnes, V);
2890}
2891
Andrew Trick8b55b732011-03-14 16:50:06 +00002892/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00002893const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00002894 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00002895 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2896
Dan Gohman46f00a22010-07-20 16:53:00 +00002897 // Fast path: X - X --> 0.
2898 if (LHS == RHS)
2899 return getConstant(LHS->getType(), 0);
2900
Dan Gohman0a40ad92009-04-16 03:18:22 +00002901 // X - Y --> X + -Y
Andrew Trick8b55b732011-03-14 16:50:06 +00002902 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002903}
2904
2905/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2906/// input value to the specified type. If the type must be extended, it is zero
2907/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00002908const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002909ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2910 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002911 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2912 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00002913 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002914 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00002915 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002916 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00002917 return getTruncateExpr(V, Ty);
2918 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002919}
2920
2921/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2922/// input value to the specified type. If the type must be extended, it is sign
2923/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00002924const SCEV *
2925ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00002926 Type *Ty) {
2927 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002928 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2929 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00002930 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002931 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00002932 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002933 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00002934 return getTruncateExpr(V, Ty);
2935 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002936}
2937
Dan Gohmane712a2f2009-05-13 03:46:30 +00002938/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2939/// input value to the specified type. If the type must be extended, it is zero
2940/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002941const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002942ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2943 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002944 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2945 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002946 "Cannot noop or zero extend with non-integer arguments!");
2947 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2948 "getNoopOrZeroExtend cannot truncate!");
2949 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2950 return V; // No conversion
2951 return getZeroExtendExpr(V, Ty);
2952}
2953
2954/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2955/// input value to the specified type. If the type must be extended, it is sign
2956/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002957const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002958ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2959 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002960 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2961 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002962 "Cannot noop or sign extend with non-integer arguments!");
2963 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2964 "getNoopOrSignExtend cannot truncate!");
2965 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2966 return V; // No conversion
2967 return getSignExtendExpr(V, Ty);
2968}
2969
Dan Gohman8db2edc2009-06-13 15:56:47 +00002970/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2971/// the input value to the specified type. If the type must be extended,
2972/// it is extended with unspecified bits. The conversion must not be
2973/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002974const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002975ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2976 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002977 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2978 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00002979 "Cannot noop or any extend with non-integer arguments!");
2980 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2981 "getNoopOrAnyExtend cannot truncate!");
2982 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2983 return V; // No conversion
2984 return getAnyExtendExpr(V, Ty);
2985}
2986
Dan Gohmane712a2f2009-05-13 03:46:30 +00002987/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2988/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00002989const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002990ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2991 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002992 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2993 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002994 "Cannot truncate or noop with non-integer arguments!");
2995 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2996 "getTruncateOrNoop cannot extend!");
2997 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2998 return V; // No conversion
2999 return getTruncateExpr(V, Ty);
3000}
3001
Dan Gohman96212b62009-06-22 00:31:57 +00003002/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3003/// the types using zero-extension, and then perform a umax operation
3004/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003005const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3006 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003007 const SCEV *PromotedLHS = LHS;
3008 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003009
3010 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3011 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3012 else
3013 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3014
3015 return getUMaxExpr(PromotedLHS, PromotedRHS);
3016}
3017
Dan Gohman2bc22302009-06-22 15:03:27 +00003018/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3019/// the types using zero-extension, and then perform a umin operation
3020/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003021const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3022 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003023 const SCEV *PromotedLHS = LHS;
3024 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003025
3026 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3027 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3028 else
3029 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3030
3031 return getUMinExpr(PromotedLHS, PromotedRHS);
3032}
3033
Andrew Trick87716c92011-03-17 23:51:11 +00003034/// getPointerBase - Transitively follow the chain of pointer-type operands
3035/// until reaching a SCEV that does not have a single pointer operand. This
3036/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3037/// but corner cases do exist.
3038const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3039 // A pointer operand may evaluate to a nonpointer expression, such as null.
3040 if (!V->getType()->isPointerTy())
3041 return V;
3042
3043 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3044 return getPointerBase(Cast->getOperand());
3045 }
3046 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003047 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003048 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3049 I != E; ++I) {
3050 if ((*I)->getType()->isPointerTy()) {
3051 // Cannot find the base of an expression with multiple pointer operands.
3052 if (PtrOp)
3053 return V;
3054 PtrOp = *I;
3055 }
3056 }
3057 if (!PtrOp)
3058 return V;
3059 return getPointerBase(PtrOp);
3060 }
3061 return V;
3062}
3063
Dan Gohman0b89dff2009-07-25 01:13:03 +00003064/// PushDefUseChildren - Push users of the given Instruction
3065/// onto the given Worklist.
3066static void
3067PushDefUseChildren(Instruction *I,
3068 SmallVectorImpl<Instruction *> &Worklist) {
3069 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003070 for (User *U : I->users())
3071 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003072}
3073
3074/// ForgetSymbolicValue - This looks up computed SCEV values for all
3075/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003076/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003077/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003078void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003079ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003080 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003081 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003082
Dan Gohman0b89dff2009-07-25 01:13:03 +00003083 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003084 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003085 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003086 Instruction *I = Worklist.pop_back_val();
Dan Gohman0b89dff2009-07-25 01:13:03 +00003087 if (!Visited.insert(I)) continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003088
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003089 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003090 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003091 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003092 const SCEV *Old = It->second;
3093
Dan Gohman0b89dff2009-07-25 01:13:03 +00003094 // Short-circuit the def-use traversal if the symbolic name
3095 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003096 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003097 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003098
Dan Gohman0b89dff2009-07-25 01:13:03 +00003099 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003100 // structure, it's a PHI that's in the progress of being computed
3101 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3102 // additional loop trip count information isn't going to change anything.
3103 // In the second case, createNodeForPHI will perform the necessary
3104 // updates on its own when it gets to that point. In the third, we do
3105 // want to forget the SCEVUnknown.
3106 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003107 !isa<SCEVUnknown>(Old) ||
3108 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003109 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003110 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003111 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003112 }
3113
3114 PushDefUseChildren(I, Worklist);
3115 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003116}
Chris Lattnerd934c702004-04-02 20:23:17 +00003117
3118/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3119/// a loop header, making it a potential recurrence, or it doesn't.
3120///
Dan Gohmanaf752342009-07-07 17:06:11 +00003121const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003122 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3123 if (L->getHeader() == PN->getParent()) {
3124 // The loop may have multiple entrances or multiple exits; we can analyze
3125 // this phi as an addrec if it has a unique entry value and a unique
3126 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003127 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003128 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3129 Value *V = PN->getIncomingValue(i);
3130 if (L->contains(PN->getIncomingBlock(i))) {
3131 if (!BEValueV) {
3132 BEValueV = V;
3133 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003134 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003135 break;
3136 }
3137 } else if (!StartValueV) {
3138 StartValueV = V;
3139 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003140 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003141 break;
3142 }
3143 }
3144 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003145 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003146 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003147 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003148 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003149 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003150
3151 // Using this symbolic name for the PHI, analyze the value coming around
3152 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003153 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003154
3155 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3156 // has a special value for the first iteration of the loop.
3157
3158 // If the value coming around the backedge is an add with the symbolic
3159 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003160 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003161 // If there is a single occurrence of the symbolic value, replace it
3162 // with a recurrence.
3163 unsigned FoundIndex = Add->getNumOperands();
3164 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3165 if (Add->getOperand(i) == SymbolicName)
3166 if (FoundIndex == e) {
3167 FoundIndex = i;
3168 break;
3169 }
3170
3171 if (FoundIndex != Add->getNumOperands()) {
3172 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003173 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003174 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3175 if (i != FoundIndex)
3176 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003177 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003178
3179 // This is not a valid addrec if the step amount is varying each
3180 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003181 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003182 (isa<SCEVAddRecExpr>(Accum) &&
3183 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003184 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003185
3186 // If the increment doesn't overflow, then neither the addrec nor
3187 // the post-increment will overflow.
3188 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3189 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003190 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003191 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003192 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003193 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003194 // If the increment is an inbounds GEP, then we know the address
3195 // space cannot be wrapped around. We cannot make any guarantee
3196 // about signed or unsigned overflow because pointers are
3197 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003198 // pointer. We can guarantee that no unsigned wrap occurs if the
3199 // indices form a positive value.
3200 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003201 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003202
3203 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3204 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3205 Flags = setFlags(Flags, SCEV::FlagNUW);
3206 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00003207 } else if (const SubOperator *OBO =
3208 dyn_cast<SubOperator>(BEValueV)) {
3209 if (OBO->hasNoUnsignedWrap())
3210 Flags = setFlags(Flags, SCEV::FlagNUW);
3211 if (OBO->hasNoSignedWrap())
3212 Flags = setFlags(Flags, SCEV::FlagNSW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003213 }
3214
Dan Gohman6635bb22010-04-12 07:49:36 +00003215 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003216 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003217
Dan Gohman51ad99d2010-01-21 02:09:26 +00003218 // Since the no-wrap flags are on the increment, they apply to the
3219 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003220 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003221 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003222 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003223
3224 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003225 // to be symbolic. We now need to go back and purge all of the
3226 // entries for the scalars that use the symbolic expression.
3227 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003228 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003229 return PHISCEV;
3230 }
3231 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003232 } else if (const SCEVAddRecExpr *AddRec =
3233 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003234 // Otherwise, this could be a loop like this:
3235 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3236 // In this case, j = {1,+,1} and BEValue is j.
3237 // Because the other in-value of i (0) fits the evolution of BEValue
3238 // i really is an addrec evolution.
3239 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003240 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003241
3242 // If StartVal = j.start - j.stride, we can use StartVal as the
3243 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003244 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003245 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003246 // FIXME: For constant StartVal, we should be able to infer
3247 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003248 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003249 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3250 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003251
3252 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003253 // to be symbolic. We now need to go back and purge all of the
3254 // entries for the scalars that use the symbolic expression.
3255 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003256 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003257 return PHISCEV;
3258 }
3259 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003260 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003261 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003262 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003263
Dan Gohmana9c205c2010-02-25 06:57:05 +00003264 // If the PHI has a single incoming value, follow that value, unless the
3265 // PHI's incoming blocks are in a different loop, in which case doing so
3266 // risks breaking LCSSA form. Instcombine would normally zap these, but
3267 // it doesn't have DominatorTree information, so it may miss cases.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003268 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003269 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003270 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003271
Chris Lattnerd934c702004-04-02 20:23:17 +00003272 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003273 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003274}
3275
Dan Gohmanee750d12009-05-08 20:26:55 +00003276/// createNodeForGEP - Expand GEP instructions into add and multiply
3277/// operations. This allows them to be analyzed by regular SCEV code.
3278///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003279const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003280 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003281 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003282 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003283 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003284 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003285
3286 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3287 // Add expression, because the Instruction may be guarded by control flow
3288 // and the no-overflow bits may not be valid for the expression in any
3289 // context.
3290 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3291
Dan Gohman1d2ded72010-05-03 22:09:21 +00003292 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003293 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003294 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003295 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003296 I != E; ++I) {
3297 Value *Index = *I;
3298 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003299 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003300 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003301 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003302 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003303
Dan Gohman16206132010-06-30 07:16:37 +00003304 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003305 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003306 } else {
3307 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003308 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003309 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003310 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003311 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3312
Dan Gohman16206132010-06-30 07:16:37 +00003313 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003314 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003315
3316 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003317 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003318 }
3319 }
Dan Gohman16206132010-06-30 07:16:37 +00003320
3321 // Get the SCEV for the GEP base.
3322 const SCEV *BaseS = getSCEV(Base);
3323
Dan Gohman16206132010-06-30 07:16:37 +00003324 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003325 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003326}
3327
Nick Lewycky3783b462007-11-22 07:59:40 +00003328/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3329/// guaranteed to end in (at every loop iteration). It is, at the same time,
3330/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3331/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003332uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003333ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003334 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003335 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003336
Dan Gohmana30370b2009-05-04 22:02:23 +00003337 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003338 return std::min(GetMinTrailingZeros(T->getOperand()),
3339 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003340
Dan Gohmana30370b2009-05-04 22:02:23 +00003341 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003342 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3343 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3344 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003345 }
3346
Dan Gohmana30370b2009-05-04 22:02:23 +00003347 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003348 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3349 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3350 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003351 }
3352
Dan Gohmana30370b2009-05-04 22:02:23 +00003353 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003354 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003355 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003356 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003357 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003358 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003359 }
3360
Dan Gohmana30370b2009-05-04 22:02:23 +00003361 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003362 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003363 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3364 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003365 for (unsigned i = 1, e = M->getNumOperands();
3366 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003367 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003368 BitWidth);
3369 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003370 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003371
Dan Gohmana30370b2009-05-04 22:02:23 +00003372 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003373 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003374 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003375 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003376 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003377 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003378 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003379
Dan Gohmana30370b2009-05-04 22:02:23 +00003380 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003381 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003382 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003383 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003384 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003385 return MinOpRes;
3386 }
3387
Dan Gohmana30370b2009-05-04 22:02:23 +00003388 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003389 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003390 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003391 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003392 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003393 return MinOpRes;
3394 }
3395
Dan Gohmanc702fc02009-06-19 23:29:04 +00003396 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3397 // For a SCEVUnknown, ask ValueTracking.
3398 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003399 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00003400 computeKnownBits(U->getValue(), Zeros, Ones);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003401 return Zeros.countTrailingOnes();
3402 }
3403
3404 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003405 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003406}
Chris Lattnerd934c702004-04-02 20:23:17 +00003407
Dan Gohmane65c9172009-07-13 21:35:55 +00003408/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3409///
3410ConstantRange
3411ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003412 // See if we've computed this range already.
3413 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3414 if (I != UnsignedRanges.end())
3415 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003416
3417 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003418 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003419
Dan Gohman85be4332010-01-26 19:19:05 +00003420 unsigned BitWidth = getTypeSizeInBits(S->getType());
3421 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3422
3423 // If the value has known zeros, the maximum unsigned value will have those
3424 // known zeros as well.
3425 uint32_t TZ = GetMinTrailingZeros(S);
3426 if (TZ != 0)
3427 ConservativeResult =
3428 ConstantRange(APInt::getMinValue(BitWidth),
3429 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3430
Dan Gohmane65c9172009-07-13 21:35:55 +00003431 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3432 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3433 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3434 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003435 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003436 }
3437
3438 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3439 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3440 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3441 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003442 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003443 }
3444
3445 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3446 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3447 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3448 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003449 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003450 }
3451
3452 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3453 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3454 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3455 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003456 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003457 }
3458
3459 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3460 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3461 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003462 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003463 }
3464
3465 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3466 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003467 return setUnsignedRange(ZExt,
3468 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003469 }
3470
3471 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3472 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003473 return setUnsignedRange(SExt,
3474 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003475 }
3476
3477 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3478 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003479 return setUnsignedRange(Trunc,
3480 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003481 }
3482
Dan Gohmane65c9172009-07-13 21:35:55 +00003483 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003484 // If there's no unsigned wrap, the value will never be less than its
3485 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003486 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003487 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003488 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003489 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003490 ConservativeResult.intersectWith(
3491 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003492
3493 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003494 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003495 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003496 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003497 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3498 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003499 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3500
3501 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003502 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003503
3504 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003505 ConstantRange StepRange = getSignedRange(Step);
3506 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3507 ConstantRange EndRange =
3508 StartRange.add(MaxBECountRange.multiply(StepRange));
3509
3510 // Check for overflow. This must be done with ConstantRange arithmetic
3511 // because we could be called from within the ScalarEvolution overflow
3512 // checking code.
3513 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3514 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3515 ConstantRange ExtMaxBECountRange =
3516 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3517 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3518 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3519 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003520 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003521
Dan Gohmane65c9172009-07-13 21:35:55 +00003522 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3523 EndRange.getUnsignedMin());
3524 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3525 EndRange.getUnsignedMax());
3526 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003527 return setUnsignedRange(AddRec, ConservativeResult);
3528 return setUnsignedRange(AddRec,
3529 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003530 }
3531 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003532
Dan Gohmaned756312010-11-17 20:23:08 +00003533 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003534 }
3535
3536 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3537 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003538 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00003539 computeKnownBits(U->getValue(), Zeros, Ones, DL);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003540 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003541 return setUnsignedRange(U, ConservativeResult);
3542 return setUnsignedRange(U,
3543 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003544 }
3545
Dan Gohmaned756312010-11-17 20:23:08 +00003546 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003547}
3548
Dan Gohmane65c9172009-07-13 21:35:55 +00003549/// getSignedRange - Determine the signed range for a particular SCEV.
3550///
3551ConstantRange
3552ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003553 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003554 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3555 if (I != SignedRanges.end())
3556 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003557
Dan Gohmane65c9172009-07-13 21:35:55 +00003558 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003559 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003560
Dan Gohman51aaf022010-01-26 04:40:18 +00003561 unsigned BitWidth = getTypeSizeInBits(S->getType());
3562 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3563
3564 // If the value has known zeros, the maximum signed value will have those
3565 // known zeros as well.
3566 uint32_t TZ = GetMinTrailingZeros(S);
3567 if (TZ != 0)
3568 ConservativeResult =
3569 ConstantRange(APInt::getSignedMinValue(BitWidth),
3570 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3571
Dan Gohmane65c9172009-07-13 21:35:55 +00003572 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3573 ConstantRange X = getSignedRange(Add->getOperand(0));
3574 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3575 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003576 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003577 }
3578
Dan Gohmane65c9172009-07-13 21:35:55 +00003579 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3580 ConstantRange X = getSignedRange(Mul->getOperand(0));
3581 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3582 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003583 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003584 }
3585
Dan Gohmane65c9172009-07-13 21:35:55 +00003586 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3587 ConstantRange X = getSignedRange(SMax->getOperand(0));
3588 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3589 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003590 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003591 }
Dan Gohmand261d272009-06-24 01:05:09 +00003592
Dan Gohmane65c9172009-07-13 21:35:55 +00003593 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3594 ConstantRange X = getSignedRange(UMax->getOperand(0));
3595 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3596 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003597 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003598 }
Dan Gohmand261d272009-06-24 01:05:09 +00003599
Dan Gohmane65c9172009-07-13 21:35:55 +00003600 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3601 ConstantRange X = getSignedRange(UDiv->getLHS());
3602 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003603 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003604 }
Dan Gohmand261d272009-06-24 01:05:09 +00003605
Dan Gohmane65c9172009-07-13 21:35:55 +00003606 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3607 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003608 return setSignedRange(ZExt,
3609 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003610 }
3611
3612 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3613 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003614 return setSignedRange(SExt,
3615 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003616 }
3617
3618 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3619 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003620 return setSignedRange(Trunc,
3621 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003622 }
3623
Dan Gohmane65c9172009-07-13 21:35:55 +00003624 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003625 // If there's no signed wrap, and all the operands have the same sign or
3626 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003627 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003628 bool AllNonNeg = true;
3629 bool AllNonPos = true;
3630 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3631 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3632 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3633 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003634 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003635 ConservativeResult = ConservativeResult.intersectWith(
3636 ConstantRange(APInt(BitWidth, 0),
3637 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003638 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003639 ConservativeResult = ConservativeResult.intersectWith(
3640 ConstantRange(APInt::getSignedMinValue(BitWidth),
3641 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003642 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003643
3644 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003645 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003646 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003647 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003648 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3649 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003650 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3651
3652 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003653 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003654
3655 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003656 ConstantRange StepRange = getSignedRange(Step);
3657 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3658 ConstantRange EndRange =
3659 StartRange.add(MaxBECountRange.multiply(StepRange));
3660
3661 // Check for overflow. This must be done with ConstantRange arithmetic
3662 // because we could be called from within the ScalarEvolution overflow
3663 // checking code.
