Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1 | //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===// |
| 2 | // |
Chandler Carruth | 2946cd7 | 2019-01-19 08:50:56 +0000 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// |
| 10 | /// Provide a pass which mitigates speculative execution attacks which operate |
| 11 | /// by speculating incorrectly past some predicate (a type check, bounds check, |
| 12 | /// or other condition) to reach a load with invalid inputs and leak the data |
| 13 | /// accessed by that load using a side channel out of the speculative domain. |
| 14 | /// |
| 15 | /// For details on the attacks, see the first variant in both the Project Zero |
| 16 | /// writeup and the Spectre paper: |
| 17 | /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html |
| 18 | /// https://spectreattack.com/spectre.pdf |
| 19 | /// |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #include "X86.h" |
| 23 | #include "X86InstrBuilder.h" |
| 24 | #include "X86InstrInfo.h" |
| 25 | #include "X86Subtarget.h" |
| 26 | #include "llvm/ADT/ArrayRef.h" |
| 27 | #include "llvm/ADT/DenseMap.h" |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 28 | #include "llvm/ADT/Optional.h" |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 29 | #include "llvm/ADT/STLExtras.h" |
| 30 | #include "llvm/ADT/ScopeExit.h" |
| 31 | #include "llvm/ADT/SmallPtrSet.h" |
| 32 | #include "llvm/ADT/SmallSet.h" |
| 33 | #include "llvm/ADT/SmallVector.h" |
| 34 | #include "llvm/ADT/SparseBitVector.h" |
| 35 | #include "llvm/ADT/Statistic.h" |
| 36 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 37 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 38 | #include "llvm/CodeGen/MachineFunction.h" |
| 39 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 40 | #include "llvm/CodeGen/MachineInstr.h" |
| 41 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 42 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 43 | #include "llvm/CodeGen/MachineOperand.h" |
| 44 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 45 | #include "llvm/CodeGen/MachineSSAUpdater.h" |
| 46 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 47 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 48 | #include "llvm/CodeGen/TargetSchedule.h" |
| 49 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 50 | #include "llvm/IR/DebugLoc.h" |
| 51 | #include "llvm/MC/MCSchedule.h" |
| 52 | #include "llvm/Pass.h" |
| 53 | #include "llvm/Support/CommandLine.h" |
| 54 | #include "llvm/Support/Debug.h" |
| 55 | #include "llvm/Support/raw_ostream.h" |
| 56 | #include <algorithm> |
| 57 | #include <cassert> |
| 58 | #include <iterator> |
| 59 | #include <utility> |
| 60 | |
| 61 | using namespace llvm; |
| 62 | |
Chandler Carruth | 00c35c7 | 2018-08-16 01:22:19 +0000 | [diff] [blame] | 63 | #define PASS_KEY "x86-slh" |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 64 | #define DEBUG_TYPE PASS_KEY |
| 65 | |
| 66 | STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced"); |
| 67 | STATISTIC(NumBranchesUntraced, "Number of branches unable to trace"); |
| 68 | STATISTIC(NumAddrRegsHardened, |
| 69 | "Number of address mode used registers hardaned"); |
| 70 | STATISTIC(NumPostLoadRegsHardened, |
| 71 | "Number of post-load register values hardened"); |
Chandler Carruth | 7024921 | 2018-07-25 01:51:29 +0000 | [diff] [blame] | 72 | STATISTIC(NumCallsOrJumpsHardened, |
| 73 | "Number of calls or jumps requiring extra hardening"); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 74 | STATISTIC(NumInstsInserted, "Number of instructions inserted"); |
| 75 | STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted"); |
| 76 | |
Chandler Carruth | 664aa86 | 2018-09-04 12:38:00 +0000 | [diff] [blame] | 77 | static cl::opt<bool> EnableSpeculativeLoadHardening( |
| 78 | "x86-speculative-load-hardening", |
| 79 | cl::desc("Force enable speculative load hardening"), cl::init(false), |
| 80 | cl::Hidden); |
| 81 | |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 82 | static cl::opt<bool> HardenEdgesWithLFENCE( |
| 83 | PASS_KEY "-lfence", |
| 84 | cl::desc( |
| 85 | "Use LFENCE along each conditional edge to harden against speculative " |
| 86 | "loads rather than conditional movs and poisoned pointers."), |
| 87 | cl::init(false), cl::Hidden); |
| 88 | |
| 89 | static cl::opt<bool> EnablePostLoadHardening( |
| 90 | PASS_KEY "-post-load", |
| 91 | cl::desc("Harden the value loaded *after* it is loaded by " |
| 92 | "flushing the loaded bits to 1. This is hard to do " |
| 93 | "in general but can be done easily for GPRs."), |
| 94 | cl::init(true), cl::Hidden); |
| 95 | |
| 96 | static cl::opt<bool> FenceCallAndRet( |
| 97 | PASS_KEY "-fence-call-and-ret", |
| 98 | cl::desc("Use a full speculation fence to harden both call and ret edges " |
| 99 | "rather than a lighter weight mitigation."), |
| 100 | cl::init(false), cl::Hidden); |
| 101 | |
| 102 | static cl::opt<bool> HardenInterprocedurally( |
| 103 | PASS_KEY "-ip", |
| 104 | cl::desc("Harden interprocedurally by passing our state in and out of " |
| 105 | "functions in the high bits of the stack pointer."), |
| 106 | cl::init(true), cl::Hidden); |
| 107 | |
| 108 | static cl::opt<bool> |
| 109 | HardenLoads(PASS_KEY "-loads", |
| 110 | cl::desc("Sanitize loads from memory. When disable, no " |
| 111 | "significant security is provided."), |
| 112 | cl::init(true), cl::Hidden); |
| 113 | |
Chandler Carruth | 7024921 | 2018-07-25 01:51:29 +0000 | [diff] [blame] | 114 | static cl::opt<bool> HardenIndirectCallsAndJumps( |
| 115 | PASS_KEY "-indirect", |
| 116 | cl::desc("Harden indirect calls and jumps against using speculatively " |
| 117 | "stored attacker controlled addresses. This is designed to " |
| 118 | "mitigate Spectre v1.2 style attacks."), |
| 119 | cl::init(true), cl::Hidden); |
| 120 | |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 121 | namespace { |
| 122 | |
| 123 | class X86SpeculativeLoadHardeningPass : public MachineFunctionPass { |
| 124 | public: |
Tom Stellard | f335672 | 2019-06-13 02:09:32 +0000 | [diff] [blame] | 125 | X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { } |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 126 | |
| 127 | StringRef getPassName() const override { |
| 128 | return "X86 speculative load hardening"; |
| 129 | } |
| 130 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 131 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 132 | |
| 133 | /// Pass identification, replacement for typeid. |
| 134 | static char ID; |
| 135 | |
| 136 | private: |
| 137 | /// The information about a block's conditional terminators needed to trace |
| 138 | /// our predicate state through the exiting edges. |
| 139 | struct BlockCondInfo { |
| 140 | MachineBasicBlock *MBB; |
| 141 | |
| 142 | // We mostly have one conditional branch, and in extremely rare cases have |
| 143 | // two. Three and more are so rare as to be unimportant for compile time. |
| 144 | SmallVector<MachineInstr *, 2> CondBrs; |
| 145 | |
| 146 | MachineInstr *UncondBr; |
| 147 | }; |
| 148 | |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 149 | /// Manages the predicate state traced through the program. |
| 150 | struct PredState { |
Simon Pilgrim | a8653da | 2019-11-04 17:24:18 +0000 | [diff] [blame] | 151 | unsigned InitialReg = 0; |
| 152 | unsigned PoisonReg = 0; |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 153 | |
| 154 | const TargetRegisterClass *RC; |
| 155 | MachineSSAUpdater SSA; |
| 156 | |
| 157 | PredState(MachineFunction &MF, const TargetRegisterClass *RC) |
| 158 | : RC(RC), SSA(MF) {} |
| 159 | }; |
| 160 | |
Simon Pilgrim | a8653da | 2019-11-04 17:24:18 +0000 | [diff] [blame] | 161 | const X86Subtarget *Subtarget = nullptr; |
| 162 | MachineRegisterInfo *MRI = nullptr; |
| 163 | const X86InstrInfo *TII = nullptr; |
| 164 | const TargetRegisterInfo *TRI = nullptr; |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 165 | |
| 166 | Optional<PredState> PS; |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 167 | |
| 168 | void hardenEdgesWithLFENCE(MachineFunction &MF); |
| 169 | |
| 170 | SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF); |
| 171 | |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 172 | SmallVector<MachineInstr *, 16> |
| 173 | tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos); |
| 174 | |
Chandler Carruth | 7024921 | 2018-07-25 01:51:29 +0000 | [diff] [blame] | 175 | void unfoldCallAndJumpLoads(MachineFunction &MF); |
| 176 | |
Chandler Carruth | 8d8489f | 2018-09-04 10:44:21 +0000 | [diff] [blame] | 177 | SmallVector<MachineInstr *, 16> |
| 178 | tracePredStateThroughIndirectBranches(MachineFunction &MF); |
| 179 | |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 180 | void tracePredStateThroughBlocksAndHarden(MachineFunction &MF); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 181 | |
| 182 | unsigned saveEFLAGS(MachineBasicBlock &MBB, |
| 183 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc); |
| 184 | void restoreEFLAGS(MachineBasicBlock &MBB, |
| 185 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc, |
| 186 | unsigned OFReg); |
| 187 | |
| 188 | void mergePredStateIntoSP(MachineBasicBlock &MBB, |
| 189 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc, |
| 190 | unsigned PredStateReg); |
| 191 | unsigned extractPredStateFromSP(MachineBasicBlock &MBB, |
| 192 | MachineBasicBlock::iterator InsertPt, |
| 193 | DebugLoc Loc); |
| 194 | |
| 195 | void |
| 196 | hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO, |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 197 | MachineOperand &IndexMO, |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 198 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); |
| 199 | MachineInstr * |
| 200 | sinkPostLoadHardenedInst(MachineInstr &MI, |
Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 201 | SmallPtrSetImpl<MachineInstr *> &HardenedInstrs); |
| 202 | bool canHardenRegister(unsigned Reg); |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 203 | unsigned hardenValueInRegister(unsigned Reg, MachineBasicBlock &MBB, |
| 204 | MachineBasicBlock::iterator InsertPt, |
| 205 | DebugLoc Loc); |
| 206 | unsigned hardenPostLoad(MachineInstr &MI); |
Chandler Carruth | a3a03ac | 2018-07-19 23:46:24 +0000 | [diff] [blame] | 207 | void hardenReturnInstr(MachineInstr &MI); |
Chandler Carruth | 1387159 | 2018-07-26 09:42:57 +0000 | [diff] [blame] | 208 | void tracePredStateThroughCall(MachineInstr &MI); |
Chandler Carruth | 7024921 | 2018-07-25 01:51:29 +0000 | [diff] [blame] | 209 | void hardenIndirectCallOrJumpInstr( |
| 210 | MachineInstr &MI, |
| 211 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 212 | }; |
| 213 | |
| 214 | } // end anonymous namespace |
| 215 | |
| 216 | char X86SpeculativeLoadHardeningPass::ID = 0; |
| 217 | |
| 218 | void X86SpeculativeLoadHardeningPass::getAnalysisUsage( |
| 219 | AnalysisUsage &AU) const { |
| 220 | MachineFunctionPass::getAnalysisUsage(AU); |
| 221 | } |
| 222 | |
| 223 | static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB, |
| 224 | MachineBasicBlock &Succ, int SuccCount, |
| 225 | MachineInstr *Br, MachineInstr *&UncondBr, |
| 226 | const X86InstrInfo &TII) { |
| 227 | assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!"); |
| 228 | |
| 229 | MachineFunction &MF = *MBB.getParent(); |
| 230 | |
| 231 | MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); |
| 232 | |
| 233 | // We have to insert the new block immediately after the current one as we |
| 234 | // don't know what layout-successor relationships the successor has and we |
| 235 | // may not be able to (and generally don't want to) try to fix those up. |
| 236 | MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); |
| 237 | |
| 238 | // Update the branch instruction if necessary. |
| 239 | if (Br) { |
| 240 | assert(Br->getOperand(0).getMBB() == &Succ && |
| 241 | "Didn't start with the right target!"); |
| 242 | Br->getOperand(0).setMBB(&NewMBB); |
| 243 | |
| 244 | // If this successor was reached through a branch rather than fallthrough, |
| 245 | // we might have *broken* fallthrough and so need to inject a new |
| 246 | // unconditional branch. |
| 247 | if (!UncondBr) { |
| 248 | MachineBasicBlock &OldLayoutSucc = |
| 249 | *std::next(MachineFunction::iterator(&NewMBB)); |
| 250 | assert(MBB.isSuccessor(&OldLayoutSucc) && |
| 251 | "Without an unconditional branch, the old layout successor should " |
| 252 | "be an actual successor!"); |
| 253 | auto BrBuilder = |
| 254 | BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc); |
| 255 | // Update the unconditional branch now that we've added one. |
| 256 | UncondBr = &*BrBuilder; |
| 257 | } |
| 258 | |
| 259 | // Insert unconditional "jump Succ" instruction in the new block if |
| 260 | // necessary. |
| 261 | if (!NewMBB.isLayoutSuccessor(&Succ)) { |
| 262 | SmallVector<MachineOperand, 4> Cond; |
| 263 | TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc()); |
| 264 | } |
| 265 | } else { |
| 266 | assert(!UncondBr && |
| 267 | "Cannot have a branchless successor and an unconditional branch!"); |
| 268 | assert(NewMBB.isLayoutSuccessor(&Succ) && |
| 269 | "A non-branch successor must have been a layout successor before " |
| 270 | "and now is a layout successor of the new block."); |
| 271 | } |
| 272 | |
| 273 | // If this is the only edge to the successor, we can just replace it in the |
| 274 | // CFG. Otherwise we need to add a new entry in the CFG for the new |
| 275 | // successor. |
| 276 | if (SuccCount == 1) { |
| 277 | MBB.replaceSuccessor(&Succ, &NewMBB); |
| 278 | } else { |
| 279 | MBB.splitSuccessor(&Succ, &NewMBB); |
| 280 | } |
| 281 | |
| 282 | // Hook up the edge from the new basic block to the old successor in the CFG. |
| 283 | NewMBB.addSuccessor(&Succ); |
| 284 | |
| 285 | // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB. |
| 286 | for (MachineInstr &MI : Succ) { |
| 287 | if (!MI.isPHI()) |
| 288 | break; |
| 289 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; |
| 290 | OpIdx += 2) { |
| 291 | MachineOperand &OpV = MI.getOperand(OpIdx); |
| 292 | MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); |
| 293 | assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!"); |
| 294 | if (OpMBB.getMBB() != &MBB) |
| 295 | continue; |
| 296 | |
| 297 | // If this is the last edge to the succesor, just replace MBB in the PHI |
| 298 | if (SuccCount == 1) { |
| 299 | OpMBB.setMBB(&NewMBB); |
| 300 | break; |
| 301 | } |
| 302 | |
| 303 | // Otherwise, append a new pair of operands for the new incoming edge. |
| 304 | MI.addOperand(MF, OpV); |
| 305 | MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); |
| 306 | break; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | // Inherit live-ins from the successor |
| 311 | for (auto &LI : Succ.liveins()) |
| 312 | NewMBB.addLiveIn(LI); |
| 313 | |
| 314 | LLVM_DEBUG(dbgs() << " Split edge from '" << MBB.getName() << "' to '" |
| 315 | << Succ.getName() << "'.\n"); |
| 316 | return NewMBB; |
| 317 | } |
| 318 | |
Chandler Carruth | 3ffcc03 | 2018-07-15 23:46:36 +0000 | [diff] [blame] | 319 | /// Removing duplicate PHI operands to leave the PHI in a canonical and |
| 320 | /// predictable form. |
| 321 | /// |
| 322 | /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR |
| 323 | /// isn't what you might expect. We may have multiple entries in PHI nodes for |
| 324 | /// a single predecessor. This makes CFG-updating extremely complex, so here we |
| 325 | /// simplify all PHI nodes to a model even simpler than the IR's model: exactly |
| 326 | /// one entry per predecessor, regardless of how many edges there are. |
| 327 | static void canonicalizePHIOperands(MachineFunction &MF) { |
| 328 | SmallPtrSet<MachineBasicBlock *, 4> Preds; |
| 329 | SmallVector<int, 4> DupIndices; |
| 330 | for (auto &MBB : MF) |
| 331 | for (auto &MI : MBB) { |
| 332 | if (!MI.isPHI()) |
| 333 | break; |
| 334 | |
| 335 | // First we scan the operands of the PHI looking for duplicate entries |
| 336 | // a particular predecessor. We retain the operand index of each duplicate |
| 337 | // entry found. |
| 338 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; |
| 339 | OpIdx += 2) |
| 340 | if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second) |
| 341 | DupIndices.push_back(OpIdx); |
| 342 | |
| 343 | // Now walk the duplicate indices, removing both the block and value. Note |
| 344 | // that these are stored as a vector making this element-wise removal |
| 345 | // :w |
| 346 | // potentially quadratic. |
| 347 | // |
| 348 | // FIXME: It is really frustrating that we have to use a quadratic |
| 349 | // removal algorithm here. There should be a better way, but the use-def |
| 350 | // updates required make that impossible using the public API. |
| 351 | // |
| 352 | // Note that we have to process these backwards so that we don't |
| 353 | // invalidate other indices with each removal. |
| 354 | while (!DupIndices.empty()) { |
| 355 | int OpIdx = DupIndices.pop_back_val(); |
| 356 | // Remove both the block and value operand, again in reverse order to |
| 357 | // preserve indices. |
| 358 | MI.RemoveOperand(OpIdx + 1); |
| 359 | MI.RemoveOperand(OpIdx); |
| 360 | } |
| 361 | |
| 362 | Preds.clear(); |
| 363 | } |
| 364 | } |
| 365 | |
Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 366 | /// Helper to scan a function for loads vulnerable to misspeculation that we |
| 367 | /// want to harden. |
| 368 | /// |
| 369 | /// We use this to avoid making changes to functions where there is nothing we |
| 370 | /// need to do to harden against misspeculation. |
| 371 | static bool hasVulnerableLoad(MachineFunction &MF) { |
| 372 | for (MachineBasicBlock &MBB : MF) { |
| 373 | for (MachineInstr &MI : MBB) { |
| 374 | // Loads within this basic block after an LFENCE are not at risk of |
| 375 | // speculatively executing with invalid predicates from prior control |
| 376 | // flow. So break out of this block but continue scanning the function. |
| 377 | if (MI.getOpcode() == X86::LFENCE) |
| 378 | break; |
| 379 | |
| 380 | // Looking for loads only. |
| 381 | if (!MI.mayLoad()) |
| 382 | continue; |
| 383 | |
| 384 | // An MFENCE is modeled as a load but isn't vulnerable to misspeculation. |
| 385 | if (MI.getOpcode() == X86::MFENCE) |
| 386 | continue; |
| 387 | |
| 388 | // We found a load. |
| 389 | return true; |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | // No loads found. |
| 394 | return false; |
| 395 | } |
| 396 | |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 397 | bool X86SpeculativeLoadHardeningPass::runOnMachineFunction( |
| 398 | MachineFunction &MF) { |
| 399 | LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() |
| 400 | << " **********\n"); |
| 401 | |
Chandler Carruth | 664aa86 | 2018-09-04 12:38:00 +0000 | [diff] [blame] | 402 | // Only run if this pass is forced enabled or we detect the relevant function |
| 403 | // attribute requesting SLH. |
| 404 | if (!EnableSpeculativeLoadHardening && |
| 405 | !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) |
| 406 | return false; |
| 407 | |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 408 | Subtarget = &MF.getSubtarget<X86Subtarget>(); |
| 409 | MRI = &MF.getRegInfo(); |
| 410 | TII = Subtarget->getInstrInfo(); |
| 411 | TRI = Subtarget->getRegisterInfo(); |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 412 | |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 413 | // FIXME: Support for 32-bit. |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 414 | PS.emplace(MF, &X86::GR64_NOSPRegClass); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 415 | |
| 416 | if (MF.begin() == MF.end()) |
| 417 | // Nothing to do for a degenerate empty function... |
| 418 | return false; |
| 419 | |
| 420 | // We support an alternative hardening technique based on a debug flag. |
| 421 | if (HardenEdgesWithLFENCE) { |
| 422 | hardenEdgesWithLFENCE(MF); |
| 423 | return true; |
| 424 | } |
| 425 | |
| 426 | // Create a dummy debug loc to use for all the generated code here. |
| 427 | DebugLoc Loc; |
| 428 | |
| 429 | MachineBasicBlock &Entry = *MF.begin(); |
| 430 | auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin()); |
| 431 | |
| 432 | // Do a quick scan to see if we have any checkable loads. |
Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 433 | bool HasVulnerableLoad = hasVulnerableLoad(MF); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 434 | |
| 435 | // See if we have any conditional branching blocks that we will need to trace |
| 436 | // predicate state through. |
| 437 | SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF); |
| 438 | |
| 439 | // If we have no interesting conditions or loads, nothing to do here. |
Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 440 | if (!HasVulnerableLoad && Infos.empty()) |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 441 | return true; |
| 442 | |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 443 | // The poison value is required to be an all-ones value for many aspects of |
| 444 | // this mitigation. |
| 445 | const int PoisonVal = -1; |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 446 | PS->PoisonReg = MRI->createVirtualRegister(PS->RC); |
| 447 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg) |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 448 | .addImm(PoisonVal); |
| 449 | ++NumInstsInserted; |
| 450 | |
| 451 | // If we have loads being hardened and we've asked for call and ret edges to |
| 452 | // get a full fence-based mitigation, inject that fence. |
Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 453 | if (HasVulnerableLoad && FenceCallAndRet) { |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 454 | // We need to insert an LFENCE at the start of the function to suspend any |
| 455 | // incoming misspeculation from the caller. This helps two-fold: the caller |
| 456 | // may not have been protected as this code has been, and this code gets to |
| 457 | // not take any specific action to protect across calls. |
| 458 | // FIXME: We could skip this for functions which unconditionally return |
| 459 | // a constant. |
| 460 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE)); |
| 461 | ++NumInstsInserted; |
| 462 | ++NumLFENCEsInserted; |
| 463 | } |
| 464 | |
Chandler Carruth | fb503ac | 2018-07-14 09:32:37 +0000 | [diff] [blame] | 465 | // If we guarded the entry with an LFENCE and have no conditionals to protect |
| 466 | // in blocks, then we're done. |
| 467 | if (FenceCallAndRet && Infos.empty()) |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 468 | // We may have changed the function's code at this point to insert fences. |
| 469 | return true; |
| 470 | |
| 471 | // For every basic block in the function which can b |
| 472 | if (HardenInterprocedurally && !FenceCallAndRet) { |
| 473 | // Set up the predicate state by extracting it from the incoming stack |
| 474 | // pointer so we pick up any misspeculation in our caller. |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 475 | PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 476 | } else { |
| 477 | // Otherwise, just build the predicate state itself by zeroing a register |
| 478 | // as we don't need any initial state. |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 479 | PS->InitialReg = MRI->createVirtualRegister(PS->RC); |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 480 | Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass); |
Craig Topper | 6c3f169 | 2018-10-31 21:53:24 +0000 | [diff] [blame] | 481 | auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0), |
| 482 | PredStateSubReg); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 483 | ++NumInstsInserted; |
| 484 | MachineOperand *ZeroEFLAGSDefOp = |
| 485 | ZeroI->findRegisterDefOperand(X86::EFLAGS); |
| 486 | assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() && |
| 487 | "Must have an implicit def of EFLAGS!"); |
| 488 | ZeroEFLAGSDefOp->setIsDead(true); |
Craig Topper | 6c3f169 | 2018-10-31 21:53:24 +0000 | [diff] [blame] | 489 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG), |
| 490 | PS->InitialReg) |
| 491 | .addImm(0) |
| 492 | .addReg(PredStateSubReg) |
| 493 | .addImm(X86::sub_32bit); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 494 | } |
| 495 | |
| 496 | // We're going to need to trace predicate state throughout the function's |
| 497 | // CFG. Prepare for this by setting up our initial state of PHIs with unique |
| 498 | // predecessor entries and all the initial predicate state. |
Chandler Carruth | 3ffcc03 | 2018-07-15 23:46:36 +0000 | [diff] [blame] | 499 | canonicalizePHIOperands(MF); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 500 | |
| 501 | // Track the updated values in an SSA updater to rewrite into SSA form at the |
| 502 | // end. |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 503 | PS->SSA.Initialize(PS->InitialReg); |
| 504 | PS->SSA.AddAvailableValue(&Entry, PS->InitialReg); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 505 | |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 506 | // Trace through the CFG. |
| 507 | auto CMovs = tracePredStateThroughCFG(MF, Infos); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 508 | |
| 509 | // We may also enter basic blocks in this function via exception handling |
| 510 | // control flow. Here, if we are hardening interprocedurally, we need to |
| 511 | // re-capture the predicate state from the throwing code. In the Itanium ABI, |
| 512 | // the throw will always look like a call to __cxa_throw and will have the |
| 513 | // predicate state in the stack pointer, so extract fresh predicate state from |
| 514 | // the stack pointer and make it available in SSA. |
| 515 | // FIXME: Handle non-itanium ABI EH models. |
| 516 | if (HardenInterprocedurally) { |
| 517 | for (MachineBasicBlock &MBB : MF) { |
| 518 | assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!"); |
| 519 | assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!"); |
| 520 | assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!"); |
| 521 | if (!MBB.isEHPad()) |
| 522 | continue; |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 523 | PS->SSA.AddAvailableValue( |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 524 | &MBB, |
| 525 | extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc)); |
| 526 | } |
| 527 | } |
| 528 | |
Chandler Carruth | 8d8489f | 2018-09-04 10:44:21 +0000 | [diff] [blame] | 529 | if (HardenIndirectCallsAndJumps) { |
| 530 | // If we are going to harden calls and jumps we need to unfold their memory |
| 531 | // operands. |
Chandler Carruth | 7024921 | 2018-07-25 01:51:29 +0000 | [diff] [blame] | 532 | unfoldCallAndJumpLoads(MF); |
| 533 | |
Chandler Carruth | 8d8489f | 2018-09-04 10:44:21 +0000 | [diff] [blame] | 534 | // Then we trace predicate state through the indirect branches. |
| 535 | auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF); |
| 536 | CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end()); |
| 537 | } |
| 538 | |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 539 | // Now that we have the predicate state available at the start of each block |
| 540 | // in the CFG, trace it through each block, hardening vulnerable instructions |
| 541 | // as we go. |
| 542 | tracePredStateThroughBlocksAndHarden(MF); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 543 | |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 544 | // Now rewrite all the uses of the pred state using the SSA updater to insert |
| 545 | // PHIs connecting the state between blocks along the CFG edges. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 546 | for (MachineInstr *CMovI : CMovs) |
| 547 | for (MachineOperand &Op : CMovI->operands()) { |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 548 | if (!Op.isReg() || Op.getReg() != PS->InitialReg) |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 549 | continue; |
| 550 | |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 551 | PS->SSA.RewriteUse(Op); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 552 | } |
| 553 | |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 554 | LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump(); |
| 555 | dbgs() << "\n"; MF.verify(this)); |
| 556 | return true; |
| 557 | } |
| 558 | |
| 559 | /// Implements the naive hardening approach of putting an LFENCE after every |
| 560 | /// potentially mis-predicted control flow construct. |
| 561 | /// |
| 562 | /// We include this as an alternative mostly for the purpose of comparison. The |
| 563 | /// performance impact of this is expected to be extremely severe and not |
| 564 | /// practical for any real-world users. |
| 565 | void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE( |
| 566 | MachineFunction &MF) { |
| 567 | // First, we scan the function looking for blocks that are reached along edges |
| 568 | // that we might want to harden. |
| 569 | SmallSetVector<MachineBasicBlock *, 8> Blocks; |
| 570 | for (MachineBasicBlock &MBB : MF) { |
| 571 | // If there are no or only one successor, nothing to do here. |
| 572 | if (MBB.succ_size() <= 1) |
| 573 | continue; |
| 574 | |
| 575 | // Skip blocks unless their terminators start with a branch. Other |
| 576 | // terminators don't seem interesting for guarding against misspeculation. |
| 577 | auto TermIt = MBB.getFirstTerminator(); |
| 578 | if (TermIt == MBB.end() || !TermIt->isBranch()) |
| 579 | continue; |
| 580 | |
| 581 | // Add all the non-EH-pad succossors to the blocks we want to harden. We |
| 582 | // skip EH pads because there isn't really a condition of interest on |
| 583 | // entering. |
| 584 | for (MachineBasicBlock *SuccMBB : MBB.successors()) |
| 585 | if (!SuccMBB->isEHPad()) |
| 586 | Blocks.insert(SuccMBB); |
| 587 | } |
| 588 | |
| 589 | for (MachineBasicBlock *MBB : Blocks) { |
| 590 | auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin()); |
| 591 | BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE)); |
| 592 | ++NumInstsInserted; |
| 593 | ++NumLFENCEsInserted; |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16> |
| 598 | X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) { |
| 599 | SmallVector<BlockCondInfo, 16> Infos; |
| 600 | |
| 601 | // Walk the function and build up a summary for each block's conditions that |
| 602 | // we need to trace through. |
| 603 | for (MachineBasicBlock &MBB : MF) { |
| 604 | // If there are no or only one successor, nothing to do here. |
| 605 | if (MBB.succ_size() <= 1) |
| 606 | continue; |
| 607 | |
| 608 | // We want to reliably handle any conditional branch terminators in the |
| 609 | // MBB, so we manually analyze the branch. We can handle all of the |
| 610 | // permutations here, including ones that analyze branch cannot. |
| 611 | // |
| 612 | // The approach is to walk backwards across the terminators, resetting at |
| 613 | // any unconditional non-indirect branch, and track all conditional edges |
| 614 | // to basic blocks as well as the fallthrough or unconditional successor |
| 615 | // edge. For each conditional edge, we track the target and the opposite |
| 616 | // condition code in order to inject a "no-op" cmov into that successor |
| 617 | // that will harden the predicate. For the fallthrough/unconditional |
| 618 | // edge, we inject a separate cmov for each conditional branch with |
| 619 | // matching condition codes. This effectively implements an "and" of the |
| 620 | // condition flags, even if there isn't a single condition flag that would |
| 621 | // directly implement that. We don't bother trying to optimize either of |
| 622 | // these cases because if such an optimization is possible, LLVM should |
| 623 | // have optimized the conditional *branches* in that way already to reduce |
| 624 | // instruction count. This late, we simply assume the minimal number of |
| 625 | // branch instructions is being emitted and use that to guide our cmov |
| 626 | // insertion. |
| 627 | |
| 628 | BlockCondInfo Info = {&MBB, {}, nullptr}; |
| 629 | |
| 630 | // Now walk backwards through the terminators and build up successors they |
| 631 | // reach and the conditions. |
| 632 | for (MachineInstr &MI : llvm::reverse(MBB)) { |
| 633 | // Once we've handled all the terminators, we're done. |
| 634 | if (!MI.isTerminator()) |
| 635 | break; |
| 636 | |
| 637 | // If we see a non-branch terminator, we can't handle anything so bail. |
| 638 | if (!MI.isBranch()) { |
| 639 | Info.CondBrs.clear(); |
| 640 | break; |
| 641 | } |
| 642 | |
| 643 | // If we see an unconditional branch, reset our state, clear any |
| 644 | // fallthrough, and set this is the "else" successor. |
| 645 | if (MI.getOpcode() == X86::JMP_1) { |
| 646 | Info.CondBrs.clear(); |
| 647 | Info.UncondBr = &MI; |
| 648 | continue; |
| 649 | } |
| 650 | |
| 651 | // If we get an invalid condition, we have an indirect branch or some |
| 652 | // other unanalyzable "fallthrough" case. We model this as a nullptr for |
| 653 | // the destination so we can still guard any conditional successors. |
| 654 | // Consider code sequences like: |
| 655 | // ``` |
| 656 | // jCC L1 |
| 657 | // jmpq *%rax |
| 658 | // ``` |
| 659 | // We still want to harden the edge to `L1`. |
Craig Topper | 80aa229 | 2019-04-05 19:28:09 +0000 | [diff] [blame] | 660 | if (X86::getCondFromBranch(MI) == X86::COND_INVALID) { |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 661 | Info.CondBrs.clear(); |
| 662 | Info.UncondBr = &MI; |
| 663 | continue; |
| 664 | } |
| 665 | |
| 666 | // We have a vanilla conditional branch, add it to our list. |
| 667 | Info.CondBrs.push_back(&MI); |
| 668 | } |
| 669 | if (Info.CondBrs.empty()) { |
| 670 | ++NumBranchesUntraced; |
| 671 | LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n"; |
| 672 | MBB.dump()); |
| 673 | continue; |
| 674 | } |
| 675 | |
| 676 | Infos.push_back(Info); |
| 677 | } |
| 678 | |
| 679 | return Infos; |
| 680 | } |
| 681 | |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 682 | /// Trace the predicate state through the CFG, instrumenting each conditional |
| 683 | /// branch such that misspeculation through an edge will poison the predicate |
| 684 | /// state. |
| 685 | /// |
| 686 | /// Returns the list of inserted CMov instructions so that they can have their |
| 687 | /// uses of the predicate state rewritten into proper SSA form once it is |
| 688 | /// complete. |
| 689 | SmallVector<MachineInstr *, 16> |
| 690 | X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG( |
| 691 | MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) { |
