blob: bbbdc09108351bf86dae69e57ed508c1ae7628e5 [file] [log] [blame]
Chris Lattner0d5644b2003-01-13 00:26:36 +00001//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
Misha Brukman10468d82005-04-21 22:55:34 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman10468d82005-04-21 22:55:34 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner910b82f2002-10-28 23:55:33 +00009//
Chris Lattnerf6932b72005-01-19 06:53:34 +000010// This file implements the TargetInstrInfo class.
Chris Lattner910b82f2002-10-28 23:55:33 +000011//
12//===----------------------------------------------------------------------===//
13
Eric Christopher4fdc7652014-06-11 16:59:33 +000014#include "llvm/Target/TargetInstrInfo.h"
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +000015#include "llvm/CodeGen/MachineFrameInfo.h"
Lang Hames39609992013-11-29 03:07:54 +000016#include "llvm/CodeGen/MachineInstrBuilder.h"
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +000017#include "llvm/CodeGen/MachineMemOperand.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/CodeGen/PseudoSourceValue.h"
20#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
Lang Hames39609992013-11-29 03:07:54 +000021#include "llvm/CodeGen/StackMaps.h"
Matthias Braun88e21312015-06-13 03:42:11 +000022#include "llvm/CodeGen/TargetSchedule.h"
Andrew Trick10d5be42013-11-17 01:36:23 +000023#include "llvm/IR/DataLayout.h"
Evan Cheng49d4c0b2010-10-06 06:27:31 +000024#include "llvm/MC/MCAsmInfo.h"
Evan Cheng8264e272011-06-29 01:14:12 +000025#include "llvm/MC/MCInstrItineraries.h"
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +000026#include "llvm/Support/CommandLine.h"
Chris Lattner01614192009-08-02 04:58:19 +000027#include "llvm/Support/ErrorHandling.h"
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +000028#include "llvm/Support/raw_ostream.h"
Michael Kuperstein698ea3b2015-01-08 11:59:43 +000029#include "llvm/Target/TargetFrameLowering.h"
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +000030#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetMachine.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000032#include "llvm/Target/TargetRegisterInfo.h"
Nick Lewycky0de20af2010-12-19 20:43:38 +000033#include <cctype>
Chris Lattnerf6932b72005-01-19 06:53:34 +000034using namespace llvm;
Chris Lattner910b82f2002-10-28 23:55:33 +000035
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +000036static cl::opt<bool> DisableHazardRecognizer(
37 "disable-sched-hazard", cl::Hidden, cl::init(false),
38 cl::desc("Disable hazard detection during preRA scheduling"));
Chris Lattnere98a3c32009-08-02 05:20:37 +000039
Chris Lattner0d5644b2003-01-13 00:26:36 +000040TargetInstrInfo::~TargetInstrInfo() {
Chris Lattner910b82f2002-10-28 23:55:33 +000041}
42
Evan Cheng8d71a752011-06-27 21:26:13 +000043const TargetRegisterClass*
Evan Cheng6cc775f2011-06-28 19:10:37 +000044TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +000045 const TargetRegisterInfo *TRI,
46 const MachineFunction &MF) const {
Evan Cheng6cc775f2011-06-28 19:10:37 +000047 if (OpNum >= MCID.getNumOperands())
Craig Topperc0196b12014-04-14 00:51:57 +000048 return nullptr;
Evan Cheng8d71a752011-06-27 21:26:13 +000049
Evan Cheng6cc775f2011-06-28 19:10:37 +000050 short RegClass = MCID.OpInfo[OpNum].RegClass;
51 if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +000052 return TRI->getPointerRegClass(MF, RegClass);
Evan Cheng8d71a752011-06-27 21:26:13 +000053
54 // Instructions like INSERT_SUBREG do not have fixed register classes.
55 if (RegClass < 0)
Craig Topperc0196b12014-04-14 00:51:57 +000056 return nullptr;
Evan Cheng8d71a752011-06-27 21:26:13 +000057
58 // Otherwise just look it up normally.
59 return TRI->getRegClass(RegClass);
60}
61
Chris Lattner01614192009-08-02 04:58:19 +000062/// insertNoop - Insert a noop into the instruction stream at the specified
63/// point.
Andrew Trickc416ba62010-12-24 04:28:06 +000064void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
Chris Lattner01614192009-08-02 04:58:19 +000065 MachineBasicBlock::iterator MI) const {
66 llvm_unreachable("Target didn't implement insertNoop!");
67}
68
Chris Lattnere98a3c32009-08-02 05:20:37 +000069/// Measure the specified inline asm to determine an approximation of its
70/// length.
Jim Grosbacha3df87f2011-03-24 18:46:34 +000071/// Comments (which run till the next SeparatorString or newline) do not
Chris Lattnere98a3c32009-08-02 05:20:37 +000072/// count as an instruction.
73/// Any other non-whitespace text is considered an instruction, with
Jim Grosbacha3df87f2011-03-24 18:46:34 +000074/// multiple instructions separated by SeparatorString or newlines.
Chris Lattnere98a3c32009-08-02 05:20:37 +000075/// Variable-length instructions are not handled here; this function
76/// may be overloaded in the target code to do that.
77unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
Chris Lattnere9a75a62009-08-22 21:43:10 +000078 const MCAsmInfo &MAI) const {
Andrew Trickc416ba62010-12-24 04:28:06 +000079
80
Chris Lattnere98a3c32009-08-02 05:20:37 +000081 // Count the number of instructions in the asm.
82 bool atInsnStart = true;
83 unsigned Length = 0;
84 for (; *Str; ++Str) {
Jim Grosbacha3df87f2011-03-24 18:46:34 +000085 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
86 strlen(MAI.getSeparatorString())) == 0)
Chris Lattnere98a3c32009-08-02 05:20:37 +000087 atInsnStart = true;
Guy Benyei83c74e92013-02-12 21:21:59 +000088 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
Chris Lattnere9a75a62009-08-22 21:43:10 +000089 Length += MAI.getMaxInstLength();
Chris Lattnere98a3c32009-08-02 05:20:37 +000090 atInsnStart = false;
91 }
Chris Lattnere9a75a62009-08-22 21:43:10 +000092 if (atInsnStart && strncmp(Str, MAI.getCommentString(),
93 strlen(MAI.getCommentString())) == 0)
Chris Lattnere98a3c32009-08-02 05:20:37 +000094 atInsnStart = false;
95 }
Andrew Trickc416ba62010-12-24 04:28:06 +000096
Chris Lattnere98a3c32009-08-02 05:20:37 +000097 return Length;
98}
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +000099
100/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
101/// after it, replacing it with an unconditional branch to NewDest.