3664 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3665 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3666 ConstantRange ExtMaxBECountRange =
3667 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3668 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3669 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3670 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003671 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003672
Dan Gohmane65c9172009-07-13 21:35:55 +00003673 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3674 EndRange.getSignedMin());
3675 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3676 EndRange.getSignedMax());
3677 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003678 return setSignedRange(AddRec, ConservativeResult);
3679 return setSignedRange(AddRec,
3680 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00003681 }
Dan Gohmand261d272009-06-24 01:05:09 +00003682 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003683
Dan Gohmaned756312010-11-17 20:23:08 +00003684 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00003685 }
3686
Dan Gohmanc702fc02009-06-19 23:29:04 +00003687 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3688 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003689 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00003690 return setSignedRange(U, ConservativeResult);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003691 unsigned NS = ComputeNumSignBits(U->getValue(), DL);
Hal Finkelff666bd2013-07-09 18:16:16 +00003692 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003693 return setSignedRange(U, ConservativeResult);
3694 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00003695 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00003696 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003697 }
3698
Dan Gohmaned756312010-11-17 20:23:08 +00003699 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003700}
3701
Chris Lattnerd934c702004-04-02 20:23:17 +00003702/// createSCEV - We know that there is no SCEV for the specified value.
3703/// Analyze the expression.
3704///
Dan Gohmanaf752342009-07-07 17:06:11 +00003705const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003706 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003707 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003708
Dan Gohman05e89732008-06-22 19:56:46 +00003709 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00003710 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00003711 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00003712
3713 // Don't attempt to analyze instructions in blocks that aren't
3714 // reachable. Such instructions don't matter, and they aren't required
3715 // to obey basic rules for definitions dominating uses which this
3716 // analysis depends on.
3717 if (!DT->isReachableFromEntry(I->getParent()))
3718 return getUnknown(V);
3719 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00003720 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00003721 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3722 return getConstant(CI);
3723 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00003724 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00003725 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3726 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00003727 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00003728 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00003729
Dan Gohman80ca01c2009-07-17 20:47:02 +00003730 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00003731 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00003732 case Instruction::Add: {
3733 // The simple thing to do would be to just call getSCEV on both operands
3734 // and call getAddExpr with the result. However if we're looking at a
3735 // bunch of things all added together, this can be quite inefficient,
3736 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3737 // Instead, gather up all the operands and make a single getAddExpr call.
3738 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00003739 //
3740 // Don't apply this instruction's NSW or NUW flags to the new
3741 // expression. The instruction may be guarded by control flow that the
3742 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3743 // mapped to the same SCEV expression, and it would be incorrect to transfer
3744 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00003745 SmallVector<const SCEV *, 4> AddOps;
3746 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00003747 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3748 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3749 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3750 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00003751 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00003752 const SCEV *Op1 = getSCEV(U->getOperand(1));
3753 if (Opcode == Instruction::Sub)
3754 AddOps.push_back(getNegativeSCEV(Op1));
3755 else
3756 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00003757 }
3758 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00003759 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00003760 }
3761 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00003762 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00003763 SmallVector<const SCEV *, 4> MulOps;
3764 MulOps.push_back(getSCEV(U->getOperand(1)));
3765 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00003766 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00003767 Op = U->getOperand(0)) {
3768 U = cast<Operator>(Op);
3769 MulOps.push_back(getSCEV(U->getOperand(1)));
3770 }
3771 MulOps.push_back(getSCEV(U->getOperand(0)));
3772 return getMulExpr(MulOps);
3773 }
Dan Gohman05e89732008-06-22 19:56:46 +00003774 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003775 return getUDivExpr(getSCEV(U->getOperand(0)),
3776 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00003777 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003778 return getMinusSCEV(getSCEV(U->getOperand(0)),
3779 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00003780 case Instruction::And:
3781 // For an expression like x&255 that merely masks off the high bits,
3782 // use zext(trunc(x)) as the SCEV expression.
3783 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00003784 if (CI->isNullValue())
3785 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00003786 if (CI->isAllOnesValue())
3787 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00003788 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003789
3790 // Instcombine's ShrinkDemandedConstant may strip bits out of
3791 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00003792 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00003793 // knew about to reconstruct a low-bits mask value.
3794 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00003795 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003796 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003797 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00003798 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL);
Dan Gohman1ee696d2009-06-16 19:52:01 +00003799
Nick Lewycky31eaca52014-01-27 10:04:03 +00003800 APInt EffectiveMask =
3801 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
3802 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
3803 const SCEV *MulCount = getConstant(
3804 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
3805 return getMulExpr(
3806 getZeroExtendExpr(
3807 getTruncateExpr(
3808 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
3809 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
3810 U->getType()),
3811 MulCount);
3812 }
Dan Gohman0ec05372009-04-21 02:26:00 +00003813 }
3814 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00003815
Dan Gohman05e89732008-06-22 19:56:46 +00003816 case Instruction::Or:
3817 // If the RHS of the Or is a constant, we may have something like:
3818 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3819 // optimizations will transparently handle this case.
3820 //
3821 // In order for this transformation to be safe, the LHS must be of the
3822 // form X*(2^n) and the Or constant must be less than 2^n.
3823 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003824 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00003825 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00003826 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00003827 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3828 // Build a plain add SCEV.
3829 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3830 // If the LHS of the add was an addrec and it has no-wrap flags,
3831 // transfer the no-wrap flags, since an or won't introduce a wrap.
3832 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3833 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00003834 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3835 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00003836 }
3837 return S;
3838 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003839 }
Dan Gohman05e89732008-06-22 19:56:46 +00003840 break;
3841 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00003842 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003843 // If the RHS of the xor is a signbit, then this is just an add.
3844 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00003845 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00003846 return getAddExpr(getSCEV(U->getOperand(0)),
3847 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003848
3849 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00003850 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00003851 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00003852
3853 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3854 // This is a variant of the check for xor with -1, and it handles
3855 // the case where instcombine has trimmed non-demanded bits out
3856 // of an xor with -1.
3857 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3858 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3859 if (BO->getOpcode() == Instruction::And &&
3860 LCI->getValue() == CI->getValue())
3861 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00003862 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00003863 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00003864 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00003865 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00003866 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3867
Dan Gohman8b0a4192010-03-01 17:49:51 +00003868 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00003869 // mask off the high bits. Complement the operand and
3870 // re-apply the zext.
3871 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3872 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3873
3874 // If C is a single bit, it may be in the sign-bit position
3875 // before the zero-extend. In this case, represent the xor
3876 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00003877 APInt Trunc = CI->getValue().trunc(Z0TySize);
3878 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00003879 Trunc.isSignBit())
3880 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3881 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00003882 }
Dan Gohman05e89732008-06-22 19:56:46 +00003883 }
3884 break;
3885
3886 case Instruction::Shl:
3887 // Turn shift left of a constant amount into a multiply.
3888 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003889 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00003890
3891 // If the shift count is not less than the bitwidth, the result of
3892 // the shift is undefined. Don't try to analyze it, because the
3893 // resolution chosen here may differ from the resolution chosen in
3894 // other parts of the compiler.
3895 if (SA->getValue().uge(BitWidth))
3896 break;
3897
Owen Andersonedb4a702009-07-24 23:12:02 +00003898 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00003899 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00003900 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00003901 }
3902 break;
3903
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003904 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00003905 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003906 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003907 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00003908
3909 // If the shift count is not less than the bitwidth, the result of
3910 // the shift is undefined. Don't try to analyze it, because the
3911 // resolution chosen here may differ from the resolution chosen in
3912 // other parts of the compiler.
3913 if (SA->getValue().uge(BitWidth))
3914 break;
3915
Owen Andersonedb4a702009-07-24 23:12:02 +00003916 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00003917 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00003918 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003919 }
3920 break;
3921
Dan Gohman0ec05372009-04-21 02:26:00 +00003922 case Instruction::AShr:
3923 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3924 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00003925 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00003926 if (L->getOpcode() == Instruction::Shl &&
3927 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00003928 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3929
3930 // If the shift count is not less than the bitwidth, the result of
3931 // the shift is undefined. Don't try to analyze it, because the
3932 // resolution chosen here may differ from the resolution chosen in
3933 // other parts of the compiler.
3934 if (CI->getValue().uge(BitWidth))
3935 break;
3936
Dan Gohmandf199482009-04-25 17:05:40 +00003937 uint64_t Amt = BitWidth - CI->getZExtValue();
3938 if (Amt == BitWidth)
3939 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00003940 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00003941 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00003942 IntegerType::get(getContext(),
3943 Amt)),
3944 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00003945 }
3946 break;
3947
Dan Gohman05e89732008-06-22 19:56:46 +00003948 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003949 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003950
3951 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003952 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003953
3954 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003955 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003956
3957 case Instruction::BitCast:
3958 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003959 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00003960 return getSCEV(U->getOperand(0));
3961 break;
3962
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003963 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3964 // lead to pointer expressions which cannot safely be expanded to GEPs,
3965 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3966 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00003967
Dan Gohmanee750d12009-05-08 20:26:55 +00003968 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003969 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003970
Dan Gohman05e89732008-06-22 19:56:46 +00003971 case Instruction::PHI:
3972 return createNodeForPHI(cast<PHINode>(U));
3973
3974 case Instruction::Select:
3975 // This could be a smax or umax that was lowered earlier.
3976 // Try to recover it.
3977 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3978 Value *LHS = ICI->getOperand(0);
3979 Value *RHS = ICI->getOperand(1);
3980 switch (ICI->getPredicate()) {
3981 case ICmpInst::ICMP_SLT:
3982 case ICmpInst::ICMP_SLE:
3983 std::swap(LHS, RHS);
3984 // fall through
3985 case ICmpInst::ICMP_SGT:
3986 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00003987 // a >s b ? a+x : b+x -> smax(a, b)+x
3988 // a >s b ? b+x : a+x -> smin(a, b)+x
3989 if (LHS->getType() == U->getType()) {
3990 const SCEV *LS = getSCEV(LHS);
3991 const SCEV *RS = getSCEV(RHS);
3992 const SCEV *LA = getSCEV(U->getOperand(1));
3993 const SCEV *RA = getSCEV(U->getOperand(2));
3994 const SCEV *LDiff = getMinusSCEV(LA, LS);
3995 const SCEV *RDiff = getMinusSCEV(RA, RS);
3996 if (LDiff == RDiff)
3997 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3998 LDiff = getMinusSCEV(LA, RS);
3999 RDiff = getMinusSCEV(RA, LS);
4000 if (LDiff == RDiff)
4001 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4002 }
Dan Gohman05e89732008-06-22 19:56:46 +00004003 break;
4004 case ICmpInst::ICMP_ULT:
4005 case ICmpInst::ICMP_ULE:
4006 std::swap(LHS, RHS);
4007 // fall through
4008 case ICmpInst::ICMP_UGT:
4009 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004010 // a >u b ? a+x : b+x -> umax(a, b)+x
4011 // a >u b ? b+x : a+x -> umin(a, b)+x
4012 if (LHS->getType() == U->getType()) {
4013 const SCEV *LS = getSCEV(LHS);
4014 const SCEV *RS = getSCEV(RHS);
4015 const SCEV *LA = getSCEV(U->getOperand(1));
4016 const SCEV *RA = getSCEV(U->getOperand(2));
4017 const SCEV *LDiff = getMinusSCEV(LA, LS);
4018 const SCEV *RDiff = getMinusSCEV(RA, RS);
4019 if (LDiff == RDiff)
4020 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4021 LDiff = getMinusSCEV(LA, RS);
4022 RDiff = getMinusSCEV(RA, LS);
4023 if (LDiff == RDiff)
4024 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4025 }
Dan Gohman05e89732008-06-22 19:56:46 +00004026 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004027 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004028 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4029 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004030 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004031 cast<ConstantInt>(RHS)->isZero()) {
4032 const SCEV *One = getConstant(LHS->getType(), 1);
4033 const SCEV *LS = getSCEV(LHS);
4034 const SCEV *LA = getSCEV(U->getOperand(1));
4035 const SCEV *RA = getSCEV(U->getOperand(2));
4036 const SCEV *LDiff = getMinusSCEV(LA, LS);
4037 const SCEV *RDiff = getMinusSCEV(RA, One);
4038 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004039 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004040 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004041 break;
4042 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004043 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4044 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004045 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004046 cast<ConstantInt>(RHS)->isZero()) {
4047 const SCEV *One = getConstant(LHS->getType(), 1);
4048 const SCEV *LS = getSCEV(LHS);
4049 const SCEV *LA = getSCEV(U->getOperand(1));
4050 const SCEV *RA = getSCEV(U->getOperand(2));
4051 const SCEV *LDiff = getMinusSCEV(LA, One);
4052 const SCEV *RDiff = getMinusSCEV(RA, LS);
4053 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004054 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004055 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004056 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004057 default:
4058 break;
4059 }
4060 }
4061
4062 default: // We cannot analyze this expression.
4063 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004064 }
4065
Dan Gohmanc8e23622009-04-21 23:15:49 +00004066 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004067}
4068
4069
4070
4071//===----------------------------------------------------------------------===//
4072// Iteration Count Computation Code
4073//
4074
Andrew Trick2b6860f2011-08-11 23:36:16 +00004075/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004076/// normal unsigned value. Returns 0 if the trip count is unknown or not
4077/// constant. Will also return 0 if the maximum trip count is very large (>=
4078/// 2^32).
4079///
4080/// This "trip count" assumes that control exits via ExitingBlock. More
4081/// precisely, it is the number of times that control may reach ExitingBlock
4082/// before taking the branch. For loops with multiple exits, it may not be the
4083/// number times that the loop header executes because the loop may exit
4084/// prematurely via another branch.
Andrew Trickee9143a2013-05-31 23:34:46 +00004085///
4086/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
4087/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
4088/// loop exits. getExitCount() may return an exact count for this branch
4089/// assuming no-signed-wrap. The number of well-defined iterations may actually
4090/// be higher than this trip count if this exit test is skipped and the loop
4091/// exits via a different branch. Ideally, getExitCount() would know whether it
4092/// depends on a NSW assumption, and we would only fall back to a conservative
4093/// trip count in that case.
Andrew Tricke81211f2012-01-11 06:52:55 +00004094unsigned ScalarEvolution::
Aaron Ballmand07f5512013-06-04 01:01:56 +00004095getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trick2b6860f2011-08-11 23:36:16 +00004096 const SCEVConstant *ExitCount =
Andrew Trickee9143a2013-05-31 23:34:46 +00004097 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004098 if (!ExitCount)
4099 return 0;
4100
4101 ConstantInt *ExitConst = ExitCount->getValue();
4102
4103 // Guard against huge trip counts.
4104 if (ExitConst->getValue().getActiveBits() > 32)
4105 return 0;
4106
4107 // In case of integer overflow, this returns 0, which is correct.
4108 return ((unsigned)ExitConst->getZExtValue()) + 1;
4109}
4110
4111/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4112/// trip count of this loop as a normal unsigned value, if possible. This
4113/// means that the actual trip count is always a multiple of the returned
4114/// value (don't forget the trip count could very well be zero as well!).
4115///
4116/// Returns 1 if the trip count is unknown or not guaranteed to be the
4117/// multiple of a constant (which is also the case if the trip count is simply
4118/// constant, use getSmallConstantTripCount for that case), Will also return 1
4119/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004120///
4121/// As explained in the comments for getSmallConstantTripCount, this assumes
4122/// that control exits the loop via ExitingBlock.
4123unsigned ScalarEvolution::
Aaron Ballmand07f5512013-06-04 01:01:56 +00004124getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickee9143a2013-05-31 23:34:46 +00004125 const SCEV *ExitCount = getBackedgeTakenCount(L);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004126 if (ExitCount == getCouldNotCompute())
4127 return 1;
4128
4129 // Get the trip count from the BE count by adding 1.
4130 const SCEV *TCMul = getAddExpr(ExitCount,
4131 getConstant(ExitCount->getType(), 1));
4132 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4133 // to factor simple cases.
4134 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4135 TCMul = Mul->getOperand(0);
4136
4137 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4138 if (!MulC)
4139 return 1;
4140
4141 ConstantInt *Result = MulC->getValue();
4142
Hal Finkel30bd9342012-10-24 19:46:44 +00004143 // Guard against huge trip counts (this requires checking
4144 // for zero to handle the case where the trip count == -1 and the
4145 // addition wraps).
4146 if (!Result || Result->getValue().getActiveBits() > 32 ||
4147 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004148 return 1;
4149
4150 return (unsigned)Result->getZExtValue();
4151}
4152
Andrew Trick3ca3f982011-07-26 17:19:55 +00004153// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004154// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004155// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004156const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4157 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004158}
4159
Dan Gohman0bddac12009-02-24 18:55:53 +00004160/// getBackedgeTakenCount - If the specified loop has a predictable
4161/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4162/// object. The backedge-taken count is the number of times the loop header
4163/// will be branched to from within the loop. This is one less than the
4164/// trip count of the loop, since it doesn't count the first iteration,
4165/// when the header is branched to from outside the loop.
4166///
4167/// Note that it is not valid to call this method on a loop without a
4168/// loop-invariant backedge-taken count (see
4169/// hasLoopInvariantBackedgeTakenCount).
4170///
Dan Gohmanaf752342009-07-07 17:06:11 +00004171const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004172 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004173}
4174
4175/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4176/// return the least SCEV value that is known never to be less than the
4177/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004178const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004179 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004180}
4181
Dan Gohmandc191042009-07-08 19:23:34 +00004182/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4183/// onto the given Worklist.
4184static void
4185PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4186 BasicBlock *Header = L->getHeader();
4187
4188 // Push all Loop-header PHIs onto the Worklist stack.
4189 for (BasicBlock::iterator I = Header->begin();
4190 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4191 Worklist.push_back(PN);
4192}
4193
Dan Gohman2b8da352009-04-30 20:47:05 +00004194const ScalarEvolution::BackedgeTakenInfo &
4195ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004196 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004197 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004198 // update the value. The temporary CouldNotCompute value tells SCEV
4199 // code elsewhere that it shouldn't attempt to request a new
4200 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004201 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004202 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004203 if (!Pair.second)
4204 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004205
Andrew Trick3ca3f982011-07-26 17:19:55 +00004206 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4207 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4208 // must be cleared in this scope.
4209 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4210
4211 if (Result.getExact(this) != getCouldNotCompute()) {
4212 assert(isLoopInvariant(Result.getExact(this), L) &&
4213 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004214 "Computed backedge-taken count isn't loop invariant for loop!");
4215 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004216 }
4217 else if (Result.getMax(this) == getCouldNotCompute() &&
4218 isa<PHINode>(L->getHeader()->begin())) {
4219 // Only count loops that have phi nodes as not being computable.
