blob: 44b28fd0b60c9aece8fe07ccf499141d4707afd2 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Stack allocation
12//===----------------------------------------------------------------------===//
13
14def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
15 [(callseq_start timm:$amt)]>;
16def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
17 [(callseq_end timm:$amt1, timm:$amt2)]>;
18
19let neverHasSideEffects = 1 in {
20 // Takes as input the value of the stack pointer after a dynamic allocation
21 // has been made. Sets the output to the address of the dynamically-
22 // allocated area itself, skipping the outgoing arguments.
23 //
24 // This expands to an LA or LAY instruction. We restrict the offset
25 // to the range of LA and keep the LAY range in reserve for when
26 // the size of the outgoing arguments is added.
27 def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
28 [(set GR64:$dst, dynalloc12only:$src)]>;
29}
30
31//===----------------------------------------------------------------------===//
32// Control flow instructions
33//===----------------------------------------------------------------------===//
34
35// A return instruction. R1 is the condition-code mask (all 1s)
36// and R2 is the target address, which is always stored in %r14.
37let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1,
38 R1 = 15, R2 = 14, isCodeGenOnly = 1 in {
39 def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>;
40}
41
42// Unconditional branches. R1 is the condition-code mask (all 1s).
43let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
44 let isIndirectBranch = 1 in
Richard Sandifordd454ec02013-05-14 09:28:21 +000045 def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
46 "br\t$R2", [(brind ADDR64:$R2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000047
Richard Sandiford312425f2013-05-20 14:23:08 +000048 // An assembler extended mnemonic for BRC.
49 def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
50 [(br bb:$I2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000051
52 // An assembler extended mnemonic for BRCL. (The extension is "G"
53 // rather than "L" because "JL" is "Jump if Less".)
Richard Sandiford312425f2013-05-20 14:23:08 +000054 def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000055}
56
57// Conditional branches. It's easier for LLVM to handle these branches
58// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
59// the first operand. It seems friendlier to use mnemonic forms like
60// JE and JLH when writing out the assembly though.
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000061//
62// Using a custom inserter for BRC gives us a chance to convert the BRC
63// and a preceding compare into a single compare-and-branch instruction.
64// The inserter makes no change in cases where a separate branch really
65// is needed.
66multiclass CondBranches<Operand ccmask, string short, string long> {
Richard Sandiford14a44492013-05-22 13:38:45 +000067 let isBranch = 1, isTerminator = 1, Uses = [CC] in {
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000068 def "" : InstRI<0xA74, (outs), (ins ccmask:$R1, brtarget16:$I2), short, []>;
69 def L : InstRIL<0xC04, (outs), (ins ccmask:$R1, brtarget32:$I2), long, []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000070 }
71}
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000072let isCodeGenOnly = 1, usesCustomInserter = 1 in
Richard Sandifordd454ec02013-05-14 09:28:21 +000073 defm BRC : CondBranches<cond4, "j$R1\t$I2", "jg$R1\t$I2">;
Richard Sandiford6a808f92013-05-14 09:38:07 +000074defm AsmBRC : CondBranches<uimm8zx4, "brc\t$R1, $I2", "brcl\t$R1, $I2">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000075
Richard Sandiford312425f2013-05-20 14:23:08 +000076def : Pat<(z_br_ccmask cond4:$cond, bb:$dst), (BRC cond4:$cond, bb:$dst)>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000077
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000078// Fused compare-and-branch instructions. As for normal branches,
79// we handle these instructions internally in their raw CRJ-like form,
80// but use assembly macros like CRJE when writing them out.
81//
82// These instructions do not use or clobber the condition codes.
83// We nevertheless pretend that they clobber CC, so that we can lower
84// them to separate comparisons and BRCLs if the branch ends up being
85// out of range.
86multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
87 let isBranch = 1, isTerminator = 1, Defs = [CC] in {
88 def RJ : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
89 brtarget16:$RI4),
Richard Sandiforde1d9f002013-05-29 11:58:52 +000090 "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000091 def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
92 brtarget16:$RI4),
Richard Sandiforde1d9f002013-05-29 11:58:52 +000093 "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
94 def IJ : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
95 brtarget16:$RI4),
96 "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
97 def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
98 brtarget16:$RI4),
99 "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000100 }
101}
102let isCodeGenOnly = 1 in
103 defm C : CompareBranches<cond4, "$M3", "">;
104defm AsmC : CompareBranches<uimm8zx4, "", "$M3, ">;
105
106// Define AsmParser mnemonics for each general condition-code mask
107// (integer or floating-point)
108multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
109 let R1 = ccmask in {
Richard Sandiforde1d9f002013-05-29 11:58:52 +0000110 def "" : InstRI<0xA74, (outs), (ins brtarget16:$I2),
111 "j"##name##"\t$I2", []>;
Richard Sandifordd454ec02013-05-14 09:28:21 +0000112 def L : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
Richard Sandiforde1d9f002013-05-29 11:58:52 +0000113 "jg"##name##"\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000114 }
115}
Richard Sandiford6a808f92013-05-14 09:38:07 +0000116defm AsmJO : CondExtendedMnemonic<1, "o">;
117defm AsmJH : CondExtendedMnemonic<2, "h">;
118defm AsmJNLE : CondExtendedMnemonic<3, "nle">;
119defm AsmJL : CondExtendedMnemonic<4, "l">;
120defm AsmJNHE : CondExtendedMnemonic<5, "nhe">;
121defm AsmJLH : CondExtendedMnemonic<6, "lh">;
122defm AsmJNE : CondExtendedMnemonic<7, "ne">;
123defm AsmJE : CondExtendedMnemonic<8, "e">;
124defm AsmJNLH : CondExtendedMnemonic<9, "nlh">;
125defm AsmJHE : CondExtendedMnemonic<10, "he">;
126defm AsmJNL : CondExtendedMnemonic<11, "nl">;
127defm AsmJLE : CondExtendedMnemonic<12, "le">;
128defm AsmJNH : CondExtendedMnemonic<13, "nh">;
129defm AsmJNO : CondExtendedMnemonic<14, "no">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000130
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000131// Define AsmParser mnemonics for each integer condition-code mask.