102void
103TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
104 MachineBasicBlock *NewDest) const {
105 MachineBasicBlock *MBB = Tail->getParent();
106
107 // Remove all the old successors of MBB from the CFG.
108 while (!MBB->succ_empty())
109 MBB->removeSuccessor(MBB->succ_begin());
110
111 // Remove all the dead instructions from the end of MBB.
112 MBB->erase(Tail, MBB->end());
113
114 // If MBB isn't immediately before MBB, insert a branch to it.
115 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
Craig Topperc0196b12014-04-14 00:51:57 +0000116 InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(),
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000117 Tail->getDebugLoc());
118 MBB->addSuccessor(NewDest);
119}
120
Andrew Kaylor16c4da02015-09-28 20:33:22 +0000121MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr *MI,
122 bool NewMI,
123 unsigned Idx1,
124 unsigned Idx2) const {
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000125 const MCInstrDesc &MCID = MI->getDesc();
126 bool HasDef = MCID.getNumDefs();
127 if (HasDef && !MI->getOperand(0).isReg())
128 // No idea how to commute this instruction. Target should implement its own.
Craig Topperc0196b12014-04-14 00:51:57 +0000129 return nullptr;
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000130
Richard Trieue778e872015-09-28 22:54:43 +0000131 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
132 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
Andrew Kaylor16c4da02015-09-28 20:33:22 +0000133 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
134 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
135 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000136 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
137 "This only knows how to commute register operands so far");
Andrew Kaylor16c4da02015-09-28 20:33:22 +0000138
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000139 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
140 unsigned Reg1 = MI->getOperand(Idx1).getReg();
141 unsigned Reg2 = MI->getOperand(Idx2).getReg();
142 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
143 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
144 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
145 bool Reg1IsKill = MI->getOperand(Idx1).isKill();
146 bool Reg2IsKill = MI->getOperand(Idx2).isKill();
Andrea Di Biagioc84b5bd2015-04-30 21:03:29 +0000147 bool Reg1IsUndef = MI->getOperand(Idx1).isUndef();
148 bool Reg2IsUndef = MI->getOperand(Idx2).isUndef();
Pete Cooper451755d2015-04-30 23:14:14 +0000149 bool Reg1IsInternal = MI->getOperand(Idx1).isInternalRead();
150 bool Reg2IsInternal = MI->getOperand(Idx2).isInternalRead();
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000151 // If destination is tied to either of the commuted source register, then
152 // it must be updated.
153 if (HasDef && Reg0 == Reg1 &&
154 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
155 Reg2IsKill = false;
156 Reg0 = Reg2;
157 SubReg0 = SubReg2;
158 } else if (HasDef && Reg0 == Reg2 &&
159 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
160 Reg1IsKill = false;
161 Reg0 = Reg1;
162 SubReg0 = SubReg1;
163 }
164
165 if (NewMI) {
166 // Create a new instruction.
167 MachineFunction &MF = *MI->getParent()->getParent();
168 MI = MF.CloneMachineInstr(MI);
169 }
170
171 if (HasDef) {
172 MI->getOperand(0).setReg(Reg0);
173 MI->getOperand(0).setSubReg(SubReg0);
174 }
175 MI->getOperand(Idx2).setReg(Reg1);
176 MI->getOperand(Idx1).setReg(Reg2);
177 MI->getOperand(Idx2).setSubReg(SubReg1);
178 MI->getOperand(Idx1).setSubReg(SubReg2);
179 MI->getOperand(Idx2).setIsKill(Reg1IsKill);
180 MI->getOperand(Idx1).setIsKill(Reg2IsKill);
Andrea Di Biagioc84b5bd2015-04-30 21:03:29 +0000181 MI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
182 MI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
Pete Cooper451755d2015-04-30 23:14:14 +0000183 MI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
184 MI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000185 return MI;
186}
187
Andrew Kaylor16c4da02015-09-28 20:33:22 +0000188MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
189 bool NewMI,
190 unsigned OpIdx1,
191 unsigned OpIdx2) const {
192 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
193 // any commutable operand, which is done in findCommutedOpIndices() method
194 // called below.
195 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
196 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
197 assert(MI->isCommutable() &&
198 "Precondition violation: MI must be commutable.");
199 return nullptr;
200 }
201 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
202}
203
204bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
205 unsigned &ResultIdx2,
206 unsigned CommutableOpIdx1,
207 unsigned CommutableOpIdx2) {
208 if (ResultIdx1 == CommuteAnyOperandIndex &&
209 ResultIdx2 == CommuteAnyOperandIndex) {
210 ResultIdx1 = CommutableOpIdx1;
211 ResultIdx2 = CommutableOpIdx2;
212 } else if (ResultIdx1 == CommuteAnyOperandIndex) {
213 if (ResultIdx2 == CommutableOpIdx1)
214 ResultIdx1 = CommutableOpIdx2;
215 else if (ResultIdx2 == CommutableOpIdx2)
216 ResultIdx1 = CommutableOpIdx1;
217 else
218 return false;
219 } else if (ResultIdx2 == CommuteAnyOperandIndex) {
220 if (ResultIdx1 == CommutableOpIdx1)
221 ResultIdx2 = CommutableOpIdx2;
222 else if (ResultIdx1 == CommutableOpIdx2)
223 ResultIdx2 = CommutableOpIdx1;
224 else
225 return false;
226 } else
227 // Check that the result operand indices match the given commutable
228 // operand indices.
229 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
230 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
231
232 return true;
233}
234
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000235bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
236 unsigned &SrcOpIdx1,
237 unsigned &SrcOpIdx2) const {
238 assert(!MI->isBundle() &&
239 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
240
241 const MCInstrDesc &MCID = MI->getDesc();
242 if (!MCID.isCommutable())
243 return false;
Andrew Kaylor16c4da02015-09-28 20:33:22 +0000244
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000245 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
246 // is not true, then the target must implement this.
