blob: 0ef246b8eba56fe94b1c890f40f711d021ba5959 [file] [log] [blame]
Evan Chengd38c22b2006-05-11 23:55:42 +00001//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Evan Cheng and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms. The basic approach uses a priority
12// queue of available nodes to schedule. One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "sched"
19#include "llvm/CodeGen/ScheduleDAG.h"
20#include "llvm/CodeGen/SSARegMap.h"
21#include "llvm/Target/MRegisterInfo.h"
Owen Anderson8c2c1e92006-05-12 06:33:49 +000022#include "llvm/Target/TargetData.h"
Evan Chengd38c22b2006-05-11 23:55:42 +000023#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Support/Debug.h"
Chris Lattnere097e6f2006-06-28 22:17:39 +000026#include "llvm/Support/Visibility.h"
Evan Chengd38c22b2006-05-11 23:55:42 +000027#include "llvm/ADT/Statistic.h"
28#include <climits>
29#include <iostream>
30#include <queue>
31#include "llvm/Support/CommandLine.h"
32using namespace llvm;
33
34namespace {
Evan Chengd38c22b2006-05-11 23:55:42 +000035//===----------------------------------------------------------------------===//
36/// ScheduleDAGRRList - The actual register reduction list scheduler
37/// implementation. This supports both top-down and bottom-up scheduling.
38///
39
Chris Lattnere097e6f2006-06-28 22:17:39 +000040class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
Evan Chengd38c22b2006-05-11 23:55:42 +000041private:
42 /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
43 /// it is top-down.
44 bool isBottomUp;
45
46 /// AvailableQueue - The priority queue to use for the available SUnits.
47 ///
48 SchedulingPriorityQueue *AvailableQueue;
49
50public:
51 ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
52 const TargetMachine &tm, bool isbottomup,
53 SchedulingPriorityQueue *availqueue)
54 : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
55 AvailableQueue(availqueue) {
56 }
57
58 ~ScheduleDAGRRList() {
59 delete AvailableQueue;
60 }
61
62 void Schedule();
63
64private:
65 void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
66 void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle);
Evan Chengd12c97d2006-05-30 18:05:39 +000067 void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle);
68 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
Evan Chengd38c22b2006-05-11 23:55:42 +000069 void ListScheduleTopDown();
70 void ListScheduleBottomUp();
Evan Chengafed73e2006-05-12 01:58:24 +000071 void CommuteNodesToReducePressure();
Evan Chengd38c22b2006-05-11 23:55:42 +000072};
73} // end anonymous namespace
74
75
76/// Schedule - Schedule the DAG using list scheduling.
77void ScheduleDAGRRList::Schedule() {
78 DEBUG(std::cerr << "********** List Scheduling **********\n");
79
80 // Build scheduling units.
81 BuildSchedUnits();
82
83 CalculateDepths();
84 CalculateHeights();
85 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
86 SUnits[su].dumpAll(&DAG));
87
88 AvailableQueue->initNodes(SUnits);
89
90 // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
91 if (isBottomUp)
92 ListScheduleBottomUp();
93 else
94 ListScheduleTopDown();
95
96 AvailableQueue->releaseState();
Evan Chengafed73e2006-05-12 01:58:24 +000097
Evan Cheng009f5f52006-05-25 08:37:31 +000098 CommuteNodesToReducePressure();
Evan Chengd38c22b2006-05-11 23:55:42 +000099
100 DEBUG(std::cerr << "*** Final schedule ***\n");
101 DEBUG(dumpSchedule());
102 DEBUG(std::cerr << "\n");
103
104 // Emit in scheduled order
105 EmitSchedule();
106}
107
Evan Chengafed73e2006-05-12 01:58:24 +0000108/// CommuteNodesToReducePressure - Is a node is two-address and commutable, and
109/// it is not the last use of its first operand, add it to the CommuteSet if
110/// possible. It will be commuted when it is translated to a MI.
111void ScheduleDAGRRList::CommuteNodesToReducePressure() {
112 std::set<SUnit *> OperandSeen;
113 for (unsigned i = Sequence.size()-1; i != 0; --i) { // Ignore first node.