132// This is like the list above, except that condition 3 is not possible
133// and that the low bit of the mask is therefore always 0. This means
134// that each condition has two names. Conditions "o" and "no" are not used.
135//
136// We don't make one of the two names an alias of the other because
137// we need the custom parsing routines to select the correct register class.
138multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
139 let M3 = ccmask in {
140 def CR : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
141 brtarget16:$RI4),
142 "crj"##name##"\t$R1, $R2, $RI4", []>;
143 def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
144 brtarget16:$RI4),
145 "cgrj"##name##"\t$R1, $R2, $RI4", []>;
Richard Sandiforde1d9f002013-05-29 11:58:52 +0000146 def CI : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
147 brtarget16:$RI4),
148 "cij"##name##"\t$R1, $I2, $RI4", []>;
149 def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
150 brtarget16:$RI4),
151 "cgij"##name##"\t$R1, $I2, $RI4", []>;
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000152 }
153}
154multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
155 : IntCondExtendedMnemonicA<ccmask, name1> {
156 let isAsmParserOnly = 1 in
157 defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
158}
159defm AsmJH : IntCondExtendedMnemonic<2, "h", "nle">;
160defm AsmJL : IntCondExtendedMnemonic<4, "l", "nhe">;
161defm AsmJLH : IntCondExtendedMnemonic<6, "lh", "ne">;
162defm AsmJE : IntCondExtendedMnemonic<8, "e", "nlh">;
163defm AsmJHE : IntCondExtendedMnemonic<10, "he", "nl">;
164defm AsmJLE : IntCondExtendedMnemonic<12, "le", "nh">;
165
Richard Sandifordb86a8342013-06-27 09:27:40 +0000166//===----------------------------------------------------------------------===//
167// Select instructions
168//===----------------------------------------------------------------------===//
169
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000170def Select32 : SelectWrapper<GR32>;
171def Select64 : SelectWrapper<GR64>;
172
Richard Sandifordb86a8342013-06-27 09:27:40 +0000173defm CondStore8_32 : CondStores<GR32, nonvolatile_truncstorei8,
174 nonvolatile_anyextloadi8, bdxaddr20only>;
175defm CondStore16_32 : CondStores<GR32, nonvolatile_truncstorei16,
176 nonvolatile_anyextloadi16, bdxaddr20only>;
177defm CondStore32_32 : CondStores<GR32, nonvolatile_store,
178 nonvolatile_load, bdxaddr20only>;
179
180defm CondStore8 : CondStores<GR64, nonvolatile_truncstorei8,
181 nonvolatile_anyextloadi8, bdxaddr20only>;
182defm CondStore16 : CondStores<GR64, nonvolatile_truncstorei16,
183 nonvolatile_anyextloadi16, bdxaddr20only>;
184defm CondStore32 : CondStores<GR64, nonvolatile_truncstorei32,
185 nonvolatile_anyextloadi32, bdxaddr20only>;
186defm CondStore64 : CondStores<GR64, nonvolatile_store,
187 nonvolatile_load, bdxaddr20only>;
188
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000189//===----------------------------------------------------------------------===//
190// Call instructions
191//===----------------------------------------------------------------------===//
192
193// The definitions here are for the call-clobbered registers.
194let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
195 F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D],
196 R1 = 14, isCodeGenOnly = 1 in {
Richard Sandifordd454ec02013-05-14 09:28:21 +0000197 def BRAS : InstRI<0xA75, (outs), (ins pcrel16call:$I2, variable_ops),
198 "bras\t%r14, $I2", []>;
199 def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$I2, variable_ops),
200 "brasl\t%r14, $I2", [(z_call pcrel32call:$I2)]>;
201 def BASR : InstRR<0x0D, (outs), (ins ADDR64:$R2, variable_ops),
202 "basr\t%r14, $R2", [(z_call ADDR64:$R2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000203}
204
205// Define the general form of the call instructions for the asm parser.