4220 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004221 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004222
Chris Lattnera337f5e2011-01-09 02:16:18 +00004223 // Now that we know more about the trip count for this loop, forget any
4224 // existing SCEV values for PHI nodes in this loop since they are only
4225 // conservative estimates made without the benefit of trip count
4226 // information. This is similar to the code in forgetLoop, except that
4227 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004228 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004229 SmallVector<Instruction *, 16> Worklist;
4230 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004231
Chris Lattnera337f5e2011-01-09 02:16:18 +00004232 SmallPtrSet<Instruction *, 8> Visited;
4233 while (!Worklist.empty()) {
4234 Instruction *I = Worklist.pop_back_val();
4235 if (!Visited.insert(I)) continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004236
Chris Lattnera337f5e2011-01-09 02:16:18 +00004237 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004238 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004239 if (It != ValueExprMap.end()) {
4240 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004241
Chris Lattnera337f5e2011-01-09 02:16:18 +00004242 // SCEVUnknown for a PHI either means that it has an unrecognized
4243 // structure, or it's a PHI that's in the progress of being computed
4244 // by createNodeForPHI. In the former case, additional loop trip
4245 // count information isn't going to change anything. In the later
4246 // case, createNodeForPHI will perform the necessary updates on its
4247 // own when it gets to that point.
4248 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4249 forgetMemoizedResults(Old);
4250 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004251 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004252 if (PHINode *PN = dyn_cast<PHINode>(I))
4253 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004254 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004255
4256 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004257 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004258 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004259
4260 // Re-lookup the insert position, since the call to
4261 // ComputeBackedgeTakenCount above could result in a
4262 // recusive call to getBackedgeTakenInfo (on a different
4263 // loop), which would invalidate the iterator computed
4264 // earlier.
4265 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004266}
4267
Dan Gohman880c92a2009-10-31 15:04:55 +00004268/// forgetLoop - This method should be called by the client when it has
4269/// changed a loop in a way that may effect ScalarEvolution's ability to
4270/// compute a trip count, or if the loop is deleted.
4271void ScalarEvolution::forgetLoop(const Loop *L) {
4272 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004273 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4274 BackedgeTakenCounts.find(L);
4275 if (BTCPos != BackedgeTakenCounts.end()) {
4276 BTCPos->second.clear();
4277 BackedgeTakenCounts.erase(BTCPos);
4278 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004279
Dan Gohman880c92a2009-10-31 15:04:55 +00004280 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004281 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004282 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004283
Dan Gohmandc191042009-07-08 19:23:34 +00004284 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004285 while (!Worklist.empty()) {
4286 Instruction *I = Worklist.pop_back_val();
Dan Gohmandc191042009-07-08 19:23:34 +00004287 if (!Visited.insert(I)) continue;
4288
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004289 ValueExprMapType::iterator It =
4290 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004291 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004292 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004293 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004294 if (PHINode *PN = dyn_cast<PHINode>(I))
4295 ConstantEvolutionLoopExitValue.erase(PN);
4296 }
4297
4298 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004299 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004300
4301 // Forget all contained loops too, to avoid dangling entries in the
4302 // ValuesAtScopes map.
4303 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4304 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004305}
4306
Eric Christopheref6d5932010-07-29 01:25:38 +00004307/// forgetValue - This method should be called by the client when it has
4308/// changed a value in a way that may effect its value, or which may
4309/// disconnect it from a def-use chain linking it to a loop.
4310void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004311 Instruction *I = dyn_cast<Instruction>(V);
4312 if (!I) return;
4313
4314 // Drop information about expressions based on loop-header PHIs.
4315 SmallVector<Instruction *, 16> Worklist;
4316 Worklist.push_back(I);
4317
4318 SmallPtrSet<Instruction *, 8> Visited;
4319 while (!Worklist.empty()) {
4320 I = Worklist.pop_back_val();
4321 if (!Visited.insert(I)) continue;
4322
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004323 ValueExprMapType::iterator It =
4324 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004325 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004326 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004327 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004328 if (PHINode *PN = dyn_cast<PHINode>(I))
4329 ConstantEvolutionLoopExitValue.erase(PN);
4330 }
4331
4332 PushDefUseChildren(I, Worklist);
4333 }
4334}
4335
Andrew Trick3ca3f982011-07-26 17:19:55 +00004336/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004337/// exits. A computable result can only be return for loops with a single exit.
4338/// Returning the minimum taken count among all exits is incorrect because one
4339/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4340/// the limit of each loop test is never skipped. This is a valid assumption as
4341/// long as the loop exits via that test. For precise results, it is the
4342/// caller's responsibility to specify the relevant loop exit using
4343/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004344const SCEV *
4345ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4346 // If any exits were not computable, the loop is not computable.
4347 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4348
Andrew Trick90c7a102011-11-16 00:52:40 +00004349 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004350 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004351 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4352
Craig Topper9f008862014-04-15 04:59:12 +00004353 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004354 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004355 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004356
4357 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4358
4359 if (!BECount)
4360 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004361 else if (BECount != ENT->ExactNotTaken)
4362 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004363 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004364 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004365 return BECount;
4366}
4367
4368/// getExact - Get the exact not taken count for this loop exit.
4369const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004370ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004371 ScalarEvolution *SE) const {
4372 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004373 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004374
Andrew Trick77c55422011-08-02 04:23:35 +00004375 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004376 return ENT->ExactNotTaken;
4377 }
4378 return SE->getCouldNotCompute();
4379}
4380
4381/// getMax - Get the max backedge taken count for the loop.
4382const SCEV *
4383ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4384 return Max ? Max : SE->getCouldNotCompute();
4385}
4386
Andrew Trick9093e152013-03-26 03:14:53 +00004387bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4388 ScalarEvolution *SE) const {
4389 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4390 return true;
4391
4392 if (!ExitNotTaken.ExitingBlock)
4393 return false;
4394
4395 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004396 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004397
4398 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4399 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4400 return true;
4401 }
4402 }
4403 return false;
4404}
4405
Andrew Trick3ca3f982011-07-26 17:19:55 +00004406/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4407/// computable exit into a persistent ExitNotTakenInfo array.
4408ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4409 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4410 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4411
4412 if (!Complete)
4413 ExitNotTaken.setIncomplete();
4414
4415 unsigned NumExits = ExitCounts.size();
4416 if (NumExits == 0) return;
4417
Andrew Trick77c55422011-08-02 04:23:35 +00004418 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004419 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4420 if (NumExits == 1) return;
4421
4422 // Handle the rare case of multiple computable exits.
4423 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4424
4425 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4426 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4427 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004428 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004429 ENT->ExactNotTaken = ExitCounts[i].second;
4430 }
4431}
4432
4433/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4434void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004435 ExitNotTaken.ExitingBlock = nullptr;
4436 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004437 delete[] ExitNotTaken.getNextExit();
4438}
4439
Dan Gohman0bddac12009-02-24 18:55:53 +00004440/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4441/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004442ScalarEvolution::BackedgeTakenInfo
4443ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004444 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004445 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004446
Andrew Trick839e30b2014-05-23 19:47:13 +00004447 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004448 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004449 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004450 const SCEV *MustExitMaxBECount = nullptr;
4451 const SCEV *MayExitMaxBECount = nullptr;
4452
4453 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4454 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004455 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004456 BasicBlock *ExitBB = ExitingBlocks[i];
4457 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4458
4459 // 1. For each exit that can be computed, add an entry to ExitCounts.
4460 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004461 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004462 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004463 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004464 CouldComputeBECount = false;
4465 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004466 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004467
Andrew Trick839e30b2014-05-23 19:47:13 +00004468 // 2. Derive the loop's MaxBECount from each exit's max number of
4469 // non-exiting iterations. Partition the loop exits into two kinds:
4470 // LoopMustExits and LoopMayExits.
4471 //
4472 // A LoopMustExit meets two requirements:
4473 //
4474 // (a) Its ExitLimit.MustExit flag must be set which indicates that the exit
4475 // test condition cannot be skipped (the tested variable has unit stride or
4476 // the test is less-than or greater-than, rather than a strict inequality).
4477 //
4478 // (b) It must dominate the loop latch, hence must be tested on every loop
4479 // iteration.
4480 //
4481 // If any computable LoopMustExit is found, then MaxBECount is the minimum
4482 // EL.Max of computable LoopMustExits. Otherwise, MaxBECount is
4483 // conservatively the maximum EL.Max, where CouldNotCompute is considered
4484 // greater than any computable EL.Max.
4485 if (EL.MustExit && EL.Max != getCouldNotCompute() && Latch &&
4486 DT->dominates(ExitBB, Latch)) {
4487 if (!MustExitMaxBECount)
4488 MustExitMaxBECount = EL.Max;
4489 else {
4490 MustExitMaxBECount =
4491 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004492 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004493 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4494 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4495 MayExitMaxBECount = EL.Max;
4496 else {
4497 MayExitMaxBECount =
4498 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4499 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004500 }
Dan Gohman96212b62009-06-22 00:31:57 +00004501 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004502 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4503 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004504 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004505}
4506
Andrew Trick3ca3f982011-07-26 17:19:55 +00004507/// ComputeExitLimit - Compute the number of times the backedge of the specified
4508/// loop will execute if it exits via the specified block.
4509ScalarEvolution::ExitLimit
4510ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004511
4512 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004513 // exit at this block and remember the exit block and whether all other targets
4514 // lead to the loop header.
4515 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004516 BasicBlock *Exit = nullptr;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004517 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4518 SI != SE; ++SI)
4519 if (!L->contains(*SI)) {
4520 if (Exit) // Multiple exit successors.
4521 return getCouldNotCompute();
4522 Exit = *SI;
4523 } else if (*SI != L->getHeader()) {
4524 MustExecuteLoopHeader = false;
4525 }
Dan Gohmance973df2009-06-24 04:48:43 +00004526
Chris Lattner18954852007-01-07 02:24:26 +00004527 // At this point, we know we have a conditional branch that determines whether
4528 // the loop is exited. However, we don't know if the branch is executed each
4529 // time through the loop. If not, then the execution count of the branch will
4530 // not be equal to the trip count of the loop.
4531 //
4532 // Currently we check for this by checking to see if the Exit branch goes to
4533 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004534 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004535 // loop header. This is common for un-rotated loops.
4536 //
4537 // If both of those tests fail, walk up the unique predecessor chain to the
4538 // header, stopping if there is an edge that doesn't exit the loop. If the
4539 // header is reached, the execution count of the branch will be equal to the
4540 // trip count of the loop.
4541 //
4542 // More extensive analysis could be done to handle more cases here.
4543 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004544 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004545 // The simple checks failed, try climbing the unique predecessor chain
4546 // up to the header.
4547 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004548 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004549 BasicBlock *Pred = BB->getUniquePredecessor();
4550 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004551 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004552 TerminatorInst *PredTerm = Pred->getTerminator();
4553 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4554 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4555 if (PredSucc == BB)
4556 continue;
4557 // If the predecessor has a successor that isn't BB and isn't
4558 // outside the loop, assume the worst.
4559 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004560 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004561 }
4562 if (Pred == L->getHeader()) {
4563 Ok = true;
4564 break;
4565 }
4566 BB = Pred;
4567 }
4568 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004569 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004570 }
4571
Benjamin Kramer5a188542014-02-11 15:44:32 +00004572 TerminatorInst *Term = ExitingBlock->getTerminator();
4573 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4574 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4575 // Proceed to the next level to examine the exit condition expression.
4576 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4577 BI->getSuccessor(1),
4578 /*IsSubExpr=*/false);
4579 }
4580
4581 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4582 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4583 /*IsSubExpr=*/false);
4584
4585 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004586}
4587
Andrew Trick3ca3f982011-07-26 17:19:55 +00004588/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004589/// backedge of the specified loop will execute if its exit condition
4590/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004591///
4592/// @param IsSubExpr is true if ExitCond does not directly control the exit
4593/// branch. In this case, we cannot assume that the loop only exits when the
4594/// condition is true and cannot infer that failing to meet the condition prior
4595/// to integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004596ScalarEvolution::ExitLimit
4597ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4598 Value *ExitCond,
4599 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004600 BasicBlock *FBB,
4601 bool IsSubExpr) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004602 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004603 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4604 if (BO->getOpcode() == Instruction::And) {
4605 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004606 bool EitherMayExit = L->contains(TBB);
4607 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4608 IsSubExpr || EitherMayExit);
4609 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4610 IsSubExpr || EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004611 const SCEV *BECount = getCouldNotCompute();
4612 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004613 bool MustExit = false;
Andrew Trick5b245a12013-05-31 06:43:25 +00004614 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004615 // Both conditions must be true for the loop to continue executing.
4616 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004617 if (EL0.Exact == getCouldNotCompute() ||
4618 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004619 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004620 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004621 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4622 if (EL0.Max == getCouldNotCompute())
4623 MaxBECount = EL1.Max;
4624 else if (EL1.Max == getCouldNotCompute())
4625 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004626 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004627 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004628 MustExit = EL0.MustExit || EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004629 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004630 // Both conditions must be true at the same time for the loop to exit.
4631 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004632 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004633 if (EL0.Max == EL1.Max)
4634 MaxBECount = EL0.Max;
4635 if (EL0.Exact == EL1.Exact)
4636 BECount = EL0.Exact;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004637 MustExit = EL0.MustExit && EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004638 }
4639
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004640 return ExitLimit(BECount, MaxBECount, MustExit);
Dan Gohman96212b62009-06-22 00:31:57 +00004641 }
4642 if (BO->getOpcode() == Instruction::Or) {
4643 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004644 bool EitherMayExit = L->contains(FBB);
4645 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4646 IsSubExpr || EitherMayExit);
4647 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4648 IsSubExpr || EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004649 const SCEV *BECount = getCouldNotCompute();
4650 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004651 bool MustExit = false;
Andrew Trick5b245a12013-05-31 06:43:25 +00004652 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004653 // Both conditions must be false for the loop to continue executing.
4654 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004655 if (EL0.Exact == getCouldNotCompute() ||
4656 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004657 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004658 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004659 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4660 if (EL0.Max == getCouldNotCompute())
4661 MaxBECount = EL1.Max;
4662 else if (EL1.Max == getCouldNotCompute())
4663 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004664 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004665 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004666 MustExit = EL0.MustExit || EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004667 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004668 // Both conditions must be false at the same time for the loop to exit.
4669 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004670 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004671 if (EL0.Max == EL1.Max)
4672 MaxBECount = EL0.Max;
4673 if (EL0.Exact == EL1.Exact)
4674 BECount = EL0.Exact;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004675 MustExit = EL0.MustExit && EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004676 }
4677
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004678 return ExitLimit(BECount, MaxBECount, MustExit);
Dan Gohman96212b62009-06-22 00:31:57 +00004679 }
4680 }
4681
4682 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00004683 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00004684 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5b245a12013-05-31 06:43:25 +00004685 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
Reid Spencer266e42b2006-12-23 06:05:41 +00004686
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004687 // Check for a constant condition. These are normally stripped out by
4688 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4689 // preserve the CFG and is temporarily leaving constant conditions
4690 // in place.
4691 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4692 if (L->contains(FBB) == !CI->getZExtValue())
4693 // The backedge is always taken.
4694 return getCouldNotCompute();
4695 else
4696 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00004697 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004698 }
4699
Eli Friedmanebf98b02009-05-09 12:32:42 +00004700 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004701 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00004702}
4703
Andrew Trick3ca3f982011-07-26 17:19:55 +00004704/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004705/// backedge of the specified loop will execute if its exit condition
4706/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004707ScalarEvolution::ExitLimit
4708ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4709 ICmpInst *ExitCond,
4710 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004711 BasicBlock *FBB,
4712 bool IsSubExpr) {
Chris Lattnerd934c702004-04-02 20:23:17 +00004713
Reid Spencer266e42b2006-12-23 06:05:41 +00004714 // If the condition was exit on true, convert the condition to exit on false
4715 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00004716 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00004717 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004718 else
Reid Spencer266e42b2006-12-23 06:05:41 +00004719 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004720
4721 // Handle common loops like: for (X = "string"; *X; ++X)
4722 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4723 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004724 ExitLimit ItCnt =
4725 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00004726 if (ItCnt.hasAnyInfo())
4727 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004728 }
4729
Dan Gohmanaf752342009-07-07 17:06:11 +00004730 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4731 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00004732
4733 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00004734 LHS = getSCEVAtScope(LHS, L);
4735 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00004736
Dan Gohmance973df2009-06-24 04:48:43 +00004737 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00004738 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00004739 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00004740 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00004741 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004742 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00004743 }
4744
Dan Gohman81585c12010-05-03 16:35:17 +00004745 // Simplify the operands before analyzing them.
4746 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4747
Chris Lattnerd934c702004-04-02 20:23:17 +00004748 // If we have a comparison of a chrec against a constant, try to use value
4749 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00004750 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4751 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00004752 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00004753 // Form the constant range.
4754 ConstantRange CompRange(
4755 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00004756
Dan Gohmanaf752342009-07-07 17:06:11 +00004757 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00004758 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00004759 }
Misha Brukman01808ca2005-04-21 21:13:18 +00004760
Chris Lattnerd934c702004-04-02 20:23:17 +00004761 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00004762 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00004763 // Convert to: while (X-Y != 0)
Andrew Trick5b245a12013-05-31 06:43:25 +00004764 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004765 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00004766 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004767 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00004768 case ICmpInst::ICMP_EQ: { // while (X == Y)
4769 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004770 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4771 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00004772 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004773 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00004774 case ICmpInst::ICMP_SLT:
4775 case ICmpInst::ICMP_ULT: { // while (X < Y)
4776 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
4777 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004778 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00004779 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004780 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00004781 case ICmpInst::ICMP_SGT:
4782 case ICmpInst::ICMP_UGT: { // while (X > Y)
4783 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
4784 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004785 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00004786 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004787 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004788 default:
Chris Lattner09169212004-04-02 20:26:46 +00004789#if 0
David Greenedf1c4972009-12-23 22:18:14 +00004790 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00004791 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00004792 dbgs() << "[unsigned] ";
4793 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00004794 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00004795 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00004796#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00004797 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004798 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00004799 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00004800}
4801
Benjamin Kramer5a188542014-02-11 15:44:32 +00004802ScalarEvolution::ExitLimit
4803ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
4804 SwitchInst *Switch,
4805 BasicBlock *ExitingBlock,
4806 bool IsSubExpr) {
4807 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
4808
4809 // Give up if the exit is the default dest of a switch.
4810 if (Switch->getDefaultDest() == ExitingBlock)
4811 return getCouldNotCompute();
4812
4813 assert(L->contains(Switch->getDefaultDest()) &&
4814 "Default case must not exit the loop!");
4815 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
4816 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
4817
4818 // while (X != Y) --> while (X-Y != 0)
4819 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4820 if (EL.hasAnyInfo())
4821 return EL;
4822
4823 return getCouldNotCompute();
4824}
4825
Chris Lattnerec901cc2004-10-12 01:49:27 +00004826static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00004827EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4828 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004829 const SCEV *InVal = SE.getConstant(C);
4830 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004831 assert(isa<SCEVConstant>(Val) &&
4832 "Evaluation of SCEV at constant didn't fold correctly?");
4833 return cast<SCEVConstant>(Val)->getValue();
4834}
4835
Andrew Trick3ca3f982011-07-26 17:19:55 +00004836/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00004837/// 'icmp op load X, cst', try to see if we can compute the backedge
4838/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004839ScalarEvolution::ExitLimit
4840ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4841 LoadInst *LI,
4842 Constant *RHS,
4843 const Loop *L,
4844 ICmpInst::Predicate predicate) {
4845
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004846 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004847
4848 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00004849 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00004850 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004851 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004852
4853 // Make sure that it is really a constant global we are gepping, with an
4854 // initializer, and make sure the first IDX is really 0.