114 SUnit *SU = Sequence[i];
115 if (!SU) continue;
116 if (SU->isTwoAddress && SU->isCommutable) {
117 SDNode *OpN = SU->Node->getOperand(0).Val;
118 SUnit *OpSU = SUnitMap[OpN];
119 if (OpSU && OperandSeen.count(OpSU) == 1) {
120 // Ok, so SU is not the last use of OpSU, but SU is two-address so
121 // it will clobber OpSU. Try to commute it if possible.
122 bool DoCommute = true;
123 for (unsigned j = 1, e = SU->Node->getNumOperands(); j != e; ++j) {
124 OpN = SU->Node->getOperand(j).Val;
125 OpSU = SUnitMap[OpN];
126 if (OpSU && OperandSeen.count(OpSU) == 1) {
127 DoCommute = false;
128 break;
129 }
130 }
131 if (DoCommute)
132 CommuteSet.insert(SU->Node);
133 }
134 }
135
136 for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
137 E = SU->Preds.end(); I != E; ++I) {
138 if (!I->second)
139 OperandSeen.insert(I->first);
140 }
141 }
142}
Evan Chengd38c22b2006-05-11 23:55:42 +0000143
144//===----------------------------------------------------------------------===//
145// Bottom-Up Scheduling
146//===----------------------------------------------------------------------===//
147
148static const TargetRegisterClass *getRegClass(SUnit *SU,
149 const TargetInstrInfo *TII,
150 const MRegisterInfo *MRI,
151 SSARegMap *RegMap) {
152 if (SU->Node->isTargetOpcode()) {
153 unsigned Opc = SU->Node->getTargetOpcode();
154 const TargetInstrDescriptor &II = TII->get(Opc);
155 return II.OpInfo->RegClass;
156 } else {
157 assert(SU->Node->getOpcode() == ISD::CopyFromReg);
158 unsigned SrcReg = cast<RegisterSDNode>(SU->Node->getOperand(1))->getReg();
159 if (MRegisterInfo::isVirtualRegister(SrcReg))
160 return RegMap->getRegClass(SrcReg);
161 else {
162 for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
163 E = MRI->regclass_end(); I != E; ++I)
164 if ((*I)->hasType(SU->Node->getValueType(0)) &&
165 (*I)->contains(SrcReg))
166 return *I;
167 assert(false && "Couldn't find register class for reg copy!");
168 }
169 return NULL;
170 }
171}
172
173static unsigned getNumResults(SUnit *SU) {
174 unsigned NumResults = 0;
175 for (unsigned i = 0, e = SU->Node->getNumValues(); i != e; ++i) {
176 MVT::ValueType VT = SU->Node->getValueType(i);
177 if (VT != MVT::Other && VT != MVT::Flag)
178 NumResults++;
179 }
180 return NumResults;
181}
182
183/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
184/// the Available queue is the count reaches zero. Also update its cycle bound.
185void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
186 unsigned CurCycle) {
187 // FIXME: the distance between two nodes is not always == the predecessor's
188 // latency. For example, the reader can very well read the register written
189 // by the predecessor later than the issue cycle. It also depends on the
190 // interrupt model (drain vs. freeze).
191 PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
192
193 if (!isChain)
194 PredSU->NumSuccsLeft--;
195 else
196 PredSU->NumChainSuccsLeft--;
197
198#ifndef NDEBUG
199 if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
200 std::cerr << "*** List scheduling failed! ***\n";
201 PredSU->dump(&DAG);
202 std::cerr << " has been released too many times!\n";
203 assert(0);
204 }
205#endif
206
207 if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
208 // EntryToken has to go last! Special case it here.
209 if (PredSU->Node->getOpcode() != ISD::EntryToken) {
210 PredSU->isAvailable = true;
211 AvailableQueue->push(PredSU);
212 }
213 }
214}
215
216/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
217/// count of its predecessors. If a predecessor pending count is zero, add it to
218/// the Available queue.