206// These instructions don't hard-code %r14 as the return address register.
Richard Sandiford6a808f92013-05-14 09:38:07 +0000207def AsmBRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
208 "bras\t$R1, $I2", []>;
209def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
210 "brasl\t$R1, $I2", []>;
211def AsmBASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
212 "basr\t$R1, $R2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000213
214//===----------------------------------------------------------------------===//
215// Move instructions
216//===----------------------------------------------------------------------===//
217
218// Register moves.
219let neverHasSideEffects = 1 in {
220 def LR : UnaryRR <"lr", 0x18, null_frag, GR32, GR32>;
221 def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
222}
223
224// Immediate moves.
Richard Sandiforda57e13b2013-06-27 09:38:48 +0000225let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
226 isReMaterializable = 1 in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000227 // 16-bit sign-extended immediates.
228 def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
229 def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
230
231 // Other 16-bit immediates.
232 def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
233 def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
234 def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
235 def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
236
237 // 32-bit immediates.
238 def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
239 def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
240 def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
241}
242
243// Register loads.
244let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
Richard Sandifordf6bae1e2013-07-02 15:28:56 +0000245 defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32>;
246 def LG : UnaryRXY<"lg", 0xE304, load, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000247
248 // These instructions are split after register allocation, so we don't
249 // want a custom inserter.
250 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
251 def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
252 [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
253 }
254}
Richard Sandifordf6bae1e2013-07-02 15:28:56 +0000255let canFoldAsLoad = 1 in {
256 def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
257 def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
258}
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000259
260// Register stores.
261let SimpleBDXStore = 1 in {
Richard Sandifordf6bae1e2013-07-02 15:28:56 +0000262 let isCodeGenOnly = 1 in
263 defm ST32 : StoreRXPair<"st", 0x50, 0xE350, store, GR32>;
264 def STG : StoreRXY<"stg", 0xE324, store, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000265
266 // These instructions are split after register allocation, so we don't
267 // want a custom inserter.
268 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
269 def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
270 [(store GR128:$src, bdxaddr20only128:$dst)]>;
271 }
272}
Richard Sandifordf6bae1e2013-07-02 15:28:56 +0000273let isCodeGenOnly = 1 in
274 def STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
275def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000276
277// 8-bit immediate stores to 8-bit fields.
278defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
279
280// 16-bit immediate stores to 16-, 32- or 64-bit fields.
281def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
282def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
283def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
284
Richard Sandiford1d959002013-07-02 14:56:45 +0000285// Memory-to-memory moves.
286let mayLoad = 1, mayStore = 1 in
287 def MVC : InstSS<0xD2, (outs), (ins bdladdr12onlylen8:$BDL1,
288 bdaddr12only:$BD2),
289 "mvc\t$BDL1, $BD2", []>;
290
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000291//===----------------------------------------------------------------------===//
292// Sign extensions
293//===----------------------------------------------------------------------===//
294
295// 32-bit extensions from registers.
296let neverHasSideEffects = 1 in {
297 def LBR : UnaryRRE<"lbr", 0xB926, sext8, GR32, GR32>;
298 def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
299}
300
301// 64-bit extensions from registers.
302let neverHasSideEffects = 1 in {
303 def LGBR : UnaryRRE<"lgbr", 0xB906, sext8, GR64, GR64>;
304 def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
305 def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
306}
307
308// Match 32-to-64-bit sign extensions in which the source is already
309// in a 64-bit register.
310def : Pat<(sext_inreg GR64:$src, i32),
311 (LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
312
313// 32-bit extensions from memory.
314def LB : UnaryRXY<"lb", 0xE376, sextloadi8, GR32>;
315defm LH : UnaryRXPair<"lh", 0x48, 0xE378, sextloadi16, GR32>;
316def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_sextloadi16, GR32>;
317
318// 64-bit extensions from memory.
319def LGB : UnaryRXY<"lgb", 0xE377, sextloadi8, GR64>;
320def LGH : UnaryRXY<"lgh", 0xE315, sextloadi16, GR64>;
321def LGF : UnaryRXY<"lgf", 0xE314, sextloadi32, GR64>;
322def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_sextloadi16, GR64>;
323def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_sextloadi32, GR64>;
324
325// If the sign of a load-extend operation doesn't matter, use the signed ones.
326// There's not really much to choose between the sign and zero extensions,
327// but LH is more compact than LLH for small offsets.
328def : Pat<(i32 (extloadi8 bdxaddr20only:$src)), (LB bdxaddr20only:$src)>;
329def : Pat<(i32 (extloadi16 bdxaddr12pair:$src)), (LH bdxaddr12pair:$src)>;
330def : Pat<(i32 (extloadi16 bdxaddr20pair:$src)), (LHY bdxaddr20pair:$src)>;
331
332def : Pat<(i64 (extloadi8 bdxaddr20only:$src)), (LGB bdxaddr20only:$src)>;
333def : Pat<(i64 (extloadi16 bdxaddr20only:$src)), (LGH bdxaddr20only:$src)>;
334def : Pat<(i64 (extloadi32 bdxaddr20only:$src)), (LGF bdxaddr20only:$src)>;
335
336//===----------------------------------------------------------------------===//
337// Zero extensions
338//===----------------------------------------------------------------------===//
339
340// 32-bit extensions from registers.