Andrew Kaylor16c4da02015-09-28 20:33:22 +0000247 unsigned CommutableOpIdx1 = MCID.getNumDefs();
248 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
249 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
250 CommutableOpIdx1, CommutableOpIdx2))
251 return false;
252
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000253 if (!MI->getOperand(SrcOpIdx1).isReg() ||
254 !MI->getOperand(SrcOpIdx2).isReg())
255 // No idea.
256 return false;
257 return true;
258}
259
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000260bool
261TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
262 if (!MI->isTerminator()) return false;
263
264 // Conditional branch is a special case.
265 if (MI->isBranch() && !MI->isBarrier())
266 return true;
267 if (!MI->isPredicable())
268 return true;
269 return !isPredicated(MI);
270}
271
Ahmed Bougachac88bf542015-06-11 19:30:37 +0000272bool TargetInstrInfo::PredicateInstruction(
273 MachineInstr *MI, ArrayRef<MachineOperand> Pred) const {
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000274 bool MadeChange = false;
275
276 assert(!MI->isBundle() &&
277 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
278
279 const MCInstrDesc &MCID = MI->getDesc();
280 if (!MI->isPredicable())
281 return false;
282
283 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
284 if (MCID.OpInfo[i].isPredicate()) {
285 MachineOperand &MO = MI->getOperand(i);
286 if (MO.isReg()) {
287 MO.setReg(Pred[j].getReg());
288 MadeChange = true;
289 } else if (MO.isImm()) {
290 MO.setImm(Pred[j].getImm());
291 MadeChange = true;
292 } else if (MO.isMBB()) {
293 MO.setMBB(Pred[j].getMBB());
294 MadeChange = true;
295 }
296 ++j;
297 }
298 }
299 return MadeChange;
300}
301
302bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
303 const MachineMemOperand *&MMO,
304 int &FrameIndex) const {
305 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
306 oe = MI->memoperands_end();
307 o != oe;
308 ++o) {
Nick Lewyckyaad475b2014-04-15 07:22:52 +0000309 if ((*o)->isLoad()) {
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000310 if (const FixedStackPseudoSourceValue *Value =
Nick Lewyckyaad475b2014-04-15 07:22:52 +0000311 dyn_cast_or_null<FixedStackPseudoSourceValue>(
312 (*o)->getPseudoValue())) {
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000313 FrameIndex = Value->getFrameIndex();
314 MMO = *o;
315 return true;
316 }
Nick Lewyckyaad475b2014-04-15 07:22:52 +0000317 }
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000318 }
319 return false;
320}
321
322bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
323 const MachineMemOperand *&MMO,
324 int &FrameIndex) const {
325 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
326 oe = MI->memoperands_end();
327 o != oe;
328 ++o) {
Nick Lewyckyaad475b2014-04-15 07:22:52 +0000329 if ((*o)->isStore()) {
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000330 if (const FixedStackPseudoSourceValue *Value =
Nick Lewyckyaad475b2014-04-15 07:22:52 +0000331 dyn_cast_or_null<FixedStackPseudoSourceValue>(
332 (*o)->getPseudoValue())) {
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000333 FrameIndex = Value->getFrameIndex();
334 MMO = *o;
335 return true;
336 }
Nick Lewyckyaad475b2014-04-15 07:22:52 +0000337 }
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000338 }
339 return false;
340}
341
Andrew Trick10d5be42013-11-17 01:36:23 +0000342bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
343 unsigned SubIdx, unsigned &Size,
344 unsigned &Offset,
Eric Christopher7585fb22015-03-19 23:06:21 +0000345 const MachineFunction &MF) const {
Andrew Trick10d5be42013-11-17 01:36:23 +0000346 if (!SubIdx) {
347 Size = RC->getSize();
348 Offset = 0;
349 return true;
350 }
Eric Christopher7585fb22015-03-19 23:06:21 +0000351 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
352 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
Andrew Trick10d5be42013-11-17 01:36:23 +0000353 // Convert bit size to byte size to be consistent with
354 // MCRegisterClass::getSize().
355 if (BitSize % 8)
356 return false;
357
Eric Christopher7585fb22015-03-19 23:06:21 +0000358 int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
Andrew Trick10d5be42013-11-17 01:36:23 +0000359 if (BitOffset < 0 || BitOffset % 8)
360 return false;
361
362 Size = BitSize /= 8;
363 Offset = (unsigned)BitOffset / 8;
364
365 assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
366
Mehdi Aminibd7287e2015-07-16 06:11:10 +0000367 if (!MF.getDataLayout().isLittleEndian()) {
Andrew Trick10d5be42013-11-17 01:36:23 +0000368 Offset = RC->getSize() - (Offset + Size);
369 }
370 return true;
371}
372
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000373void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
374 MachineBasicBlock::iterator I,
375 unsigned DestReg,
376 unsigned SubIdx,
377 const MachineInstr *Orig,
378 const TargetRegisterInfo &TRI) const {
379 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
380 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
381 MBB.insert(I, MI);
382}
383
384bool
385TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
386 const MachineInstr *MI1,
387 const MachineRegisterInfo *MRI) const {
388 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
389}
390
391MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
392 MachineFunction &MF) const {
393 assert(!Orig->isNotDuplicable() &&
394 "Instruction cannot be duplicated");
395 return MF.CloneMachineInstr(Orig);
396}
397
398// If the COPY instruction in MI can be folded to a stack operation, return
399// the register class to use.
400static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
401 unsigned FoldIdx) {
402 assert(MI->isCopy() && "MI must be a COPY instruction");
403 if (MI->getNumOperands() != 2)
Craig Topperc0196b12014-04-14 00:51:57 +0000404 return nullptr;
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000405 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
406
407 const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
408 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
409
410 if (FoldOp.getSubReg() || LiveOp.getSubReg())
Craig Topperc0196b12014-04-14 00:51:57 +0000411 return nullptr;
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000412
413 unsigned FoldReg = FoldOp.getReg();
414 unsigned LiveReg = LiveOp.getReg();
415
416 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
417 "Cannot fold physregs");
418
419 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
420 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
421
422 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
Craig Topperc0196b12014-04-14 00:51:57 +0000423 return RC->contains(LiveOp.getReg()) ? RC : nullptr;
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000424
425 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
426 return RC;
427
428 // FIXME: Allow folding when register classes are memory compatible.