4855 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00004856 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00004857 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4858 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004859 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004860
4861 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00004862 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00004863 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004864 unsigned VarIdxNum = 0;
4865 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4866 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4867 Indexes.push_back(CI);
4868 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004869 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00004870 VarIdx = GEP->getOperand(i);
4871 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00004872 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004873 }
4874
Andrew Trick7004e4b2012-03-26 22:33:59 +00004875 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4876 if (!VarIdx)
4877 return getCouldNotCompute();
4878
Chris Lattnerec901cc2004-10-12 01:49:27 +00004879 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4880 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00004881 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00004882 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004883
4884 // We can only recognize very limited forms of loop index expressions, in
4885 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00004886 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00004887 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00004888 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4889 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004890 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004891
4892 unsigned MaxSteps = MaxBruteForceIterations;
4893 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00004894 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00004895 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00004896 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004897
4898 // Form the GEP offset.
4899 Indexes[VarIdxNum] = Val;
4900
Chris Lattnere166a852012-01-24 05:49:24 +00004901 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4902 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00004903 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00004904
4905 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00004906 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00004907 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00004908 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00004909#if 0
David Greenedf1c4972009-12-23 22:18:14 +00004910 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00004911 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4912 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00004913#endif
4914 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00004915 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00004916 }
4917 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004918 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004919}
4920
4921
Chris Lattnerdd730472004-04-17 22:58:41 +00004922/// CanConstantFold - Return true if we can constant fold an instruction of the
4923/// specified type, assuming that all operands were constants.
4924static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00004925 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00004926 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4927 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00004928 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00004929
Chris Lattnerdd730472004-04-17 22:58:41 +00004930 if (const CallInst *CI = dyn_cast<CallInst>(I))
4931 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00004932 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00004933 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00004934}
4935
Andrew Trick3a86ba72011-10-05 03:25:31 +00004936/// Determine whether this instruction can constant evolve within this loop
4937/// assuming its operands can all constant evolve.
4938static bool canConstantEvolve(Instruction *I, const Loop *L) {
4939 // An instruction outside of the loop can't be derived from a loop PHI.
4940 if (!L->contains(I)) return false;
4941
4942 if (isa<PHINode>(I)) {
4943 if (L->getHeader() == I->getParent())
4944 return true;
4945 else
4946 // We don't currently keep track of the control flow needed to evaluate
4947 // PHIs, so we cannot handle PHIs inside of loops.
4948 return false;
4949 }
4950
4951 // If we won't be able to constant fold this expression even if the operands
4952 // are constants, bail early.
4953 return CanConstantFold(I);
4954}
4955
4956/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4957/// recursing through each instruction operand until reaching a loop header phi.
4958static PHINode *
4959getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00004960 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00004961
4962 // Otherwise, we can evaluate this instruction if all of its operands are
4963 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00004964 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004965 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4966 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4967
4968 if (isa<Constant>(*OpI)) continue;
4969
4970 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00004971 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004972
4973 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00004974 if (!P)
4975 // If this operand is already visited, reuse the prior result.
4976 // We may have P != PHI if this is the deepest point at which the
4977 // inconsistent paths meet.
4978 P = PHIMap.lookup(OpInst);
4979 if (!P) {
4980 // Recurse and memoize the results, whether a phi is found or not.
4981 // This recursive call invalidates pointers into PHIMap.
4982 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4983 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00004984 }
Craig Topper9f008862014-04-15 04:59:12 +00004985 if (!P)
4986 return nullptr; // Not evolving from PHI
4987 if (PHI && PHI != P)
4988 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00004989 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004990 }
4991 // This is a expression evolving from a constant PHI!
4992 return PHI;
4993}
4994
Chris Lattnerdd730472004-04-17 22:58:41 +00004995/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4996/// in the loop that V is derived from. We allow arbitrary operations along the
4997/// way, but the operands of an operation must either be constants or a value
4998/// derived from a constant PHI. If this expression does not fit with these
4999/// constraints, return null.
5000static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005001 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005002 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005003
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005004 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005005 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005006 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005007
Andrew Trick3a86ba72011-10-05 03:25:31 +00005008 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005009 DenseMap<Instruction *, PHINode *> PHIMap;
5010 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005011}
5012
5013/// EvaluateExpression - Given an expression that passes the
5014/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5015/// in the loop has the value PHIVal. If we can't fold this expression for some
5016/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005017static Constant *EvaluateExpression(Value *V, const Loop *L,
5018 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005019 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005020 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005021 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005022 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005023 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005024 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005025
Andrew Trick3a86ba72011-10-05 03:25:31 +00005026 if (Constant *C = Vals.lookup(I)) return C;
5027
Nick Lewyckya6674c72011-10-22 19:58:20 +00005028 // An instruction inside the loop depends on a value outside the loop that we
5029 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005030 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005031
5032 // An unmapped PHI can be due to a branch or another loop inside this loop,
5033 // or due to this not being the initial iteration through a loop where we
5034 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005035 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005036
Dan Gohmanf820bd32010-06-22 13:15:46 +00005037 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005038
5039 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005040 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5041 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005042 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005043 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005044 continue;
5045 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005046 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005047 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005048 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005049 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005050 }
5051
Nick Lewyckya6674c72011-10-22 19:58:20 +00005052 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005053 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005054 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005055 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5056 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005057 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005058 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005059 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005060 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005061}
5062
5063/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5064/// in the header of its containing loop, we know the loop executes a
5065/// constant number of times, and the PHI node is just a recurrence
5066/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005067Constant *
5068ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005069 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005070 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005071 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005072 ConstantEvolutionLoopExitValue.find(PN);
5073 if (I != ConstantEvolutionLoopExitValue.end())
5074 return I->second;
5075
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005076 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005077 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005078
5079 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5080
Andrew Trick3a86ba72011-10-05 03:25:31 +00005081 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005082 BasicBlock *Header = L->getHeader();
5083 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005084
Chris Lattnerdd730472004-04-17 22:58:41 +00005085 // Since the loop is canonicalized, the PHI node must have two entries. One
5086 // entry must be a constant (coming in from outside of the loop), and the
5087 // second must be derived from the same PHI.
5088 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005089 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005090 for (BasicBlock::iterator I = Header->begin();
5091 (PHI = dyn_cast<PHINode>(I)); ++I) {
5092 Constant *StartCST =
5093 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005094 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005095 CurrentIterVals[PHI] = StartCST;
5096 }
5097 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005098 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005099
5100 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005101
5102 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005103 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005104 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005105
Dan Gohman0bddac12009-02-24 18:55:53 +00005106 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005107 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005108 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005109 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005110 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005111
Nick Lewyckya6674c72011-10-22 19:58:20 +00005112 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005113 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005114 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005115 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005116 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005117 if (!NextPHI)
5118 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005119 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005120
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005121 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5122
Nick Lewyckya6674c72011-10-22 19:58:20 +00005123 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5124 // cease to be able to evaluate one of them or if they stop evolving,
5125 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005126 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005127 for (DenseMap<Instruction *, Constant *>::const_iterator
5128 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5129 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005130 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005131 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5132 }
5133 // We use two distinct loops because EvaluateExpression may invalidate any
5134 // iterators into CurrentIterVals.
5135 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5136 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5137 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005138 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005139 if (!NextPHI) { // Not already computed.
5140 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005141 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005142 }
5143 if (NextPHI != I->second)
5144 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005145 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005146
5147 // If all entries in CurrentIterVals == NextIterVals then we can stop
5148 // iterating, the loop can't continue to change.
5149 if (StoppedEvolving)
5150 return RetVal = CurrentIterVals[PN];
5151
Andrew Trick3a86ba72011-10-05 03:25:31 +00005152 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005153 }
5154}
5155
Andrew Trick3ca3f982011-07-26 17:19:55 +00005156/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005157/// constant number of times (the condition evolves only from constants),
5158/// try to evaluate a few iterations of the loop until we get the exit
5159/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005160/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005161const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5162 Value *Cond,
5163 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005164 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005165 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005166
Dan Gohman866971e2010-06-19 14:17:24 +00005167 // If the loop is canonicalized, the PHI will have exactly two entries.
5168 // That's the only form we support here.
5169 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5170
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005171 DenseMap<Instruction *, Constant *> CurrentIterVals;
5172 BasicBlock *Header = L->getHeader();
5173 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5174
Dan Gohman866971e2010-06-19 14:17:24 +00005175 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005176 // second must be derived from the same PHI.
5177 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005178 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005179 for (BasicBlock::iterator I = Header->begin();
5180 (PHI = dyn_cast<PHINode>(I)); ++I) {
5181 Constant *StartCST =
5182 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005183 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005184 CurrentIterVals[PHI] = StartCST;
5185 }
5186 if (!CurrentIterVals.count(PN))
5187 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005188
5189 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5190 // the loop symbolically to determine when the condition gets a value of
5191 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005192
Andrew Trick90c7a102011-11-16 00:52:40 +00005193 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005194 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005195 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005196 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005197 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005198
Zhou Sheng75b871f2007-01-11 12:24:14 +00005199 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005200 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005201
Reid Spencer983e3b32007-03-01 07:25:48 +00005202 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005203 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005204 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005205 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005206
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005207 // Update all the PHI nodes for the next iteration.
5208 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005209
5210 // Create a list of which PHIs we need to compute. We want to do this before
5211 // calling EvaluateExpression on them because that may invalidate iterators
5212 // into CurrentIterVals.
5213 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005214 for (DenseMap<Instruction *, Constant *>::const_iterator
5215 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5216 PHINode *PHI = dyn_cast<PHINode>(I->first);
5217 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005218 PHIsToCompute.push_back(PHI);
5219 }
5220 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5221 E = PHIsToCompute.end(); I != E; ++I) {
5222 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005223 Constant *&NextPHI = NextIterVals[PHI];
5224 if (NextPHI) continue; // Already computed!
5225
5226 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005227 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005228 }
5229 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005230 }
5231
5232 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005233 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005234}
5235
Dan Gohman237d9e52009-09-03 15:00:26 +00005236/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005237/// at the specified scope in the program. The L value specifies a loop
5238/// nest to evaluate the expression at, where null is the top-level or a
5239/// specified loop is immediately inside of the loop.
5240///
5241/// This method can be used to compute the exit value for a variable defined
5242/// in a loop by querying what the value will hold in the parent loop.
5243///
Dan Gohman8ca08852009-05-24 23:25:42 +00005244/// In the case that a relevant loop exit value cannot be computed, the
5245/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005246const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005247 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005248 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5249 for (unsigned u = 0; u < Values.size(); u++) {
5250 if (Values[u].first == L)
5251 return Values[u].second ? Values[u].second : V;
5252 }
Craig Topper9f008862014-04-15 04:59:12 +00005253 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005254 // Otherwise compute it.
5255 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005256 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5257 for (unsigned u = Values2.size(); u > 0; u--) {
5258 if (Values2[u - 1].first == L) {
5259 Values2[u - 1].second = C;
5260 break;
5261 }
5262 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005263 return C;
5264}
5265
Nick Lewyckya6674c72011-10-22 19:58:20 +00005266/// This builds up a Constant using the ConstantExpr interface. That way, we
5267/// will return Constants for objects which aren't represented by a
5268/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5269/// Returns NULL if the SCEV isn't representable as a Constant.
5270static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005271 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005272 case scCouldNotCompute:
5273 case scAddRecExpr:
5274 break;
5275 case scConstant:
5276 return cast<SCEVConstant>(V)->getValue();
5277 case scUnknown:
5278 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5279 case scSignExtend: {
5280 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5281 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5282 return ConstantExpr::getSExt(CastOp, SS->getType());
5283 break;
5284 }
5285 case scZeroExtend: {
5286 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5287 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5288 return ConstantExpr::getZExt(CastOp, SZ->getType());
5289 break;
5290 }
5291 case scTruncate: {
5292 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5293 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5294 return ConstantExpr::getTrunc(CastOp, ST->getType());
5295 break;
5296 }
5297 case scAddExpr: {
5298 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5299 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005300 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5301 unsigned AS = PTy->getAddressSpace();
5302 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5303 C = ConstantExpr::getBitCast(C, DestPtrTy);
5304 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005305 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5306 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005307 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005308
5309 // First pointer!
5310 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005311 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005312 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005313 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005314 // The offsets have been converted to bytes. We can add bytes to an
5315 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005316 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005317 }
5318
5319 // Don't bother trying to sum two pointers. We probably can't
5320 // statically compute a load that results from it anyway.
5321 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005322 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005323
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005324 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5325 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005326 C2 = ConstantExpr::getIntegerCast(
5327 C2, Type::getInt32Ty(C->getContext()), true);
5328 C = ConstantExpr::getGetElementPtr(C, C2);
5329 } else
5330 C = ConstantExpr::getAdd(C, C2);
5331 }
5332 return C;
5333 }
5334 break;
5335 }
5336 case scMulExpr: {
5337 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5338 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5339 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005340 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005341 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5342 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005343 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005344 C = ConstantExpr::getMul(C, C2);
5345 }
5346 return C;
5347 }
5348 break;
5349 }
5350 case scUDivExpr: {
5351 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5352 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5353 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5354 if (LHS->getType() == RHS->getType())
5355 return ConstantExpr::getUDiv(LHS, RHS);
5356 break;
5357 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005358 case scSMaxExpr:
5359 case scUMaxExpr:
5360 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005361 }
Craig Topper9f008862014-04-15 04:59:12 +00005362 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005363}
5364
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005365const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005366 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005367
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005368 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005369 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005370 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005371 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005372 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005373 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5374 if (PHINode *PN = dyn_cast<PHINode>(I))
5375 if (PN->getParent() == LI->getHeader()) {
5376 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005377 // to see if the loop that contains it has a known backedge-taken
5378 // count. If so, we may be able to force computation of the exit
5379 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005380 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005381 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005382 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005383 // Okay, we know how many times the containing loop executes. If
5384 // this is a constant evolving PHI node, get the final value at
5385 // the specified iteration number.
5386 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005387 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005388 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005389 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005390 }
5391 }
5392
Reid Spencere6328ca2006-12-04 21:33:23 +00005393 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005394 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005395 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005396 // result. This is particularly useful for computing loop exit values.
5397 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005398 SmallVector<Constant *, 4> Operands;
5399 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005400 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5401 Value *Op = I->getOperand(i);
5402 if (Constant *C = dyn_cast<Constant>(Op)) {
5403 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005404 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005405 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005406
5407 // If any of the operands is non-constant and if they are
5408 // non-integer and non-pointer, don't even try to analyze them
5409 // with scev techniques.
5410 if (!isSCEVable(Op->getType()))
5411 return V;
5412
5413 const SCEV *OrigV = getSCEV(Op);
5414 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5415 MadeImprovement |= OrigV != OpV;
5416
Nick Lewyckya6674c72011-10-22 19:58:20 +00005417 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005418 if (!C) return V;
5419 if (C->getType() != Op->getType())
5420 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5421 Op->getType(),
5422 false),
5423 C, Op->getType());
5424 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005425 }
Dan Gohmance973df2009-06-24 04:48:43 +00005426
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005427 // Check to see if getSCEVAtScope actually made an improvement.
5428 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005429 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005430 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5431 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005432 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005433 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005434 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5435 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005436 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005437 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005438 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005439 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005440 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005441 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005442 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005443 }
5444 }
5445
5446 // This is some other type of SCEVUnknown, just return it.
5447 return V;
5448 }
5449
Dan Gohmana30370b2009-05-04 22:02:23 +00005450 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005451 // Avoid performing the look-up in the common case where the specified
5452 // expression has no loop-variant portions.
5453 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005454 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005455 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005456 // Okay, at least one of these operands is loop variant but might be
5457 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005458 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5459 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005460 NewOps.push_back(OpAtScope);
5461
5462 for (++i; i != e; ++i) {
5463 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005464 NewOps.push_back(OpAtScope);
5465 }
5466 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005467 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005468 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005469 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005470 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005471 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005472 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005473 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005474 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005475 }
5476 }
5477 // If we got here, all operands are loop invariant.
5478 return Comm;
5479 }
5480
Dan Gohmana30370b2009-05-04 22:02:23 +00005481 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005482 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5483 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005484 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5485 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005486 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005487 }
5488
5489 // If this is a loop recurrence for a loop that does not contain L, then we
5490 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005491 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005492 // First, attempt to evaluate each operand.
5493 // Avoid performing the look-up in the common case where the specified
5494 // expression has no loop-variant portions.
5495 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5496 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5497 if (OpAtScope == AddRec->getOperand(i))
5498 continue;
5499
5500 // Okay, at least one of these operands is loop variant but might be
5501 // foldable. Build a new instance of the folded commutative expression.
5502 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5503 AddRec->op_begin()+i);
5504 NewOps.push_back(OpAtScope);
5505 for (++i; i != e; ++i)
5506 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5507
Andrew Trick759ba082011-04-27 01:21:25 +00005508 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005509 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005510 AddRec->getNoWrapFlags(SCEV::FlagNW));
5511 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005512 // The addrec may be folded to a nonrecurrence, for example, if the
5513 // induction variable is multiplied by zero after constant folding. Go
5514 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005515 if (!AddRec)
5516 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005517 break;
5518 }
5519
5520 // If the scope is outside the addrec's loop, evaluate it by using the
5521 // loop exit value of the addrec.
5522 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005523 // To evaluate this recurrence, we need to know how many times the AddRec
5524 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005525 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005526 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005527
Eli Friedman61f67622008-08-04 23:49:06 +00005528 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005529 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005530 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005531
Dan Gohman8ca08852009-05-24 23:25:42 +00005532 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005533 }
5534
Dan Gohmana30370b2009-05-04 22:02:23 +00005535 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005536 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005537 if (Op == Cast->getOperand())
5538 return Cast; // must be loop invariant
5539 return getZeroExtendExpr(Op, Cast->getType());
5540 }
5541
Dan Gohmana30370b2009-05-04 22:02:23 +00005542 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005543 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005544 if (Op == Cast->getOperand())
5545 return Cast; // must be loop invariant
5546 return getSignExtendExpr(Op, Cast->getType());
5547 }
5548
Dan Gohmana30370b2009-05-04 22:02:23 +00005549 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005550 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005551 if (Op == Cast->getOperand())
5552 return Cast; // must be loop invariant
5553 return getTruncateExpr(Op, Cast->getType());
5554 }
5555
Torok Edwinfbcc6632009-07-14 16:55:14 +00005556 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005557}
5558
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005559/// getSCEVAtScope - This is a convenience function which does
5560/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005561const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005562 return getSCEVAtScope(getSCEV(V), L);
5563}
5564
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005565/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5566/// following equation:
5567///
5568/// A * X = B (mod N)
5569///
5570/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5571/// A and B isn't important.