341let neverHasSideEffects = 1 in {
342 def LLCR : UnaryRRE<"llcr", 0xB994, zext8, GR32, GR32>;
343 def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
344}
345
346// 64-bit extensions from registers.
347let neverHasSideEffects = 1 in {
348 def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8, GR64, GR64>;
349 def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
350 def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
351}
352
353// Match 32-to-64-bit zero extensions in which the source is already
354// in a 64-bit register.
355def : Pat<(and GR64:$src, 0xffffffff),
356 (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
357
358// 32-bit extensions from memory.
359def LLC : UnaryRXY<"llc", 0xE394, zextloadi8, GR32>;
360def LLH : UnaryRXY<"llh", 0xE395, zextloadi16, GR32>;
361def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_zextloadi16, GR32>;
362
363// 64-bit extensions from memory.
364def LLGC : UnaryRXY<"llgc", 0xE390, zextloadi8, GR64>;
365def LLGH : UnaryRXY<"llgh", 0xE391, zextloadi16, GR64>;
366def LLGF : UnaryRXY<"llgf", 0xE316, zextloadi32, GR64>;
367def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_zextloadi16, GR64>;
368def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_zextloadi32, GR64>;
369
370//===----------------------------------------------------------------------===//
371// Truncations
372//===----------------------------------------------------------------------===//
373
374// Truncations of 64-bit registers to 32-bit registers.
375def : Pat<(i32 (trunc GR64:$src)),
376 (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
377
378// Truncations of 32-bit registers to memory.
379let isCodeGenOnly = 1 in {
380 defm STC32 : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32>;
381 defm STH32 : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32>;
382 def STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
383}
384
385// Truncations of 64-bit registers to memory.
386defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR64>;
387defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64>;
388def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>;
389defm ST : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64>;
390def STRL : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>;
391
392//===----------------------------------------------------------------------===//
393// Multi-register moves
394//===----------------------------------------------------------------------===//
395
396// Multi-register loads.
397def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
398
399// Multi-register stores.
400def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
401
402//===----------------------------------------------------------------------===//
403// Byte swaps
404//===----------------------------------------------------------------------===//
405
406// Byte-swapping register moves.
407let neverHasSideEffects = 1 in {
408 def LRVR : UnaryRRE<"lrvr", 0xB91F, bswap, GR32, GR32>;
409 def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
410}
411
Richard Sandiford30efd872013-05-31 13:25:22 +0000412// Byte-swapping loads. Unlike normal loads, these instructions are
413// allowed to access storage more than once.
414def LRV : UnaryRXY<"lrv", 0xE31E, loadu<bswap, nonvolatile_load>, GR32>;
415def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000416
Richard Sandiford30efd872013-05-31 13:25:22 +0000417// Likewise byte-swapping stores.
418def STRV : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32>;
419def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000420
421//===----------------------------------------------------------------------===//
422// Load address instructions
423//===----------------------------------------------------------------------===//
424
425// Load BDX-style addresses.
Richard Sandiford891a7e72013-06-27 09:42:10 +0000426let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
Richard Sandiforddf313ff2013-07-03 09:19:58 +0000427 DispKey = "la" in {
428 let DispSize = "12" in
Richard Sandifordd454ec02013-05-14 09:28:21 +0000429 def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
430 "la\t$R1, $XBD2",
431 [(set GR64:$R1, laaddr12pair:$XBD2)]>;
Richard Sandiforddf313ff2013-07-03 09:19:58 +0000432 let DispSize = "20" in
Richard Sandifordd454ec02013-05-14 09:28:21 +0000433 def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
434 "lay\t$R1, $XBD2",
435 [(set GR64:$R1, laaddr20pair:$XBD2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000436}
437
438// Load a PC-relative address. There's no version of this instruction
439// with a 16-bit offset, so there's no relaxation.
Richard Sandiford891a7e72013-06-27 09:42:10 +0000440let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
441 isReMaterializable = 1 in {
Richard Sandifordd454ec02013-05-14 09:28:21 +0000442 def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
443 "larl\t$R1, $I2",
444 [(set GR64:$R1, pcrel32:$I2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000445}
446
447//===----------------------------------------------------------------------===//
448// Negation
449//===----------------------------------------------------------------------===//
450
Richard Sandiford14a44492013-05-22 13:38:45 +0000451let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000452 def LCR : UnaryRR <"lcr", 0x13, ineg, GR32, GR32>;
453 def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
454 def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
455}
456defm : SXU<ineg, LCGFR>;
457
458//===----------------------------------------------------------------------===//
459// Insertion
460//===----------------------------------------------------------------------===//
461
462let isCodeGenOnly = 1 in
463 defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, zextloadi8>;
464defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, zextloadi8>;
465
466defm : InsertMem<"inserti8", IC32, GR32, zextloadi8, bdxaddr12pair>;
467defm : InsertMem<"inserti8", IC32Y, GR32, zextloadi8, bdxaddr20pair>;
468
469defm : InsertMem<"inserti8", IC, GR64, zextloadi8, bdxaddr12pair>;
470defm : InsertMem<"inserti8", ICY, GR64, zextloadi8, bdxaddr20pair>;
471
472// Insertions of a 16-bit immediate, leaving other bits unaffected.