Craig Topperc0196b12014-04-14 00:51:57 +0000429 return nullptr;
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000430}
431
Rafael Espindola6865d6f2014-09-15 18:32:58 +0000432void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
433 llvm_unreachable("Not a MachO target");
434}
435
Benjamin Kramerf1362f62015-02-28 12:04:00 +0000436static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr *MI,
437 ArrayRef<unsigned> Ops, int FrameIndex,
Lang Hames39609992013-11-29 03:07:54 +0000438 const TargetInstrInfo &TII) {
439 unsigned StartIdx = 0;
440 switch (MI->getOpcode()) {
441 case TargetOpcode::STACKMAP:
442 StartIdx = 2; // Skip ID, nShadowBytes.
443 break;
444 case TargetOpcode::PATCHPOINT: {
445 // For PatchPoint, the call args are not foldable.
446 PatchPointOpers opers(MI);
447 StartIdx = opers.getVarIdx();
448 break;
449 }
450 default:
451 llvm_unreachable("unexpected stackmap opcode");
452 }
453
454 // Return false if any operands requested for folding are not foldable (not
455 // part of the stackmap's live values).
Benjamin Kramerf1362f62015-02-28 12:04:00 +0000456 for (unsigned Op : Ops) {
457 if (Op < StartIdx)
Craig Topperc0196b12014-04-14 00:51:57 +0000458 return nullptr;
Lang Hames39609992013-11-29 03:07:54 +0000459 }
460
461 MachineInstr *NewMI =
462 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true);
463 MachineInstrBuilder MIB(MF, NewMI);
464
465 // No need to fold return, the meta data, and function arguments
466 for (unsigned i = 0; i < StartIdx; ++i)
467 MIB.addOperand(MI->getOperand(i));
468
469 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
470 MachineOperand &MO = MI->getOperand(i);
471 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
472 unsigned SpillSize;
473 unsigned SpillOffset;
474 // Compute the spill slot size and offset.
475 const TargetRegisterClass *RC =
476 MF.getRegInfo().getRegClass(MO.getReg());
Eric Christopher7585fb22015-03-19 23:06:21 +0000477 bool Valid =
478 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
Lang Hames39609992013-11-29 03:07:54 +0000479 if (!Valid)
480 report_fatal_error("cannot spill patchpoint subregister operand");
481 MIB.addImm(StackMaps::IndirectMemRefOp);
482 MIB.addImm(SpillSize);
483 MIB.addFrameIndex(FrameIndex);
Lang Hames2ce64a72013-12-07 03:30:59 +0000484 MIB.addImm(SpillOffset);
Lang Hames39609992013-11-29 03:07:54 +0000485 }
486 else
487 MIB.addOperand(MO);
488 }
489 return NewMI;
490}
491
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000492/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
493/// slot into the specified machine instruction for the specified operand(s).
494/// If this is possible, a new instruction is returned with the specified
495/// operand folded, otherwise NULL is returned. The client is responsible for
496/// removing the old instruction and adding the new one in the instruction
497/// stream.
Benjamin Kramerf1362f62015-02-28 12:04:00 +0000498MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
499 ArrayRef<unsigned> Ops,
500 int FI) const {
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000501 unsigned Flags = 0;
502 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
503 if (MI->getOperand(Ops[i]).isDef())
504 Flags |= MachineMemOperand::MOStore;
505 else
506 Flags |= MachineMemOperand::MOLoad;
507
508 MachineBasicBlock *MBB = MI->getParent();
509 assert(MBB && "foldMemoryOperand needs an inserted instruction");
510 MachineFunction &MF = *MBB->getParent();
511
Craig Topperc0196b12014-04-14 00:51:57 +0000512 MachineInstr *NewMI = nullptr;
Lang Hames39609992013-11-29 03:07:54 +0000513
514 if (MI->getOpcode() == TargetOpcode::STACKMAP ||
515 MI->getOpcode() == TargetOpcode::PATCHPOINT) {
516 // Fold stackmap/patchpoint.
517 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
Keno Fischere70b31f2015-06-08 20:09:58 +0000518 if (NewMI)
519 MBB->insert(MI, NewMI);
Lang Hames39609992013-11-29 03:07:54 +0000520 } else {
521 // Ask the target to do the actual folding.
Keno Fischere70b31f2015-06-08 20:09:58 +0000522 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI);
Lang Hames39609992013-11-29 03:07:54 +0000523 }
Keno Fischere70b31f2015-06-08 20:09:58 +0000524
Lang Hames39609992013-11-29 03:07:54 +0000525 if (NewMI) {
Andrew Tricka9f4d922013-11-14 23:45:04 +0000526 NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000527 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
528 assert((!(Flags & MachineMemOperand::MOStore) ||
529 NewMI->mayStore()) &&
530 "Folded a def to a non-store!");
531 assert((!(Flags & MachineMemOperand::MOLoad) ||
532 NewMI->mayLoad()) &&
533 "Folded a use to a non-load!");
534 const MachineFrameInfo &MFI = *MF.getFrameInfo();
535 assert(MFI.getObjectOffset(FI) != -1);
Alex Lorenze40c8a22015-08-11 23:09:45 +0000536 MachineMemOperand *MMO = MF.getMachineMemOperand(
537 MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI),
538 MFI.getObjectAlignment(FI));
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000539 NewMI->addMemOperand(MF, MMO);
540
Keno Fischere70b31f2015-06-08 20:09:58 +0000541 return NewMI;
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000542 }
543
544 // Straight COPY may fold as load/store.
545 if (!MI->isCopy() || Ops.size() != 1)
Craig Topperc0196b12014-04-14 00:51:57 +0000546 return nullptr;
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000547
548 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
549 if (!RC)
Craig Topperc0196b12014-04-14 00:51:57 +0000550 return nullptr;
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000551
552 const MachineOperand &MO = MI->getOperand(1-Ops[0]);
553 MachineBasicBlock::iterator Pos = MI;
Eric Christopherfc6de422014-08-05 02:39:49 +0000554 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000555
556 if (Flags == MachineMemOperand::MOStore)
557 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
558 else
559 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
560 return --Pos;
561}
562
Chad Rosier03a47302015-09-21 15:09:11 +0000563bool TargetInstrInfo::hasReassociableOperands(
564 const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
565 const MachineOperand &Op1 = Inst.getOperand(1);
566 const MachineOperand &Op2 = Inst.getOperand(2);
567 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
568
569 // We need virtual register definitions for the operands that we will
570 // reassociate.