Evan Chengd12c97d2006-05-30 18:05:39 +0000219void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
Evan Chengd38c22b2006-05-11 23:55:42 +0000220 DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
221 DEBUG(SU->dump(&DAG));
222 SU->Cycle = CurCycle;
223
224 AvailableQueue->ScheduledNode(SU);
225 Sequence.push_back(SU);
226
227 // Bottom up: release predecessors
228 for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
229 E = SU->Preds.end(); I != E; ++I)
230 ReleasePred(I->first, I->second, CurCycle);
231 SU->isScheduled = true;
Evan Chengd38c22b2006-05-11 23:55:42 +0000232}
233
234/// isReady - True if node's lower cycle bound is less or equal to the current
235/// scheduling cycle. Always true if all nodes have uniform latency 1.
236static inline bool isReady(SUnit *SU, unsigned CurCycle) {
237 return SU->CycleBound <= CurCycle;
238}
239
240/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
241/// schedulers.
242void ScheduleDAGRRList::ListScheduleBottomUp() {
243 unsigned CurCycle = 0;
244 // Add root to Available queue.
245 AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
246
247 // While Available queue is not empty, grab the node with the highest
248 // priority. If it is not ready put it back. Schedule the node.
249 std::vector<SUnit*> NotReady;
250 SUnit *CurNode = NULL;
251 while (!AvailableQueue->empty()) {
252 SUnit *CurNode = AvailableQueue->pop();
Evan Chengd12c97d2006-05-30 18:05:39 +0000253 while (CurNode && !isReady(CurNode, CurCycle)) {
Evan Chengd38c22b2006-05-11 23:55:42 +0000254 NotReady.push_back(CurNode);
255 CurNode = AvailableQueue->pop();
256 }
257
258 // Add the nodes that aren't ready back onto the available list.
259 AvailableQueue->push_all(NotReady);
260 NotReady.clear();
261
Evan Chengd12c97d2006-05-30 18:05:39 +0000262 if (CurNode != NULL)
263 ScheduleNodeBottomUp(CurNode, CurCycle);
264 CurCycle++;
Evan Chengd38c22b2006-05-11 23:55:42 +0000265 }
266
267 // Add entry node last
268 if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
269 SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
270 Sequence.push_back(Entry);
271 }
272
273 // Reverse the order if it is bottom up.
274 std::reverse(Sequence.begin(), Sequence.end());
275
276
277#ifndef NDEBUG
278 // Verify that all SUnits were scheduled.
279 bool AnyNotSched = false;
280 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
281 if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
282 if (!AnyNotSched)
283 std::cerr << "*** List scheduling failed! ***\n";
284 SUnits[i].dump(&DAG);
285 std::cerr << "has not been scheduled!\n";
286 AnyNotSched = true;
287 }
288 }
289 assert(!AnyNotSched);
290#endif
291}
292
293//===----------------------------------------------------------------------===//
294// Top-Down Scheduling
295//===----------------------------------------------------------------------===//
296
297/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
298/// the PendingQueue if the count reaches zero.
299void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
300 unsigned CurCycle) {
301 // FIXME: the distance between two nodes is not always == the predecessor's
302 // latency. For example, the reader can very well read the register written
303 // by the predecessor later than the issue cycle. It also depends on the
304 // interrupt model (drain vs. freeze).
305 SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
306
307 if (!isChain)
308 SuccSU->NumPredsLeft--;
309 else
310 SuccSU->NumChainPredsLeft--;
311
312#ifndef NDEBUG
313 if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
314 std::cerr << "*** List scheduling failed! ***\n";
315 SuccSU->dump(&DAG);
316 std::cerr << " has been released too many times!\n";
317 assert(0);
318 }
319#endif
320
321 if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
322 SuccSU->isAvailable = true;
323 AvailableQueue->push(SuccSU);
324 }
325}
326
327
328/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
329/// count of its successors. If a successor pending count is zero, add it to
330/// the Available queue.
Evan Chengd12c97d2006-05-30 18:05:39 +0000331void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
Evan Chengd38c22b2006-05-11 23:55:42 +0000332 DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
333 DEBUG(SU->dump(&DAG));
334 SU->Cycle = CurCycle;
335
336 AvailableQueue->ScheduledNode(SU);
337 Sequence.push_back(SU);
338
339 // Top down: release successors
340 for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
341 E = SU->Succs.end(); I != E; ++I)
342 ReleaseSucc(I->first, I->second, CurCycle);
343 SU->isScheduled = true;
Evan Chengd38c22b2006-05-11 23:55:42 +0000344}
345
346void ScheduleDAGRRList::ListScheduleTopDown() {
347 unsigned CurCycle = 0;
348 SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
349
350 // All leaves to Available queue.