473// We don't have or_as_insert equivalents of these operations because
474// OI is available instead.
475let isCodeGenOnly = 1 in {
476 def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
477 def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
478}
479def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>;
480def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>;
481def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>;
482def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;
483
484// ...likewise for 32-bit immediates. For GR32s this is a general
485// full-width move. (We use IILF rather than something like LLILF
486// for 32-bit moves because IILF leaves the upper 32 bits of the
487// GR64 unchanged.)
Richard Sandiforda57e13b2013-06-27 09:38:48 +0000488let isCodeGenOnly = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
489 isReMaterializable = 1 in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000490 def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
491}
492def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>;
493def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;
494
495// An alternative model of inserthf, with the first operand being
496// a zero-extended value.
497def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
498 (IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit),
499 imm64hf32:$imm)>;
500
501//===----------------------------------------------------------------------===//
502// Addition
503//===----------------------------------------------------------------------===//
504
505// Plain addition.
Richard Sandiford14a44492013-05-22 13:38:45 +0000506let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000507 // Addition of a register.
508 let isCommutable = 1 in {
509 def AR : BinaryRR <"ar", 0x1A, add, GR32, GR32>;
510 def AGR : BinaryRRE<"agr", 0xB908, add, GR64, GR64>;
511 }
512 def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
513
514 // Addition of signed 16-bit immediates.
515 def AHI : BinaryRI<"ahi", 0xA7A, add, GR32, imm32sx16>;
516 def AGHI : BinaryRI<"aghi", 0xA7B, add, GR64, imm64sx16>;
517
518 // Addition of signed 32-bit immediates.
519 def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>;
520 def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
521
522 // Addition of memory.
523 defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, sextloadi16>;
524 defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load>;
525 def AGF : BinaryRXY<"agf", 0xE318, add, GR64, sextloadi32>;
526 def AG : BinaryRXY<"ag", 0xE308, add, GR64, load>;
527
528 // Addition to memory.
529 def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
530 def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
531}
532defm : SXB<add, GR64, AGFR>;
533
534// Addition producing a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000535let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000536 // Addition of a register.
537 let isCommutable = 1 in {
538 def ALR : BinaryRR <"alr", 0x1E, addc, GR32, GR32>;
539 def ALGR : BinaryRRE<"algr", 0xB90A, addc, GR64, GR64>;
540 }
541 def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
542
543 // Addition of unsigned 32-bit immediates.
544 def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>;
545 def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
546
547 // Addition of memory.
548 defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load>;
549 def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, zextloadi32>;
550 def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load>;
551}
552defm : ZXB<addc, GR64, ALGFR>;
553
554// Addition producing and using a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000555let Defs = [CC], Uses = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000556 // Addition of a register.
557 def ALCR : BinaryRRE<"alcr", 0xB998, adde, GR32, GR32>;
558 def ALCGR : BinaryRRE<"alcgr", 0xB988, adde, GR64, GR64>;
559
560 // Addition of memory.
561 def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load>;
562 def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load>;
563}
564
565//===----------------------------------------------------------------------===//
566// Subtraction
567//===----------------------------------------------------------------------===//
568
569// Plain substraction. Although immediate forms exist, we use the
570// add-immediate instruction instead.
Richard Sandiford14a44492013-05-22 13:38:45 +0000571let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000572 // Subtraction of a register.
573 def SR : BinaryRR <"sr", 0x1B, sub, GR32, GR32>;
574 def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
575 def SGR : BinaryRRE<"sgr", 0xB909, sub, GR64, GR64>;
576
577 // Subtraction of memory.
Richard Sandifordffd14412013-05-15 15:05:29 +0000578 defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, sextloadi16>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000579 defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load>;
580 def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, sextloadi32>;
581 def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load>;
582}
583defm : SXB<sub, GR64, SGFR>;
584
585// Subtraction producing a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000586let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000587 // Subtraction of a register.
588 def SLR : BinaryRR <"slr", 0x1F, subc, GR32, GR32>;
589 def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
590 def SLGR : BinaryRRE<"slgr", 0xB90B, subc, GR64, GR64>;
591
592 // Subtraction of unsigned 32-bit immediates. These don't match
593 // subc because we prefer addc for constants.
594 def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>;
595 def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
596
597 // Subtraction of memory.
598 defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load>;
599 def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, zextloadi32>;
600 def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load>;
601}
602defm : ZXB<subc, GR64, SLGFR>;
603
604// Subtraction producing and using a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000605let Defs = [CC], Uses = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000606 // Subtraction of a register.