| 692 | // Collect the inserted cmov instructions so we can rewrite their uses of the |
| 693 | // predicate state into SSA form. |
| 694 | SmallVector<MachineInstr *, 16> CMovs; |
| 695 | |
| 696 | // Now walk all of the basic blocks looking for ones that end in conditional |
| 697 | // jumps where we need to update this register along each edge. |
| 698 | for (const BlockCondInfo &Info : Infos) { |
| 699 | MachineBasicBlock &MBB = *Info.MBB; |
| 700 | const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs; |
| 701 | MachineInstr *UncondBr = Info.UncondBr; |
| 702 | |
| 703 | LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName() |
| 704 | << "\n"); |
| 705 | ++NumCondBranchesTraced; |
| 706 | |
| 707 | // Compute the non-conditional successor as either the target of any |
| 708 | // unconditional branch or the layout successor. |
| 709 | MachineBasicBlock *UncondSucc = |
| 710 | UncondBr ? (UncondBr->getOpcode() == X86::JMP_1 |
| 711 | ? UncondBr->getOperand(0).getMBB() |
| 712 | : nullptr) |
| 713 | : &*std::next(MachineFunction::iterator(&MBB)); |
| 714 | |
| 715 | // Count how many edges there are to any given successor. |
| 716 | SmallDenseMap<MachineBasicBlock *, int> SuccCounts; |
| 717 | if (UncondSucc) |
| 718 | ++SuccCounts[UncondSucc]; |
| 719 | for (auto *CondBr : CondBrs) |
| 720 | ++SuccCounts[CondBr->getOperand(0).getMBB()]; |
| 721 | |
| 722 | // A lambda to insert cmov instructions into a block checking all of the |
| 723 | // condition codes in a sequence. |
| 724 | auto BuildCheckingBlockForSuccAndConds = |
| 725 | [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount, |
| 726 | MachineInstr *Br, MachineInstr *&UncondBr, |
| 727 | ArrayRef<X86::CondCode> Conds) { |
| 728 | // First, we split the edge to insert the checking block into a safe |
| 729 | // location. |
| 730 | auto &CheckingMBB = |
| 731 | (SuccCount == 1 && Succ.pred_size() == 1) |
| 732 | ? Succ |
| 733 | : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII); |
| 734 | |
| 735 | bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS); |
| 736 | if (!LiveEFLAGS) |
| 737 | CheckingMBB.addLiveIn(X86::EFLAGS); |
| 738 | |
| 739 | // Now insert the cmovs to implement the checks. |
| 740 | auto InsertPt = CheckingMBB.begin(); |
| 741 | assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) && |
| 742 | "Should never have a PHI in the initial checking block as it " |
| 743 | "always has a single predecessor!"); |
| 744 | |
| 745 | // We will wire each cmov to each other, but need to start with the |
| 746 | // incoming pred state. |
| 747 | unsigned CurStateReg = PS->InitialReg; |
| 748 | |
| 749 | for (X86::CondCode Cond : Conds) { |
| 750 | int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; |
Craig Topper | e0bfeb5 | 2019-04-05 19:27:41 +0000 | [diff] [blame] | 751 | auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 752 | |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 753 | Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 754 | // Note that we intentionally use an empty debug location so that |
| 755 | // this picks up the preceding location. |
| 756 | auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(), |
| 757 | TII->get(CMovOp), UpdatedStateReg) |
| 758 | .addReg(CurStateReg) |
Craig Topper | e0bfeb5 | 2019-04-05 19:27:41 +0000 | [diff] [blame] | 759 | .addReg(PS->PoisonReg) |
| 760 | .addImm(Cond); |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 761 | // If this is the last cmov and the EFLAGS weren't originally |
| 762 | // live-in, mark them as killed. |
| 763 | if (!LiveEFLAGS && Cond == Conds.back()) |
| 764 | CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); |
| 765 | |
| 766 | ++NumInstsInserted; |
| 767 | LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); |
| 768 | dbgs() << "\n"); |
| 769 | |
| 770 | // The first one of the cmovs will be using the top level |
| 771 | // `PredStateReg` and need to get rewritten into SSA form. |
| 772 | if (CurStateReg == PS->InitialReg) |
| 773 | CMovs.push_back(&*CMovI); |
| 774 | |
| 775 | // The next cmov should start from this one's def. |
| 776 | CurStateReg = UpdatedStateReg; |
| 777 | } |
| 778 | |
| 779 | // And put the last one into the available values for SSA form of our |
| 780 | // predicate state. |
| 781 | PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg); |
| 782 | }; |
| 783 | |
| 784 | std::vector<X86::CondCode> UncondCodeSeq; |
| 785 | for (auto *CondBr : CondBrs) { |
| 786 | MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB(); |
| 787 | int &SuccCount = SuccCounts[&Succ]; |
| 788 | |
Craig Topper | 80aa229 | 2019-04-05 19:28:09 +0000 | [diff] [blame] | 789 | X86::CondCode Cond = X86::getCondFromBranch(*CondBr); |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 790 | X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond); |
| 791 | UncondCodeSeq.push_back(Cond); |
| 792 | |
| 793 | BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr, |
| 794 | {InvCond}); |
| 795 | |
| 796 | // Decrement the successor count now that we've split one of the edges. |
| 797 | // We need to keep the count of edges to the successor accurate in order |
| 798 | // to know above when to *replace* the successor in the CFG vs. just |
| 799 | // adding the new successor. |
| 800 | --SuccCount; |
| 801 | } |
| 802 | |
| 803 | // Since we may have split edges and changed the number of successors, |
| 804 | // normalize the probabilities. This avoids doing it each time we split an |
| 805 | // edge. |
| 806 | MBB.normalizeSuccProbs(); |
| 807 | |
| 808 | // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we |
| 809 | // need to intersect the other condition codes. We can do this by just |
| 810 | // doing a cmov for each one. |
| 811 | if (!UncondSucc) |
| 812 | // If we have no fallthrough to protect (perhaps it is an indirect jump?) |
| 813 | // just skip this and continue. |
| 814 | continue; |
| 815 | |
| 816 | assert(SuccCounts[UncondSucc] == 1 && |
| 817 | "We should never have more than one edge to the unconditional " |
| 818 | "successor at this point because every other edge must have been " |
| 819 | "split above!"); |
| 820 | |
| 821 | // Sort and unique the codes to minimize them. |
Fangrui Song | 0cac726 | 2018-09-27 02:13:45 +0000 | [diff] [blame] | 822 | llvm::sort(UncondCodeSeq); |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 823 | UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()), |
| 824 | UncondCodeSeq.end()); |
| 825 | |
| 826 | // Build a checking version of the successor. |
| 827 | BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1, |
| 828 | UncondBr, UncondBr, UncondCodeSeq); |
| 829 | } |
| 830 | |
| 831 | return CMovs; |
| 832 | } |
| 833 | |
Chandler Carruth | 7024921 | 2018-07-25 01:51:29 +0000 | [diff] [blame] | 834 | /// Compute the register class for the unfolded load. |
| 835 | /// |
| 836 | /// FIXME: This should probably live in X86InstrInfo, potentially by adding |
| 837 | /// a way to unfold into a newly created vreg rather than requiring a register |
| 838 | /// input. |
| 839 | static const TargetRegisterClass * |
| 840 | getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII, |
| 841 | unsigned Opcode) { |
| 842 | unsigned Index; |
| 843 | unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold( |
| 844 | Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index); |
| 845 | const MCInstrDesc &MCID = TII.get(UnfoldedOpc); |
| 846 | return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF); |
| 847 | } |
| 848 | |
| 849 | void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads( |
| 850 | MachineFunction &MF) { |
| 851 | for (MachineBasicBlock &MBB : MF) |
| 852 | for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) { |
| 853 | // Grab a reference and increment the iterator so we can remove this |
| 854 | // instruction if needed without disturbing the iteration. |
| 855 | MachineInstr &MI = *MII++; |
| 856 | |
| 857 | // Must either be a call or a branch. |
| 858 | if (!MI.isCall() && !MI.isBranch()) |
| 859 | continue; |
| 860 | // We only care about loading variants of these instructions. |
| 861 | if (!MI.mayLoad()) |
| 862 | continue; |
| 863 | |
| 864 | switch (MI.getOpcode()) { |
| 865 | default: { |
| 866 | LLVM_DEBUG( |
| 867 | dbgs() << "ERROR: Found an unexpected loading branch or call " |
| 868 | "instruction:\n"; |
| 869 | MI.dump(); dbgs() << "\n"); |
| 870 | report_fatal_error("Unexpected loading branch or call!"); |
| 871 | } |
| 872 | |
| 873 | case X86::FARCALL16m: |
| 874 | case X86::FARCALL32m: |
| 875 | case X86::FARCALL64: |
| 876 | case X86::FARJMP16m: |
| 877 | case X86::FARJMP32m: |
| 878 | case X86::FARJMP64: |
| 879 | // We cannot mitigate far jumps or calls, but we also don't expect them |
| 880 | // to be vulnerable to Spectre v1.2 style attacks. |
| 881 | continue; |
| 882 | |
| 883 | case X86::CALL16m: |
| 884 | case X86::CALL16m_NT: |
| 885 | case X86::CALL32m: |
| 886 | case X86::CALL32m_NT: |
| 887 | case X86::CALL64m: |
| 888 | case X86::CALL64m_NT: |
| 889 | case X86::JMP16m: |
| 890 | case X86::JMP16m_NT: |
| 891 | case X86::JMP32m: |
| 892 | case X86::JMP32m_NT: |
| 893 | case X86::JMP64m: |
| 894 | case X86::JMP64m_NT: |
| 895 | case X86::TAILJMPm64: |
| 896 | case X86::TAILJMPm64_REX: |
| 897 | case X86::TAILJMPm: |
| 898 | case X86::TCRETURNmi64: |
| 899 | case X86::TCRETURNmi: { |
| 900 | // Use the generic unfold logic now that we know we're dealing with |
| 901 | // expected instructions. |
| 902 | // FIXME: We don't have test coverage for all of these! |
| 903 | auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode()); |
| 904 | if (!UnfoldedRC) { |
| 905 | LLVM_DEBUG(dbgs() |
| 906 | << "ERROR: Unable to unfold load from instruction:\n"; |
| 907 | MI.dump(); dbgs() << "\n"); |
| 908 | report_fatal_error("Unable to unfold load!"); |
| 909 | } |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 910 | Register Reg = MRI->createVirtualRegister(UnfoldedRC); |
Chandler Carruth | 7024921 | 2018-07-25 01:51:29 +0000 | [diff] [blame] | 911 | SmallVector<MachineInstr *, 2> NewMIs; |
| 912 | // If we were able to compute an unfolded reg class, any failure here |
| 913 | // is just a programming error so just assert. |
| 914 | bool Unfolded = |
| 915 | TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true, |
| 916 | /*UnfoldStore*/ false, NewMIs); |
| 917 | (void)Unfolded; |
| 918 | assert(Unfolded && |
| 919 | "Computed unfolded register class but failed to unfold"); |
| 920 | // Now stitch the new instructions into place and erase the old one. |
| 921 | for (auto *NewMI : NewMIs) |
| 922 | MBB.insert(MI.getIterator(), NewMI); |
| 923 | MI.eraseFromParent(); |
| 924 | LLVM_DEBUG({ |
| 925 | dbgs() << "Unfolded load successfully into:\n"; |
| 926 | for (auto *NewMI : NewMIs) { |
| 927 | NewMI->dump(); |
| 928 | dbgs() << "\n"; |
| 929 | } |
| 930 | }); |
| 931 | continue; |
| 932 | } |
| 933 | } |
| 934 | llvm_unreachable("Escaped switch with default!"); |
| 935 | } |
| 936 | } |
| 937 | |
Chandler Carruth | 8d8489f | 2018-09-04 10:44:21 +0000 | [diff] [blame] | 938 | /// Trace the predicate state through indirect branches, instrumenting them to |
| 939 | /// poison the state if a target is reached that does not match the expected |
| 940 | /// target. |
| 941 | /// |
| 942 | /// This is designed to mitigate Spectre variant 1 attacks where an indirect |
| 943 | /// branch is trained to predict a particular target and then mispredicts that |
| 944 | /// target in a way that can leak data. Despite using an indirect branch, this |
| 945 | /// is really a variant 1 style attack: it does not steer execution to an |
| 946 | /// arbitrary or attacker controlled address, and it does not require any |
| 947 | /// special code executing next to the victim. This attack can also be mitigated |
| 948 | /// through retpolines, but those require either replacing indirect branches |
| 949 | /// with conditional direct branches or lowering them through a device that |
| 950 | /// blocks speculation. This mitigation can replace these retpoline-style |
| 951 | /// mitigations for jump tables and other indirect branches within a function |
| 952 | /// when variant 2 isn't a risk while allowing limited speculation. Indirect |
| 953 | /// calls, however, cannot be mitigated through this technique without changing |
| 954 | /// the ABI in a fundamental way. |
| 955 | SmallVector<MachineInstr *, 16> |
| 956 | X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches( |
| 957 | MachineFunction &MF) { |
| 958 | // We use the SSAUpdater to insert PHI nodes for the target addresses of |
| 959 | // indirect branches. We don't actually need the full power of the SSA updater |
| 960 | // in this particular case as we always have immediately available values, but |
| 961 | // this avoids us having to re-implement the PHI construction logic. |
| 962 | MachineSSAUpdater TargetAddrSSA(MF); |
| 963 | TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass)); |
| 964 | |
| 965 | // Track which blocks were terminated with an indirect branch. |
| 966 | SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs; |
| 967 | |
| 968 | // We need to know what blocks end up reached via indirect branches. We |
| 969 | // expect this to be a subset of those whose address is taken and so track it |
| 970 | // directly via the CFG. |
| 971 | SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs; |
| 972 | |
| 973 | // Walk all the blocks which end in an indirect branch and make the |
| 974 | // target address available. |
| 975 | for (MachineBasicBlock &MBB : MF) { |
| 976 | // Find the last terminator. |
| 977 | auto MII = MBB.instr_rbegin(); |
| 978 | while (MII != MBB.instr_rend() && MII->isDebugInstr()) |
| 979 | ++MII; |
| 980 | if (MII == MBB.instr_rend()) |
| 981 | continue; |
| 982 | MachineInstr &TI = *MII; |
| 983 | if (!TI.isTerminator() || !TI.isBranch()) |
| 984 | // No terminator or non-branch terminator. |
| 985 | continue; |
| 986 | |
| 987 | unsigned TargetReg; |
| 988 | |
| 989 | switch (TI.getOpcode()) { |
| 990 | default: |
| 991 | // Direct branch or conditional branch (leading to fallthrough). |
| 992 | continue; |
| 993 | |
| 994 | case X86::FARJMP16m: |
| 995 | case X86::FARJMP32m: |
| 996 | case X86::FARJMP64: |
| 997 | // We cannot mitigate far jumps or calls, but we also don't expect them |
| 998 | // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks. |
| 999 | continue; |
| 1000 | |
| 1001 | case X86::JMP16m: |
| 1002 | case X86::JMP16m_NT: |
| 1003 | case X86::JMP32m: |
| 1004 | case X86::JMP32m_NT: |
| 1005 | case X86::JMP64m: |
| 1006 | case X86::JMP64m_NT: |
| 1007 | // Mostly as documentation. |
| 1008 | report_fatal_error("Memory operand jumps should have been unfolded!"); |
| 1009 | |
| 1010 | case X86::JMP16r: |
| 1011 | report_fatal_error( |
| 1012 | "Support for 16-bit indirect branches is not implemented."); |
| 1013 | case X86::JMP32r: |
| 1014 | report_fatal_error( |
| 1015 | "Support for 32-bit indirect branches is not implemented."); |
| 1016 | |
| 1017 | case X86::JMP64r: |
| 1018 | TargetReg = TI.getOperand(0).getReg(); |
| 1019 | } |
| 1020 | |
| 1021 | // We have definitely found an indirect branch. Verify that there are no |
| 1022 | // preceding conditional branches as we don't yet support that. |
| 1023 | if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) { |
| 1024 | return !OtherTI.isDebugInstr() && &OtherTI != &TI; |
| 1025 | })) { |
| 1026 | LLVM_DEBUG({ |
| 1027 | dbgs() << "ERROR: Found other terminators in a block with an indirect " |
| 1028 | "branch! This is not yet supported! Terminator sequence:\n"; |
| 1029 | for (MachineInstr &MI : MBB.terminators()) { |
| 1030 | MI.dump(); |
| 1031 | dbgs() << '\n'; |
| 1032 | } |
| 1033 | }); |
| 1034 | report_fatal_error("Unimplemented terminator sequence!"); |
| 1035 | } |
| 1036 | |
| 1037 | // Make the target register an available value for this block. |
| 1038 | TargetAddrSSA.AddAvailableValue(&MBB, TargetReg); |
| 1039 | IndirectTerminatedMBBs.insert(&MBB); |
| 1040 | |
| 1041 | // Add all the successors to our target candidates. |
| 1042 | for (MachineBasicBlock *Succ : MBB.successors()) |
| 1043 | IndirectTargetMBBs.insert(Succ); |
| 1044 | } |
| 1045 | |
| 1046 | // Keep track of the cmov instructions we insert so we can return them. |
| 1047 | SmallVector<MachineInstr *, 16> CMovs; |
| 1048 | |
| 1049 | // If we didn't find any indirect branches with targets, nothing to do here. |
| 1050 | if (IndirectTargetMBBs.empty()) |
| 1051 | return CMovs; |
| 1052 | |
| 1053 | // We found indirect branches and targets that need to be instrumented to |
| 1054 | // harden loads within them. Walk the blocks of the function (to get a stable |
| 1055 | // ordering) and instrument each target of an indirect branch. |
| 1056 | for (MachineBasicBlock &MBB : MF) { |
| 1057 | // Skip the blocks that aren't candidate targets. |
| 1058 | if (!IndirectTargetMBBs.count(&MBB)) |
| 1059 | continue; |
| 1060 | |
| 1061 | // We don't expect EH pads to ever be reached via an indirect branch. If |
| 1062 | // this is desired for some reason, we could simply skip them here rather |
| 1063 | // than asserting. |
| 1064 | assert(!MBB.isEHPad() && |
| 1065 | "Unexpected EH pad as target of an indirect branch!"); |
| 1066 | |