5572///
5573/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005574static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005575 ScalarEvolution &SE) {
5576 uint32_t BW = A.getBitWidth();
5577 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5578 assert(A != 0 && "A must be non-zero.");
5579
5580 // 1. D = gcd(A, N)
5581 //
5582 // The gcd of A and N may have only one prime factor: 2. The number of
5583 // trailing zeros in A is its multiplicity
5584 uint32_t Mult2 = A.countTrailingZeros();
5585 // D = 2^Mult2
5586
5587 // 2. Check if B is divisible by D.
5588 //
5589 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5590 // is not less than multiplicity of this prime factor for D.
5591 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005592 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005593
5594 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5595 // modulo (N / D).
5596 //
5597 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5598 // bit width during computations.
5599 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5600 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005601 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005602 APInt I = AD.multiplicativeInverse(Mod);
5603
5604 // 4. Compute the minimum unsigned root of the equation:
5605 // I * (B / D) mod (N / D)
5606 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5607
5608 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5609 // bits.
5610 return SE.getConstant(Result.trunc(BW));
5611}
Chris Lattnerd934c702004-04-02 20:23:17 +00005612
5613/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5614/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5615/// might be the same) or two SCEVCouldNotCompute objects.
5616///
Dan Gohmanaf752342009-07-07 17:06:11 +00005617static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005618SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005619 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005620 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5621 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5622 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005623
Chris Lattnerd934c702004-04-02 20:23:17 +00005624 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005625 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005626 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005627 return std::make_pair(CNC, CNC);
5628 }
5629
Reid Spencer983e3b32007-03-01 07:25:48 +00005630 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005631 const APInt &L = LC->getValue()->getValue();
5632 const APInt &M = MC->getValue()->getValue();
5633 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005634 APInt Two(BitWidth, 2);
5635 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005636
Dan Gohmance973df2009-06-24 04:48:43 +00005637 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005638 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005639 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005640 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5641 // The B coefficient is M-N/2
5642 APInt B(M);
5643 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005644
Reid Spencer983e3b32007-03-01 07:25:48 +00005645 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005646 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005647
Reid Spencer983e3b32007-03-01 07:25:48 +00005648 // Compute the B^2-4ac term.
5649 APInt SqrtTerm(B);
5650 SqrtTerm *= B;
5651 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00005652
Nick Lewyckyfb780832012-08-01 09:14:36 +00005653 if (SqrtTerm.isNegative()) {
5654 // The loop is provably infinite.
5655 const SCEV *CNC = SE.getCouldNotCompute();
5656 return std::make_pair(CNC, CNC);
5657 }
5658
Reid Spencer983e3b32007-03-01 07:25:48 +00005659 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5660 // integer value or else APInt::sqrt() will assert.
5661 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00005662
Dan Gohmance973df2009-06-24 04:48:43 +00005663 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00005664 // The divisions must be performed as signed divisions.
5665 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00005666 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00005667 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00005668 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00005669 return std::make_pair(CNC, CNC);
5670 }
5671
Owen Anderson47db9412009-07-22 00:24:57 +00005672 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00005673
5674 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005675 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00005676 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005677 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00005678
Dan Gohmance973df2009-06-24 04:48:43 +00005679 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00005680 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00005681 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00005682}
5683
5684/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00005685/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00005686///
5687/// This is only used for loops with a "x != y" exit test. The exit condition is
5688/// now expressed as a single expression, V = x-y. So the exit test is
5689/// effectively V != 0. We know and take advantage of the fact that this
5690/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005691ScalarEvolution::ExitLimit
Andrew Trick5b245a12013-05-31 06:43:25 +00005692ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005693 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00005694 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005695 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00005696 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005697 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005698 }
5699
Dan Gohman48f82222009-05-04 22:30:44 +00005700 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00005701 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005702 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005703
Chris Lattnerdff679f2011-01-09 22:39:48 +00005704 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5705 // the quadratic equation to solve it.
5706 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5707 std::pair<const SCEV *,const SCEV *> Roots =
5708 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00005709 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5710 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00005711 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00005712#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005713 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00005714 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005715#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00005716 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00005717 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00005718 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5719 R1->getValue(),
5720 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00005721 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00005722 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00005723
Chris Lattnerd934c702004-04-02 20:23:17 +00005724 // We can only use this value if the chrec ends up with an exact zero
5725 // value at this index. When solving for "X*X != 5", for example, we
5726 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00005727 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00005728 if (Val->isZero())
5729 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00005730 }
5731 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00005732 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005733 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005734
Chris Lattnerdff679f2011-01-09 22:39:48 +00005735 // Otherwise we can only handle this if it is affine.
5736 if (!AddRec->isAffine())
5737 return getCouldNotCompute();
5738
5739 // If this is an affine expression, the execution count of this branch is
5740 // the minimum unsigned root of the following equation:
5741 //
5742 // Start + Step*N = 0 (mod 2^BW)
5743 //
5744 // equivalent to:
5745 //
5746 // Step*N = -Start (mod 2^BW)
5747 //
5748 // where BW is the common bit width of Start and Step.
5749
5750 // Get the initial value for the loop.
5751 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5752 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5753
5754 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00005755 //
5756 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5757 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5758 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5759 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00005760 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00005761 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00005762 return getCouldNotCompute();
5763
Andrew Trick8b55b732011-03-14 16:50:06 +00005764 // For positive steps (counting up until unsigned overflow):
5765 // N = -Start/Step (as unsigned)
5766 // For negative steps (counting down to zero):
5767 // N = Start/-Step
5768 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00005769 bool CountDown = StepC->getValue()->getValue().isNegative();
5770 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00005771
5772 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00005773 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5774 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00005775 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5776 ConstantRange CR = getUnsignedRange(Start);
5777 const SCEV *MaxBECount;
5778 if (!CountDown && CR.getUnsignedMin().isMinValue())
5779 // When counting up, the worst starting value is 1, not 0.
5780 MaxBECount = CR.getUnsignedMax().isMinValue()
5781 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5782 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5783 else
5784 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5785 : -CR.getUnsignedMin());
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005786 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true);
Nick Lewycky31555522011-10-03 07:10:45 +00005787 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00005788
Andrew Trickf1781db2011-03-14 17:28:02 +00005789 // If the recurrence is known not to wraparound, unsigned divide computes the
Andrew Trick5b245a12013-05-31 06:43:25 +00005790 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5791 // that the value will either become zero (and thus the loop terminates), that
5792 // the loop will terminate through some other exit condition first, or that
5793 // the loop has undefined behavior. This means we can't "miss" the exit
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005794 // value, even with nonunit stride, and exit later via the same branch. Note
5795 // that we can skip this exit if loop later exits via a different
5796 // branch. Hence MustExit=false.
Andrew Trickf1781db2011-03-14 17:28:02 +00005797 //
Andrew Trick5b245a12013-05-31 06:43:25 +00005798 // This is only valid for expressions that directly compute the loop exit. It
5799 // is invalid for subexpressions in which the loop may exit through this
5800 // branch even if this subexpression is false. In that case, the trip count
5801 // computed by this udiv could be smaller than the number of well-defined
5802 // iterations.
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005803 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
5804 const SCEV *Exact =
5805 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5806 return ExitLimit(Exact, Exact, /*MustExit=*/false);
5807 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00005808
5809 // If Step is a power of two that evenly divides Start we know that the loop
5810 // will always terminate. Start may not be a constant so we just have the
5811 // number of trailing zeros available. This is safe even in presence of
5812 // overflow as the recurrence will overflow to exactly 0.
5813 const APInt &StepV = StepC->getValue()->getValue();
5814 if (StepV.isPowerOf2() &&
5815 GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros())
5816 return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5817
Chris Lattnerdff679f2011-01-09 22:39:48 +00005818 // Then, try to solve the above equation provided that Start is constant.
5819 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5820 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5821 -StartC->getValue()->getValue(),
5822 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005823 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005824}
5825
5826/// HowFarToNonZero - Return the number of times a backedge checking the
5827/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00005828/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00005829ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00005830ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005831 // Loops that look like: while (X == 0) are very strange indeed. We don't
5832 // handle them yet except for the trivial case. This could be expanded in the
5833 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00005834
Chris Lattnerd934c702004-04-02 20:23:17 +00005835 // If the value is a constant, check to see if it is known to be non-zero
5836 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00005837 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00005838 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00005839 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005840 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005841 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005842
Chris Lattnerd934c702004-04-02 20:23:17 +00005843 // We could implement others, but I really doubt anyone writes loops like
5844 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005845 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005846}
5847
Dan Gohmanf9081a22008-09-15 22:18:04 +00005848/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5849/// (which may not be an immediate predecessor) which has exactly one
5850/// successor from which BB is reachable, or null if no such block is
5851/// found.
5852///
Dan Gohman4e3c1132010-04-15 16:19:08 +00005853std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00005854ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00005855 // If the block has a unique predecessor, then there is no path from the
5856 // predecessor to the block that does not go through the direct edge
5857 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00005858 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00005859 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00005860
5861 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00005862 // If the header has a unique predecessor outside the loop, it must be
5863 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005864 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00005865 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00005866
Dan Gohman4e3c1132010-04-15 16:19:08 +00005867 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00005868}
5869
Dan Gohman450f4e02009-06-20 00:35:32 +00005870/// HasSameValue - SCEV structural equivalence is usually sufficient for
5871/// testing whether two expressions are equal, however for the purposes of
5872/// looking for a condition guarding a loop, it can be useful to be a little
5873/// more general, since a front-end may have replicated the controlling
5874/// expression.
5875///
Dan Gohmanaf752342009-07-07 17:06:11 +00005876static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00005877 // Quick check to see if they are the same SCEV.
5878 if (A == B) return true;
5879
5880 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5881 // two different instructions with the same value. Check for this case.
5882 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5883 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5884 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5885 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00005886 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00005887 return true;
5888
5889 // Otherwise assume they may have a different value.
5890 return false;
5891}
5892
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005893/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00005894/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005895///
5896bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005897 const SCEV *&LHS, const SCEV *&RHS,
5898 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005899 bool Changed = false;
5900
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005901 // If we hit the max recursion limit bail out.
5902 if (Depth >= 3)
5903 return false;
5904
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005905 // Canonicalize a constant to the right side.
5906 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5907 // Check for both operands constant.
5908 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5909 if (ConstantExpr::getICmp(Pred,
5910 LHSC->getValue(),
5911 RHSC->getValue())->isNullValue())
5912 goto trivially_false;
5913 else
5914 goto trivially_true;
5915 }
5916 // Otherwise swap the operands to put the constant on the right.
5917 std::swap(LHS, RHS);
5918 Pred = ICmpInst::getSwappedPredicate(Pred);
5919 Changed = true;
5920 }
5921
5922 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00005923 // addrec's loop, put the addrec on the left. Also make a dominance check,
5924 // as both operands could be addrecs loop-invariant in each other's loop.
5925 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5926 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00005927 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005928 std::swap(LHS, RHS);
5929 Pred = ICmpInst::getSwappedPredicate(Pred);
5930 Changed = true;
5931 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00005932 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005933
5934 // If there's a constant operand, canonicalize comparisons with boundary
5935 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5936 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5937 const APInt &RA = RC->getValue()->getValue();
5938 switch (Pred) {
5939 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5940 case ICmpInst::ICMP_EQ:
5941 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005942 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5943 if (!RA)
5944 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5945 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00005946 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5947 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005948 RHS = AE->getOperand(1);
5949 LHS = ME->getOperand(1);
5950 Changed = true;
5951 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005952 break;
5953 case ICmpInst::ICMP_UGE:
5954 if ((RA - 1).isMinValue()) {
5955 Pred = ICmpInst::ICMP_NE;
5956 RHS = getConstant(RA - 1);
5957 Changed = true;
5958 break;
5959 }
5960 if (RA.isMaxValue()) {
5961 Pred = ICmpInst::ICMP_EQ;
5962 Changed = true;
5963 break;
5964 }
5965 if (RA.isMinValue()) goto trivially_true;
5966
5967 Pred = ICmpInst::ICMP_UGT;
5968 RHS = getConstant(RA - 1);
5969 Changed = true;
5970 break;
5971 case ICmpInst::ICMP_ULE:
5972 if ((RA + 1).isMaxValue()) {
5973 Pred = ICmpInst::ICMP_NE;
5974 RHS = getConstant(RA + 1);
5975 Changed = true;
5976 break;
5977 }
5978 if (RA.isMinValue()) {
5979 Pred = ICmpInst::ICMP_EQ;
5980 Changed = true;
5981 break;
5982 }
5983 if (RA.isMaxValue()) goto trivially_true;
5984
5985 Pred = ICmpInst::ICMP_ULT;
5986 RHS = getConstant(RA + 1);
5987 Changed = true;
5988 break;
5989 case ICmpInst::ICMP_SGE:
5990 if ((RA - 1).isMinSignedValue()) {
5991 Pred = ICmpInst::ICMP_NE;
5992 RHS = getConstant(RA - 1);
5993 Changed = true;
5994 break;
5995 }
5996 if (RA.isMaxSignedValue()) {
5997 Pred = ICmpInst::ICMP_EQ;
5998 Changed = true;
5999 break;
6000 }
6001 if (RA.isMinSignedValue()) goto trivially_true;
6002
6003 Pred = ICmpInst::ICMP_SGT;
6004 RHS = getConstant(RA - 1);
6005 Changed = true;
6006 break;
6007 case ICmpInst::ICMP_SLE:
6008 if ((RA + 1).isMaxSignedValue()) {
6009 Pred = ICmpInst::ICMP_NE;
6010 RHS = getConstant(RA + 1);
6011 Changed = true;
6012 break;
6013 }
6014 if (RA.isMinSignedValue()) {
6015 Pred = ICmpInst::ICMP_EQ;
6016 Changed = true;
6017 break;
6018 }
6019 if (RA.isMaxSignedValue()) goto trivially_true;
6020
6021 Pred = ICmpInst::ICMP_SLT;
6022 RHS = getConstant(RA + 1);
6023 Changed = true;
6024 break;
6025 case ICmpInst::ICMP_UGT:
6026 if (RA.isMinValue()) {
6027 Pred = ICmpInst::ICMP_NE;
6028 Changed = true;
6029 break;
6030 }
6031 if ((RA + 1).isMaxValue()) {
6032 Pred = ICmpInst::ICMP_EQ;
6033 RHS = getConstant(RA + 1);
6034 Changed = true;
6035 break;
6036 }
6037 if (RA.isMaxValue()) goto trivially_false;
6038 break;
6039 case ICmpInst::ICMP_ULT:
6040 if (RA.isMaxValue()) {
6041 Pred = ICmpInst::ICMP_NE;
6042 Changed = true;
6043 break;
6044 }
6045 if ((RA - 1).isMinValue()) {
6046 Pred = ICmpInst::ICMP_EQ;
6047 RHS = getConstant(RA - 1);
6048 Changed = true;
6049 break;
6050 }
6051 if (RA.isMinValue()) goto trivially_false;
6052 break;
6053 case ICmpInst::ICMP_SGT:
6054 if (RA.isMinSignedValue()) {
6055 Pred = ICmpInst::ICMP_NE;
6056 Changed = true;
6057 break;
6058 }
6059 if ((RA + 1).isMaxSignedValue()) {
6060 Pred = ICmpInst::ICMP_EQ;
6061 RHS = getConstant(RA + 1);
6062 Changed = true;
6063 break;
6064 }
6065 if (RA.isMaxSignedValue()) goto trivially_false;
6066 break;
6067 case ICmpInst::ICMP_SLT:
6068 if (RA.isMaxSignedValue()) {
6069 Pred = ICmpInst::ICMP_NE;
6070 Changed = true;
6071 break;
6072 }
6073 if ((RA - 1).isMinSignedValue()) {
6074 Pred = ICmpInst::ICMP_EQ;
6075 RHS = getConstant(RA - 1);
6076 Changed = true;
6077 break;
6078 }
6079 if (RA.isMinSignedValue()) goto trivially_false;
6080 break;
6081 }
6082 }
6083
6084 // Check for obvious equality.
6085 if (HasSameValue(LHS, RHS)) {
6086 if (ICmpInst::isTrueWhenEqual(Pred))
6087 goto trivially_true;
6088 if (ICmpInst::isFalseWhenEqual(Pred))
6089 goto trivially_false;
6090 }
6091
Dan Gohman81585c12010-05-03 16:35:17 +00006092 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6093 // adding or subtracting 1 from one of the operands.
6094 switch (Pred) {
6095 case ICmpInst::ICMP_SLE:
6096 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6097 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006098 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006099 Pred = ICmpInst::ICMP_SLT;
6100 Changed = true;
6101 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006102 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006103 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006104 Pred = ICmpInst::ICMP_SLT;
6105 Changed = true;
6106 }
6107 break;
6108 case ICmpInst::ICMP_SGE:
6109 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006110 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006111 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006112 Pred = ICmpInst::ICMP_SGT;
6113 Changed = true;
6114 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6115 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006116 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006117 Pred = ICmpInst::ICMP_SGT;
6118 Changed = true;
6119 }
6120 break;
6121 case ICmpInst::ICMP_ULE:
6122 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006123 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006124 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006125 Pred = ICmpInst::ICMP_ULT;
6126 Changed = true;
6127 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006128 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006129 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006130 Pred = ICmpInst::ICMP_ULT;
6131 Changed = true;
6132 }
6133 break;
6134 case ICmpInst::ICMP_UGE:
6135 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006136 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006137 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006138 Pred = ICmpInst::ICMP_UGT;
6139 Changed = true;
6140 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006141 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006142 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006143 Pred = ICmpInst::ICMP_UGT;
6144 Changed = true;
6145 }
6146 break;
6147 default:
6148 break;
6149 }
6150
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006151 // TODO: More simplifications are possible here.
6152
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006153 // Recursively simplify until we either hit a recursion limit or nothing
6154 // changes.
6155 if (Changed)
6156 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6157
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006158 return Changed;
6159
6160trivially_true:
6161 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006162 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006163 Pred = ICmpInst::ICMP_EQ;
6164 return true;
6165
6166trivially_false:
6167 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006168 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006169 Pred = ICmpInst::ICMP_NE;
6170 return true;
6171}
6172
Dan Gohmane65c9172009-07-13 21:35:55 +00006173bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6174 return getSignedRange(S).getSignedMax().isNegative();
6175}
6176
6177bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6178 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6179}
6180
6181bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6182 return !getSignedRange(S).getSignedMin().isNegative();
6183}
6184
6185bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6186 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6187}
6188
6189bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6190 return isKnownNegative(S) || isKnownPositive(S);
6191}
6192
6193bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6194 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006195 // Canonicalize the inputs first.
6196 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6197
Dan Gohman07591692010-04-11 22:16:48 +00006198 // If LHS or RHS is an addrec, check to see if the condition is true in
6199 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006200 // If LHS and RHS are both addrec, both conditions must be true in
6201 // every iteration of the loop.
6202 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6203 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6204 bool LeftGuarded = false;
6205 bool RightGuarded = false;
6206 if (LAR) {
6207 const Loop *L = LAR->getLoop();
6208 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6209 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6210 if (!RAR) return true;
6211 LeftGuarded = true;
6212 }
6213 }
6214 if (RAR) {
6215 const Loop *L = RAR->getLoop();
6216 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6217 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6218 if (!LAR) return true;
6219 RightGuarded = true;
6220 }
6221 }
6222 if (LeftGuarded && RightGuarded)
6223 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006224
Dan Gohman07591692010-04-11 22:16:48 +00006225 // Otherwise see what can be done with known constant ranges.