607 def SLBR : BinaryRRE<"slbr", 0xB999, sube, GR32, GR32>;
608 def SLGBR : BinaryRRE<"slbgr", 0xB989, sube, GR64, GR64>;
609
610 // Subtraction of memory.
611 def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load>;
612 def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load>;
613}
614
615//===----------------------------------------------------------------------===//
616// AND
617//===----------------------------------------------------------------------===//
618
Richard Sandiford14a44492013-05-22 13:38:45 +0000619let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000620 // ANDs of a register.
621 let isCommutable = 1 in {
622 def NR : BinaryRR <"nr", 0x14, and, GR32, GR32>;
623 def NGR : BinaryRRE<"ngr", 0xB980, and, GR64, GR64>;
624 }
625
626 // ANDs of a 16-bit immediate, leaving other bits unaffected.
627 let isCodeGenOnly = 1 in {
628 def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
629 def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
630 }
631 def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>;
632 def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>;
633 def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>;
634 def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>;
635
636 // ANDs of a 32-bit immediate, leaving other bits unaffected.
637 let isCodeGenOnly = 1 in
638 def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
639 def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>;
640 def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>;
641
642 // ANDs of memory.
643 defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load>;
644 def NG : BinaryRXY<"ng", 0xE380, and, GR64, load>;
645
646 // AND to memory
647 defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
648}
649defm : RMWIByte<and, bdaddr12pair, NI>;
650defm : RMWIByte<and, bdaddr20pair, NIY>;
651
652//===----------------------------------------------------------------------===//
653// OR
654//===----------------------------------------------------------------------===//
655
Richard Sandiford14a44492013-05-22 13:38:45 +0000656let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000657 // ORs of a register.
658 let isCommutable = 1 in {
659 def OR : BinaryRR <"or", 0x16, or, GR32, GR32>;
660 def OGR : BinaryRRE<"ogr", 0xB981, or, GR64, GR64>;
661 }
662
663 // ORs of a 16-bit immediate, leaving other bits unaffected.
664 let isCodeGenOnly = 1 in {
665 def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
666 def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
667 }
668 def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>;
669 def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>;
670 def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>;
671 def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>;
672
673 // ORs of a 32-bit immediate, leaving other bits unaffected.
674 let isCodeGenOnly = 1 in
675 def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
676 def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>;
677 def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>;
678
679 // ORs of memory.
680 defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load>;
681 def OG : BinaryRXY<"og", 0xE381, or, GR64, load>;
682
683 // OR to memory
684 defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
685}
686defm : RMWIByte<or, bdaddr12pair, OI>;
687defm : RMWIByte<or, bdaddr20pair, OIY>;
688
689//===----------------------------------------------------------------------===//
690// XOR
691//===----------------------------------------------------------------------===//
692
Richard Sandiford14a44492013-05-22 13:38:45 +0000693let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000694 // XORs of a register.
695 let isCommutable = 1 in {
696 def XR : BinaryRR <"xr", 0x17, xor, GR32, GR32>;
697 def XGR : BinaryRRE<"xgr", 0xB982, xor, GR64, GR64>;
698 }
699
700 // XORs of a 32-bit immediate, leaving other bits unaffected.
701 let isCodeGenOnly = 1 in
702 def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
703 def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>;
704 def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>;
705
706 // XORs of memory.
707 defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load>;
708 def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load>;
709
710 // XOR to memory
711 defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
712}
713defm : RMWIByte<xor, bdaddr12pair, XI>;
714defm : RMWIByte<xor, bdaddr20pair, XIY>;
715
716//===----------------------------------------------------------------------===//
717// Multiplication
718//===----------------------------------------------------------------------===//
719
720// Multiplication of a register.
721let isCommutable = 1 in {
722 def MSR : BinaryRRE<"msr", 0xB252, mul, GR32, GR32>;
723 def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
724}
725def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
726defm : SXB<mul, GR64, MSGFR>;
727
728// Multiplication of a signed 16-bit immediate.
729def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
730def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
731
732// Multiplication of a signed 32-bit immediate.
733def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
734def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
735
736// Multiplication of memory.
737defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, sextloadi16>;
738defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load>;
739def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, sextloadi32>;
740def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load>;
741
742// Multiplication of a register, producing two results.
743def MLGR : BinaryRRE<"mlgr", 0xB986, z_umul_lohi64, GR128, GR64>;
744
745// Multiplication of memory, producing two results.
746def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load>;
747
748//===----------------------------------------------------------------------===//
749// Division and remainder
750//===----------------------------------------------------------------------===//
751
752// Division and remainder, from registers.
Richard Sandiforde6e78852013-07-02 15:40:22 +0000753def DSGFR : BinaryRRE<"dsgfr", 0xB91D, z_sdivrem32, GR128, GR32>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000754def DSGR : BinaryRRE<"dsgr", 0xB90D, z_sdivrem64, GR128, GR64>;
755def DLR : BinaryRRE<"dlr", 0xB997, z_udivrem32, GR128, GR32>;
756def DLGR : BinaryRRE<"dlgr", 0xB987, z_udivrem64, GR128, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000757
758// Division and remainder, from memory.