351 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
352 // It is available if it has no predecessors.
353 if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
354 AvailableQueue->push(&SUnits[i]);
355 SUnits[i].isAvailable = true;
356 }
357 }
358
359 // Emit the entry node first.
360 ScheduleNodeTopDown(Entry, CurCycle);
Evan Chengd12c97d2006-05-30 18:05:39 +0000361 CurCycle++;
Evan Chengd38c22b2006-05-11 23:55:42 +0000362
363 // While Available queue is not empty, grab the node with the highest
364 // priority. If it is not ready put it back. Schedule the node.
365 std::vector<SUnit*> NotReady;
366 SUnit *CurNode = NULL;
367 while (!AvailableQueue->empty()) {
368 SUnit *CurNode = AvailableQueue->pop();
Evan Chengd12c97d2006-05-30 18:05:39 +0000369 while (CurNode && !isReady(CurNode, CurCycle)) {
Evan Chengd38c22b2006-05-11 23:55:42 +0000370 NotReady.push_back(CurNode);
371 CurNode = AvailableQueue->pop();
372 }
373
374 // Add the nodes that aren't ready back onto the available list.
375 AvailableQueue->push_all(NotReady);
376 NotReady.clear();
377
Evan Chengd12c97d2006-05-30 18:05:39 +0000378 if (CurNode != NULL)
379 ScheduleNodeTopDown(CurNode, CurCycle);
380 CurCycle++;
Evan Chengd38c22b2006-05-11 23:55:42 +0000381 }
382
383
384#ifndef NDEBUG
385 // Verify that all SUnits were scheduled.
386 bool AnyNotSched = false;
387 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
388 if (!SUnits[i].isScheduled) {
389 if (!AnyNotSched)
390 std::cerr << "*** List scheduling failed! ***\n";
391 SUnits[i].dump(&DAG);
392 std::cerr << "has not been scheduled!\n";
393 AnyNotSched = true;
394 }
395 }
396 assert(!AnyNotSched);
397#endif
398}
399
400
401
402//===----------------------------------------------------------------------===//
403// RegReductionPriorityQueue Implementation
404//===----------------------------------------------------------------------===//
405//
406// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
407// to reduce register pressure.
408//
409namespace {
410 template<class SF>
411 class RegReductionPriorityQueue;
412
413 /// Sorting functions for the Available queue.
414 struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
415 RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
416 bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
417 bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
418
419 bool operator()(const SUnit* left, const SUnit* right) const;
420 };
421
422 struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
423 RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
424 td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
425 td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
426
427 bool operator()(const SUnit* left, const SUnit* right) const;
428 };
429} // end anonymous namespace
430
431namespace {
432 template<class SF>
433 class RegReductionPriorityQueue : public SchedulingPriorityQueue {
434 std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
435
436 public:
437 RegReductionPriorityQueue() :
438 Queue(SF(this)) {}
439
440 virtual void initNodes(const std::vector<SUnit> &sunits) {}
441 virtual void releaseState() {}
442
443 virtual int getSethiUllmanNumber(unsigned NodeNum) const {
444 return 0;
445 }
446
447 bool empty() const { return Queue.empty(); }
448
449 void push(SUnit *U) {
450 Queue.push(U);
451 }
452 void push_all(const std::vector<SUnit *> &Nodes) {
453 for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
454 Queue.push(Nodes[i]);
455 }
456
457 SUnit *pop() {
Evan Chengd12c97d2006-05-30 18:05:39 +0000458 if (empty()) return NULL;
Evan Chengd38c22b2006-05-11 23:55:42 +0000459 SUnit *V = Queue.top();
460 Queue.pop();
461 return V;
462 }
463 };
464
465 template<class SF>
466 class BURegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
467 // SUnits - The SUnits for the current graph.
468 const std::vector<SUnit> *SUnits;
469
470 // SethiUllmanNumbers - The SethiUllman number for each node.