571 MachineInstr *MI1 = nullptr;
572 MachineInstr *MI2 = nullptr;
573 if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
574 MI1 = MRI.getUniqueVRegDef(Op1.getReg());
575 if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
576 MI2 = MRI.getUniqueVRegDef(Op2.getReg());
577
578 // And they need to be in the trace (otherwise, they won't have a depth).
579 if (MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB)
580 return true;
581
582 return false;
583}
584
585bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
586 bool &Commuted) const {
587 const MachineBasicBlock *MBB = Inst.getParent();
588 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
589 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
590 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
591 unsigned AssocOpcode = Inst.getOpcode();
592
593 // If only one operand has the same opcode and it's the second source operand,
594 // the operands must be commuted.
595 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
596 if (Commuted)
597 std::swap(MI1, MI2);
598
599 // 1. The previous instruction must be the same type as Inst.
600 // 2. The previous instruction must have virtual register definitions for its
601 // operands in the same basic block as Inst.
602 // 3. The previous instruction's result must only be used by Inst.
603 if (MI1->getOpcode() == AssocOpcode && hasReassociableOperands(*MI1, MBB) &&
604 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()))
605 return true;
606
607 return false;
608}
609
610// 1. The operation must be associative and commutative.
611// 2. The instruction must have virtual register definitions for its
612// operands in the same basic block.
613// 3. The instruction must have a reassociable sibling.
614bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
615 bool &Commuted) const {
616 if (isAssociativeAndCommutative(Inst) &&
617 hasReassociableOperands(Inst, Inst.getParent()) &&
618 hasReassociableSibling(Inst, Commuted))
619 return true;
620
621 return false;
622}
623
624// The concept of the reassociation pass is that these operations can benefit
625// from this kind of transformation:
626//
627// A = ? op ?
628// B = A op X (Prev)
629// C = B op Y (Root)
630// -->
631// A = ? op ?
632// B = X op Y
633// C = A op B
634//
635// breaking the dependency between A and B, allowing them to be executed in
636// parallel (or back-to-back in a pipeline) instead of depending on each other.
637
638// FIXME: This has the potential to be expensive (compile time) while not
639// improving the code at all. Some ways to limit the overhead:
640// 1. Track successful transforms; bail out if hit rate gets too low.
641// 2. Only enable at -O3 or some other non-default optimization level.
642// 3. Pre-screen pattern candidates here: if an operand of the previous
643// instruction is known to not increase the critical path, then don't match
644// that pattern.
645bool TargetInstrInfo::getMachineCombinerPatterns(
646 MachineInstr &Root,
647 SmallVectorImpl<MachineCombinerPattern::MC_PATTERN> &Patterns) const {
648
649 bool Commute;
650 if (isReassociationCandidate(Root, Commute)) {
651 // We found a sequence of instructions that may be suitable for a
652 // reassociation of operands to increase ILP. Specify each commutation
653 // possibility for the Prev instruction in the sequence and let the
654 // machine combiner decide if changing the operands is worthwhile.
655 if (Commute) {
656 Patterns.push_back(MachineCombinerPattern::MC_REASSOC_AX_YB);
657 Patterns.push_back(MachineCombinerPattern::MC_REASSOC_XA_YB);
658 } else {
659 Patterns.push_back(MachineCombinerPattern::MC_REASSOC_AX_BY);
660 Patterns.push_back(MachineCombinerPattern::MC_REASSOC_XA_BY);
661 }
662 return true;
663 }
664
665 return false;
666}
667
668/// Attempt the reassociation transformation to reduce critical path length.
669/// See the above comments before getMachineCombinerPatterns().
670void TargetInstrInfo::reassociateOps(
671 MachineInstr &Root, MachineInstr &Prev,
672 MachineCombinerPattern::MC_PATTERN Pattern,
673 SmallVectorImpl<MachineInstr *> &InsInstrs,
674 SmallVectorImpl<MachineInstr *> &DelInstrs,
675 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
676 MachineFunction *MF = Root.getParent()->getParent();
677 MachineRegisterInfo &MRI = MF->getRegInfo();
678 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
679 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
680 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
681
682 // This array encodes the operand index for each parameter because the
683 // operands may be commuted. Each row corresponds to a pattern value,
684 // and each column specifies the index of A, B, X, Y.
685 unsigned OpIdx[4][4] = {
686 { 1, 1, 2, 2 },
687 { 1, 2, 2, 1 },
688 { 2, 1, 1, 2 },
689 { 2, 2, 1, 1 }
690 };
691
692 MachineOperand &OpA = Prev.getOperand(OpIdx[Pattern][0]);
693 MachineOperand &OpB = Root.getOperand(OpIdx[Pattern][1]);
694 MachineOperand &OpX = Prev.getOperand(OpIdx[Pattern][2]);
695 MachineOperand &OpY = Root.getOperand(OpIdx[Pattern][3]);
696 MachineOperand &OpC = Root.getOperand(0);
697
698 unsigned RegA = OpA.getReg();
699 unsigned RegB = OpB.getReg();
700 unsigned RegX = OpX.getReg();
701 unsigned RegY = OpY.getReg();
702 unsigned RegC = OpC.getReg();
703
704 if (TargetRegisterInfo::isVirtualRegister(RegA))
705 MRI.constrainRegClass(RegA, RC);
706 if (TargetRegisterInfo::isVirtualRegister(RegB))
707 MRI.constrainRegClass(RegB, RC);
708 if (TargetRegisterInfo::isVirtualRegister(RegX))
709 MRI.constrainRegClass(RegX, RC);
710 if (TargetRegisterInfo::isVirtualRegister(RegY))
711 MRI.constrainRegClass(RegY, RC);
712 if (TargetRegisterInfo::isVirtualRegister(RegC))
713 MRI.constrainRegClass(RegC, RC);
714
715 // Create a new virtual register for the result of (X op Y) instead of
716 // recycling RegB because the MachineCombiner's computation of the critical
717 // path requires a new register definition rather than an existing one.
718 unsigned NewVR = MRI.createVirtualRegister(RC);
719 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
720
721 unsigned Opcode = Root.getOpcode();
722 bool KillA = OpA.isKill();
723 bool KillX = OpX.isKill();
724 bool KillY = OpY.isKill();
725
726 // Create new instructions for insertion.