Richard Sandiforde6e78852013-07-02 15:40:22 +0000759def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000760def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load>;
761def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load>;
762def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load>;
763
764//===----------------------------------------------------------------------===//
765// Shifts
766//===----------------------------------------------------------------------===//
767
768// Shift left.
769let neverHasSideEffects = 1 in {
770 def SLL : ShiftRS <"sll", 0x89, shl, GR32, shift12only>;
771 def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64, shift20only>;
772}
773
774// Logical shift right.
775let neverHasSideEffects = 1 in {
776 def SRL : ShiftRS <"srl", 0x88, srl, GR32, shift12only>;
777 def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64, shift20only>;
778}
779
780// Arithmetic shift right.
Richard Sandiford14a44492013-05-22 13:38:45 +0000781let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000782 def SRA : ShiftRS <"sra", 0x8A, sra, GR32, shift12only>;
783 def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64, shift20only>;
784}
785
786// Rotate left.
787let neverHasSideEffects = 1 in {
788 def RLL : ShiftRSY<"rll", 0xEB1D, rotl, GR32, shift20only>;
789 def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64, shift20only>;
790}
791
792// Rotate second operand left and inserted selected bits into first operand.
793// These can act like 32-bit operands provided that the constant start and
794// end bits (operands 2 and 3) are in the range [32, 64)
Richard Sandiford14a44492013-05-22 13:38:45 +0000795let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000796 let isCodeGenOnly = 1 in
797 def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
798 def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
799}
800
801//===----------------------------------------------------------------------===//
802// Comparison
803//===----------------------------------------------------------------------===//
804
805// Signed comparisons.
Richard Sandiford14a44492013-05-22 13:38:45 +0000806let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000807 // Comparison with a register.
808 def CR : CompareRR <"cr", 0x19, z_cmp, GR32, GR32>;
809 def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
810 def CGR : CompareRRE<"cgr", 0xB920, z_cmp, GR64, GR64>;
811
812 // Comparison with a signed 16-bit immediate.
813 def CHI : CompareRI<"chi", 0xA7E, z_cmp, GR32, imm32sx16>;
814 def CGHI : CompareRI<"cghi", 0xA7F, z_cmp, GR64, imm64sx16>;
815
816 // Comparison with a signed 32-bit immediate.
817 def CFI : CompareRIL<"cfi", 0xC2D, z_cmp, GR32, simm32>;
818 def CGFI : CompareRIL<"cgfi", 0xC2C, z_cmp, GR64, imm64sx32>;
819
820 // Comparison with memory.
821 defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_cmp, GR32, sextloadi16>;
822 defm C : CompareRXPair<"c", 0x59, 0xE359, z_cmp, GR32, load>;
823 def CGH : CompareRXY<"cgh", 0xE334, z_cmp, GR64, sextloadi16>;
824 def CGF : CompareRXY<"cgf", 0xE330, z_cmp, GR64, sextloadi32>;
825 def CG : CompareRXY<"cg", 0xE320, z_cmp, GR64, load>;
826 def CHRL : CompareRILPC<"chrl", 0xC65, z_cmp, GR32, aligned_sextloadi16>;
827 def CRL : CompareRILPC<"crl", 0xC6D, z_cmp, GR32, aligned_load>;
828 def CGHRL : CompareRILPC<"cghrl", 0xC64, z_cmp, GR64, aligned_sextloadi16>;
829 def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_cmp, GR64, aligned_sextloadi32>;
830 def CGRL : CompareRILPC<"cgrl", 0xC68, z_cmp, GR64, aligned_load>;
831
832 // Comparison between memory and a signed 16-bit immediate.
833 def CHHSI : CompareSIL<"chhsi", 0xE554, z_cmp, sextloadi16, imm32sx16>;
834 def CHSI : CompareSIL<"chsi", 0xE55C, z_cmp, load, imm32sx16>;
835 def CGHSI : CompareSIL<"cghsi", 0xE558, z_cmp, load, imm64sx16>;
836}
837defm : SXB<z_cmp, GR64, CGFR>;
838
839// Unsigned comparisons.
Richard Sandiford14a44492013-05-22 13:38:45 +0000840let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000841 // Comparison with a register.
842 def CLR : CompareRR <"clr", 0x15, z_ucmp, GR32, GR32>;
843 def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
844 def CLGR : CompareRRE<"clgr", 0xB921, z_ucmp, GR64, GR64>;
845
846 // Comparison with a signed 32-bit immediate.
847 def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
848 def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
849
850 // Comparison with memory.
851 defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load>;
852 def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, zextloadi32>;
853 def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load>;
854 def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
855 aligned_zextloadi16>;
856 def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
857 aligned_load>;
858 def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
859 aligned_zextloadi16>;
860 def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
861 aligned_zextloadi32>;
862 def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
863 aligned_load>;
864
865 // Comparison between memory and an unsigned 8-bit immediate.
866 defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, zextloadi8, imm32zx8>;
867
868 // Comparison between memory and an unsigned 16-bit immediate.