| 1067 | // We should never end up threading EFLAGS into a block to harden |
| 1068 | // conditional jumps as there would be an additional successor via the |
| 1069 | // indirect branch. As a consequence, all such edges would be split before |
| 1070 | // reaching here, and the inserted block will handle the EFLAGS-based |
| 1071 | // hardening. |
| 1072 | assert(!MBB.isLiveIn(X86::EFLAGS) && |
| 1073 | "Cannot check within a block that already has live-in EFLAGS!"); |
| 1074 | |
| 1075 | // We can't handle having non-indirect edges into this block unless this is |
| 1076 | // the only successor and we can synthesize the necessary target address. |
| 1077 | for (MachineBasicBlock *Pred : MBB.predecessors()) { |
| 1078 | // If we've already handled this by extracting the target directly, |
| 1079 | // nothing to do. |
| 1080 | if (IndirectTerminatedMBBs.count(Pred)) |
| 1081 | continue; |
| 1082 | |
| 1083 | // Otherwise, we have to be the only successor. We generally expect this |
| 1084 | // to be true as conditional branches should have had a critical edge |
| 1085 | // split already. We don't however need to worry about EH pad successors |
| 1086 | // as they'll happily ignore the target and their hardening strategy is |
| 1087 | // resilient to all ways in which they could be reached speculatively. |
| 1088 | if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) { |
| 1089 | return Succ->isEHPad() || Succ == &MBB; |
| 1090 | })) { |
| 1091 | LLVM_DEBUG({ |
| 1092 | dbgs() << "ERROR: Found conditional entry to target of indirect " |
| 1093 | "branch!\n"; |
| 1094 | Pred->dump(); |
| 1095 | MBB.dump(); |
| 1096 | }); |
| 1097 | report_fatal_error("Cannot harden a conditional entry to a target of " |
| 1098 | "an indirect branch!"); |
| 1099 | } |
| 1100 | |
| 1101 | // Now we need to compute the address of this block and install it as a |
| 1102 | // synthetic target in the predecessor. We do this at the bottom of the |
| 1103 | // predecessor. |
| 1104 | auto InsertPt = Pred->getFirstTerminator(); |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 1105 | Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass); |
Chandler Carruth | 8d8489f | 2018-09-04 10:44:21 +0000 | [diff] [blame] | 1106 | if (MF.getTarget().getCodeModel() == CodeModel::Small && |
| 1107 | !Subtarget->isPositionIndependent()) { |
| 1108 | // Directly materialize it into an immediate. |
| 1109 | auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), |
| 1110 | TII->get(X86::MOV64ri32), TargetReg) |
| 1111 | .addMBB(&MBB); |
| 1112 | ++NumInstsInserted; |
| 1113 | (void)AddrI; |
| 1114 | LLVM_DEBUG(dbgs() << " Inserting mov: "; AddrI->dump(); |
| 1115 | dbgs() << "\n"); |
| 1116 | } else { |
| 1117 | auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r), |
| 1118 | TargetReg) |
| 1119 | .addReg(/*Base*/ X86::RIP) |
| 1120 | .addImm(/*Scale*/ 1) |
| 1121 | .addReg(/*Index*/ 0) |
| 1122 | .addMBB(&MBB) |
| 1123 | .addReg(/*Segment*/ 0); |
| 1124 | ++NumInstsInserted; |
| 1125 | (void)AddrI; |
| 1126 | LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); |
| 1127 | dbgs() << "\n"); |
| 1128 | } |
| 1129 | // And make this available. |
| 1130 | TargetAddrSSA.AddAvailableValue(Pred, TargetReg); |
| 1131 | } |
| 1132 | |
| 1133 | // Materialize the needed SSA value of the target. Note that we need the |
| 1134 | // middle of the block as this block might at the bottom have an indirect |
| 1135 | // branch back to itself. We can do this here because at this point, every |
| 1136 | // predecessor of this block has an available value. This is basically just |
| 1137 | // automating the construction of a PHI node for this target. |
| 1138 | unsigned TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB); |
| 1139 | |
| 1140 | // Insert a comparison of the incoming target register with this block's |
Chandler Carruth | 71c14a3 | 2018-12-05 15:42:11 +0000 | [diff] [blame] | 1141 | // address. This also requires us to mark the block as having its address |
| 1142 | // taken explicitly. |
| 1143 | MBB.setHasAddressTaken(); |
Chandler Carruth | 8d8489f | 2018-09-04 10:44:21 +0000 | [diff] [blame] | 1144 | auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin()); |
| 1145 | if (MF.getTarget().getCodeModel() == CodeModel::Small && |
| 1146 | !Subtarget->isPositionIndependent()) { |
| 1147 | // Check directly against a relocated immediate when we can. |
| 1148 | auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32)) |
| 1149 | .addReg(TargetReg, RegState::Kill) |
| 1150 | .addMBB(&MBB); |
| 1151 | ++NumInstsInserted; |
| 1152 | (void)CheckI; |
| 1153 | LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n"); |
| 1154 | } else { |
| 1155 | // Otherwise compute the address into a register first. |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 1156 | Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass); |
Chandler Carruth | 8d8489f | 2018-09-04 10:44:21 +0000 | [diff] [blame] | 1157 | auto AddrI = |
| 1158 | BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg) |
| 1159 | .addReg(/*Base*/ X86::RIP) |
| 1160 | .addImm(/*Scale*/ 1) |
| 1161 | .addReg(/*Index*/ 0) |
| 1162 | .addMBB(&MBB) |
| 1163 | .addReg(/*Segment*/ 0); |
| 1164 | ++NumInstsInserted; |
| 1165 | (void)AddrI; |
| 1166 | LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); dbgs() << "\n"); |
| 1167 | auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr)) |
| 1168 | .addReg(TargetReg, RegState::Kill) |
| 1169 | .addReg(AddrReg, RegState::Kill); |
| 1170 | ++NumInstsInserted; |
| 1171 | (void)CheckI; |
| 1172 | LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n"); |
| 1173 | } |
| 1174 | |
| 1175 | // Now cmov over the predicate if the comparison wasn't equal. |
| 1176 | int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; |
Craig Topper | e0bfeb5 | 2019-04-05 19:27:41 +0000 | [diff] [blame] | 1177 | auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 1178 | Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); |
Chandler Carruth | 8d8489f | 2018-09-04 10:44:21 +0000 | [diff] [blame] | 1179 | auto CMovI = |
| 1180 | BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg) |
| 1181 | .addReg(PS->InitialReg) |
Craig Topper | e0bfeb5 | 2019-04-05 19:27:41 +0000 | [diff] [blame] | 1182 | .addReg(PS->PoisonReg) |
| 1183 | .addImm(X86::COND_NE); |
Chandler Carruth | 8d8489f | 2018-09-04 10:44:21 +0000 | [diff] [blame] | 1184 | CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); |
| 1185 | ++NumInstsInserted; |
| 1186 | LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); |
| 1187 | CMovs.push_back(&*CMovI); |
| 1188 | |
| 1189 | // And put the new value into the available values for SSA form of our |
| 1190 | // predicate state. |
| 1191 | PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); |
| 1192 | } |
| 1193 | |
| 1194 | // Return all the newly inserted cmov instructions of the predicate state. |
| 1195 | return CMovs; |
| 1196 | } |
| 1197 | |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1198 | /// Returns true if the instruction has no behavior (specified or otherwise) |
| 1199 | /// that is based on the value of any of its register operands |
| 1200 | /// |
| 1201 | /// A classical example of something that is inherently not data invariant is an |
| 1202 | /// indirect jump -- the destination is loaded into icache based on the bits set |
| 1203 | /// in the jump destination register. |
| 1204 | /// |
| 1205 | /// FIXME: This should become part of our instruction tables. |
| 1206 | static bool isDataInvariant(MachineInstr &MI) { |
| 1207 | switch (MI.getOpcode()) { |
| 1208 | default: |
| 1209 | // By default, assume that the instruction is not data invariant. |
| 1210 | return false; |
| 1211 | |
Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1212 | // Some target-independent operations that trivially lower to data-invariant |
| 1213 | // instructions. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1214 | case TargetOpcode::COPY: |
Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1215 | case TargetOpcode::INSERT_SUBREG: |
| 1216 | case TargetOpcode::SUBREG_TO_REG: |
| 1217 | return true; |
| 1218 | |
| 1219 | // On x86 it is believed that imul is constant time w.r.t. the loaded data. |
| 1220 | // However, they set flags and are perhaps the most surprisingly constant |
| 1221 | // time operations so we call them out here separately. |
| 1222 | case X86::IMUL16rr: |
| 1223 | case X86::IMUL16rri8: |
| 1224 | case X86::IMUL16rri: |
| 1225 | case X86::IMUL32rr: |
| 1226 | case X86::IMUL32rri8: |
| 1227 | case X86::IMUL32rri: |
| 1228 | case X86::IMUL64rr: |
| 1229 | case X86::IMUL64rri32: |
| 1230 | case X86::IMUL64rri8: |
| 1231 | |
| 1232 | // Bit scanning and counting instructions that are somewhat surprisingly |
| 1233 | // constant time as they scan across bits and do other fairly complex |
| 1234 | // operations like popcnt, but are believed to be constant time on x86. |
| 1235 | // However, these set flags. |
| 1236 | case X86::BSF16rr: |
| 1237 | case X86::BSF32rr: |
| 1238 | case X86::BSF64rr: |
| 1239 | case X86::BSR16rr: |
| 1240 | case X86::BSR32rr: |
| 1241 | case X86::BSR64rr: |
| 1242 | case X86::LZCNT16rr: |
| 1243 | case X86::LZCNT32rr: |
| 1244 | case X86::LZCNT64rr: |
| 1245 | case X86::POPCNT16rr: |
| 1246 | case X86::POPCNT32rr: |
| 1247 | case X86::POPCNT64rr: |
| 1248 | case X86::TZCNT16rr: |
| 1249 | case X86::TZCNT32rr: |
| 1250 | case X86::TZCNT64rr: |
| 1251 | |
| 1252 | // Bit manipulation instructions are effectively combinations of basic |
| 1253 | // arithmetic ops, and should still execute in constant time. These also |
| 1254 | // set flags. |
| 1255 | case X86::BLCFILL32rr: |
| 1256 | case X86::BLCFILL64rr: |
| 1257 | case X86::BLCI32rr: |
| 1258 | case X86::BLCI64rr: |
| 1259 | case X86::BLCIC32rr: |
| 1260 | case X86::BLCIC64rr: |
| 1261 | case X86::BLCMSK32rr: |
| 1262 | case X86::BLCMSK64rr: |
| 1263 | case X86::BLCS32rr: |
| 1264 | case X86::BLCS64rr: |
| 1265 | case X86::BLSFILL32rr: |
| 1266 | case X86::BLSFILL64rr: |
| 1267 | case X86::BLSI32rr: |
| 1268 | case X86::BLSI64rr: |
| 1269 | case X86::BLSIC32rr: |
| 1270 | case X86::BLSIC64rr: |
| 1271 | case X86::BLSMSK32rr: |
| 1272 | case X86::BLSMSK64rr: |
| 1273 | case X86::BLSR32rr: |
| 1274 | case X86::BLSR64rr: |
| 1275 | case X86::TZMSK32rr: |
| 1276 | case X86::TZMSK64rr: |
| 1277 | |
| 1278 | // Bit extracting and clearing instructions should execute in constant time, |
| 1279 | // and set flags. |
| 1280 | case X86::BEXTR32rr: |
| 1281 | case X86::BEXTR64rr: |
| 1282 | case X86::BEXTRI32ri: |
| 1283 | case X86::BEXTRI64ri: |
| 1284 | case X86::BZHI32rr: |
| 1285 | case X86::BZHI64rr: |
| 1286 | |
Chandler Carruth | c0cb573 | 2018-07-17 18:07:59 +0000 | [diff] [blame] | 1287 | // Shift and rotate. |
| 1288 | case X86::ROL8r1: case X86::ROL16r1: case X86::ROL32r1: case X86::ROL64r1: |
| 1289 | case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL: |
| 1290 | case X86::ROL8ri: case X86::ROL16ri: case X86::ROL32ri: case X86::ROL64ri: |
| 1291 | case X86::ROR8r1: case X86::ROR16r1: case X86::ROR32r1: case X86::ROR64r1: |
| 1292 | case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL: |
| 1293 | case X86::ROR8ri: case X86::ROR16ri: case X86::ROR32ri: case X86::ROR64ri: |
| 1294 | case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1: case X86::SAR64r1: |
| 1295 | case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL: |
| 1296 | case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri: case X86::SAR64ri: |
| 1297 | case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1: case X86::SHL64r1: |
| 1298 | case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL: |
| 1299 | case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri: case X86::SHL64ri: |
| 1300 | case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1: case X86::SHR64r1: |
| 1301 | case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL: |
| 1302 | case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri: case X86::SHR64ri: |
| 1303 | case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL: |
| 1304 | case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8: |
| 1305 | case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL: |
| 1306 | case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8: |
| 1307 | |
Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1308 | // Basic arithmetic is constant time on the input but does set flags. |
| 1309 | case X86::ADC8rr: case X86::ADC8ri: |
| 1310 | case X86::ADC16rr: case X86::ADC16ri: case X86::ADC16ri8: |
| 1311 | case X86::ADC32rr: case X86::ADC32ri: case X86::ADC32ri8: |
| 1312 | case X86::ADC64rr: case X86::ADC64ri8: case X86::ADC64ri32: |
| 1313 | case X86::ADD8rr: case X86::ADD8ri: |
| 1314 | case X86::ADD16rr: case X86::ADD16ri: case X86::ADD16ri8: |
| 1315 | case X86::ADD32rr: case X86::ADD32ri: case X86::ADD32ri8: |
| 1316 | case X86::ADD64rr: case X86::ADD64ri8: case X86::ADD64ri32: |
| 1317 | case X86::AND8rr: case X86::AND8ri: |
| 1318 | case X86::AND16rr: case X86::AND16ri: case X86::AND16ri8: |
| 1319 | case X86::AND32rr: case X86::AND32ri: case X86::AND32ri8: |
| 1320 | case X86::AND64rr: case X86::AND64ri8: case X86::AND64ri32: |
| 1321 | case X86::OR8rr: case X86::OR8ri: |
| 1322 | case X86::OR16rr: case X86::OR16ri: case X86::OR16ri8: |
| 1323 | case X86::OR32rr: case X86::OR32ri: case X86::OR32ri8: |
| 1324 | case X86::OR64rr: case X86::OR64ri8: case X86::OR64ri32: |
| 1325 | case X86::SBB8rr: case X86::SBB8ri: |
| 1326 | case X86::SBB16rr: case X86::SBB16ri: case X86::SBB16ri8: |
| 1327 | case X86::SBB32rr: case X86::SBB32ri: case X86::SBB32ri8: |
| 1328 | case X86::SBB64rr: case X86::SBB64ri8: case X86::SBB64ri32: |
| 1329 | case X86::SUB8rr: case X86::SUB8ri: |
| 1330 | case X86::SUB16rr: case X86::SUB16ri: case X86::SUB16ri8: |
| 1331 | case X86::SUB32rr: case X86::SUB32ri: case X86::SUB32ri8: |
| 1332 | case X86::SUB64rr: case X86::SUB64ri8: case X86::SUB64ri32: |
| 1333 | case X86::XOR8rr: case X86::XOR8ri: |
| 1334 | case X86::XOR16rr: case X86::XOR16ri: case X86::XOR16ri8: |
| 1335 | case X86::XOR32rr: case X86::XOR32ri: case X86::XOR32ri8: |
| 1336 | case X86::XOR64rr: case X86::XOR64ri8: case X86::XOR64ri32: |
| 1337 | // Arithmetic with just 32-bit and 64-bit variants and no immediates. |
| 1338 | case X86::ADCX32rr: case X86::ADCX64rr: |
| 1339 | case X86::ADOX32rr: case X86::ADOX64rr: |
| 1340 | case X86::ANDN32rr: case X86::ANDN64rr: |
Chandler Carruth | c0cb573 | 2018-07-17 18:07:59 +0000 | [diff] [blame] | 1341 | // Unary arithmetic operations. |
Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1342 | case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r: |
Chandler Carruth | c0cb573 | 2018-07-17 18:07:59 +0000 | [diff] [blame] | 1343 | case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r: |
| 1344 | case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: |
Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1345 | // Check whether the EFLAGS implicit-def is dead. We assume that this will |
| 1346 | // always find the implicit-def because this code should only be reached |
| 1347 | // for instructions that do in fact implicitly def this. |
| 1348 | if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { |
| 1349 | // If we would clobber EFLAGS that are used, just bail for now. |
| 1350 | LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: "; |
| 1351 | MI.dump(); dbgs() << "\n"); |
| 1352 | return false; |
| 1353 | } |
| 1354 | |
| 1355 | // Otherwise, fallthrough to handle these the same as instructions that |
| 1356 | // don't set EFLAGS. |
| 1357 | LLVM_FALLTHROUGH; |
| 1358 | |
Chandler Carruth | c0cb573 | 2018-07-17 18:07:59 +0000 | [diff] [blame] | 1359 | // Unlike other arithmetic, NOT doesn't set EFLAGS. |
| 1360 | case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r: |
| 1361 | |
| 1362 | // Various move instructions used to zero or sign extend things. Note that we |
| 1363 | // intentionally don't support the _NOREX variants as we can't handle that |
| 1364 | // register constraint anyways. |
| 1365 | case X86::MOVSX16rr8: |
| 1366 | case X86::MOVSX32rr8: case X86::MOVSX32rr16: |
| 1367 | case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32: |
| 1368 | case X86::MOVZX16rr8: |
| 1369 | case X86::MOVZX32rr8: case X86::MOVZX32rr16: |
| 1370 | case X86::MOVZX64rr8: case X86::MOVZX64rr16: |
| 1371 | case X86::MOV32rr: |
Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1372 | |
| 1373 | // Arithmetic instructions that are both constant time and don't set flags. |
| 1374 | case X86::RORX32ri: |
| 1375 | case X86::RORX64ri: |
| 1376 | case X86::SARX32rr: |
| 1377 | case X86::SARX64rr: |
| 1378 | case X86::SHLX32rr: |
| 1379 | case X86::SHLX64rr: |
| 1380 | case X86::SHRX32rr: |
| 1381 | case X86::SHRX64rr: |
| 1382 | |
| 1383 | // LEA doesn't actually access memory, and its arithmetic is constant time. |
| 1384 | case X86::LEA16r: |
| 1385 | case X86::LEA32r: |
| 1386 | case X86::LEA64_32r: |
| 1387 | case X86::LEA64r: |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1388 | return true; |
| 1389 | } |
| 1390 | } |
| 1391 | |
| 1392 | /// Returns true if the instruction has no behavior (specified or otherwise) |
| 1393 | /// that is based on the value loaded from memory or the value of any |
| 1394 | /// non-address register operands. |