727 MachineInstrBuilder MIB1 =
728 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
729 .addReg(RegX, getKillRegState(KillX))
730 .addReg(RegY, getKillRegState(KillY));
731 MachineInstrBuilder MIB2 =
732 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
733 .addReg(RegA, getKillRegState(KillA))
734 .addReg(NewVR, getKillRegState(true));
735
736 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
737
738 // Record new instructions for insertion and old instructions for deletion.
739 InsInstrs.push_back(MIB1);
740 InsInstrs.push_back(MIB2);
741 DelInstrs.push_back(&Prev);
742 DelInstrs.push_back(&Root);
743}
744
745void TargetInstrInfo::genAlternativeCodeSequence(
746 MachineInstr &Root, MachineCombinerPattern::MC_PATTERN Pattern,
747 SmallVectorImpl<MachineInstr *> &InsInstrs,
748 SmallVectorImpl<MachineInstr *> &DelInstrs,
749 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
750 MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
751
752 // Select the previous instruction in the sequence based on the input pattern.
753 MachineInstr *Prev = nullptr;
754 switch (Pattern) {
755 case MachineCombinerPattern::MC_REASSOC_AX_BY:
756 case MachineCombinerPattern::MC_REASSOC_XA_BY:
757 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
758 break;
759 case MachineCombinerPattern::MC_REASSOC_AX_YB:
760 case MachineCombinerPattern::MC_REASSOC_XA_YB:
761 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
762 break;
763 default:
764 break;
765 }
766
767 assert(Prev && "Unknown pattern for machine combiner");
768
769 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
770 return;
771}
772
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000773/// foldMemoryOperand - Same as the previous version except it allows folding
774/// of any load and store from / to any address, not just from a specific
775/// stack slot.
Benjamin Kramerf1362f62015-02-28 12:04:00 +0000776MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
777 ArrayRef<unsigned> Ops,
778 MachineInstr *LoadMI) const {
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000779 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
780#ifndef NDEBUG
781 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
782 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
783#endif
784 MachineBasicBlock &MBB = *MI->getParent();
785 MachineFunction &MF = *MBB.getParent();
786
787 // Ask the target to do the actual folding.
Craig Topperc0196b12014-04-14 00:51:57 +0000788 MachineInstr *NewMI = nullptr;
Lang Hames39609992013-11-29 03:07:54 +0000789 int FrameIndex = 0;
790
791 if ((MI->getOpcode() == TargetOpcode::STACKMAP ||
792 MI->getOpcode() == TargetOpcode::PATCHPOINT) &&
793 isLoadFromStackSlot(LoadMI, FrameIndex)) {
794 // Fold stackmap/patchpoint.
795 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
Keno Fischere70b31f2015-06-08 20:09:58 +0000796 if (NewMI)
797 NewMI = MBB.insert(MI, NewMI);
Lang Hames39609992013-11-29 03:07:54 +0000798 } else {
799 // Ask the target to do the actual folding.
Keno Fischere70b31f2015-06-08 20:09:58 +0000800 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI);
Lang Hames39609992013-11-29 03:07:54 +0000801 }
Lang Hames39609992013-11-29 03:07:54 +0000802
Craig Topperc0196b12014-04-14 00:51:57 +0000803 if (!NewMI) return nullptr;
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000804
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000805 // Copy the memoperands from the load to the folded instruction.
Andrew Tricka9f4d922013-11-14 23:45:04 +0000806 if (MI->memoperands_empty()) {
807 NewMI->setMemRefs(LoadMI->memoperands_begin(),
808 LoadMI->memoperands_end());
809 }
810 else {
811 // Handle the rare case of folding multiple loads.
812 NewMI->setMemRefs(MI->memoperands_begin(),
813 MI->memoperands_end());
814 for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(),
815 E = LoadMI->memoperands_end(); I != E; ++I) {
816 NewMI->addMemOperand(MF, *I);
817 }
818 }
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000819 return NewMI;
820}
821
822bool TargetInstrInfo::
823isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
824 AliasAnalysis *AA) const {
825 const MachineFunction &MF = *MI->getParent()->getParent();
826 const MachineRegisterInfo &MRI = MF.getRegInfo();
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000827
828 // Remat clients assume operand 0 is the defined register.
829 if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
830 return false;
831 unsigned DefReg = MI->getOperand(0).getReg();
832
833 // A sub-register definition can only be rematerialized if the instruction
834 // doesn't read the other parts of the register. Otherwise it is really a
835 // read-modify-write operation on the full virtual register which cannot be
836 // moved safely.
837 if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
838 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
839 return false;
840
841 // A load from a fixed stack slot can be rematerialized. This may be
842 // redundant with subsequent checks, but it's target-independent,
843 // simple, and a common case.
844 int FrameIdx = 0;
Eric Christopher9d916792014-07-23 22:12:03 +0000845 if (isLoadFromStackSlot(MI, FrameIdx) &&
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000846 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
847 return true;
848
849 // Avoid instructions obviously unsafe for remat.
850 if (MI->isNotDuplicable() || MI->mayStore() ||
851 MI->hasUnmodeledSideEffects())
852 return false;
853
854 // Don't remat inline asm. We have no idea how expensive it is
855 // even if it's side effect free.
856 if (MI->isInlineAsm())
857 return false;
858
859 // Avoid instructions which load from potentially varying memory.
860 if (MI->mayLoad() && !MI->isInvariantLoad(AA))
861 return false;
862
863 // If any of the registers accessed are non-constant, conservatively assume
864 // the instruction is not rematerializable.
865 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
866 const MachineOperand &MO = MI->getOperand(i);
867 if (!MO.isReg()) continue;
868 unsigned Reg = MO.getReg();
869 if (Reg == 0)
870 continue;
871
872 // Check for a well-behaved physical register.
873 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
874 if (MO.isUse()) {
875 // If the physreg has no defs anywhere, it's just an ambient register
876 // and we can freely move its uses. Alternatively, if it's allocatable,
877 // it could get allocated to something with a def during allocation.
878 if (!MRI.isConstantPhysReg(Reg, MF))
879 return false;
880 } else {
881 // A physreg def. We can't remat it.
882 return false;
883 }
884 continue;
885 }
886
887 // Only allow one virtual-register def. There may be multiple defs of the
888 // same virtual register, though.