471 std::vector<int> SethiUllmanNumbers;
472
473 public:
474 BURegReductionPriorityQueue() {}
475
476 void initNodes(const std::vector<SUnit> &sunits) {
477 SUnits = &sunits;
478 // Add pseudo dependency edges for two-address nodes.
Evan Chengafed73e2006-05-12 01:58:24 +0000479 AddPseudoTwoAddrDeps();
Evan Chengd38c22b2006-05-11 23:55:42 +0000480 // Calculate node priorities.
481 CalculatePriorities();
482 }
483
484 void releaseState() {
485 SUnits = 0;
486 SethiUllmanNumbers.clear();
487 }
488
489 int getSethiUllmanNumber(unsigned NodeNum) const {
490 assert(NodeNum < SethiUllmanNumbers.size());
491 return SethiUllmanNumbers[NodeNum];
492 }
493
494 private:
495 void AddPseudoTwoAddrDeps();
496 void CalculatePriorities();
497 int CalcNodePriority(const SUnit *SU);
498 };
499
500
501 template<class SF>
502 class TDRegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
503 // SUnits - The SUnits for the current graph.
504 const std::vector<SUnit> *SUnits;
505
506 // SethiUllmanNumbers - The SethiUllman number for each node.
507 std::vector<int> SethiUllmanNumbers;
508
509 public:
510 TDRegReductionPriorityQueue() {}
511
512 void initNodes(const std::vector<SUnit> &sunits) {
513 SUnits = &sunits;
514 // Calculate node priorities.
515 CalculatePriorities();
516 }
517
518 void releaseState() {
519 SUnits = 0;
520 SethiUllmanNumbers.clear();
521 }
522
523 int getSethiUllmanNumber(unsigned NodeNum) const {
524 assert(NodeNum < SethiUllmanNumbers.size());
525 return SethiUllmanNumbers[NodeNum];
526 }
527
528 private:
529 void CalculatePriorities();
530 int CalcNodePriority(const SUnit *SU);
531 };
532}
533
Evan Cheng99f2f792006-05-13 08:22:24 +0000534static bool isFloater(const SUnit *SU) {
535 if (SU->Node->isTargetOpcode()) {
536 if (SU->NumPreds == 0)
537 return true;
538 if (SU->NumPreds == 1) {
539 for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
540 E = SU->Preds.end(); I != E; ++I) {
541 if (I->second) continue;
542
543 SUnit *PredSU = I->first;
544 unsigned Opc = PredSU->Node->getOpcode();
545 if (Opc != ISD::EntryToken && Opc != ISD::TokenFactor &&
546 Opc != ISD::CopyFromReg && Opc != ISD::CopyToReg)
547 return false;
548 }
549 return true;
550 }
551 }
552 return false;
553}
554
555static bool isSimpleFloaterUse(const SUnit *SU) {
556 unsigned NumOps = 0;
557 for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
558 E = SU->Preds.end(); I != E; ++I) {
559 if (I->second) continue;
560 if (++NumOps > 1)
561 return false;
562 if (!isFloater(I->first))
563 return false;
564 }
565 return true;
566}
567
Evan Chengd38c22b2006-05-11 23:55:42 +0000568// Bottom up
569bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
570 unsigned LeftNum = left->NodeNum;
571 unsigned RightNum = right->NodeNum;
572 bool LIsTarget = left->Node->isTargetOpcode();
573 bool RIsTarget = right->Node->isTargetOpcode();
574 int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
575 int RPriority = SPQ->getSethiUllmanNumber(RightNum);
Evan Chengd38c22b2006-05-11 23:55:42 +0000576 int LBonus = 0;
577 int RBonus = 0;
578
579 // Schedule floaters (e.g. load from some constant address) and those nodes
580 // with a single predecessor each first. They maintain / reduce register
581 // pressure.
Evan Cheng99f2f792006-05-13 08:22:24 +0000582 if (isFloater(left) || isSimpleFloaterUse(left))
Evan Chengd38c22b2006-05-11 23:55:42 +0000583 LBonus += 2;
Evan Cheng99f2f792006-05-13 08:22:24 +0000584 if (isFloater(right) || isSimpleFloaterUse(right))
Evan Chengd38c22b2006-05-11 23:55:42 +0000585 RBonus += 2;
586
Evan Cheng99f2f792006-05-13 08:22:24 +0000587 // Special tie breaker: if two nodes share a operand, the one that use it
588 // as a def&use operand is preferred.