6226 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6227}
6228
6229bool
6230ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6231 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006232 if (HasSameValue(LHS, RHS))
6233 return ICmpInst::isTrueWhenEqual(Pred);
6234
Dan Gohman07591692010-04-11 22:16:48 +00006235 // This code is split out from isKnownPredicate because it is called from
6236 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006237 switch (Pred) {
6238 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006239 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006240 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006241 std::swap(LHS, RHS);
6242 case ICmpInst::ICMP_SLT: {
6243 ConstantRange LHSRange = getSignedRange(LHS);
6244 ConstantRange RHSRange = getSignedRange(RHS);
6245 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6246 return true;
6247 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6248 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006249 break;
6250 }
6251 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006252 std::swap(LHS, RHS);
6253 case ICmpInst::ICMP_SLE: {
6254 ConstantRange LHSRange = getSignedRange(LHS);
6255 ConstantRange RHSRange = getSignedRange(RHS);
6256 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6257 return true;
6258 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6259 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006260 break;
6261 }
6262 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006263 std::swap(LHS, RHS);
6264 case ICmpInst::ICMP_ULT: {
6265 ConstantRange LHSRange = getUnsignedRange(LHS);
6266 ConstantRange RHSRange = getUnsignedRange(RHS);
6267 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6268 return true;
6269 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6270 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006271 break;
6272 }
6273 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006274 std::swap(LHS, RHS);
6275 case ICmpInst::ICMP_ULE: {
6276 ConstantRange LHSRange = getUnsignedRange(LHS);
6277 ConstantRange RHSRange = getUnsignedRange(RHS);
6278 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6279 return true;
6280 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6281 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006282 break;
6283 }
6284 case ICmpInst::ICMP_NE: {
6285 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6286 return true;
6287 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6288 return true;
6289
6290 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6291 if (isKnownNonZero(Diff))
6292 return true;
6293 break;
6294 }
6295 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006296 // The check at the top of the function catches the case where
6297 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006298 break;
6299 }
6300 return false;
6301}
6302
6303/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6304/// protected by a conditional between LHS and RHS. This is used to
6305/// to eliminate casts.
6306bool
6307ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6308 ICmpInst::Predicate Pred,
6309 const SCEV *LHS, const SCEV *RHS) {
6310 // Interpret a null as meaning no loop, where there is obviously no guard
6311 // (interprocedural conditions notwithstanding).
6312 if (!L) return true;
6313
6314 BasicBlock *Latch = L->getLoopLatch();
6315 if (!Latch)
6316 return false;
6317
6318 BranchInst *LoopContinuePredicate =
6319 dyn_cast<BranchInst>(Latch->getTerminator());
6320 if (!LoopContinuePredicate ||
6321 LoopContinuePredicate->isUnconditional())
6322 return false;
6323
Dan Gohmane18c2d62010-08-10 23:46:30 +00006324 return isImpliedCond(Pred, LHS, RHS,
6325 LoopContinuePredicate->getCondition(),
Dan Gohman430f0cc2009-07-21 23:03:19 +00006326 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohmane65c9172009-07-13 21:35:55 +00006327}
6328
Dan Gohmanb50349a2010-04-11 19:27:13 +00006329/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006330/// by a conditional between LHS and RHS. This is used to help avoid max
6331/// expressions in loop trip counts, and to eliminate casts.
6332bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006333ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6334 ICmpInst::Predicate Pred,
6335 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006336 // Interpret a null as meaning no loop, where there is obviously no guard
6337 // (interprocedural conditions notwithstanding).
6338 if (!L) return false;
6339
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006340 // Starting at the loop predecessor, climb up the predecessor chain, as long
6341 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006342 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006343 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006344 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006345 Pair.first;
6346 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006347
6348 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006349 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006350 if (!LoopEntryPredicate ||
6351 LoopEntryPredicate->isUnconditional())
6352 continue;
6353
Dan Gohmane18c2d62010-08-10 23:46:30 +00006354 if (isImpliedCond(Pred, LHS, RHS,
6355 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006356 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006357 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006358 }
6359
Dan Gohman2a62fd92008-08-12 20:17:31 +00006360 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006361}
6362
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006363/// RAII wrapper to prevent recursive application of isImpliedCond.
6364/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6365/// currently evaluating isImpliedCond.
6366struct MarkPendingLoopPredicate {
6367 Value *Cond;
6368 DenseSet<Value*> &LoopPreds;
6369 bool Pending;
6370
6371 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6372 : Cond(C), LoopPreds(LP) {
6373 Pending = !LoopPreds.insert(Cond).second;
6374 }
6375 ~MarkPendingLoopPredicate() {
6376 if (!Pending)
6377 LoopPreds.erase(Cond);
6378 }
6379};
6380
Dan Gohman430f0cc2009-07-21 23:03:19 +00006381/// isImpliedCond - Test whether the condition described by Pred, LHS,
6382/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006383bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006384 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006385 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006386 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006387 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6388 if (Mark.Pending)
6389 return false;
6390
Dan Gohman8b0a4192010-03-01 17:49:51 +00006391 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006392 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006393 if (BO->getOpcode() == Instruction::And) {
6394 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006395 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6396 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006397 } else if (BO->getOpcode() == Instruction::Or) {
6398 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006399 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6400 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006401 }
6402 }
6403
Dan Gohmane18c2d62010-08-10 23:46:30 +00006404 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006405 if (!ICI) return false;
6406
Dan Gohmane65c9172009-07-13 21:35:55 +00006407 // Bail if the ICmp's operands' types are wider than the needed type
6408 // before attempting to call getSCEV on them. This avoids infinite
6409 // recursion, since the analysis of widening casts can require loop
6410 // exit condition information for overflow checking, which would
6411 // lead back here.
6412 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006413 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006414 return false;
6415
Andrew Trickfa594032012-11-29 18:35:13 +00006416 // Now that we found a conditional branch that dominates the loop or controls
6417 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006418 ICmpInst::Predicate FoundPred;
6419 if (Inverse)
6420 FoundPred = ICI->getInversePredicate();
6421 else
6422 FoundPred = ICI->getPredicate();
6423
6424 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6425 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006426
6427 // Balance the types. The case where FoundLHS' type is wider than
6428 // LHS' type is checked for above.
6429 if (getTypeSizeInBits(LHS->getType()) >
6430 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006431 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006432 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6433 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6434 } else {
6435 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6436 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6437 }
6438 }
6439
Dan Gohman430f0cc2009-07-21 23:03:19 +00006440 // Canonicalize the query to match the way instcombine will have
6441 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006442 if (SimplifyICmpOperands(Pred, LHS, RHS))
6443 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006444 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006445 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6446 if (FoundLHS == FoundRHS)
6447 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006448
6449 // Check to see if we can make the LHS or RHS match.
6450 if (LHS == FoundRHS || RHS == FoundLHS) {
6451 if (isa<SCEVConstant>(RHS)) {
6452 std::swap(FoundLHS, FoundRHS);
6453 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6454 } else {
6455 std::swap(LHS, RHS);
6456 Pred = ICmpInst::getSwappedPredicate(Pred);
6457 }
6458 }
6459
6460 // Check whether the found predicate is the same as the desired predicate.
6461 if (FoundPred == Pred)
6462 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6463
6464 // Check whether swapping the found predicate makes it the same as the
6465 // desired predicate.
6466 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6467 if (isa<SCEVConstant>(RHS))
6468 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6469 else
6470 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6471 RHS, LHS, FoundLHS, FoundRHS);
6472 }
6473
6474 // Check whether the actual condition is beyond sufficient.
6475 if (FoundPred == ICmpInst::ICMP_EQ)
6476 if (ICmpInst::isTrueWhenEqual(Pred))
6477 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6478 return true;
6479 if (Pred == ICmpInst::ICMP_NE)
6480 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6481 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6482 return true;
6483
6484 // Otherwise assume the worst.
6485 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006486}
6487
Dan Gohman430f0cc2009-07-21 23:03:19 +00006488/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006489/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006490/// and FoundRHS is true.
6491bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6492 const SCEV *LHS, const SCEV *RHS,
6493 const SCEV *FoundLHS,
6494 const SCEV *FoundRHS) {
6495 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6496 FoundLHS, FoundRHS) ||
6497 // ~x < ~y --> x > y
6498 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6499 getNotSCEV(FoundRHS),
6500 getNotSCEV(FoundLHS));
6501}
6502
6503/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006504/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006505/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006506bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006507ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6508 const SCEV *LHS, const SCEV *RHS,
6509 const SCEV *FoundLHS,
6510 const SCEV *FoundRHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006511 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006512 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6513 case ICmpInst::ICMP_EQ:
6514 case ICmpInst::ICMP_NE:
6515 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6516 return true;
6517 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00006518 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006519 case ICmpInst::ICMP_SLE:
Dan Gohman07591692010-04-11 22:16:48 +00006520 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6521 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006522 return true;
6523 break;
6524 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006525 case ICmpInst::ICMP_SGE:
Dan Gohman07591692010-04-11 22:16:48 +00006526 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6527 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006528 return true;
6529 break;
6530 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006531 case ICmpInst::ICMP_ULE:
Dan Gohman07591692010-04-11 22:16:48 +00006532 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6533 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006534 return true;
6535 break;
6536 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006537 case ICmpInst::ICMP_UGE:
Dan Gohman07591692010-04-11 22:16:48 +00006538 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6539 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006540 return true;
6541 break;
6542 }
6543
6544 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006545}
6546
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006547// Verify if an linear IV with positive stride can overflow when in a
6548// less-than comparison, knowing the invariant term of the comparison, the
6549// stride and the knowledge of NSW/NUW flags on the recurrence.
6550bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6551 bool IsSigned, bool NoWrap) {
6552 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00006553
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006554 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6555 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00006556
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006557 if (IsSigned) {
6558 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6559 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6560 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6561 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00006562
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006563 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6564 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00006565 }
Dan Gohman01048422009-06-21 23:46:38 +00006566
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006567 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6568 APInt MaxValue = APInt::getMaxValue(BitWidth);
6569 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6570 .getUnsignedMax();
6571
6572 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6573 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6574}
6575
6576// Verify if an linear IV with negative stride can overflow when in a
6577// greater-than comparison, knowing the invariant term of the comparison,
6578// the stride and the knowledge of NSW/NUW flags on the recurrence.
6579bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6580 bool IsSigned, bool NoWrap) {
6581 if (NoWrap) return false;
6582
6583 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6584 const SCEV *One = getConstant(Stride->getType(), 1);
6585
6586 if (IsSigned) {
6587 APInt MinRHS = getSignedRange(RHS).getSignedMin();
6588 APInt MinValue = APInt::getSignedMinValue(BitWidth);
6589 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6590 .getSignedMax();
6591
6592 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6593 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6594 }
6595
6596 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6597 APInt MinValue = APInt::getMinValue(BitWidth);
6598 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6599 .getUnsignedMax();
6600
6601 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6602 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6603}
6604
6605// Compute the backedge taken count knowing the interval difference, the
6606// stride and presence of the equality in the comparison.
6607const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6608 bool Equality) {
6609 const SCEV *One = getConstant(Step->getType(), 1);
6610 Delta = Equality ? getAddExpr(Delta, Step)
6611 : getAddExpr(Delta, getMinusSCEV(Step, One));
6612 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00006613}
6614
Chris Lattner587a75b2005-08-15 23:33:51 +00006615/// HowManyLessThans - Return the number of times a backedge containing the
6616/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006617/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00006618///
6619/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6620/// control the branch. In this case, we can only compute an iteration count for
6621/// a subexpression that cannot overflow before evaluating true.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006622ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00006623ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006624 const Loop *L, bool IsSigned,
Andrew Trick5b245a12013-05-31 06:43:25 +00006625 bool IsSubExpr) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006626 // We handle only IV < Invariant
6627 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006628 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006629
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006630 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00006631
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006632 // Avoid weird loops
6633 if (!IV || IV->getLoop() != L || !IV->isAffine())
6634 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006635
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006636 bool NoWrap = !IsSubExpr &&
6637 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006638
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006639 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006640
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006641 // Avoid negative or zero stride values
6642 if (!isKnownPositive(Stride))
6643 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006644
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006645 // Avoid proven overflow cases: this will ensure that the backedge taken count
6646 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6647 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6648 // behaviors like the case of C language.
6649 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6650 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006651
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006652 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6653 : ICmpInst::ICMP_ULT;
6654 const SCEV *Start = IV->getStart();
6655 const SCEV *End = RHS;
6656 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6657 End = IsSigned ? getSMaxExpr(RHS, Start)
6658 : getUMaxExpr(RHS, Start);
Dan Gohman51aaf022010-01-26 04:40:18 +00006659
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006660 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00006661
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006662 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6663 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00006664
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006665 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6666 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00006667
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006668 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6669 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6670 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00006671
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006672 // Although End can be a MAX expression we estimate MaxEnd considering only
6673 // the case End = RHS. This is safe because in the other case (End - Start)
6674 // is zero, leading to a zero maximum backedge taken count.
6675 APInt MaxEnd =
6676 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6677 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6678
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00006679 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006680 if (isa<SCEVConstant>(BECount))
6681 MaxBECount = BECount;
6682 else
6683 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6684 getConstant(MinStride), false);
6685
6686 if (isa<SCEVCouldNotCompute>(MaxBECount))
6687 MaxBECount = BECount;
6688
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006689 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006690}
6691
6692ScalarEvolution::ExitLimit
6693ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6694 const Loop *L, bool IsSigned,
6695 bool IsSubExpr) {
6696 // We handle only IV > Invariant
6697 if (!isLoopInvariant(RHS, L))
6698 return getCouldNotCompute();
6699
6700 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6701
6702 // Avoid weird loops
6703 if (!IV || IV->getLoop() != L || !IV->isAffine())
6704 return getCouldNotCompute();
6705
6706 bool NoWrap = !IsSubExpr &&
6707 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6708
6709 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6710
6711 // Avoid negative or zero stride values
6712 if (!isKnownPositive(Stride))
6713 return getCouldNotCompute();
6714
6715 // Avoid proven overflow cases: this will ensure that the backedge taken count
6716 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6717 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6718 // behaviors like the case of C language.
6719 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
6720 return getCouldNotCompute();
6721
6722 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
6723 : ICmpInst::ICMP_UGT;
6724
6725 const SCEV *Start = IV->getStart();
6726 const SCEV *End = RHS;
6727 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
6728 End = IsSigned ? getSMinExpr(RHS, Start)
6729 : getUMinExpr(RHS, Start);
6730
6731 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
6732
6733 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
6734 : getUnsignedRange(Start).getUnsignedMax();
6735
6736 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6737 : getUnsignedRange(Stride).getUnsignedMin();
6738
6739 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6740 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
6741 : APInt::getMinValue(BitWidth) + (MinStride - 1);
6742
6743 // Although End can be a MIN expression we estimate MinEnd considering only
6744 // the case End = RHS. This is safe because in the other case (Start - End)
6745 // is zero, leading to a zero maximum backedge taken count.
6746 APInt MinEnd =
6747 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
6748 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
6749
6750
6751 const SCEV *MaxBECount = getCouldNotCompute();
6752 if (isa<SCEVConstant>(BECount))
6753 MaxBECount = BECount;
6754 else
6755 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
6756 getConstant(MinStride), false);
6757
6758 if (isa<SCEVCouldNotCompute>(MaxBECount))
6759 MaxBECount = BECount;
6760
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006761 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
Chris Lattner587a75b2005-08-15 23:33:51 +00006762}
6763
Chris Lattnerd934c702004-04-02 20:23:17 +00006764/// getNumIterationsInRange - Return the number of iterations of this loop that
6765/// produce values in the specified constant range. Another way of looking at
6766/// this is that it returns the first iteration number where the value is not in
6767/// the condition, thus computing the exit count. If the iteration count can't
6768/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006769const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00006770 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00006771 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00006772 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006773
6774 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00006775 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00006776 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006777 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00006778 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00006779 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00006780 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00006781 if (const SCEVAddRecExpr *ShiftedAddRec =
6782 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00006783 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00006784 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00006785 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00006786 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006787 }
6788
6789 // The only time we can solve this is when we have all constant indices.
6790 // Otherwise, we cannot determine the overflow conditions.
6791 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6792 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00006793 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006794
6795
6796 // Okay at this point we know that all elements of the chrec are constants and
6797 // that the start element is zero.
6798
6799 // First check to see if the range contains zero. If not, the first
6800 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00006801 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00006802 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00006803 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00006804
Chris Lattnerd934c702004-04-02 20:23:17 +00006805 if (isAffine()) {
6806 // If this is an affine expression then we have this situation:
6807 // Solve {0,+,A} in Range === Ax in Range
6808
Nick Lewycky52460262007-07-16 02:08:00 +00006809 // We know that zero is in the range. If A is positive then we know that
6810 // the upper value of the range must be the first possible exit value.
6811 // If A is negative then the lower of the range is the last possible loop
6812 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00006813 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00006814 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6815 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00006816
Nick Lewycky52460262007-07-16 02:08:00 +00006817 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00006818 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00006819 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00006820
6821 // Evaluate at the exit value. If we really did fall out of the valid
6822 // range, then we computed our trip count, otherwise wrap around or other
6823 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00006824 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006825 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00006826 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006827
6828 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00006829 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00006830 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00006831 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00006832 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00006833 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00006834 } else if (isQuadratic()) {
6835 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6836 // quadratic equation to solve it. To do this, we must frame our problem in
6837 // terms of figuring out when zero is crossed, instead of when
6838 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00006839 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00006840 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00006841 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6842 // getNoWrapFlags(FlagNW)
6843 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00006844
6845 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00006846 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00006847 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00006848 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6849 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00006850 if (R1) {
6851 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006852 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00006853 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00006854 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006855 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006856 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00006857
Chris Lattnerd934c702004-04-02 20:23:17 +00006858 // Make sure the root is not off by one. The returned iteration should
6859 // not be in the range, but the previous one should be. When solving
6860 // for "X*X < 5", for example, we should not return a root of 2.
6861 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00006862 R1->getValue(),
6863 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006864 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006865 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00006866 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00006867 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00006868
Dan Gohmana37eaf22007-10-22 18:31:58 +00006869 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006870 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00006871 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00006872 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006873 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006874
Chris Lattnerd934c702004-04-02 20:23:17 +00006875 // If R1 was not in the range, then it is a good return value. Make
6876 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00006877 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00006878 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00006879 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006880 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00006881 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00006882 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006883 }
6884 }
6885 }
6886
Dan Gohman31efa302009-04-18 17:58:19 +00006887 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006888}
6889
Sebastian Pop448712b2014-05-07 18:01:20 +00006890namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00006891struct FindUndefs {
6892 bool Found;
6893 FindUndefs() : Found(false) {}
6894
6895 bool follow(const SCEV *S) {
6896 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
6897 if (isa<UndefValue>(C->getValue()))
6898 Found = true;
6899 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6900 if (isa<UndefValue>(C->getValue()))
6901 Found = true;
6902 }
6903
6904 // Keep looking if we haven't found it yet.