| 1395 | /// |
| 1396 | /// For example, if the latency of the instruction is dependent on the |
| 1397 | /// particular bits set in any of the registers *or* any of the bits loaded from |
| 1398 | /// memory. |
| 1399 | /// |
| 1400 | /// A classical example of something that is inherently not data invariant is an |
| 1401 | /// indirect jump -- the destination is loaded into icache based on the bits set |
| 1402 | /// in the jump destination register. |
| 1403 | /// |
| 1404 | /// FIXME: This should become part of our instruction tables. |
| 1405 | static bool isDataInvariantLoad(MachineInstr &MI) { |
| 1406 | switch (MI.getOpcode()) { |
| 1407 | default: |
| 1408 | // By default, assume that the load will immediately leak. |
| 1409 | return false; |
| 1410 | |
Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1411 | // On x86 it is believed that imul is constant time w.r.t. the loaded data. |
| 1412 | // However, they set flags and are perhaps the most surprisingly constant |
| 1413 | // time operations so we call them out here separately. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1414 | case X86::IMUL16rm: |
| 1415 | case X86::IMUL16rmi8: |
| 1416 | case X86::IMUL16rmi: |
| 1417 | case X86::IMUL32rm: |
| 1418 | case X86::IMUL32rmi8: |
| 1419 | case X86::IMUL32rmi: |
| 1420 | case X86::IMUL64rm: |
| 1421 | case X86::IMUL64rmi32: |
| 1422 | case X86::IMUL64rmi8: |
| 1423 | |
Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1424 | // Bit scanning and counting instructions that are somewhat surprisingly |
| 1425 | // constant time as they scan across bits and do other fairly complex |
| 1426 | // operations like popcnt, but are believed to be constant time on x86. |
| 1427 | // However, these set flags. |
| 1428 | case X86::BSF16rm: |
| 1429 | case X86::BSF32rm: |
| 1430 | case X86::BSF64rm: |
| 1431 | case X86::BSR16rm: |
| 1432 | case X86::BSR32rm: |
| 1433 | case X86::BSR64rm: |
| 1434 | case X86::LZCNT16rm: |
| 1435 | case X86::LZCNT32rm: |
| 1436 | case X86::LZCNT64rm: |
| 1437 | case X86::POPCNT16rm: |
| 1438 | case X86::POPCNT32rm: |
| 1439 | case X86::POPCNT64rm: |
| 1440 | case X86::TZCNT16rm: |
| 1441 | case X86::TZCNT32rm: |
| 1442 | case X86::TZCNT64rm: |
| 1443 | |
| 1444 | // Bit manipulation instructions are effectively combinations of basic |
| 1445 | // arithmetic ops, and should still execute in constant time. These also |
| 1446 | // set flags. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1447 | case X86::BLCFILL32rm: |
| 1448 | case X86::BLCFILL64rm: |
| 1449 | case X86::BLCI32rm: |
| 1450 | case X86::BLCI64rm: |
| 1451 | case X86::BLCIC32rm: |
| 1452 | case X86::BLCIC64rm: |
| 1453 | case X86::BLCMSK32rm: |
| 1454 | case X86::BLCMSK64rm: |
| 1455 | case X86::BLCS32rm: |
| 1456 | case X86::BLCS64rm: |
| 1457 | case X86::BLSFILL32rm: |
| 1458 | case X86::BLSFILL64rm: |
| 1459 | case X86::BLSI32rm: |
| 1460 | case X86::BLSI64rm: |
| 1461 | case X86::BLSIC32rm: |
| 1462 | case X86::BLSIC64rm: |
| 1463 | case X86::BLSMSK32rm: |
| 1464 | case X86::BLSMSK64rm: |
| 1465 | case X86::BLSR32rm: |
| 1466 | case X86::BLSR64rm: |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1467 | case X86::TZMSK32rm: |
| 1468 | case X86::TZMSK64rm: |
| 1469 | |
Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1470 | // Bit extracting and clearing instructions should execute in constant time, |
| 1471 | // and set flags. |
| 1472 | case X86::BEXTR32rm: |
| 1473 | case X86::BEXTR64rm: |
| 1474 | case X86::BEXTRI32mi: |
| 1475 | case X86::BEXTRI64mi: |
| 1476 | case X86::BZHI32rm: |
| 1477 | case X86::BZHI64rm: |
| 1478 | |
| 1479 | // Basic arithmetic is constant time on the input but does set flags. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1480 | case X86::ADC8rm: |
| 1481 | case X86::ADC16rm: |
| 1482 | case X86::ADC32rm: |
| 1483 | case X86::ADC64rm: |
| 1484 | case X86::ADCX32rm: |
| 1485 | case X86::ADCX64rm: |
| 1486 | case X86::ADD8rm: |
| 1487 | case X86::ADD16rm: |
| 1488 | case X86::ADD32rm: |
| 1489 | case X86::ADD64rm: |
| 1490 | case X86::ADOX32rm: |
| 1491 | case X86::ADOX64rm: |
| 1492 | case X86::AND8rm: |
| 1493 | case X86::AND16rm: |
| 1494 | case X86::AND32rm: |
| 1495 | case X86::AND64rm: |
| 1496 | case X86::ANDN32rm: |
| 1497 | case X86::ANDN64rm: |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1498 | case X86::OR8rm: |
| 1499 | case X86::OR16rm: |
| 1500 | case X86::OR32rm: |
| 1501 | case X86::OR64rm: |
| 1502 | case X86::SBB8rm: |
| 1503 | case X86::SBB16rm: |
| 1504 | case X86::SBB32rm: |
| 1505 | case X86::SBB64rm: |
| 1506 | case X86::SUB8rm: |
| 1507 | case X86::SUB16rm: |
| 1508 | case X86::SUB32rm: |
| 1509 | case X86::SUB64rm: |
| 1510 | case X86::XOR8rm: |
| 1511 | case X86::XOR16rm: |
| 1512 | case X86::XOR32rm: |
| 1513 | case X86::XOR64rm: |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1514 | // Check whether the EFLAGS implicit-def is dead. We assume that this will |
| 1515 | // always find the implicit-def because this code should only be reached |
| 1516 | // for instructions that do in fact implicitly def this. |
| 1517 | if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { |
| 1518 | // If we would clobber EFLAGS that are used, just bail for now. |
| 1519 | LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: "; |
| 1520 | MI.dump(); dbgs() << "\n"); |
| 1521 | return false; |
| 1522 | } |
| 1523 | |
| 1524 | // Otherwise, fallthrough to handle these the same as instructions that |
| 1525 | // don't set EFLAGS. |
| 1526 | LLVM_FALLTHROUGH; |
| 1527 | |
Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1528 | // Integer multiply w/o affecting flags is still believed to be constant |
| 1529 | // time on x86. Called out separately as this is among the most surprising |
| 1530 | // instructions to exhibit that behavior. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1531 | case X86::MULX32rm: |
| 1532 | case X86::MULX64rm: |
| 1533 | |
Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1534 | // Arithmetic instructions that are both constant time and don't set flags. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1535 | case X86::RORX32mi: |
| 1536 | case X86::RORX64mi: |
| 1537 | case X86::SARX32rm: |
| 1538 | case X86::SARX64rm: |
| 1539 | case X86::SHLX32rm: |
| 1540 | case X86::SHLX64rm: |
| 1541 | case X86::SHRX32rm: |
| 1542 | case X86::SHRX64rm: |
| 1543 | |
Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1544 | // Conversions are believed to be constant time and don't set flags. |
Craig Topper | 41fa858 | 2018-07-13 22:41:50 +0000 | [diff] [blame] | 1545 | case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm: |
| 1546 | case X86::CVTTSD2SIrm: case X86::VCVTTSD2SIrm: case X86::VCVTTSD2SIZrm: |
| 1547 | case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm: |
| 1548 | case X86::CVTTSS2SIrm: case X86::VCVTTSS2SIrm: case X86::VCVTTSS2SIZrm: |
| 1549 | case X86::CVTSI2SDrm: case X86::VCVTSI2SDrm: case X86::VCVTSI2SDZrm: |
| 1550 | case X86::CVTSI2SSrm: case X86::VCVTSI2SSrm: case X86::VCVTSI2SSZrm: |
| 1551 | case X86::CVTSI642SDrm: case X86::VCVTSI642SDrm: case X86::VCVTSI642SDZrm: |
| 1552 | case X86::CVTSI642SSrm: case X86::VCVTSI642SSrm: case X86::VCVTSI642SSZrm: |
| 1553 | case X86::CVTSS2SDrm: case X86::VCVTSS2SDrm: case X86::VCVTSS2SDZrm: |
| 1554 | case X86::CVTSD2SSrm: case X86::VCVTSD2SSrm: case X86::VCVTSD2SSZrm: |
| 1555 | // AVX512 added unsigned integer conversions. |
| 1556 | case X86::VCVTTSD2USI64Zrm: |
| 1557 | case X86::VCVTTSD2USIZrm: |
| 1558 | case X86::VCVTTSS2USI64Zrm: |
| 1559 | case X86::VCVTTSS2USIZrm: |
| 1560 | case X86::VCVTUSI2SDZrm: |
| 1561 | case X86::VCVTUSI642SDZrm: |
| 1562 | case X86::VCVTUSI2SSZrm: |
| 1563 | case X86::VCVTUSI642SSZrm: |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1564 | |
Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1565 | // Loads to register don't set flags. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1566 | case X86::MOV8rm: |
| 1567 | case X86::MOV8rm_NOREX: |
| 1568 | case X86::MOV16rm: |
| 1569 | case X86::MOV32rm: |
| 1570 | case X86::MOV64rm: |
| 1571 | case X86::MOVSX16rm8: |
| 1572 | case X86::MOVSX32rm16: |
| 1573 | case X86::MOVSX32rm8: |
| 1574 | case X86::MOVSX32rm8_NOREX: |
| 1575 | case X86::MOVSX64rm16: |
| 1576 | case X86::MOVSX64rm32: |
| 1577 | case X86::MOVSX64rm8: |
| 1578 | case X86::MOVZX16rm8: |
| 1579 | case X86::MOVZX32rm16: |
| 1580 | case X86::MOVZX32rm8: |
| 1581 | case X86::MOVZX32rm8_NOREX: |
| 1582 | case X86::MOVZX64rm16: |
| 1583 | case X86::MOVZX64rm8: |
| 1584 | return true; |
| 1585 | } |
| 1586 | } |
| 1587 | |
| 1588 | static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| 1589 | const TargetRegisterInfo &TRI) { |
| 1590 | // Check if EFLAGS are alive by seeing if there is a def of them or they |
| 1591 | // live-in, and then seeing if that def is in turn used. |
| 1592 | for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) { |
| 1593 | if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) { |
| 1594 | // If the def is dead, then EFLAGS is not live. |
| 1595 | if (DefOp->isDead()) |
| 1596 | return false; |
| 1597 | |
| 1598 | // Otherwise we've def'ed it, and it is live. |
| 1599 | return true; |
| 1600 | } |
| 1601 | // While at this instruction, also check if we use and kill EFLAGS |
| 1602 | // which means it isn't live. |
| 1603 | if (MI.killsRegister(X86::EFLAGS, &TRI)) |
| 1604 | return false; |
| 1605 | } |
| 1606 | |
| 1607 | // If we didn't find anything conclusive (neither definitely alive or |
| 1608 | // definitely dead) return whether it lives into the block. |
| 1609 | return MBB.isLiveIn(X86::EFLAGS); |
| 1610 | } |
| 1611 | |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1612 | /// Trace the predicate state through each of the blocks in the function, |
| 1613 | /// hardening everything necessary along the way. |
Chandler Carruth | 0477b40 | 2018-07-23 04:01:34 +0000 | [diff] [blame] | 1614 | /// |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1615 | /// We call this routine once the initial predicate state has been established |
| 1616 | /// for each basic block in the function in the SSA updater. This routine traces |
| 1617 | /// it through the instructions within each basic block, and for non-returning |
| 1618 | /// blocks informs the SSA updater about the final state that lives out of the |
| 1619 | /// block. Along the way, it hardens any vulnerable instruction using the |
| 1620 | /// currently valid predicate state. We have to do these two things together |
| 1621 | /// because the SSA updater only works across blocks. Within a block, we track |
| 1622 | /// the current predicate state directly and update it as it changes. |
Chandler Carruth | 0477b40 | 2018-07-23 04:01:34 +0000 | [diff] [blame] | 1623 | /// |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1624 | /// This operates in two passes over each block. First, we analyze the loads in |
| 1625 | /// the block to determine which strategy will be used to harden them: hardening |
| 1626 | /// the address or hardening the loaded value when loaded into a register |
| 1627 | /// amenable to hardening. We have to process these first because the two |
| 1628 | /// strategies may interact -- later hardening may change what strategy we wish |
| 1629 | /// to use. We also will analyze data dependencies between loads and avoid |
| 1630 | /// hardening those loads that are data dependent on a load with a hardened |
| 1631 | /// address. We also skip hardening loads already behind an LFENCE as that is |
| 1632 | /// sufficient to harden them against misspeculation. |
Chandler Carruth | 0477b40 | 2018-07-23 04:01:34 +0000 | [diff] [blame] | 1633 | /// |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1634 | /// Second, we actively trace the predicate state through the block, applying |
| 1635 | /// the hardening steps we determined necessary in the first pass as we go. |
| 1636 | /// |
| 1637 | /// These two passes are applied to each basic block. We operate one block at a |
| 1638 | /// time to simplify reasoning about reachability and sequencing. |
| 1639 | void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden( |
| 1640 | MachineFunction &MF) { |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1641 | SmallPtrSet<MachineInstr *, 16> HardenPostLoad; |
| 1642 | SmallPtrSet<MachineInstr *, 16> HardenLoadAddr; |
| 1643 | |
| 1644 | SmallSet<unsigned, 16> HardenedAddrRegs; |
| 1645 | |
| 1646 | SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg; |
| 1647 | |
| 1648 | // Track the set of load-dependent registers through the basic block. Because |
| 1649 | // the values of these registers have an existing data dependency on a loaded |
| 1650 | // value which we would have checked, we can omit any checks on them. |
| 1651 | SparseBitVector<> LoadDepRegs; |
| 1652 | |
| 1653 | for (MachineBasicBlock &MBB : MF) { |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1654 | // The first pass over the block: collect all the loads which can have their |
| 1655 | // loaded value hardened and all the loads that instead need their address |
| 1656 | // hardened. During this walk we propagate load dependence for address |
| 1657 | // hardened loads and also look for LFENCE to stop hardening wherever |
| 1658 | // possible. When deciding whether or not to harden the loaded value or not, |
| 1659 | // we check to see if any registers used in the address will have been |
| 1660 | // hardened at this point and if so, harden any remaining address registers |
| 1661 | // as that often successfully re-uses hardened addresses and minimizes |
| 1662 | // instructions. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1663 | // |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1664 | // FIXME: We should consider an aggressive mode where we continue to keep as |
| 1665 | // many loads value hardened even when some address register hardening would |
| 1666 | // be free (due to reuse). |
| 1667 | // |
| 1668 | // Note that we only need this pass if we are actually hardening loads. |
| 1669 | if (HardenLoads) |
| 1670 | for (MachineInstr &MI : MBB) { |
| 1671 | // We naively assume that all def'ed registers of an instruction have |
| 1672 | // a data dependency on all of their operands. |
| 1673 | // FIXME: Do a more careful analysis of x86 to build a conservative |
| 1674 | // model here. |
| 1675 | if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) { |
| 1676 | return Op.isReg() && LoadDepRegs.test(Op.getReg()); |
| 1677 | })) |
| 1678 | for (MachineOperand &Def : MI.defs()) |
| 1679 | if (Def.isReg()) |
| 1680 | LoadDepRegs.set(Def.getReg()); |
| 1681 | |
| 1682 | // Both Intel and AMD are guiding that they will change the semantics of |
| 1683 | // LFENCE to be a speculation barrier, so if we see an LFENCE, there is |
| 1684 | // no more need to guard things in this block. |
| 1685 | if (MI.getOpcode() == X86::LFENCE) |
| 1686 | break; |
| 1687 | |
| 1688 | // If this instruction cannot load, nothing to do. |
| 1689 | if (!MI.mayLoad()) |
| 1690 | continue; |
| 1691 | |
| 1692 | // Some instructions which "load" are trivially safe or unimportant. |
| 1693 | if (MI.getOpcode() == X86::MFENCE) |
| 1694 | continue; |
| 1695 | |
| 1696 | // Extract the memory operand information about this instruction. |
| 1697 | // FIXME: This doesn't handle loading pseudo instructions which we often |
| 1698 | // could handle with similarly generic logic. We probably need to add an |
| 1699 | // MI-layer routine similar to the MC-layer one we use here which maps |
| 1700 | // pseudos much like this maps real instructions. |
| 1701 | const MCInstrDesc &Desc = MI.getDesc(); |
| 1702 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); |
| 1703 | if (MemRefBeginIdx < 0) { |
| 1704 | LLVM_DEBUG(dbgs() |
| 1705 | << "WARNING: unable to harden loading instruction: "; |
| 1706 | MI.dump()); |
| 1707 | continue; |
| 1708 | } |
| 1709 | |
| 1710 | MemRefBeginIdx += X86II::getOperandBias(Desc); |
| 1711 | |
| 1712 | MachineOperand &BaseMO = |
| 1713 | MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); |
| 1714 | MachineOperand &IndexMO = |
| 1715 | MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); |
| 1716 | |
| 1717 | // If we have at least one (non-frame-index, non-RIP) register operand, |
| 1718 | // and neither operand is load-dependent, we need to check the load. |
| 1719 | unsigned BaseReg = 0, IndexReg = 0; |
| 1720 | if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP && |
Craig Topper | 384d46c | 2019-05-15 04:15:46 +0000 | [diff] [blame] | 1721 | BaseMO.getReg() != X86::NoRegister) |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1722 | BaseReg = BaseMO.getReg(); |
| 1723 | if (IndexMO.getReg() != X86::NoRegister) |
| 1724 | IndexReg = IndexMO.getReg(); |
| 1725 | |
| 1726 | if (!BaseReg && !IndexReg) |
| 1727 | // No register operands! |
| 1728 | continue; |
| 1729 | |
| 1730 | // If any register operand is dependent, this load is dependent and we |
| 1731 | // needn't check it. |
| 1732 | // FIXME: Is this true in the case where we are hardening loads after |
| 1733 | // they complete? Unclear, need to investigate. |
| 1734 | if ((BaseReg && LoadDepRegs.test(BaseReg)) || |
| 1735 | (IndexReg && LoadDepRegs.test(IndexReg))) |
| 1736 | continue; |
| 1737 | |