589 if (LIsTarget && RIsTarget) {
590 if (left->isTwoAddress && !right->isTwoAddress) {
591 SDNode *DUNode = left->Node->getOperand(0).Val;
592 if (DUNode->isOperand(right->Node))
593 LBonus += 2;
594 }
595 if (!left->isTwoAddress && right->isTwoAddress) {
596 SDNode *DUNode = right->Node->getOperand(0).Val;
597 if (DUNode->isOperand(left->Node))
598 RBonus += 2;
599 }
600 }
601
Evan Chengd38c22b2006-05-11 23:55:42 +0000602 if (LPriority+LBonus < RPriority+RBonus)
603 return true;
604 else if (LPriority+LBonus == RPriority+RBonus)
Evan Cheng99f2f792006-05-13 08:22:24 +0000605 if (left->Height > right->Height)
Evan Chengd38c22b2006-05-11 23:55:42 +0000606 return true;
Evan Cheng99f2f792006-05-13 08:22:24 +0000607 else if (left->Height == right->Height)
608 if (left->Depth < right->Depth)
Evan Chengd38c22b2006-05-11 23:55:42 +0000609 return true;
Evan Cheng99f2f792006-05-13 08:22:24 +0000610 else if (left->Depth == right->Depth)
611 if (left->CycleBound > right->CycleBound)
612 return true;
Evan Chengd38c22b2006-05-11 23:55:42 +0000613 return false;
614}
615
616static inline bool isCopyFromLiveIn(const SUnit *SU) {
617 SDNode *N = SU->Node;
618 return N->getOpcode() == ISD::CopyFromReg &&
619 N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
620}
621
622// FIXME: This is probably too slow!
623static void isReachable(SUnit *SU, SUnit *TargetSU,
624 std::set<SUnit *> &Visited, bool &Reached) {
625 if (Reached) return;
626 if (SU == TargetSU) {
627 Reached = true;
628 return;
629 }
630 if (!Visited.insert(SU).second) return;
631
632 for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
633 E = SU->Preds.end(); I != E; ++I)
634 isReachable(I->first, TargetSU, Visited, Reached);
635}
636
637static bool isReachable(SUnit *SU, SUnit *TargetSU) {
638 std::set<SUnit *> Visited;
639 bool Reached = false;
640 isReachable(SU, TargetSU, Visited, Reached);
641 return Reached;
642}
643
644static SUnit *getDefUsePredecessor(SUnit *SU) {
645 SDNode *DU = SU->Node->getOperand(0).Val;
646 for (std::set<std::pair<SUnit*, bool> >::iterator
647 I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
648 if (I->second) continue; // ignore chain preds
649 SUnit *PredSU = I->first;
650 if (PredSU->Node == DU)
651 return PredSU;
652 }
653
654 // Must be flagged.
655 return NULL;
656}
657
658static bool canClobber(SUnit *SU, SUnit *Op) {
659 if (SU->isTwoAddress)
660 return Op == getDefUsePredecessor(SU);
661 return false;
662}
663
664/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
665/// it as a def&use operand. Add a pseudo control edge from it to the other
666/// node (if it won't create a cycle) so the two-address one will be scheduled
667/// first (lower in the schedule).