6905 return !Found;
6906 }
6907 bool isDone() const {
6908 // Stop recursion if we have found an undef.
6909 return Found;
6910 }
6911};
6912}
6913
6914// Return true when S contains at least an undef value.
6915static inline bool
6916containsUndefs(const SCEV *S) {
6917 FindUndefs F;
6918 SCEVTraversal<FindUndefs> ST(F);
6919 ST.visitAll(S);
6920
6921 return F.Found;
6922}
6923
6924namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00006925// Collect all steps of SCEV expressions.
6926struct SCEVCollectStrides {
6927 ScalarEvolution &SE;
6928 SmallVectorImpl<const SCEV *> &Strides;
6929
6930 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
6931 : SE(SE), Strides(S) {}
6932
6933 bool follow(const SCEV *S) {
6934 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
6935 Strides.push_back(AR->getStepRecurrence(SE));
6936 return true;
6937 }
6938 bool isDone() const { return false; }
6939};
6940
6941// Collect all SCEVUnknown and SCEVMulExpr expressions.
6942struct SCEVCollectTerms {
6943 SmallVectorImpl<const SCEV *> &Terms;
6944
6945 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
6946 : Terms(T) {}
6947
6948 bool follow(const SCEV *S) {
6949 if (isa<SCEVUnknown>(S) || isa<SCEVConstant>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00006950 if (!containsUndefs(S))
6951 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00006952
6953 // Stop recursion: once we collected a term, do not walk its operands.
6954 return false;
6955 }
6956
6957 // Keep looking.
6958 return true;
6959 }
6960 bool isDone() const { return false; }
6961};
6962}
6963
6964/// Find parametric terms in this SCEVAddRecExpr.
6965void SCEVAddRecExpr::collectParametricTerms(
6966 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
6967 SmallVector<const SCEV *, 4> Strides;
6968 SCEVCollectStrides StrideCollector(SE, Strides);
6969 visitAll(this, StrideCollector);
6970
6971 DEBUG({
6972 dbgs() << "Strides:\n";
6973 for (const SCEV *S : Strides)
6974 dbgs() << *S << "\n";
6975 });
6976
6977 for (const SCEV *S : Strides) {
6978 SCEVCollectTerms TermCollector(Terms);
6979 visitAll(S, TermCollector);
6980 }
6981
6982 DEBUG({
6983 dbgs() << "Terms:\n";
6984 for (const SCEV *T : Terms)
6985 dbgs() << *T << "\n";
6986 });
6987}
6988
Sebastian Popc62c6792013-11-12 22:47:20 +00006989static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
6990 APInt A = C1->getValue()->getValue();
6991 APInt B = C2->getValue()->getValue();
6992 uint32_t ABW = A.getBitWidth();
6993 uint32_t BBW = B.getBitWidth();
6994
6995 if (ABW > BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006996 B = B.sext(ABW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006997 else if (ABW < BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006998 A = A.sext(BBW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006999
7000 return APIntOps::srem(A, B);
7001}
7002
7003static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
7004 APInt A = C1->getValue()->getValue();
7005 APInt B = C2->getValue()->getValue();
7006 uint32_t ABW = A.getBitWidth();
7007 uint32_t BBW = B.getBitWidth();
7008
7009 if (ABW > BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00007010 B = B.sext(ABW);
Sebastian Popc62c6792013-11-12 22:47:20 +00007011 else if (ABW < BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00007012 A = A.sext(BBW);
Sebastian Popc62c6792013-11-12 22:47:20 +00007013
7014 return APIntOps::sdiv(A, B);
7015}
7016
7017namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007018struct FindSCEVSize {
7019 int Size;
7020 FindSCEVSize() : Size(0) {}
7021
7022 bool follow(const SCEV *S) {
7023 ++Size;
7024 // Keep looking at all operands of S.
7025 return true;
7026 }
7027 bool isDone() const {
7028 return false;
7029 }
7030};
7031}
7032
7033// Returns the size of the SCEV S.
7034static inline int sizeOfSCEV(const SCEV *S) {
7035 FindSCEVSize F;
7036 SCEVTraversal<FindSCEVSize> ST(F);
7037 ST.visitAll(S);
7038 return F.Size;
7039}
7040
7041namespace {
7042
7043struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Sebastian Popc62c6792013-11-12 22:47:20 +00007044public:
Sebastian Pop448712b2014-05-07 18:01:20 +00007045 // Computes the Quotient and Remainder of the division of Numerator by
7046 // Denominator.
7047 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
7048 const SCEV *Denominator, const SCEV **Quotient,
7049 const SCEV **Remainder) {
Sebastian Popb8d56f42014-05-07 19:00:37 +00007050 assert(Numerator && Denominator && "Uninitialized SCEV");
Sebastian Popc62c6792013-11-12 22:47:20 +00007051
Sebastian Pop448712b2014-05-07 18:01:20 +00007052 SCEVDivision D(SE, Numerator, Denominator);
Sebastian Popc62c6792013-11-12 22:47:20 +00007053
Sebastian Pop448712b2014-05-07 18:01:20 +00007054 // Check for the trivial case here to avoid having to check for it in the
7055 // rest of the code.
7056 if (Numerator == Denominator) {
7057 *Quotient = D.One;
7058 *Remainder = D.Zero;
7059 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007060 }
7061
Sebastian Pop0e75c5c2014-05-12 19:01:49 +00007062 if (Numerator->isZero()) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007063 *Quotient = D.Zero;
7064 *Remainder = D.Zero;
7065 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007066 }
7067
Sebastian Pop448712b2014-05-07 18:01:20 +00007068 // Split the Denominator when it is a product.
7069 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
7070 const SCEV *Q, *R;
7071 *Quotient = Numerator;
7072 for (const SCEV *Op : T->operands()) {
7073 divide(SE, *Quotient, Op, &Q, &R);
7074 *Quotient = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007075
Sebastian Pop448712b2014-05-07 18:01:20 +00007076 // Bail out when the Numerator is not divisible by one of the terms of
7077 // the Denominator.
Sebastian Pop0e75c5c2014-05-12 19:01:49 +00007078 if (!R->isZero()) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007079 *Quotient = D.Zero;
7080 *Remainder = Numerator;
7081 return;
7082 }
7083 }
7084 *Remainder = D.Zero;
7085 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007086 }
7087
Sebastian Pop448712b2014-05-07 18:01:20 +00007088 D.visit(Numerator);
7089 *Quotient = D.Quotient;
7090 *Remainder = D.Remainder;
Sebastian Popc62c6792013-11-12 22:47:20 +00007091 }
7092
Sebastian Pop448712b2014-05-07 18:01:20 +00007093 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
7094 : SE(S), Denominator(Denominator) {
7095 Zero = SE.getConstant(Denominator->getType(), 0);
7096 One = SE.getConstant(Denominator->getType(), 1);
Sebastian Popc62c6792013-11-12 22:47:20 +00007097
Sebastian Pop448712b2014-05-07 18:01:20 +00007098 // By default, we don't know how to divide Expr by Denominator.
7099 // Providing the default here simplifies the rest of the code.
7100 Quotient = Zero;
7101 Remainder = Numerator;
7102 }
7103
7104 // Except in the trivial case described above, we do not know how to divide
7105 // Expr by Denominator for the following functions with empty implementation.
7106 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
7107 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
7108 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
7109 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
7110 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
7111 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
7112 void visitUnknown(const SCEVUnknown *Numerator) {}
7113 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
7114
7115 void visitConstant(const SCEVConstant *Numerator) {
7116 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
7117 Quotient = SE.getConstant(sdiv(Numerator, D));
7118 Remainder = SE.getConstant(srem(Numerator, D));
7119 return;
7120 }
7121 }
7122
7123 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
7124 const SCEV *StartQ, *StartR, *StepQ, *StepR;
7125 assert(Numerator->isAffine() && "Numerator should be affine");
7126 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
7127 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
7128 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
7129 Numerator->getNoWrapFlags());
7130 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
7131 Numerator->getNoWrapFlags());
7132 }
7133
7134 void visitAddExpr(const SCEVAddExpr *Numerator) {
7135 SmallVector<const SCEV *, 2> Qs, Rs;
7136 for (const SCEV *Op : Numerator->operands()) {
7137 const SCEV *Q, *R;
7138 divide(SE, Op, Denominator, &Q, &R);
7139 Qs.push_back(Q);
7140 Rs.push_back(R);
Sebastian Popc62c6792013-11-12 22:47:20 +00007141 }
7142
Sebastian Pop448712b2014-05-07 18:01:20 +00007143 if (Qs.size() == 1) {
7144 Quotient = Qs[0];
7145 Remainder = Rs[0];
7146 return;
7147 }
7148
7149 Quotient = SE.getAddExpr(Qs);
7150 Remainder = SE.getAddExpr(Rs);
7151 }
7152
7153 void visitMulExpr(const SCEVMulExpr *Numerator) {
7154 SmallVector<const SCEV *, 2> Qs;
7155
7156 bool FoundDenominatorTerm = false;
7157 for (const SCEV *Op : Numerator->operands()) {
7158 if (FoundDenominatorTerm) {
7159 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007160 continue;
Sebastian Popc62c6792013-11-12 22:47:20 +00007161 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007162
7163 // Check whether Denominator divides one of the product operands.
7164 const SCEV *Q, *R;
7165 divide(SE, Op, Denominator, &Q, &R);
Sebastian Pop0e75c5c2014-05-12 19:01:49 +00007166 if (!R->isZero()) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007167 Qs.push_back(Op);
7168 continue;
7169 }
7170 FoundDenominatorTerm = true;
7171 Qs.push_back(Q);
Sebastian Popc62c6792013-11-12 22:47:20 +00007172 }
7173
Sebastian Pop448712b2014-05-07 18:01:20 +00007174 if (FoundDenominatorTerm) {
7175 Remainder = Zero;
7176 if (Qs.size() == 1)
7177 Quotient = Qs[0];
7178 else
7179 Quotient = SE.getMulExpr(Qs);
7180 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007181 }
7182
Sebastian Pop448712b2014-05-07 18:01:20 +00007183 if (!isa<SCEVUnknown>(Denominator)) {
7184 Quotient = Zero;
7185 Remainder = Numerator;
7186 return;
Sebastian Pop9738e832014-04-08 21:21:10 +00007187 }
7188
Sebastian Pop448712b2014-05-07 18:01:20 +00007189 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
7190 ValueToValueMap RewriteMap;
7191 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
7192 cast<SCEVConstant>(Zero)->getValue();
7193 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
Sebastian Popc62c6792013-11-12 22:47:20 +00007194
Sebastian Pop448712b2014-05-07 18:01:20 +00007195 // Quotient is (Numerator - Remainder) divided by Denominator.
7196 const SCEV *Q, *R;
7197 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
7198 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
7199 // This SCEV does not seem to simplify: fail the division here.
7200 Quotient = Zero;
7201 Remainder = Numerator;
7202 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007203 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007204 divide(SE, Diff, Denominator, &Q, &R);
7205 assert(R == Zero &&
7206 "(Numerator - Remainder) should evenly divide Denominator");
7207 Quotient = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007208 }
7209
Sebastian Pop448712b2014-05-07 18:01:20 +00007210private:
7211 ScalarEvolution &SE;
7212 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
7213};
7214}
Sebastian Popc62c6792013-11-12 22:47:20 +00007215
Sebastian Pop448712b2014-05-07 18:01:20 +00007216// Find the Greatest Common Divisor of A and B.
7217static const SCEV *
7218findGCD(ScalarEvolution &SE, const SCEV *A, const SCEV *B) {
Sebastian Popc62c6792013-11-12 22:47:20 +00007219
Sebastian Pop448712b2014-05-07 18:01:20 +00007220 if (const SCEVConstant *CA = dyn_cast<SCEVConstant>(A))
7221 if (const SCEVConstant *CB = dyn_cast<SCEVConstant>(B))
7222 return SE.getConstant(gcd(CA, CB));
Sebastian Popc62c6792013-11-12 22:47:20 +00007223
Sebastian Pop448712b2014-05-07 18:01:20 +00007224 const SCEV *One = SE.getConstant(A->getType(), 1);
7225 if (isa<SCEVConstant>(A) && isa<SCEVUnknown>(B))
Sebastian Popc62c6792013-11-12 22:47:20 +00007226 return One;
Sebastian Pop448712b2014-05-07 18:01:20 +00007227 if (isa<SCEVUnknown>(A) && isa<SCEVConstant>(B))
7228 return One;
7229
7230 const SCEV *Q, *R;
7231 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(A)) {
7232 SmallVector<const SCEV *, 2> Qs;
7233 for (const SCEV *Op : M->operands())
7234 Qs.push_back(findGCD(SE, Op, B));
7235 return SE.getMulExpr(Qs);
7236 }
7237 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(B)) {
7238 SmallVector<const SCEV *, 2> Qs;
7239 for (const SCEV *Op : M->operands())
7240 Qs.push_back(findGCD(SE, A, Op));
7241 return SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007242 }
7243
Sebastian Pop448712b2014-05-07 18:01:20 +00007244 SCEVDivision::divide(SE, A, B, &Q, &R);
Sebastian Pop0e75c5c2014-05-12 19:01:49 +00007245 if (R->isZero())
Sebastian Pop448712b2014-05-07 18:01:20 +00007246 return B;
Sebastian Popc62c6792013-11-12 22:47:20 +00007247
Sebastian Pop448712b2014-05-07 18:01:20 +00007248 SCEVDivision::divide(SE, B, A, &Q, &R);
Sebastian Pop0e75c5c2014-05-12 19:01:49 +00007249 if (R->isZero())
Sebastian Pop448712b2014-05-07 18:01:20 +00007250 return A;
Sebastian Popc62c6792013-11-12 22:47:20 +00007251
Sebastian Pop448712b2014-05-07 18:01:20 +00007252 return One;
7253}
Sebastian Popc62c6792013-11-12 22:47:20 +00007254
Sebastian Pop448712b2014-05-07 18:01:20 +00007255// Find the Greatest Common Divisor of all the SCEVs in Terms.
7256static const SCEV *
7257findGCD(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) {
7258 assert(Terms.size() > 0 && "Terms vector is empty");
Sebastian Popc62c6792013-11-12 22:47:20 +00007259
Sebastian Pop448712b2014-05-07 18:01:20 +00007260 const SCEV *GCD = Terms[0];
7261 for (const SCEV *T : Terms)
7262 GCD = findGCD(SE, GCD, T);
Sebastian Popc62c6792013-11-12 22:47:20 +00007263
Sebastian Pop448712b2014-05-07 18:01:20 +00007264 return GCD;
7265}
Sebastian Popc62c6792013-11-12 22:47:20 +00007266
Sebastian Popb1a548f2014-05-12 19:01:53 +00007267static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007268 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007269 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007270 // The GCD of all Terms is the dimension of the innermost dimension.
7271 const SCEV *GCD = findGCD(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007272
Sebastian Pop448712b2014-05-07 18:01:20 +00007273 // End of recursion.
7274 if (Terms.size() == 1) {
7275 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(GCD)) {
7276 SmallVector<const SCEV *, 2> Qs;
7277 for (const SCEV *Op : M->operands())
7278 if (!isa<SCEVConstant>(Op))
7279 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007280
Sebastian Pop448712b2014-05-07 18:01:20 +00007281 GCD = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007282 }
7283
Sebastian Pop448712b2014-05-07 18:01:20 +00007284 Sizes.push_back(GCD);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007285 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007286 }
7287
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007288 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007289 // Normalize the terms before the next call to findArrayDimensionsRec.
7290 const SCEV *Q, *R;
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007291 SCEVDivision::divide(SE, Term, GCD, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007292
7293 // Bail out when GCD does not evenly divide one of the terms.
7294 if (!R->isZero())
7295 return false;
7296
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007297 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007298 }
7299
Tobias Grosser3080cf12014-05-08 07:55:34 +00007300 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007301 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7302 return isa<SCEVConstant>(E);
7303 }),
7304 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007305
Sebastian Pop448712b2014-05-07 18:01:20 +00007306 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007307 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7308 return false;
7309
Sebastian Pop448712b2014-05-07 18:01:20 +00007310 Sizes.push_back(GCD);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007311 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007312}
Sebastian Popc62c6792013-11-12 22:47:20 +00007313
Sebastian Pop448712b2014-05-07 18:01:20 +00007314namespace {
7315struct FindParameter {
7316 bool FoundParameter;
7317 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007318
Sebastian Pop448712b2014-05-07 18:01:20 +00007319 bool follow(const SCEV *S) {
7320 if (isa<SCEVUnknown>(S)) {
7321 FoundParameter = true;
7322 // Stop recursion: we found a parameter.
7323 return false;
7324 }
7325 // Keep looking.
7326 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007327 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007328 bool isDone() const {
7329 // Stop recursion if we have found a parameter.
7330 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007331 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007332};
7333}
7334
Sebastian Pop448712b2014-05-07 18:01:20 +00007335// Returns true when S contains at least a SCEVUnknown parameter.
7336static inline bool
7337containsParameters(const SCEV *S) {
7338 FindParameter F;
7339 SCEVTraversal<FindParameter> ST(F);
7340 ST.visitAll(S);
7341
7342 return F.FoundParameter;
7343}
7344
7345// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7346static inline bool
7347containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7348 for (const SCEV *T : Terms)
7349 if (containsParameters(T))
7350 return true;
7351 return false;
7352}
7353
7354// Return the number of product terms in S.
7355static inline int numberOfTerms(const SCEV *S) {
7356 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7357 return Expr->getNumOperands();
7358 return 1;
7359}
7360
7361/// Second step of delinearization: compute the array dimensions Sizes from the
7362/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007363void ScalarEvolution::findArrayDimensions(
7364 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop448712b2014-05-07 18:01:20 +00007365 SmallVectorImpl<const SCEV *> &Sizes) const {
7366
7367 if (Terms.size() < 2)
7368 return;
7369
7370 // Early return when Terms do not contain parameters: we do not delinearize
7371 // non parametric SCEVs.
7372 if (!containsParameters(Terms))
7373 return;
7374
7375 DEBUG({
7376 dbgs() << "Terms:\n";
7377 for (const SCEV *T : Terms)
7378 dbgs() << *T << "\n";
7379 });
7380
7381 // Remove duplicates.
7382 std::sort(Terms.begin(), Terms.end());
7383 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7384
7385 // Put larger terms first.
7386 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7387 return numberOfTerms(LHS) > numberOfTerms(RHS);
7388 });
7389
7390 DEBUG({
7391 dbgs() << "Terms after sorting:\n";
7392 for (const SCEV *T : Terms)
7393 dbgs() << *T << "\n";
7394 });
7395
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007396 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007397 bool Res = findArrayDimensionsRec(SE, Terms, Sizes);
7398
7399 if (!Res) {
7400 Sizes.clear();
7401 return;
7402 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007403
7404 DEBUG({
7405 dbgs() << "Sizes:\n";
7406 for (const SCEV *S : Sizes)
7407 dbgs() << *S << "\n";
7408 });
7409}
7410
7411/// Third step of delinearization: compute the access functions for the
7412/// Subscripts based on the dimensions in Sizes.
7413const SCEV *SCEVAddRecExpr::computeAccessFunctions(
7414 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7415 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007416
Sebastian Popb1a548f2014-05-12 19:01:53 +00007417 // Early exit in case this SCEV is not an affine multivariate function.