| 1738 | // If post-load hardening is enabled, this load is compatible with |
| 1739 | // post-load hardening, and we aren't already going to harden one of the |
| 1740 | // address registers, queue it up to be hardened post-load. Notably, |
| 1741 | // even once hardened this won't introduce a useful dependency that |
| 1742 | // could prune out subsequent loads. |
| 1743 | if (EnablePostLoadHardening && isDataInvariantLoad(MI) && |
| 1744 | MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() && |
| 1745 | canHardenRegister(MI.getOperand(0).getReg()) && |
| 1746 | !HardenedAddrRegs.count(BaseReg) && |
| 1747 | !HardenedAddrRegs.count(IndexReg)) { |
| 1748 | HardenPostLoad.insert(&MI); |
| 1749 | HardenedAddrRegs.insert(MI.getOperand(0).getReg()); |
| 1750 | continue; |
| 1751 | } |
| 1752 | |
| 1753 | // Record this instruction for address hardening and record its register |
| 1754 | // operands as being address-hardened. |
| 1755 | HardenLoadAddr.insert(&MI); |
| 1756 | if (BaseReg) |
| 1757 | HardenedAddrRegs.insert(BaseReg); |
| 1758 | if (IndexReg) |
| 1759 | HardenedAddrRegs.insert(IndexReg); |
| 1760 | |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1761 | for (MachineOperand &Def : MI.defs()) |
| 1762 | if (Def.isReg()) |
| 1763 | LoadDepRegs.set(Def.getReg()); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1764 | } |
| 1765 | |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1766 | // Now re-walk the instructions in the basic block, and apply whichever |
| 1767 | // hardening strategy we have elected. Note that we do this in a second |
| 1768 | // pass specifically so that we have the complete set of instructions for |
| 1769 | // which we will do post-load hardening and can defer it in certain |
| 1770 | // circumstances. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1771 | for (MachineInstr &MI : MBB) { |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1772 | if (HardenLoads) { |
| 1773 | // We cannot both require hardening the def of a load and its address. |
| 1774 | assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) && |
| 1775 | "Requested to harden both the address and def of a load!"); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1776 | |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1777 | // Check if this is a load whose address needs to be hardened. |
| 1778 | if (HardenLoadAddr.erase(&MI)) { |
| 1779 | const MCInstrDesc &Desc = MI.getDesc(); |
| 1780 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); |
| 1781 | assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!"); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1782 | |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1783 | MemRefBeginIdx += X86II::getOperandBias(Desc); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1784 | |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1785 | MachineOperand &BaseMO = |
| 1786 | MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); |
| 1787 | MachineOperand &IndexMO = |
| 1788 | MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); |
| 1789 | hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg); |
| 1790 | continue; |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1791 | } |
| 1792 | |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1793 | // Test if this instruction is one of our post load instructions (and |
| 1794 | // remove it from the set if so). |
| 1795 | if (HardenPostLoad.erase(&MI)) { |
| 1796 | assert(!MI.isCall() && "Must not try to post-load harden a call!"); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1797 | |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1798 | // If this is a data-invariant load, we want to try and sink any |
| 1799 | // hardening as far as possible. |
| 1800 | if (isDataInvariantLoad(MI)) { |
| 1801 | // Sink the instruction we'll need to harden as far as we can down |
| 1802 | // the graph. |
| 1803 | MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad); |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 1804 | |
Chandler Carruth | 196e719 | 2018-07-25 09:00:26 +0000 | [diff] [blame] | 1805 | // If we managed to sink this instruction, update everything so we |
| 1806 | // harden that instruction when we reach it in the instruction |
| 1807 | // sequence. |
| 1808 | if (SunkMI != &MI) { |
| 1809 | // If in sinking there was no instruction needing to be hardened, |
| 1810 | // we're done. |
| 1811 | if (!SunkMI) |
| 1812 | continue; |
| 1813 | |
| 1814 | // Otherwise, add this to the set of defs we harden. |
| 1815 | HardenPostLoad.insert(SunkMI); |
| 1816 | continue; |
| 1817 | } |
| 1818 | } |
| 1819 | |
| 1820 | unsigned HardenedReg = hardenPostLoad(MI); |
| 1821 | |
| 1822 | // Mark the resulting hardened register as such so we don't re-harden. |
| 1823 | AddrRegToHardenedReg[HardenedReg] = HardenedReg; |
| 1824 | |
| 1825 | continue; |
| 1826 | } |
| 1827 | |
| 1828 | // Check for an indirect call or branch that may need its input hardened |
| 1829 | // even if we couldn't find the specific load used, or were able to |
| 1830 | // avoid hardening it for some reason. Note that here we cannot break |
| 1831 | // out afterward as we may still need to handle any call aspect of this |
| 1832 | // instruction. |
| 1833 | if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps) |
| 1834 | hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1835 | } |
| 1836 | |
Chandler Carruth | 4f6481d | 2018-07-25 09:18:48 +0000 | [diff] [blame] | 1837 | // After we finish hardening loads we handle interprocedural hardening if |
| 1838 | // enabled and relevant for this instruction. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1839 | if (!HardenInterprocedurally) |
| 1840 | continue; |
Chandler Carruth | 4f6481d | 2018-07-25 09:18:48 +0000 | [diff] [blame] | 1841 | if (!MI.isCall() && !MI.isReturn()) |
| 1842 | continue; |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1843 | |
Chandler Carruth | 4f6481d | 2018-07-25 09:18:48 +0000 | [diff] [blame] | 1844 | // If this is a direct return (IE, not a tail call) just directly harden |
| 1845 | // it. |
| 1846 | if (MI.isReturn() && !MI.isCall()) { |
| 1847 | hardenReturnInstr(MI); |
| 1848 | continue; |
| 1849 | } |
| 1850 | |
| 1851 | // Otherwise we have a call. We need to handle transferring the predicate |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 1852 | // state into a call and recovering it after the call returns (unless this |
| 1853 | // is a tail call). |
Chandler Carruth | 4f6481d | 2018-07-25 09:18:48 +0000 | [diff] [blame] | 1854 | assert(MI.isCall() && "Should only reach here for calls!"); |
Chandler Carruth | 1387159 | 2018-07-26 09:42:57 +0000 | [diff] [blame] | 1855 | tracePredStateThroughCall(MI); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1856 | } |
| 1857 | |
| 1858 | HardenPostLoad.clear(); |
| 1859 | HardenLoadAddr.clear(); |
| 1860 | HardenedAddrRegs.clear(); |
| 1861 | AddrRegToHardenedReg.clear(); |
| 1862 | |
| 1863 | // Currently, we only track data-dependent loads within a basic block. |
| 1864 | // FIXME: We should see if this is necessary or if we could be more |
| 1865 | // aggressive here without opening up attack avenues. |
| 1866 | LoadDepRegs.clear(); |
| 1867 | } |
| 1868 | } |
| 1869 | |
| 1870 | /// Save EFLAGS into the returned GPR. This can in turn be restored with |
| 1871 | /// `restoreEFLAGS`. |
| 1872 | /// |
| 1873 | /// Note that LLVM can only lower very simple patterns of saved and restored |
| 1874 | /// EFLAGS registers. The restore should always be within the same basic block |
| 1875 | /// as the save so that no PHI nodes are inserted. |
| 1876 | unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS( |
| 1877 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, |
| 1878 | DebugLoc Loc) { |
| 1879 | // FIXME: Hard coding this to a 32-bit register class seems weird, but matches |
| 1880 | // what instruction selection does. |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 1881 | Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1882 | // We directly copy the FLAGS register and rely on later lowering to clean |
| 1883 | // this up into the appropriate setCC instructions. |
| 1884 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS); |
| 1885 | ++NumInstsInserted; |
| 1886 | return Reg; |
| 1887 | } |
| 1888 | |
| 1889 | /// Restore EFLAGS from the provided GPR. This should be produced by |
| 1890 | /// `saveEFLAGS`. |
| 1891 | /// |
| 1892 | /// This must be done within the same basic block as the save in order to |
| 1893 | /// reliably lower. |
| 1894 | void X86SpeculativeLoadHardeningPass::restoreEFLAGS( |
| 1895 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, |
| 1896 | unsigned Reg) { |
| 1897 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg); |
| 1898 | ++NumInstsInserted; |
| 1899 | } |
| 1900 | |
| 1901 | /// Takes the current predicate state (in a register) and merges it into the |
| 1902 | /// stack pointer. The state is essentially a single bit, but we merge this in |
| 1903 | /// a way that won't form non-canonical pointers and also will be preserved |
| 1904 | /// across normal stack adjustments. |
| 1905 | void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP( |
| 1906 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, |
| 1907 | unsigned PredStateReg) { |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 1908 | Register TmpReg = MRI->createVirtualRegister(PS->RC); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1909 | // FIXME: This hard codes a shift distance based on the number of bits needed |
| 1910 | // to stay canonical on 64-bit. We should compute this somehow and support |
| 1911 | // 32-bit as part of that. |
| 1912 | auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg) |
| 1913 | .addReg(PredStateReg, RegState::Kill) |
| 1914 | .addImm(47); |
| 1915 | ShiftI->addRegisterDead(X86::EFLAGS, TRI); |
| 1916 | ++NumInstsInserted; |
| 1917 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP) |
| 1918 | .addReg(X86::RSP) |
| 1919 | .addReg(TmpReg, RegState::Kill); |
| 1920 | OrI->addRegisterDead(X86::EFLAGS, TRI); |
| 1921 | ++NumInstsInserted; |
| 1922 | } |
| 1923 | |
| 1924 | /// Extracts the predicate state stored in the high bits of the stack pointer. |
| 1925 | unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP( |
| 1926 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, |
| 1927 | DebugLoc Loc) { |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 1928 | Register PredStateReg = MRI->createVirtualRegister(PS->RC); |
| 1929 | Register TmpReg = MRI->createVirtualRegister(PS->RC); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1930 | |
| 1931 | // We know that the stack pointer will have any preserved predicate state in |
| 1932 | // its high bit. We just want to smear this across the other bits. Turns out, |
| 1933 | // this is exactly what an arithmetic right shift does. |
| 1934 | BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg) |
| 1935 | .addReg(X86::RSP); |
| 1936 | auto ShiftI = |
| 1937 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg) |
| 1938 | .addReg(TmpReg, RegState::Kill) |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1939 | .addImm(TRI->getRegSizeInBits(*PS->RC) - 1); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1940 | ShiftI->addRegisterDead(X86::EFLAGS, TRI); |
| 1941 | ++NumInstsInserted; |
| 1942 | |
| 1943 | return PredStateReg; |
| 1944 | } |
| 1945 | |
| 1946 | void X86SpeculativeLoadHardeningPass::hardenLoadAddr( |
| 1947 | MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO, |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1948 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { |
| 1949 | MachineBasicBlock &MBB = *MI.getParent(); |
| 1950 | DebugLoc Loc = MI.getDebugLoc(); |
| 1951 | |
| 1952 | // Check if EFLAGS are alive by seeing if there is a def of them or they |
| 1953 | // live-in, and then seeing if that def is in turn used. |
| 1954 | bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI); |
| 1955 | |
| 1956 | SmallVector<MachineOperand *, 2> HardenOpRegs; |
| 1957 | |
| 1958 | if (BaseMO.isFI()) { |
| 1959 | // A frame index is never a dynamically controllable load, so only |
| 1960 | // harden it if we're covering fixed address loads as well. |
| 1961 | LLVM_DEBUG( |
| 1962 | dbgs() << " Skipping hardening base of explicit stack frame load: "; |
| 1963 | MI.dump(); dbgs() << "\n"); |
Craig Topper | df10cc6 | 2019-05-10 22:03:33 +0000 | [diff] [blame] | 1964 | } else if (BaseMO.getReg() == X86::RSP) { |
| 1965 | // Some idempotent atomic operations are lowered directly to a locked |
| 1966 | // OR with 0 to the top of stack(or slightly offset from top) which uses an |
| 1967 | // explicit RSP register as the base. |
| 1968 | assert(IndexMO.getReg() == X86::NoRegister && |
| 1969 | "Explicit RSP access with dynamic index!"); |
| 1970 | LLVM_DEBUG( |
| 1971 | dbgs() << " Cannot harden base of explicit RSP offset in a load!"); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1972 | } else if (BaseMO.getReg() == X86::RIP || |
| 1973 | BaseMO.getReg() == X86::NoRegister) { |
| 1974 | // For both RIP-relative addressed loads or absolute loads, we cannot |
| 1975 | // meaningfully harden them because the address being loaded has no |
| 1976 | // dynamic component. |
| 1977 | // |
| 1978 | // FIXME: When using a segment base (like TLS does) we end up with the |
| 1979 | // dynamic address being the base plus -1 because we can't mutate the |
| 1980 | // segment register here. This allows the signed 32-bit offset to point at |
| 1981 | // valid segment-relative addresses and load them successfully. |
| 1982 | LLVM_DEBUG( |
| 1983 | dbgs() << " Cannot harden base of " |
| 1984 | << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base") |
| 1985 | << " address in a load!"); |
| 1986 | } else { |
| 1987 | assert(BaseMO.isReg() && |
| 1988 | "Only allowed to have a frame index or register base."); |
| 1989 | HardenOpRegs.push_back(&BaseMO); |
| 1990 | } |
| 1991 | |
| 1992 | if (IndexMO.getReg() != X86::NoRegister && |
| 1993 | (HardenOpRegs.empty() || |
| 1994 | HardenOpRegs.front()->getReg() != IndexMO.getReg())) |
| 1995 | HardenOpRegs.push_back(&IndexMO); |
| 1996 | |
| 1997 | assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) && |
| 1998 | "Should have exactly one or two registers to harden!"); |
| 1999 | assert((HardenOpRegs.size() == 1 || |
| 2000 | HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) && |
| 2001 | "Should not have two of the same registers!"); |
| 2002 | |
| 2003 | // Remove any registers that have alreaded been checked. |
| 2004 | llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) { |
| 2005 | // See if this operand's register has already been checked. |
| 2006 | auto It = AddrRegToHardenedReg.find(Op->getReg()); |
| 2007 | if (It == AddrRegToHardenedReg.end()) |
| 2008 | // Not checked, so retain this one. |
| 2009 | return false; |
| 2010 | |
| 2011 | // Otherwise, we can directly update this operand and remove it. |
| 2012 | Op->setReg(It->second); |
| 2013 | return true; |
| 2014 | }); |
| 2015 | // If there are none left, we're done. |
| 2016 | if (HardenOpRegs.empty()) |
| 2017 | return; |
| 2018 | |
| 2019 | // Compute the current predicate state. |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 2020 | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2021 | |
| 2022 | auto InsertPt = MI.getIterator(); |
| 2023 | |
| 2024 | // If EFLAGS are live and we don't have access to instructions that avoid |
| 2025 | // clobbering EFLAGS we need to save and restore them. This in turn makes |
| 2026 | // the EFLAGS no longer live. |
| 2027 | unsigned FlagsReg = 0; |
| 2028 | if (EFLAGSLive && !Subtarget->hasBMI2()) { |
| 2029 | EFLAGSLive = false; |
| 2030 | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); |
| 2031 | } |
| 2032 | |
| 2033 | for (MachineOperand *Op : HardenOpRegs) { |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2034 | Register OpReg = Op->getReg(); |
Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 2035 | auto *OpRC = MRI->getRegClass(OpReg); |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2036 | Register TmpReg = MRI->createVirtualRegister(OpRC); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2037 | |
Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 2038 | // If this is a vector register, we'll need somewhat custom logic to handle |
| 2039 | // hardening it. |
| 2040 | if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) || |
| 2041 | OpRC->hasSuperClassEq(&X86::VR256RegClass))) { |
| 2042 | assert(Subtarget->hasAVX2() && "AVX2-specific register classes!"); |
| 2043 | bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass); |
| 2044 | |
| 2045 | // Move our state into a vector register. |
| 2046 | // FIXME: We could skip this at the cost of longer encodings with AVX-512 |
| 2047 | // but that doesn't seem likely worth it. |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2048 | Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass); |
Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 2049 | auto MovI = |
| 2050 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg) |
| 2051 | .addReg(StateReg); |
| 2052 | (void)MovI; |
| 2053 | ++NumInstsInserted; |
| 2054 | LLVM_DEBUG(dbgs() << " Inserting mov: "; MovI->dump(); dbgs() << "\n"); |
| 2055 | |