869 def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, zextloadi16, imm32zx16>;
870 def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
871 def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
872}
873defm : ZXB<z_ucmp, GR64, CLGFR>;
874
875//===----------------------------------------------------------------------===//
876// Atomic operations
877//===----------------------------------------------------------------------===//
878
879def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
880def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
881def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
882
883def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
884def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
885def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>;
886def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
887def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
888def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>;
889def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
890def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
891
892def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
893def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>;
894def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
895
896def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
897def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
898def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>;
899def ATOMIC_LOAD_NILL32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
900def ATOMIC_LOAD_NILH32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
901def ATOMIC_LOAD_NILF32 : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
902def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>;
903def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
904def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
905def ATOMIC_LOAD_NIHL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
906def ATOMIC_LOAD_NIHH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
907def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
908def ATOMIC_LOAD_NIHF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
909
910def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
911def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
912def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>;
913def ATOMIC_LOAD_OILL32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
914def ATOMIC_LOAD_OILH32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
915def ATOMIC_LOAD_OILF32 : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
916def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>;
917def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
918def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
919def ATOMIC_LOAD_OIHL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
920def ATOMIC_LOAD_OIHH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
921def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
922def ATOMIC_LOAD_OIHF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
923
924def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
925def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
926def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>;
927def ATOMIC_LOAD_XILF32 : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
928def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>;
929def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
930def ATOMIC_LOAD_XIHF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
931
932def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
933def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
934 imm32lh16c>;
935def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>;
936def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
937 imm32ll16c>;
938def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
939 imm32lh16c>;
940def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
941def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>;
942def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
943 imm64ll16c>;
944def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
945 imm64lh16c>;
946def ATOMIC_LOAD_NIHLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
947 imm64hl16c>;
948def ATOMIC_LOAD_NIHHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
949 imm64hh16c>;
950def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
951 imm64lf32c>;
952def ATOMIC_LOAD_NIHFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
953 imm64hf32c>;
954
955def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
956def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>;
957def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>;
958
959def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
960def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>;
961def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>;
962
963def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
964def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
965def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
966
967def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
968def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
969def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
970
971def ATOMIC_CMP_SWAPW
972 : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
973 ADDR32:$bitshift, ADDR32:$negbitshift,
974 uimm32:$bitsize),
975 [(set GR32:$dst,
976 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
977 ADDR32:$bitshift, ADDR32:$negbitshift,
978 uimm32:$bitsize))]> {
Richard Sandiford14a44492013-05-22 13:38:45 +0000979 let Defs = [CC];
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000980 let mayLoad = 1;
981 let mayStore = 1;
982 let usesCustomInserter = 1;
983}
984
Richard Sandiford14a44492013-05-22 13:38:45 +0000985let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000986 defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
987 def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
988}
989
990//===----------------------------------------------------------------------===//
991// Miscellaneous Instructions.
992//===----------------------------------------------------------------------===//
993
994// Read a 32-bit access register into a GR32. As with all GR32 operations,
995// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
996// when a 64-bit address is stored in a pair of access registers.
Richard Sandifordd454ec02013-05-14 09:28:21 +0000997def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
998 "ear\t$R1, $R2",
999 [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001000
1001// Find leftmost one, AKA count leading zeros. The instruction actually
1002// returns a pair of GR64s, the first giving the number of leading zeros
1003// and the second giving a copy of the source with the leftmost one bit
1004// cleared. We only use the first result here.
Richard Sandiford14a44492013-05-22 13:38:45 +00001005let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001006 def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
1007}
1008def : Pat<(ctlz GR64:$src),
1009 (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>;
1010
1011// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
1012def : Pat<(i64 (anyext GR32:$src)),
1013 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
1014
1015// There are no 32-bit equivalents of LLILL and LLILH, so use a full
1016// 64-bit move followed by a subreg. This preserves the invariant that
1017// all GR32 operations only modify the low 32 bits.
1018def : Pat<(i32 imm32ll16:$src),
1019 (EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>;
1020def : Pat<(i32 imm32lh16:$src),
1021 (EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>;
1022
1023// Extend GR32s and GR64s to GR128s.
1024let usesCustomInserter = 1 in {
1025 def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
1026 def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
1027 def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
1028}
1029
1030//===----------------------------------------------------------------------===//
1031// Peepholes.
1032//===----------------------------------------------------------------------===//
1033
1034// Use AL* for GR64 additions of unsigned 32-bit values.
1035defm : ZXB<add, GR64, ALGFR>;
1036def : Pat<(add GR64:$src1, imm64zx32:$src2),
1037 (ALGFI GR64:$src1, imm64zx32:$src2)>;
1038def : Pat<(add GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
1039 (ALGF GR64:$src1, bdxaddr20only:$addr)>;
1040
1041// Use SL* for GR64 subtractions of unsigned 32-bit values.
1042defm : ZXB<sub, GR64, SLGFR>;
1043def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1044 (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1045def : Pat<(sub GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
1046 (SLGF GR64:$src1, bdxaddr20only:$addr)>;