7418 if (Sizes.empty() || !this->isAffine())
Sebastian Pop05719e42014-05-12 20:11:01 +00007419 return nullptr;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007420
7421 const SCEV *Zero = SE.getConstant(this->getType(), 0);
Sebastian Pop448712b2014-05-07 18:01:20 +00007422 const SCEV *Res = this, *Remainder = Zero;
7423 int Last = Sizes.size() - 1;
7424 for (int i = Last; i >= 0; i--) {
7425 const SCEV *Q, *R;
7426 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
7427
7428 DEBUG({
7429 dbgs() << "Res: " << *Res << "\n";
7430 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7431 dbgs() << "Res divided by Sizes[i]:\n";
7432 dbgs() << "Quotient: " << *Q << "\n";
7433 dbgs() << "Remainder: " << *R << "\n";
7434 });
7435
7436 Res = Q;
7437
7438 if (i == Last) {
7439 // Do not record the last subscript corresponding to the size of elements
7440 // in the array.
7441 Remainder = R;
7442 continue;
7443 }
7444
7445 // Record the access function for the current subscript.
7446 Subscripts.push_back(R);
7447 }
7448
7449 // Also push in last position the remainder of the last division: it will be
7450 // the access function of the innermost dimension.
7451 Subscripts.push_back(Res);
7452
7453 std::reverse(Subscripts.begin(), Subscripts.end());
7454
7455 DEBUG({
7456 dbgs() << "Subscripts:\n";
7457 for (const SCEV *S : Subscripts)
7458 dbgs() << *S << "\n";
7459 });
7460 return Remainder;
7461}
7462
Sebastian Popc62c6792013-11-12 22:47:20 +00007463/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7464/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007465/// is the offset start of the array. The SCEV->delinearize algorithm computes
7466/// the multiples of SCEV coefficients: that is a pattern matching of sub
7467/// expressions in the stride and base of a SCEV corresponding to the
7468/// computation of a GCD (greatest common divisor) of base and stride. When
7469/// SCEV->delinearize fails, it returns the SCEV unchanged.
7470///
7471/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7472///
7473/// void foo(long n, long m, long o, double A[n][m][o]) {
7474///
7475/// for (long i = 0; i < n; i++)
7476/// for (long j = 0; j < m; j++)
7477/// for (long k = 0; k < o; k++)
7478/// A[i][j][k] = 1.0;
7479/// }
7480///
7481/// the delinearization input is the following AddRec SCEV:
7482///
7483/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7484///
7485/// From this SCEV, we are able to say that the base offset of the access is %A
7486/// because it appears as an offset that does not divide any of the strides in
7487/// the loops:
7488///
7489/// CHECK: Base offset: %A
7490///
7491/// and then SCEV->delinearize determines the size of some of the dimensions of
7492/// the array as these are the multiples by which the strides are happening:
7493///
7494/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7495///
7496/// Note that the outermost dimension remains of UnknownSize because there are
7497/// no strides that would help identifying the size of the last dimension: when
7498/// the array has been statically allocated, one could compute the size of that
7499/// dimension by dividing the overall size of the array by the size of the known
7500/// dimensions: %m * %o * 8.
7501///
7502/// Finally delinearize provides the access functions for the array reference
7503/// that does correspond to A[i][j][k] of the above C testcase:
7504///
7505/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7506///
7507/// The testcases are checking the output of a function pass:
7508/// DelinearizationPass that walks through all loads and stores of a function
7509/// asking for the SCEV of the memory access with respect to all enclosing
7510/// loops, calling SCEV->delinearize on that and printing the results.
7511
Sebastian Popc62c6792013-11-12 22:47:20 +00007512const SCEV *
7513SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7514 SmallVectorImpl<const SCEV *> &Subscripts,
7515 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007516 // First step: collect parametric terms.
7517 SmallVector<const SCEV *, 4> Terms;
7518 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007519
Sebastian Popb1a548f2014-05-12 19:01:53 +00007520 if (Terms.empty())
Sebastian Pop05719e42014-05-12 20:11:01 +00007521 return nullptr;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007522
Sebastian Pop448712b2014-05-07 18:01:20 +00007523 // Second step: find subscript sizes.
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007524 SE.findArrayDimensions(Terms, Sizes);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007525
Sebastian Popb1a548f2014-05-12 19:01:53 +00007526 if (Sizes.empty())
Sebastian Pop05719e42014-05-12 20:11:01 +00007527 return nullptr;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007528
Sebastian Pop448712b2014-05-07 18:01:20 +00007529 // Third step: compute the access functions for each subscript.
7530 const SCEV *Remainder = computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007531
Sebastian Popb1a548f2014-05-12 19:01:53 +00007532 if (!Remainder || Subscripts.empty())
Sebastian Pop05719e42014-05-12 20:11:01 +00007533 return nullptr;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007534
Sebastian Pop448712b2014-05-07 18:01:20 +00007535 DEBUG({
7536 dbgs() << "succeeded to delinearize " << *this << "\n";
7537 dbgs() << "ArrayDecl[UnknownSize]";
7538 for (const SCEV *S : Sizes)
7539 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007540
Sebastian Pop444621a2014-05-09 22:45:02 +00007541 dbgs() << "\nArrayRef";
7542 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007543 dbgs() << "[" << *S << "]";
7544 dbgs() << "\n";
7545 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007546
7547 return Remainder;
7548}
Chris Lattnerd934c702004-04-02 20:23:17 +00007549
7550//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007551// SCEVCallbackVH Class Implementation
7552//===----------------------------------------------------------------------===//
7553
Dan Gohmand33a0902009-05-19 19:22:47 +00007554void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007555 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007556 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7557 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007558 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007559 // this now dangles!
7560}
7561
Dan Gohman7a066722010-07-28 01:09:07 +00007562void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007563 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007564
Dan Gohman48f82222009-05-04 22:30:44 +00007565 // Forget all the expressions associated with users of the old value,
7566 // so that future queries will recompute the expressions using the new
7567 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007568 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007569 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007570 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007571 while (!Worklist.empty()) {
7572 User *U = Worklist.pop_back_val();
7573 // Deleting the Old value will cause this to dangle. Postpone
7574 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007575 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007576 continue;
Dan Gohmanf34f8632009-07-14 14:34:04 +00007577 if (!Visited.insert(U))
7578 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007579 if (PHINode *PN = dyn_cast<PHINode>(U))
7580 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007581 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007582 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007583 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007584 // Delete the Old value.
7585 if (PHINode *PN = dyn_cast<PHINode>(Old))
7586 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007587 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007588 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007589}
7590
Dan Gohmand33a0902009-05-19 19:22:47 +00007591ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007592 : CallbackVH(V), SE(se) {}
7593
7594//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007595// ScalarEvolution Class Implementation
7596//===----------------------------------------------------------------------===//
7597
Dan Gohmanc8e23622009-04-21 23:15:49 +00007598ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007599 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7600 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007601 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007602}
7603
Chris Lattnerd934c702004-04-02 20:23:17 +00007604bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007605 this->F = &F;
7606 LI = &getAnalysis<LoopInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00007607 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topper9f008862014-04-15 04:59:12 +00007608 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chad Rosierc24b86f2011-12-01 03:08:23 +00007609 TLI = &getAnalysis<TargetLibraryInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007610 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007611 return false;
7612}
7613
7614void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007615 // Iterate through all the SCEVUnknown instances and call their
7616 // destructors, so that they release their references to their values.
7617 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7618 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007619 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007620
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007621 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007622
7623 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7624 // that a loop had multiple computable exits.
7625 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7626 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7627 I != E; ++I) {
7628 I->second.clear();
7629 }
7630
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007631 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7632
Dan Gohmanc8e23622009-04-21 23:15:49 +00007633 BackedgeTakenCounts.clear();
7634 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007635 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007636 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007637 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007638 UnsignedRanges.clear();
7639 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007640 UniqueSCEVs.clear();
7641 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007642}
7643
7644void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7645 AU.setPreservesAll();
Chris Lattnerd934c702004-04-02 20:23:17 +00007646 AU.addRequiredTransitive<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007647 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chad Rosierc24b86f2011-12-01 03:08:23 +00007648 AU.addRequired<TargetLibraryInfo>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007649}
7650
Dan Gohmanc8e23622009-04-21 23:15:49 +00007651bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007652 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007653}
7654
Dan Gohmanc8e23622009-04-21 23:15:49 +00007655static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007656 const Loop *L) {
7657 // Print all inner loops first
7658 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7659 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007660
Dan Gohmanbc694912010-01-09 18:17:45 +00007661 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007662 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007663 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007664
Dan Gohmancb0efec2009-12-18 01:14:11 +00007665 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007666 L->getExitBlocks(ExitBlocks);
7667 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007668 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007669
Dan Gohman0bddac12009-02-24 18:55:53 +00007670 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7671 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007672 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007673 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007674 }
7675
Dan Gohmanbc694912010-01-09 18:17:45 +00007676 OS << "\n"
7677 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007678 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007679 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007680
7681 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7682 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7683 } else {
7684 OS << "Unpredictable max backedge-taken count. ";
7685 }
7686
7687 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007688}
7689
Dan Gohmancb0efec2009-12-18 01:14:11 +00007690void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007691 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007692 // out SCEV values of all instructions that are interesting. Doing
7693 // this potentially causes it to create new SCEV objects though,
7694 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007695 // observable from outside the class though, so casting away the
7696 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007697 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007698
Dan Gohmanbc694912010-01-09 18:17:45 +00007699 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007700 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007701 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007702 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007703 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007704 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007705 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007706 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007707 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007708
Dan Gohmanb9063a82009-06-19 17:49:54 +00007709 const Loop *L = LI->getLoopFor((*I).getParent());
7710
Dan Gohmanaf752342009-07-07 17:06:11 +00007711 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007712 if (AtUse != SV) {
7713 OS << " --> ";
7714 AtUse->print(OS);
7715 }
7716
7717 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00007718 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007719 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00007720 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007721 OS << "<<Unknown>>";
7722 } else {
7723 OS << *ExitValue;
7724 }
7725 }
7726
Chris Lattnerd934c702004-04-02 20:23:17 +00007727 OS << "\n";
7728 }
7729
Dan Gohmanbc694912010-01-09 18:17:45 +00007730 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007731 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007732 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00007733 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7734 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007735}
Dan Gohmane20f8242009-04-21 00:47:46 +00007736
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007737ScalarEvolution::LoopDisposition
7738ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007739 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7740 for (unsigned u = 0; u < Values.size(); u++) {
7741 if (Values[u].first == L)
7742 return Values[u].second;
7743 }
7744 Values.push_back(std::make_pair(L, LoopVariant));
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007745 LoopDisposition D = computeLoopDisposition(S, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007746 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7747 for (unsigned u = Values2.size(); u > 0; u--) {
7748 if (Values2[u - 1].first == L) {
7749 Values2[u - 1].second = D;
7750 break;
7751 }
7752 }
7753 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007754}
7755
7756ScalarEvolution::LoopDisposition
7757ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007758 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00007759 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007760 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007761 case scTruncate:
7762 case scZeroExtend:
7763 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007764 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007765 case scAddRecExpr: {
7766 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7767
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007768 // If L is the addrec's loop, it's computable.
7769 if (AR->getLoop() == L)
7770 return LoopComputable;
7771
Dan Gohmanafd6db92010-11-17 21:23:15 +00007772 // Add recurrences are never invariant in the function-body (null loop).
7773 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007774 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007775
7776 // This recurrence is variant w.r.t. L if L contains AR's loop.
7777 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007778 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007779
7780 // This recurrence is invariant w.r.t. L if AR's loop contains L.
7781 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007782 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007783
7784 // This recurrence is variant w.r.t. L if any of its operands
7785 // are variant.
7786 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7787 I != E; ++I)
7788 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007789 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007790
7791 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007792 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007793 }
7794 case scAddExpr:
7795 case scMulExpr:
7796 case scUMaxExpr:
7797 case scSMaxExpr: {
7798 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007799 bool HasVarying = false;
7800 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7801 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007802 LoopDisposition D = getLoopDisposition(*I, L);
7803 if (D == LoopVariant)
7804 return LoopVariant;
7805 if (D == LoopComputable)
7806 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007807 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007808 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007809 }
7810 case scUDivExpr: {
7811 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007812 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7813 if (LD == LoopVariant)
7814 return LoopVariant;
7815 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7816 if (RD == LoopVariant)
7817 return LoopVariant;
7818 return (LD == LoopInvariant && RD == LoopInvariant) ?
7819 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007820 }
7821 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007822 // All non-instruction values are loop invariant. All instructions are loop
7823 // invariant if they are not contained in the specified loop.
7824 // Instructions are never considered invariant in the function body
7825 // (null loop) because they are defined within the "loop".
7826 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7827 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7828 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007829 case scCouldNotCompute:
7830 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00007831 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007832 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007833}
7834
7835bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7836 return getLoopDisposition(S, L) == LoopInvariant;
7837}
7838
7839bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7840 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007841}
Dan Gohman20d9ce22010-11-17 21:41:58 +00007842
Dan Gohman8ea83d82010-11-18 00:34:22 +00007843ScalarEvolution::BlockDisposition
7844ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007845 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7846 for (unsigned u = 0; u < Values.size(); u++) {
7847 if (Values[u].first == BB)
7848 return Values[u].second;
7849 }
7850 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
Dan Gohman8ea83d82010-11-18 00:34:22 +00007851 BlockDisposition D = computeBlockDisposition(S, BB);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007852 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7853 for (unsigned u = Values2.size(); u > 0; u--) {
7854 if (Values2[u - 1].first == BB) {
7855 Values2[u - 1].second = D;
7856 break;
7857 }
7858 }
7859 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007860}
7861
Dan Gohman8ea83d82010-11-18 00:34:22 +00007862ScalarEvolution::BlockDisposition
7863ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007864 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00007865 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007866 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007867 case scTruncate:
7868 case scZeroExtend:
7869 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007870 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00007871 case scAddRecExpr: {
7872 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00007873 // to test for proper dominance too, because the instruction which
7874 // produces the addrec's value is a PHI, and a PHI effectively properly
7875 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00007876 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7877 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00007878 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007879 }
7880 // FALL THROUGH into SCEVNAryExpr handling.
7881 case scAddExpr:
7882 case scMulExpr:
7883 case scUMaxExpr:
7884 case scSMaxExpr: {
7885 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007886 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007887 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007888 I != E; ++I) {
7889 BlockDisposition D = getBlockDisposition(*I, BB);
7890 if (D == DoesNotDominateBlock)
7891 return DoesNotDominateBlock;
7892 if (D == DominatesBlock)
7893 Proper = false;
7894 }
7895 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007896 }
7897 case scUDivExpr: {
7898 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007899 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7900 BlockDisposition LD = getBlockDisposition(LHS, BB);
7901 if (LD == DoesNotDominateBlock)
7902 return DoesNotDominateBlock;
7903 BlockDisposition RD = getBlockDisposition(RHS, BB);
7904 if (RD == DoesNotDominateBlock)
7905 return DoesNotDominateBlock;
7906 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7907 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007908 }
7909 case scUnknown:
7910 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00007911 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7912 if (I->getParent() == BB)
7913 return DominatesBlock;
7914 if (DT->properlyDominates(I->getParent(), BB))
7915 return ProperlyDominatesBlock;
7916 return DoesNotDominateBlock;
7917 }
7918 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007919 case scCouldNotCompute:
7920 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00007921 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007922 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00007923}
7924
7925bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7926 return getBlockDisposition(S, BB) >= DominatesBlock;
7927}
7928
7929bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7930 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007931}
Dan Gohman534749b2010-11-17 22:27:42 +00007932
Andrew Trick365e31c2012-07-13 23:33:03 +00007933namespace {
7934// Search for a SCEV expression node within an expression tree.
7935// Implements SCEVTraversal::Visitor.
7936struct SCEVSearch {
7937 const SCEV *Node;
7938 bool IsFound;
7939
7940 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7941
7942 bool follow(const SCEV *S) {
7943 IsFound |= (S == Node);
7944 return !IsFound;
7945 }
7946 bool isDone() const { return IsFound; }
7947};
7948}
7949
Dan Gohman534749b2010-11-17 22:27:42 +00007950bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00007951 SCEVSearch Search(Op);
7952 visitAll(S, Search);
7953 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00007954}
Dan Gohman7e6b3932010-11-17 23:28:48 +00007955
7956void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7957 ValuesAtScopes.erase(S);
7958 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007959 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00007960 UnsignedRanges.erase(S);
7961 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00007962
7963 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7964 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7965 BackedgeTakenInfo &BEInfo = I->second;
7966 if (BEInfo.hasOperand(S, this)) {
7967 BEInfo.clear();
7968 BackedgeTakenCounts.erase(I++);
7969 }
7970 else
7971 ++I;
7972 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00007973}
Benjamin Kramer214935e2012-10-26 17:31:32 +00007974
7975typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00007976
Alp Tokercb402912014-01-24 17:20:08 +00007977/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00007978static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
7979 size_t Pos = 0;
7980 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
7981 Str.replace(Pos, From.size(), To.data(), To.size());
7982 Pos += To.size();
7983 }
7984}
7985
Benjamin Kramer214935e2012-10-26 17:31:32 +00007986/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
7987static void
7988getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
7989 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
7990 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
7991
7992 std::string &S = Map[L];
7993 if (S.empty()) {
7994 raw_string_ostream OS(S);
7995 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00007996
7997 // false and 0 are semantically equivalent. This can happen in dead loops.
7998 replaceSubString(OS.str(), "false", "0");
7999 // Remove wrap flags, their use in SCEV is highly fragile.
8000 // FIXME: Remove this when SCEV gets smarter about them.
8001 replaceSubString(OS.str(), "<nw>", "");
8002 replaceSubString(OS.str(), "<nsw>", "");
8003 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008004 }
8005 }
8006}
8007
8008void ScalarEvolution::verifyAnalysis() const {
8009 if (!VerifySCEV)
8010 return;
8011
8012 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8013
8014 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8015 // FIXME: It would be much better to store actual values instead of strings,
8016 // but SCEV pointers will change if we drop the caches.
8017 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8018 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8019 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8020
8021 // Gather stringified backedge taken counts for all loops without using
8022 // SCEV's caches.
8023 SE.releaseMemory();
8024 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8025 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8026
8027 // Now compare whether they're the same with and without caches. This allows
8028 // verifying that no pass changed the cache.
8029 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8030 "New loops suddenly appeared!");
8031
8032 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8033 OldE = BackedgeDumpsOld.end(),
8034 NewI = BackedgeDumpsNew.begin();
8035 OldI != OldE; ++OldI, ++NewI) {
8036 assert(OldI->first == NewI->first && "Loop order changed!");
8037
8038 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8039 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008040 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008041 // means that a pass is buggy or SCEV has to learn a new pattern but is
8042 // usually not harmful.
8043 if (OldI->second != NewI->second &&
8044 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008045 NewI->second.find("undef") == std::string::npos &&
8046 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008047 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008048 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008049 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008050 << "' changed from '" << OldI->second
8051 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008052 std::abort();
8053 }
8054 }
8055
8056 // TODO: Verify more things.
8057}