| 2056 | // Broadcast it across the vector register. |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2057 | Register VBStateReg = MRI->createVirtualRegister(OpRC); |
Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 2058 | auto BroadcastI = BuildMI(MBB, InsertPt, Loc, |
| 2059 | TII->get(Is128Bit ? X86::VPBROADCASTQrr |
| 2060 | : X86::VPBROADCASTQYrr), |
| 2061 | VBStateReg) |
| 2062 | .addReg(VStateReg); |
| 2063 | (void)BroadcastI; |
| 2064 | ++NumInstsInserted; |
| 2065 | LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); |
| 2066 | dbgs() << "\n"); |
| 2067 | |
| 2068 | // Merge our potential poison state into the value with a vector or. |
| 2069 | auto OrI = |
| 2070 | BuildMI(MBB, InsertPt, Loc, |
| 2071 | TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg) |
| 2072 | .addReg(VBStateReg) |
| 2073 | .addReg(OpReg); |
| 2074 | (void)OrI; |
| 2075 | ++NumInstsInserted; |
| 2076 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); |
| 2077 | } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) || |
| 2078 | OpRC->hasSuperClassEq(&X86::VR256XRegClass) || |
| 2079 | OpRC->hasSuperClassEq(&X86::VR512RegClass)) { |
| 2080 | assert(Subtarget->hasAVX512() && "AVX512-specific register classes!"); |
| 2081 | bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass); |
| 2082 | bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass); |
| 2083 | if (Is128Bit || Is256Bit) |
| 2084 | assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!"); |
| 2085 | |
| 2086 | // Broadcast our state into a vector register. |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2087 | Register VStateReg = MRI->createVirtualRegister(OpRC); |
Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 2088 | unsigned BroadcastOp = |
| 2089 | Is128Bit ? X86::VPBROADCASTQrZ128r |
| 2090 | : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr; |
| 2091 | auto BroadcastI = |
| 2092 | BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg) |
| 2093 | .addReg(StateReg); |
| 2094 | (void)BroadcastI; |
| 2095 | ++NumInstsInserted; |
| 2096 | LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); |
| 2097 | dbgs() << "\n"); |
| 2098 | |
| 2099 | // Merge our potential poison state into the value with a vector or. |
| 2100 | unsigned OrOp = Is128Bit ? X86::VPORQZ128rr |
| 2101 | : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr; |
| 2102 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg) |
| 2103 | .addReg(VStateReg) |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2104 | .addReg(OpReg); |
Chandler Carruth | bc46bca | 2018-07-16 04:42:27 +0000 | [diff] [blame] | 2105 | (void)OrI; |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2106 | ++NumInstsInserted; |
| 2107 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); |
| 2108 | } else { |
Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 2109 | // FIXME: Need to support GR32 here for 32-bit code. |
| 2110 | assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) && |
| 2111 | "Not a supported register class for address hardening!"); |
| 2112 | |
| 2113 | if (!EFLAGSLive) { |
| 2114 | // Merge our potential poison state into the value with an or. |
| 2115 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg) |
| 2116 | .addReg(StateReg) |
| 2117 | .addReg(OpReg); |
| 2118 | OrI->addRegisterDead(X86::EFLAGS, TRI); |
| 2119 | ++NumInstsInserted; |
| 2120 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); |
| 2121 | } else { |
| 2122 | // We need to avoid touching EFLAGS so shift out all but the least |
| 2123 | // significant bit using the instruction that doesn't update flags. |
| 2124 | auto ShiftI = |
| 2125 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg) |
| 2126 | .addReg(OpReg) |
| 2127 | .addReg(StateReg); |
| 2128 | (void)ShiftI; |
| 2129 | ++NumInstsInserted; |
| 2130 | LLVM_DEBUG(dbgs() << " Inserting shrx: "; ShiftI->dump(); |
| 2131 | dbgs() << "\n"); |
| 2132 | } |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2133 | } |
| 2134 | |
| 2135 | // Record this register as checked and update the operand. |
| 2136 | assert(!AddrRegToHardenedReg.count(Op->getReg()) && |
| 2137 | "Should not have checked this register yet!"); |
| 2138 | AddrRegToHardenedReg[Op->getReg()] = TmpReg; |
| 2139 | Op->setReg(TmpReg); |
| 2140 | ++NumAddrRegsHardened; |
| 2141 | } |
| 2142 | |
| 2143 | // And restore the flags if needed. |
| 2144 | if (FlagsReg) |
| 2145 | restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); |
| 2146 | } |
| 2147 | |
| 2148 | MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst( |
Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 2149 | MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) { |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2150 | assert(isDataInvariantLoad(InitialMI) && |
| 2151 | "Cannot get here with a non-invariant load!"); |
| 2152 | |
| 2153 | // See if we can sink hardening the loaded value. |
| 2154 | auto SinkCheckToSingleUse = |
| 2155 | [&](MachineInstr &MI) -> Optional<MachineInstr *> { |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2156 | Register DefReg = MI.getOperand(0).getReg(); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2157 | |
| 2158 | // We need to find a single use which we can sink the check. We can |
| 2159 | // primarily do this because many uses may already end up checked on their |
| 2160 | // own. |
| 2161 | MachineInstr *SingleUseMI = nullptr; |
| 2162 | for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) { |
| 2163 | // If we're already going to harden this use, it is data invariant and |
Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 2164 | // within our block. |
| 2165 | if (HardenedInstrs.count(&UseMI)) { |
| 2166 | if (!isDataInvariantLoad(UseMI)) { |
| 2167 | // If we've already decided to harden a non-load, we must have sunk |
| 2168 | // some other post-load hardened instruction to it and it must itself |
| 2169 | // be data-invariant. |
| 2170 | assert(isDataInvariant(UseMI) && |
| 2171 | "Data variant instruction being hardened!"); |
| 2172 | continue; |
| 2173 | } |
| 2174 | |
| 2175 | // Otherwise, this is a load and the load component can't be data |
| 2176 | // invariant so check how this register is being used. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2177 | const MCInstrDesc &Desc = UseMI.getDesc(); |
| 2178 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); |
| 2179 | assert(MemRefBeginIdx >= 0 && |
| 2180 | "Should always have mem references here!"); |
| 2181 | MemRefBeginIdx += X86II::getOperandBias(Desc); |
| 2182 | |
| 2183 | MachineOperand &BaseMO = |
| 2184 | UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); |
| 2185 | MachineOperand &IndexMO = |
| 2186 | UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); |
| 2187 | if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) || |
| 2188 | (IndexMO.isReg() && IndexMO.getReg() == DefReg)) |
| 2189 | // The load uses the register as part of its address making it not |
| 2190 | // invariant. |
| 2191 | return {}; |
| 2192 | |
| 2193 | continue; |
| 2194 | } |
| 2195 | |
| 2196 | if (SingleUseMI) |
| 2197 | // We already have a single use, this would make two. Bail. |
| 2198 | return {}; |
| 2199 | |
| 2200 | // If this single use isn't data invariant, isn't in this block, or has |
| 2201 | // interfering EFLAGS, we can't sink the hardening to it. |
| 2202 | if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent()) |
| 2203 | return {}; |
| 2204 | |
| 2205 | // If this instruction defines multiple registers bail as we won't harden |
| 2206 | // all of them. |
| 2207 | if (UseMI.getDesc().getNumDefs() > 1) |
| 2208 | return {}; |
| 2209 | |
| 2210 | // If this register isn't a virtual register we can't walk uses of sanely, |
| 2211 | // just bail. Also check that its register class is one of the ones we |
| 2212 | // can harden. |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2213 | Register UseDefReg = UseMI.getOperand(0).getReg(); |
Daniel Sanders | 2bea69b | 2019-08-01 23:27:28 +0000 | [diff] [blame] | 2214 | if (!Register::isVirtualRegister(UseDefReg) || |
Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 2215 | !canHardenRegister(UseDefReg)) |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2216 | return {}; |
| 2217 | |
| 2218 | SingleUseMI = &UseMI; |
| 2219 | } |
| 2220 | |
| 2221 | // If SingleUseMI is still null, there is no use that needs its own |
| 2222 | // checking. Otherwise, it is the single use that needs checking. |
| 2223 | return {SingleUseMI}; |
| 2224 | }; |
| 2225 | |
| 2226 | MachineInstr *MI = &InitialMI; |
| 2227 | while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) { |
| 2228 | // Update which MI we're checking now. |
| 2229 | MI = *SingleUse; |
| 2230 | if (!MI) |
| 2231 | break; |
| 2232 | } |
| 2233 | |
| 2234 | return MI; |
| 2235 | } |
| 2236 | |
Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 2237 | bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) { |
| 2238 | auto *RC = MRI->getRegClass(Reg); |
| 2239 | int RegBytes = TRI->getRegSizeInBits(*RC) / 8; |
| 2240 | if (RegBytes > 8) |
| 2241 | // We don't support post-load hardening of vectors. |
Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 2242 | return false; |
| 2243 | |
Simon Pilgrim | 082750f | 2019-09-05 10:26:38 +0000 | [diff] [blame] | 2244 | unsigned RegIdx = Log2_32(RegBytes); |
| 2245 | assert(RegIdx < 4 && "Unsupported register size"); |
| 2246 | |
Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 2247 | // If this register class is explicitly constrained to a class that doesn't |
| 2248 | // require REX prefix, we may not be able to satisfy that constraint when |
| 2249 | // emitting the hardening instructions, so bail out here. |
| 2250 | // FIXME: This seems like a pretty lame hack. The way this comes up is when we |
| 2251 | // end up both with a NOREX and REX-only register as operands to the hardening |
| 2252 | // instructions. It would be better to fix that code to handle this situation |
| 2253 | // rather than hack around it in this way. |
| 2254 | const TargetRegisterClass *NOREXRegClasses[] = { |
| 2255 | &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass, |
| 2256 | &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass}; |
Simon Pilgrim | 082750f | 2019-09-05 10:26:38 +0000 | [diff] [blame] | 2257 | if (RC == NOREXRegClasses[RegIdx]) |
Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 2258 | return false; |
| 2259 | |
| 2260 | const TargetRegisterClass *GPRRegClasses[] = { |
| 2261 | &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass, |
| 2262 | &X86::GR64RegClass}; |
Simon Pilgrim | 082750f | 2019-09-05 10:26:38 +0000 | [diff] [blame] | 2263 | return RC->hasSuperClassEq(GPRRegClasses[RegIdx]); |
Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 2264 | } |
| 2265 | |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 2266 | /// Harden a value in a register. |
Chandler Carruth | 376113d | 2018-07-24 12:19:01 +0000 | [diff] [blame] | 2267 | /// |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 2268 | /// This is the low-level logic to fully harden a value sitting in a register |
| 2269 | /// against leaking during speculative execution. |
| 2270 | /// |
| 2271 | /// Unlike hardening an address that is used by a load, this routine is required |
| 2272 | /// to hide *all* incoming bits in the register. |
| 2273 | /// |
| 2274 | /// `Reg` must be a virtual register. Currently, it is required to be a GPR no |
| 2275 | /// larger than the predicate state register. FIXME: We should support vector |
| 2276 | /// registers here by broadcasting the predicate state. |
| 2277 | /// |
| 2278 | /// The new, hardened virtual register is returned. It will have the same |
| 2279 | /// register class as `Reg`. |
| 2280 | unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister( |
| 2281 | unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, |
| 2282 | DebugLoc Loc) { |
| 2283 | assert(canHardenRegister(Reg) && "Cannot harden this register!"); |
Daniel Sanders | 2bea69b | 2019-08-01 23:27:28 +0000 | [diff] [blame] | 2284 | assert(Register::isVirtualRegister(Reg) && "Cannot harden a physical register!"); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2285 | |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 2286 | auto *RC = MRI->getRegClass(Reg); |
| 2287 | int Bytes = TRI->getRegSizeInBits(*RC) / 8; |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2288 | |
Chandler Carruth | 66fbbbc | 2018-07-24 00:35:36 +0000 | [diff] [blame] | 2289 | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2290 | |
Chandler Carruth | 66fbbbc | 2018-07-24 00:35:36 +0000 | [diff] [blame] | 2291 | // FIXME: Need to teach this about 32-bit mode. |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 2292 | if (Bytes != 8) { |
Chandler Carruth | 66fbbbc | 2018-07-24 00:35:36 +0000 | [diff] [blame] | 2293 | unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit}; |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 2294 | unsigned SubRegImm = SubRegImms[Log2_32(Bytes)]; |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2295 | Register NarrowStateReg = MRI->createVirtualRegister(RC); |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 2296 | BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg) |
Chandler Carruth | 66fbbbc | 2018-07-24 00:35:36 +0000 | [diff] [blame] | 2297 | .addReg(StateReg, 0, SubRegImm); |
| 2298 | StateReg = NarrowStateReg; |
| 2299 | } |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2300 | |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2301 | unsigned FlagsReg = 0; |
Chandler Carruth | b46c22d | 2018-07-24 00:21:59 +0000 | [diff] [blame] | 2302 | if (isEFLAGSLive(MBB, InsertPt, *TRI)) |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2303 | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2304 | |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2305 | Register NewReg = MRI->createVirtualRegister(RC); |
Chandler Carruth | 66fbbbc | 2018-07-24 00:35:36 +0000 | [diff] [blame] | 2306 | unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr}; |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 2307 | unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)]; |
| 2308 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg) |
Chandler Carruth | b46c22d | 2018-07-24 00:21:59 +0000 | [diff] [blame] | 2309 | .addReg(StateReg) |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 2310 | .addReg(Reg); |
Chandler Carruth | b46c22d | 2018-07-24 00:21:59 +0000 | [diff] [blame] | 2311 | OrI->addRegisterDead(X86::EFLAGS, TRI); |
| 2312 | ++NumInstsInserted; |
| 2313 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2314 | |
| 2315 | if (FlagsReg) |
| 2316 | restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); |
| 2317 | |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 2318 | return NewReg; |
| 2319 | } |
| 2320 | |
| 2321 | /// Harden a load by hardening the loaded value in the defined register. |
| 2322 | /// |
| 2323 | /// We can harden a non-leaking load into a register without touching the |
| 2324 | /// address by just hiding all of the loaded bits during misspeculation. We use |
| 2325 | /// an `or` instruction to do this because we set up our poison value as all |
| 2326 | /// ones. And the goal is just for the loaded bits to not be exposed to |
| 2327 | /// execution and coercing them to one is sufficient. |
| 2328 | /// |
| 2329 | /// Returns the newly hardened register. |
| 2330 | unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) { |
| 2331 | MachineBasicBlock &MBB = *MI.getParent(); |
| 2332 | DebugLoc Loc = MI.getDebugLoc(); |
| 2333 | |
| 2334 | auto &DefOp = MI.getOperand(0); |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2335 | Register OldDefReg = DefOp.getReg(); |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 2336 | auto *DefRC = MRI->getRegClass(OldDefReg); |
| 2337 | |
| 2338 | // Because we want to completely replace the uses of this def'ed value with |
| 2339 | // the hardened value, create a dedicated new register that will only be used |
| 2340 | // to communicate the unhardened value to the hardening. |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2341 | Register UnhardenedReg = MRI->createVirtualRegister(DefRC); |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 2342 | DefOp.setReg(UnhardenedReg); |
| 2343 | |
| 2344 | // Now harden this register's value, getting a hardened reg that is safe to |
| 2345 | // use. Note that we insert the instructions to compute this *after* the |
| 2346 | // defining instruction, not before it. |
| 2347 | unsigned HardenedReg = hardenValueInRegister( |
| 2348 | UnhardenedReg, MBB, std::next(MI.getIterator()), Loc); |
| 2349 | |
| 2350 | // Finally, replace the old register (which now only has the uses of the |
| 2351 | // original def) with the hardened register. |
| 2352 | MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg); |
| 2353 | |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2354 | ++NumPostLoadRegsHardened; |
Chandler Carruth | 5452914 | 2018-07-24 12:44:00 +0000 | [diff] [blame] | 2355 | return HardenedReg; |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2356 | } |
| 2357 | |
Chandler Carruth | a3a03ac | 2018-07-19 23:46:24 +0000 | [diff] [blame] | 2358 | /// Harden a return instruction. |
| 2359 | /// |