889 if (MO.isDef() && Reg != DefReg)
890 return false;
891
892 // Don't allow any virtual-register uses. Rematting an instruction with
893 // virtual register uses would length the live ranges of the uses, which
894 // is not necessarily a good idea, certainly not "trivial".
895 if (MO.isUse())
896 return false;
897 }
898
899 // Everything checked out.
900 return true;
901}
902
Michael Kuperstein8c65e312015-01-08 11:04:38 +0000903int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const {
904 const MachineFunction *MF = MI->getParent()->getParent();
905 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
906 bool StackGrowsDown =
907 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
908
Matthias Braunfa3872e2015-05-18 20:27:55 +0000909 unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
910 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
Michael Kuperstein8c65e312015-01-08 11:04:38 +0000911
912 if (MI->getOpcode() != FrameSetupOpcode &&
913 MI->getOpcode() != FrameDestroyOpcode)
914 return 0;
915
916 int SPAdj = MI->getOperand(0).getImm();
Guozhi Weif66d3842015-08-17 22:36:27 +0000917 SPAdj = TFI->alignSPAdjust(SPAdj);
Michael Kuperstein8c65e312015-01-08 11:04:38 +0000918
919 if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) ||
920 (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode))
921 SPAdj = -SPAdj;
922
923 return SPAdj;
924}
925
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000926/// isSchedulingBoundary - Test if the given instruction should be
927/// considered a scheduling boundary. This primarily includes labels
928/// and terminators.
929bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
930 const MachineBasicBlock *MBB,
931 const MachineFunction &MF) const {
932 // Terminators and labels can't be scheduled around.
Rafael Espindolab1f25f12014-03-07 06:08:31 +0000933 if (MI->isTerminator() || MI->isPosition())
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000934 return true;
935
936 // Don't attempt to schedule around any instruction that defines
937 // a stack-oriented pointer, as it's unlikely to be profitable. This
938 // saves compile time, because it doesn't require every single
939 // stack slot reference to depend on the instruction that does the
940 // modification.
Eric Christopherfc6de422014-08-05 02:39:49 +0000941 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
942 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000943 if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI))
944 return true;
945
946 return false;
947}
948
949// Provide a global flag for disabling the PreRA hazard recognizer that targets
950// may choose to honor.
951bool TargetInstrInfo::usePreRAHazardRecognizer() const {
952 return !DisableHazardRecognizer;
953}
954
955// Default implementation of CreateTargetRAHazardRecognizer.
956ScheduleHazardRecognizer *TargetInstrInfo::
Eric Christopherf047bfd2014-06-13 22:38:52 +0000957CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +0000958 const ScheduleDAG *DAG) const {
959 // Dummy hazard recognizer allows all instructions to issue.
960 return new ScheduleHazardRecognizer();
961}
962
963// Default implementation of CreateTargetMIHazardRecognizer.
964ScheduleHazardRecognizer *TargetInstrInfo::
965CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
966 const ScheduleDAG *DAG) const {
967 return (ScheduleHazardRecognizer *)
968 new ScoreboardHazardRecognizer(II, DAG, "misched");
969}
970
971// Default implementation of CreateTargetPostRAHazardRecognizer.
972ScheduleHazardRecognizer *TargetInstrInfo::
973CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
974 const ScheduleDAG *DAG) const {
975 return (ScheduleHazardRecognizer *)
976 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
977}
978
979//===----------------------------------------------------------------------===//
980// SelectionDAG latency interface.
981//===----------------------------------------------------------------------===//
982
983int
984TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
985 SDNode *DefNode, unsigned DefIdx,
986 SDNode *UseNode, unsigned UseIdx) const {
987 if (!ItinData || ItinData->isEmpty())
988 return -1;
989
990 if (!DefNode->isMachineOpcode())
991 return -1;
992
993 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
994 if (!UseNode->isMachineOpcode())
995 return ItinData->getOperandCycle(DefClass, DefIdx);
996 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
997 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
998}
999
1000int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1001 SDNode *N) const {
1002 if (!ItinData || ItinData->isEmpty())
1003 return 1;
1004
1005 if (!N->isMachineOpcode())
1006 return 1;
1007
1008 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1009}
1010
1011//===----------------------------------------------------------------------===//
1012// MachineInstr latency interface.
1013//===----------------------------------------------------------------------===//
1014
1015unsigned
1016TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1017 const MachineInstr *MI) const {
1018 if (!ItinData || ItinData->isEmpty())
1019 return 1;
1020
1021 unsigned Class = MI->getDesc().getSchedClass();
1022 int UOps = ItinData->Itineraries[Class].NumMicroOps;
1023 if (UOps >= 0)
1024 return UOps;
1025
1026 // The # of u-ops is dynamically determined. The specific target should
1027 // override this function to return the right number.
1028 return 1;
1029}
1030
1031/// Return the default expected latency for a def based on it's opcode.
Pete Cooper11759452014-09-02 17:43:54 +00001032unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +00001033 const MachineInstr *DefMI) const {
1034 if (DefMI->isTransient())
1035 return 0;
1036 if (DefMI->mayLoad())
Pete Cooper11759452014-09-02 17:43:54 +00001037 return SchedModel.LoadLatency;
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +00001038 if (isHighLatencyDef(DefMI->getOpcode()))
Pete Cooper11759452014-09-02 17:43:54 +00001039 return SchedModel.HighLatency;
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +00001040 return 1;
1041}
1042
Arnold Schwaighoferd2f96b92013-09-30 15:28:56 +00001043unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const {
1044 return 0;
1045}
1046
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +00001047unsigned TargetInstrInfo::
1048getInstrLatency(const InstrItineraryData *ItinData,
1049 const MachineInstr *MI,
1050 unsigned *PredCost) const {
1051 // Default to one cycle for no itinerary. However, an "empty" itinerary may
1052 // still have a MinLatency property, which getStageLatency checks.
1053 if (!ItinData)
1054 return MI->mayLoad() ? 2 : 1;
1055
1056 return ItinData->getStageLatency(MI->getDesc().getSchedClass());
1057}
1058
Matthias Braun88e21312015-06-13 03:42:11 +00001059bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +00001060 const MachineInstr *DefMI,
1061 unsigned DefIdx) const {
Matthias Braun88e21312015-06-13 03:42:11 +00001062 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +00001063 if (!ItinData || ItinData->isEmpty())
1064 return false;
1065
1066 unsigned DefClass = DefMI->getDesc().getSchedClass();
1067 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1068 return (DefCycle != -1 && DefCycle <= 1);
1069}
1070
1071/// Both DefMI and UseMI must be valid. By default, call directly to the
1072/// itinerary. This may be overriden by the target.