668template<class SF>
669void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
670 for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
671 SUnit *SU = (SUnit *)&((*SUnits)[i]);
672 SDNode *Node = SU->Node;
673 if (!Node->isTargetOpcode())
674 continue;
675
676 if (SU->isTwoAddress) {
Evan Chengd38c22b2006-05-11 23:55:42 +0000677 SUnit *DUSU = getDefUsePredecessor(SU);
678 if (!DUSU) continue;
679
680 for (std::set<std::pair<SUnit*, bool> >::iterator I = DUSU->Succs.begin(),
681 E = DUSU->Succs.end(); I != E; ++I) {
Evan Chengafed73e2006-05-12 01:58:24 +0000682 if (I->second) continue;
Evan Chengd38c22b2006-05-11 23:55:42 +0000683 SUnit *SuccSU = I->first;
Evan Chengafed73e2006-05-12 01:58:24 +0000684 if (SuccSU != SU &&
685 (!canClobber(SuccSU, DUSU) ||
Evan Cheng009f5f52006-05-25 08:37:31 +0000686 (!SU->isCommutable && SuccSU->isCommutable))){
Evan Cheng99f2f792006-05-13 08:22:24 +0000687 if (SuccSU->Depth == SU->Depth && !isReachable(SuccSU, SU)) {
Evan Chengd38c22b2006-05-11 23:55:42 +0000688 DEBUG(std::cerr << "Adding an edge from SU # " << SU->NodeNum
689 << " to SU #" << SuccSU->NodeNum << "\n");
690 if (SU->Preds.insert(std::make_pair(SuccSU, true)).second)
691 SU->NumChainPredsLeft++;
692 if (SuccSU->Succs.insert(std::make_pair(SU, true)).second)
693 SuccSU->NumChainSuccsLeft++;
694 }
695 }
696 }
697 }
698 }
699}
700
701/// CalcNodePriority - Priority is the Sethi Ullman number.
702/// Smaller number is the higher priority.
703template<class SF>
704int BURegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
705 int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
706 if (SethiUllmanNumber != 0)
707 return SethiUllmanNumber;
708
709 unsigned Opc = SU->Node->getOpcode();
710 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
711 SethiUllmanNumber = INT_MAX - 10;
712 else if (SU->NumSuccsLeft == 0)
713 // If SU does not have a use, i.e. it doesn't produce a value that would
714 // be consumed (e.g. store), then it terminates a chain of computation.
715 // Give it a small SethiUllman number so it will be scheduled right before its
716 // predecessors that it doesn't lengthen their live ranges.
717 SethiUllmanNumber = INT_MIN + 10;
Evan Cheng99f2f792006-05-13 08:22:24 +0000718 // FIXME: remove this else if? It seems to reduce register spills but often
719 // ends up increasing runtime. Need to investigate.
Evan Chengd38c22b2006-05-11 23:55:42 +0000720 else if (SU->NumPredsLeft == 0 &&
721 (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
Evan Cheng99f2f792006-05-13 08:22:24 +0000722 SethiUllmanNumber = INT_MAX - 10;
Evan Chengd38c22b2006-05-11 23:55:42 +0000723 else {
724 int Extra = 0;
725 for (std::set<std::pair<SUnit*, bool> >::const_iterator
726 I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
727 if (I->second) continue; // ignore chain preds
728 SUnit *PredSU = I->first;
729 int PredSethiUllman = CalcNodePriority(PredSU);
730 if (PredSethiUllman > SethiUllmanNumber) {
731 SethiUllmanNumber = PredSethiUllman;
732 Extra = 0;
733 } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
734 Extra++;
735 }
736
737 SethiUllmanNumber += Extra;
738 }
739
740 return SethiUllmanNumber;
741}
742
743/// CalculatePriorities - Calculate priorities of all scheduling units.
744template<class SF>
745void BURegReductionPriorityQueue<SF>::CalculatePriorities() {
746 SethiUllmanNumbers.assign(SUnits->size(), 0);
747
748 for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
749 CalcNodePriority(&(*SUnits)[i]);
750}
751
752static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
753 unsigned Sum = 0;
754 for (std::set<std::pair<SUnit*, bool> >::const_iterator
755 I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) {
756 SUnit *SuccSU = I->first;
757 for (std::set<std::pair<SUnit*, bool> >::const_iterator
758 II = SuccSU->Preds.begin(), EE = SuccSU->Preds.end(); II != EE; ++II) {
759 SUnit *PredSU = II->first;
760 if (!PredSU->isScheduled)
761 Sum++;
762 }
763 }
764
765 return Sum;
766}
767
768
769// Top down
770bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
771 unsigned LeftNum = left->NodeNum;
772 unsigned RightNum = right->NodeNum;
773 int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
774 int RPriority = SPQ->getSethiUllmanNumber(RightNum);
775 bool LIsTarget = left->Node->isTargetOpcode();
776 bool RIsTarget = right->Node->isTargetOpcode();
777 bool LIsFloater = LIsTarget && left->NumPreds == 0;
778 bool RIsFloater = RIsTarget && right->NumPreds == 0;
779 unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
780 unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
781
782 if (left->NumSuccs == 0 && right->NumSuccs != 0)
783 return false;
784 else if (left->NumSuccs != 0 && right->NumSuccs == 0)
785 return true;
786
787 // Special tie breaker: if two nodes share a operand, the one that use it
788 // as a def&use operand is preferred.