| 2360 | /// Returns implicitly perform a load which we need to harden. Without hardening |
| 2361 | /// this load, an attacker my speculatively write over the return address to |
| 2362 | /// steer speculation of the return to an attacker controlled address. This is |
| 2363 | /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in |
| 2364 | /// this paper: |
| 2365 | /// https://people.csail.mit.edu/vlk/spectre11.pdf |
| 2366 | /// |
| 2367 | /// We can harden this by introducing an LFENCE that will delay any load of the |
| 2368 | /// return address until prior instructions have retired (and thus are not being |
| 2369 | /// speculated), or we can harden the address used by the implicit load: the |
| 2370 | /// stack pointer. |
| 2371 | /// |
| 2372 | /// If we are not using an LFENCE, hardening the stack pointer has an additional |
| 2373 | /// benefit: it allows us to pass the predicate state accumulated in this |
| 2374 | /// function back to the caller. In the absence of a BCBS attack on the return, |
| 2375 | /// the caller will typically be resumed and speculatively executed due to the |
| 2376 | /// Return Stack Buffer (RSB) prediction which is very accurate and has a high |
| 2377 | /// priority. It is possible that some code from the caller will be executed |
| 2378 | /// speculatively even during a BCBS-attacked return until the steering takes |
| 2379 | /// effect. Whenever this happens, the caller can recover the (poisoned) |
| 2380 | /// predicate state from the stack pointer and continue to harden loads. |
| 2381 | void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) { |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2382 | MachineBasicBlock &MBB = *MI.getParent(); |
| 2383 | DebugLoc Loc = MI.getDebugLoc(); |
| 2384 | auto InsertPt = MI.getIterator(); |
| 2385 | |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2386 | if (FenceCallAndRet) |
| 2387 | // No need to fence here as we'll fence at the return site itself. That |
| 2388 | // handles more cases than we can handle here. |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2389 | return; |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2390 | |
| 2391 | // Take our predicate state, shift it to the high 17 bits (so that we keep |
| 2392 | // pointers canonical) and merge it into RSP. This will allow the caller to |
| 2393 | // extract it when we return (speculatively). |
Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 2394 | mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB)); |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2395 | } |
| 2396 | |
Chandler Carruth | 1387159 | 2018-07-26 09:42:57 +0000 | [diff] [blame] | 2397 | /// Trace the predicate state through a call. |
| 2398 | /// |
| 2399 | /// There are several layers of this needed to handle the full complexity of |
| 2400 | /// calls. |
| 2401 | /// |
| 2402 | /// First, we need to send the predicate state into the called function. We do |
| 2403 | /// this by merging it into the high bits of the stack pointer. |
| 2404 | /// |
| 2405 | /// For tail calls, this is all we need to do. |
| 2406 | /// |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2407 | /// For calls where we might return and resume the control flow, we need to |
| 2408 | /// extract the predicate state from the high bits of the stack pointer after |
| 2409 | /// control returns from the called function. |
| 2410 | /// |
| 2411 | /// We also need to verify that we intended to return to this location in the |
| 2412 | /// code. An attacker might arrange for the processor to mispredict the return |
| 2413 | /// to this valid but incorrect return address in the program rather than the |
| 2414 | /// correct one. See the paper on this attack, called "ret2spec" by the |
| 2415 | /// researchers, here: |
| 2416 | /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf |
| 2417 | /// |
| 2418 | /// The way we verify that we returned to the correct location is by preserving |
| 2419 | /// the expected return address across the call. One technique involves taking |
| 2420 | /// advantage of the red-zone to load the return address from `8(%rsp)` where it |
| 2421 | /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can |
| 2422 | /// directly save the address into a register that will be preserved across the |
| 2423 | /// call. We compare this intended return address against the address |
| 2424 | /// immediately following the call (the observed return address). If these |
| 2425 | /// mismatch, we have detected misspeculation and can poison our predicate |
| 2426 | /// state. |
Chandler Carruth | 1387159 | 2018-07-26 09:42:57 +0000 | [diff] [blame] | 2427 | void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall( |
| 2428 | MachineInstr &MI) { |
| 2429 | MachineBasicBlock &MBB = *MI.getParent(); |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2430 | MachineFunction &MF = *MBB.getParent(); |
Chandler Carruth | 1387159 | 2018-07-26 09:42:57 +0000 | [diff] [blame] | 2431 | auto InsertPt = MI.getIterator(); |
| 2432 | DebugLoc Loc = MI.getDebugLoc(); |
| 2433 | |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2434 | if (FenceCallAndRet) { |
| 2435 | if (MI.isReturn()) |
| 2436 | // Tail call, we don't return to this function. |
| 2437 | // FIXME: We should also handle noreturn calls. |
| 2438 | return; |
| 2439 | |
| 2440 | // We don't need to fence before the call because the function should fence |
| 2441 | // in its entry. However, we do need to fence after the call returns. |
| 2442 | // Fencing before the return doesn't correctly handle cases where the return |
| 2443 | // itself is mispredicted. |
| 2444 | BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE)); |
| 2445 | ++NumInstsInserted; |
| 2446 | ++NumLFENCEsInserted; |
| 2447 | return; |
| 2448 | } |
| 2449 | |
Chandler Carruth | 1387159 | 2018-07-26 09:42:57 +0000 | [diff] [blame] | 2450 | // First, we transfer the predicate state into the called function by merging |
| 2451 | // it into the stack pointer. This will kill the current def of the state. |
| 2452 | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); |
| 2453 | mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg); |
| 2454 | |
| 2455 | // If this call is also a return, it is a tail call and we don't need anything |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2456 | // else to handle it so just return. Also, if there are no further |
| 2457 | // instructions and no successors, this call does not return so we can also |
| 2458 | // bail. |
| 2459 | if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty())) |
Chandler Carruth | 1387159 | 2018-07-26 09:42:57 +0000 | [diff] [blame] | 2460 | return; |
| 2461 | |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2462 | // Create a symbol to track the return address and attach it to the call |
| 2463 | // machine instruction. We will lower extra symbols attached to call |
| 2464 | // instructions as label immediately following the call. |
| 2465 | MCSymbol *RetSymbol = |
| 2466 | MF.getContext().createTempSymbol("slh_ret_addr", |
| 2467 | /*AlwaysAddSuffix*/ true); |
| 2468 | MI.setPostInstrSymbol(MF, RetSymbol); |
| 2469 | |
| 2470 | const TargetRegisterClass *AddrRC = &X86::GR64RegClass; |
| 2471 | unsigned ExpectedRetAddrReg = 0; |
| 2472 | |
| 2473 | // If we have no red zones or if the function returns twice (possibly without |
| 2474 | // using the `ret` instruction) like setjmp, we need to save the expected |
| 2475 | // return address prior to the call. |
Philip Reames | 849ef82 | 2019-05-10 22:55:42 +0000 | [diff] [blame] | 2476 | if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) || |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2477 | MF.exposesReturnsTwice()) { |
| 2478 | // If we don't have red zones, we need to compute the expected return |
| 2479 | // address prior to the call and store it in a register that lives across |
| 2480 | // the call. |
| 2481 | // |
| 2482 | // In some ways, this is doubly satisfying as a mitigation because it will |
| 2483 | // also successfully detect stack smashing bugs in some cases (typically, |
| 2484 | // when a callee-saved register is used and the callee doesn't push it onto |
| 2485 | // the stack). But that isn't our primary goal, so we only use it as |
| 2486 | // a fallback. |
| 2487 | // |
| 2488 | // FIXME: It isn't clear that this is reliable in the face of |
| 2489 | // rematerialization in the register allocator. We somehow need to force |
| 2490 | // that to not occur for this particular instruction, and instead to spill |
| 2491 | // or otherwise preserve the value computed *prior* to the call. |
| 2492 | // |
| 2493 | // FIXME: It is even less clear why MachineCSE can't just fold this when we |
| 2494 | // end up having to use identical instructions both before and after the |
| 2495 | // call to feed the comparison. |
| 2496 | ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); |
| 2497 | if (MF.getTarget().getCodeModel() == CodeModel::Small && |
| 2498 | !Subtarget->isPositionIndependent()) { |
| 2499 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg) |
| 2500 | .addSym(RetSymbol); |
| 2501 | } else { |
| 2502 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg) |
| 2503 | .addReg(/*Base*/ X86::RIP) |
| 2504 | .addImm(/*Scale*/ 1) |
| 2505 | .addReg(/*Index*/ 0) |
| 2506 | .addSym(RetSymbol) |
| 2507 | .addReg(/*Segment*/ 0); |
| 2508 | } |
| 2509 | } |
| 2510 | |
| 2511 | // Step past the call to handle when it returns. |
Chandler Carruth | 1387159 | 2018-07-26 09:42:57 +0000 | [diff] [blame] | 2512 | ++InsertPt; |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2513 | |
| 2514 | // If we didn't pre-compute the expected return address into a register, then |
| 2515 | // red zones are enabled and the return address is still available on the |
| 2516 | // stack immediately after the call. As the very first instruction, we load it |
| 2517 | // into a register. |
| 2518 | if (!ExpectedRetAddrReg) { |
| 2519 | ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); |
| 2520 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg) |
| 2521 | .addReg(/*Base*/ X86::RSP) |
| 2522 | .addImm(/*Scale*/ 1) |
| 2523 | .addReg(/*Index*/ 0) |
| 2524 | .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so |
| 2525 | // the return address is 8-bytes past it. |
| 2526 | .addReg(/*Segment*/ 0); |
| 2527 | } |
| 2528 | |
| 2529 | // Now we extract the callee's predicate state from the stack pointer. |
Chandler Carruth | 1387159 | 2018-07-26 09:42:57 +0000 | [diff] [blame] | 2530 | unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc); |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2531 | |
| 2532 | // Test the expected return address against our actual address. If we can |
| 2533 | // form this basic block's address as an immediate, this is easy. Otherwise |
| 2534 | // we compute it. |
| 2535 | if (MF.getTarget().getCodeModel() == CodeModel::Small && |
| 2536 | !Subtarget->isPositionIndependent()) { |
| 2537 | // FIXME: Could we fold this with the load? It would require careful EFLAGS |
| 2538 | // management. |
| 2539 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32)) |
| 2540 | .addReg(ExpectedRetAddrReg, RegState::Kill) |
| 2541 | .addSym(RetSymbol); |
| 2542 | } else { |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2543 | Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC); |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2544 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg) |
| 2545 | .addReg(/*Base*/ X86::RIP) |
| 2546 | .addImm(/*Scale*/ 1) |
| 2547 | .addReg(/*Index*/ 0) |
| 2548 | .addSym(RetSymbol) |
| 2549 | .addReg(/*Segment*/ 0); |
| 2550 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr)) |
| 2551 | .addReg(ExpectedRetAddrReg, RegState::Kill) |
| 2552 | .addReg(ActualRetAddrReg, RegState::Kill); |
| 2553 | } |
| 2554 | |
| 2555 | // Now conditionally update the predicate state we just extracted if we ended |
| 2556 | // up at a different return address than expected. |
| 2557 | int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; |
Craig Topper | e0bfeb5 | 2019-04-05 19:27:41 +0000 | [diff] [blame] | 2558 | auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2559 | |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2560 | Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2561 | auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg) |
| 2562 | .addReg(NewStateReg, RegState::Kill) |
Craig Topper | e0bfeb5 | 2019-04-05 19:27:41 +0000 | [diff] [blame] | 2563 | .addReg(PS->PoisonReg) |
| 2564 | .addImm(X86::COND_NE); |
Chandler Carruth | 219888d | 2018-09-04 10:59:10 +0000 | [diff] [blame] | 2565 | CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); |
| 2566 | ++NumInstsInserted; |
| 2567 | LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); |
| 2568 | |
| 2569 | PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); |
Chandler Carruth | 1387159 | 2018-07-26 09:42:57 +0000 | [diff] [blame] | 2570 | } |
| 2571 | |
Chandler Carruth | 7024921 | 2018-07-25 01:51:29 +0000 | [diff] [blame] | 2572 | /// An attacker may speculatively store over a value that is then speculatively |
| 2573 | /// loaded and used as the target of an indirect call or jump instruction. This |
| 2574 | /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described |
| 2575 | /// in this paper: |
| 2576 | /// https://people.csail.mit.edu/vlk/spectre11.pdf |
| 2577 | /// |
| 2578 | /// When this happens, the speculative execution of the call or jump will end up |
| 2579 | /// being steered to this attacker controlled address. While most such loads |
| 2580 | /// will be adequately hardened already, we want to ensure that they are |
| 2581 | /// definitively treated as needing post-load hardening. While address hardening |
| 2582 | /// is sufficient to prevent secret data from leaking to the attacker, it may |
| 2583 | /// not be sufficient to prevent an attacker from steering speculative |
| 2584 | /// execution. We forcibly unfolded all relevant loads above and so will always |
| 2585 | /// have an opportunity to post-load harden here, we just need to scan for cases |
| 2586 | /// not already flagged and add them. |
| 2587 | void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr( |
| 2588 | MachineInstr &MI, |
| 2589 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { |
| 2590 | switch (MI.getOpcode()) { |
| 2591 | case X86::FARCALL16m: |
| 2592 | case X86::FARCALL32m: |
| 2593 | case X86::FARCALL64: |
| 2594 | case X86::FARJMP16m: |
| 2595 | case X86::FARJMP32m: |
| 2596 | case X86::FARJMP64: |
| 2597 | // We don't need to harden either far calls or far jumps as they are |
| 2598 | // safe from Spectre. |
| 2599 | return; |
| 2600 | |
| 2601 | default: |
| 2602 | break; |
| 2603 | } |
| 2604 | |
| 2605 | // We should never see a loading instruction at this point, as those should |
| 2606 | // have been unfolded. |
| 2607 | assert(!MI.mayLoad() && "Found a lingering loading instruction!"); |
| 2608 | |
| 2609 | // If the first operand isn't a register, this is a branch or call |
| 2610 | // instruction with an immediate operand which doesn't need to be hardened. |
| 2611 | if (!MI.getOperand(0).isReg()) |
| 2612 | return; |
| 2613 | |
| 2614 | // For all of these, the target register is the first operand of the |
| 2615 | // instruction. |
| 2616 | auto &TargetOp = MI.getOperand(0); |
Daniel Sanders | 0c47611 | 2019-08-15 19:22:08 +0000 | [diff] [blame] | 2617 | Register OldTargetReg = TargetOp.getReg(); |
Chandler Carruth | 7024921 | 2018-07-25 01:51:29 +0000 | [diff] [blame] | 2618 | |
| 2619 | // Try to lookup a hardened version of this register. We retain a reference |
| 2620 | // here as we want to update the map to track any newly computed hardened |
| 2621 | // register. |
| 2622 | unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg]; |
| 2623 | |
| 2624 | // If we don't have a hardened register yet, compute one. Otherwise, just use |
| 2625 | // the already hardened register. |
| 2626 | // |
| 2627 | // FIXME: It is a little suspect that we use partially hardened registers that |
| 2628 | // only feed addresses. The complexity of partial hardening with SHRX |
| 2629 | // continues to pile up. Should definitively measure its value and consider |
| 2630 | // eliminating it. |
| 2631 | if (!HardenedTargetReg) |
| 2632 | HardenedTargetReg = hardenValueInRegister( |
| 2633 | OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc()); |
| 2634 | |
| 2635 | // Set the target operand to the hardened register. |
| 2636 | TargetOp.setReg(HardenedTargetReg); |
| 2637 | |
| 2638 | ++NumCallsOrJumpsHardened; |
| 2639 | } |
| 2640 | |
Chandler Carruth | 00c35c7 | 2018-08-16 01:22:19 +0000 | [diff] [blame] | 2641 | INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY, |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2642 | "X86 speculative load hardener", false, false) |
Chandler Carruth | 00c35c7 | 2018-08-16 01:22:19 +0000 | [diff] [blame] | 2643 | INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY, |
Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 2644 | "X86 speculative load hardener", false, false) |
| 2645 | |
| 2646 | FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() { |
| 2647 | return new X86SpeculativeLoadHardeningPass(); |
| 2648 | } |