1073int TargetInstrInfo::
1074getOperandLatency(const InstrItineraryData *ItinData,
1075 const MachineInstr *DefMI, unsigned DefIdx,
1076 const MachineInstr *UseMI, unsigned UseIdx) const {
1077 unsigned DefClass = DefMI->getDesc().getSchedClass();
1078 unsigned UseClass = UseMI->getDesc().getSchedClass();
1079 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1080}
1081
1082/// If we can determine the operand latency from the def only, without itinerary
1083/// lookup, do so. Otherwise return -1.
1084int TargetInstrInfo::computeDefOperandLatency(
1085 const InstrItineraryData *ItinData,
Andrew Trickde2109e2013-06-15 04:49:57 +00001086 const MachineInstr *DefMI) const {
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +00001087
1088 // Let the target hook getInstrLatency handle missing itineraries.
1089 if (!ItinData)
1090 return getInstrLatency(ItinData, DefMI);
1091
Andrew Trickde2109e2013-06-15 04:49:57 +00001092 if(ItinData->isEmpty())
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +00001093 return defaultDefLatency(ItinData->SchedModel, DefMI);
1094
1095 // ...operand lookup required
1096 return -1;
1097}
1098
1099/// computeOperandLatency - Compute and return the latency of the given data
1100/// dependent def and use when the operand indices are already known. UseMI may
1101/// be NULL for an unknown use.
1102///
1103/// FindMin may be set to get the minimum vs. expected latency. Minimum
1104/// latency is used for scheduling groups, while expected latency is for
1105/// instruction cost and critical path.
1106///
1107/// Depending on the subtarget's itinerary properties, this may or may not need
1108/// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
1109/// UseIdx to compute min latency.
1110unsigned TargetInstrInfo::
1111computeOperandLatency(const InstrItineraryData *ItinData,
1112 const MachineInstr *DefMI, unsigned DefIdx,
Andrew Trickde2109e2013-06-15 04:49:57 +00001113 const MachineInstr *UseMI, unsigned UseIdx) const {
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +00001114
Andrew Trickde2109e2013-06-15 04:49:57 +00001115 int DefLatency = computeDefOperandLatency(ItinData, DefMI);
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +00001116 if (DefLatency >= 0)
1117 return DefLatency;
1118
1119 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
1120
1121 int OperLatency = 0;
1122 if (UseMI)
1123 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
1124 else {
1125 unsigned DefClass = DefMI->getDesc().getSchedClass();
1126 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
1127 }
1128 if (OperLatency >= 0)
1129 return OperLatency;
1130
1131 // No operand latency was found.
1132 unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
1133
1134 // Expected latency is the max of the stage latency and itinerary props.
Andrew Trickde2109e2013-06-15 04:49:57 +00001135 InstrLatency = std::max(InstrLatency,
1136 defaultDefLatency(ItinData->SchedModel, DefMI));
Jakob Stoklund Olesenc351aed2012-11-28 02:35:13 +00001137 return InstrLatency;
1138}
Quentin Colombetd533cdf2014-08-11 22:17:14 +00001139
1140bool TargetInstrInfo::getRegSequenceInputs(
1141 const MachineInstr &MI, unsigned DefIdx,
1142 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
Quentin Colombet8427df92014-08-12 17:11:26 +00001143 assert((MI.isRegSequence() ||
1144 MI.isRegSequenceLike()) && "Instruction do not have the proper type");
Quentin Colombetd533cdf2014-08-11 22:17:14 +00001145
1146 if (!MI.isRegSequence())
1147 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1148
1149 // We are looking at:
1150 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1151 assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1152 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1153 OpIdx += 2) {
1154 const MachineOperand &MOReg = MI.getOperand(OpIdx);
1155 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1156 assert(MOSubIdx.isImm() &&
1157 "One of the subindex of the reg_sequence is not an immediate");
1158 // Record Reg:SubReg, SubIdx.
1159 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1160 (unsigned)MOSubIdx.getImm()));
1161 }
1162 return true;
1163}
Quentin Colombet7e75cba2014-08-20 21:51:26 +00001164
1165bool TargetInstrInfo::getExtractSubregInputs(
1166 const MachineInstr &MI, unsigned DefIdx,
1167 RegSubRegPairAndIdx &InputReg) const {
1168 assert((MI.isExtractSubreg() ||
1169 MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1170
1171 if (!MI.isExtractSubreg())
1172 return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1173
1174 // We are looking at:
1175 // Def = EXTRACT_SUBREG v0.sub1, sub0.
1176 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1177 const MachineOperand &MOReg = MI.getOperand(1);
1178 const MachineOperand &MOSubIdx = MI.getOperand(2);
1179 assert(MOSubIdx.isImm() &&
1180 "The subindex of the extract_subreg is not an immediate");
1181
1182 InputReg.Reg = MOReg.getReg();
1183 InputReg.SubReg = MOReg.getSubReg();
1184 InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1185 return true;
1186}
Quentin Colombet7e3da662014-08-20 23:49:36 +00001187
1188bool TargetInstrInfo::getInsertSubregInputs(
1189 const MachineInstr &MI, unsigned DefIdx,
1190 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1191 assert((MI.isInsertSubreg() ||
1192 MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1193
1194 if (!MI.isInsertSubreg())
1195 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1196
1197 // We are looking at:
1198 // Def = INSERT_SEQUENCE v0, v1, sub0.
1199 assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1200 const MachineOperand &MOBaseReg = MI.getOperand(1);
1201 const MachineOperand &MOInsertedReg = MI.getOperand(2);
1202 const MachineOperand &MOSubIdx = MI.getOperand(3);
1203 assert(MOSubIdx.isImm() &&
1204 "One of the subindex of the reg_sequence is not an immediate");
1205 BaseReg.Reg = MOBaseReg.getReg();
1206 BaseReg.SubReg = MOBaseReg.getSubReg();
1207
1208 InsertedReg.Reg = MOInsertedReg.getReg();
1209 InsertedReg.SubReg = MOInsertedReg.getSubReg();
1210 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1211 return true;
1212}