789 if (LIsTarget && RIsTarget) {
790 if (left->isTwoAddress && !right->isTwoAddress) {
791 SDNode *DUNode = left->Node->getOperand(0).Val;
792 if (DUNode->isOperand(right->Node))
793 RBonus += 2;
794 }
795 if (!left->isTwoAddress && right->isTwoAddress) {
796 SDNode *DUNode = right->Node->getOperand(0).Val;
797 if (DUNode->isOperand(left->Node))
798 LBonus += 2;
799 }
800 }
801 if (LIsFloater)
802 LBonus -= 2;
803 if (RIsFloater)
804 RBonus -= 2;
805 if (left->NumSuccs == 1)
806 LBonus += 2;
807 if (right->NumSuccs == 1)
808 RBonus += 2;
809
810 if (LPriority+LBonus < RPriority+RBonus)
811 return true;
812 else if (LPriority == RPriority)
813 if (left->Depth < right->Depth)
814 return true;
815 else if (left->Depth == right->Depth)
816 if (left->NumSuccsLeft > right->NumSuccsLeft)
817 return true;
818 else if (left->NumSuccsLeft == right->NumSuccsLeft)
819 if (left->CycleBound > right->CycleBound)
820 return true;
821 return false;
822}
823
824/// CalcNodePriority - Priority is the Sethi Ullman number.
825/// Smaller number is the higher priority.
826template<class SF>
827int TDRegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
828 int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
829 if (SethiUllmanNumber != 0)
830 return SethiUllmanNumber;
831
832 unsigned Opc = SU->Node->getOpcode();
833 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
834 SethiUllmanNumber = INT_MAX - 10;
835 else if (SU->NumSuccsLeft == 0)
836 // If SU does not have a use, i.e. it doesn't produce a value that would
837 // be consumed (e.g. store), then it terminates a chain of computation.
838 // Give it a small SethiUllman number so it will be scheduled right before its
839 // predecessors that it doesn't lengthen their live ranges.
840 SethiUllmanNumber = INT_MIN + 10;
841 else if (SU->NumPredsLeft == 0 &&
842 (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
843 SethiUllmanNumber = 1;
844 else {
845 int Extra = 0;
846 for (std::set<std::pair<SUnit*, bool> >::const_iterator
847 I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
848 if (I->second) continue; // ignore chain preds
849 SUnit *PredSU = I->first;
850 int PredSethiUllman = CalcNodePriority(PredSU);
851 if (PredSethiUllman > SethiUllmanNumber) {
852 SethiUllmanNumber = PredSethiUllman;
853 Extra = 0;
854 } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
855 Extra++;
856 }
857
858 SethiUllmanNumber += Extra;
859 }
860
861 return SethiUllmanNumber;
862}
863
864/// CalculatePriorities - Calculate priorities of all scheduling units.
865template<class SF>
866void TDRegReductionPriorityQueue<SF>::CalculatePriorities() {
867 SethiUllmanNumbers.assign(SUnits->size(), 0);
868
869 for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
870 CalcNodePriority(&(*SUnits)[i]);
871}
872
873//===----------------------------------------------------------------------===//
874// Public Constructor Functions
875//===----------------------------------------------------------------------===//
876
877llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
878 MachineBasicBlock *BB) {
879 return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), true,
880 new BURegReductionPriorityQueue<bu_ls_rr_sort>());
881}
882
883llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAG &DAG,
884 MachineBasicBlock *BB) {
885 return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), false,
886 new TDRegReductionPriorityQueue<td_ls_rr_sort>());
887}
888