blob: c48321586baf652603e5c61eb4de1a7038649606 [file] [log] [blame]
Philip Reamesd16a9b12015-02-20 01:06:44 +00001//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Rewrite an existing set of gc.statepoints such that they make potential
11// relocations performed by the garbage collector explicit in the IR.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Pass.h"
16#include "llvm/Analysis/CFG.h"
Igor Laevskye0317182015-05-19 15:59:05 +000017#include "llvm/Analysis/TargetTransformInfo.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000018#include "llvm/ADT/SetOperations.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/ADT/DenseSet.h"
Philip Reames4d80ede2015-04-10 23:11:26 +000021#include "llvm/ADT/SetVector.h"
Swaroop Sridhar665bc9c2015-05-20 01:07:23 +000022#include "llvm/ADT/StringRef.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000023#include "llvm/IR/BasicBlock.h"
24#include "llvm/IR/CallSite.h"
25#include "llvm/IR/Dominators.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/InstIterator.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/Module.h"
Sanjoy Das353a19e2015-06-02 22:33:37 +000033#include "llvm/IR/MDBuilder.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000034#include "llvm/IR/Statepoint.h"
35#include "llvm/IR/Value.h"
36#include "llvm/IR/Verifier.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Transforms/Scalar.h"
40#include "llvm/Transforms/Utils/BasicBlockUtils.h"
41#include "llvm/Transforms/Utils/Cloning.h"
42#include "llvm/Transforms/Utils/Local.h"
43#include "llvm/Transforms/Utils/PromoteMemToReg.h"
44
45#define DEBUG_TYPE "rewrite-statepoints-for-gc"
46
47using namespace llvm;
48
49// Print tracing output
50static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
51 cl::init(false));
52
53// Print the liveset found at the insert location
54static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
55 cl::init(false));
Philip Reames704e78b2015-04-10 22:34:56 +000056static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
57 cl::init(false));
Philip Reamesd16a9b12015-02-20 01:06:44 +000058// Print out the base pointers for debugging
Philip Reames704e78b2015-04-10 22:34:56 +000059static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
60 cl::init(false));
Philip Reamesd16a9b12015-02-20 01:06:44 +000061
Igor Laevskye0317182015-05-19 15:59:05 +000062// Cost threshold measuring when it is profitable to rematerialize value instead
63// of relocating it
64static cl::opt<unsigned>
65RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
66 cl::init(6));
67
Philip Reamese73300b2015-04-13 16:41:32 +000068#ifdef XDEBUG
69static bool ClobberNonLive = true;
70#else
71static bool ClobberNonLive = false;
72#endif
73static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
74 cl::location(ClobberNonLive),
75 cl::Hidden);
76
Benjamin Kramer6f665452015-02-20 14:00:58 +000077namespace {
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000078struct RewriteStatepointsForGC : public ModulePass {
Philip Reamesd16a9b12015-02-20 01:06:44 +000079 static char ID; // Pass identification, replacement for typeid
80
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000081 RewriteStatepointsForGC() : ModulePass(ID) {
Philip Reamesd16a9b12015-02-20 01:06:44 +000082 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
83 }
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000084 bool runOnFunction(Function &F);
85 bool runOnModule(Module &M) override {
86 bool Changed = false;
87 for (Function &F : M)
88 Changed |= runOnFunction(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +000089
90 if (Changed) {
91 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn
92 // returns true for at least one function in the module. Since at least
93 // one function changed, we know that the precondition is satisfied.
94 stripDereferenceabilityInfo(M);
95 }
96
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000097 return Changed;
98 }
Philip Reamesd16a9b12015-02-20 01:06:44 +000099
100 void getAnalysisUsage(AnalysisUsage &AU) const override {
101 // We add and rewrite a bunch of instructions, but don't really do much
102 // else. We could in theory preserve a lot more analyses here.
103 AU.addRequired<DominatorTreeWrapperPass>();
Igor Laevskye0317182015-05-19 15:59:05 +0000104 AU.addRequired<TargetTransformInfoWrapperPass>();
Philip Reamesd16a9b12015-02-20 01:06:44 +0000105 }
Sanjoy Das353a19e2015-06-02 22:33:37 +0000106
107 /// The IR fed into RewriteStatepointsForGC may have had attributes implying
108 /// dereferenceability that are no longer valid/correct after
109 /// RewriteStatepointsForGC has run. This is because semantically, after
110 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
111 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness
112 /// by erasing all attributes in the module that externally imply
113 /// dereferenceability.
114 ///
115 void stripDereferenceabilityInfo(Module &M);
116
117 // Helpers for stripDereferenceabilityInfo
118 void stripDereferenceabilityInfoFromBody(Function &F);
119 void stripDereferenceabilityInfoFromPrototype(Function &F);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000120};
Benjamin Kramer6f665452015-02-20 14:00:58 +0000121} // namespace
Philip Reamesd16a9b12015-02-20 01:06:44 +0000122
123char RewriteStatepointsForGC::ID = 0;
124
Sanjoy Dasea45f0e2015-06-02 22:33:34 +0000125ModulePass *llvm::createRewriteStatepointsForGCPass() {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000126 return new RewriteStatepointsForGC();
127}
128
129INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
130 "Make relocations explicit at statepoints", false, false)
131INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
132INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
133 "Make relocations explicit at statepoints", false, false)
134
135namespace {
Philip Reamesdf1ef082015-04-10 22:53:14 +0000136struct GCPtrLivenessData {
137 /// Values defined in this block.
138 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
139 /// Values used in this block (and thus live); does not included values
140 /// killed within this block.
141 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
142
143 /// Values live into this basic block (i.e. used by any
144 /// instruction in this basic block or ones reachable from here)
145 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
146
147 /// Values live out of this basic block (i.e. live into
148 /// any successor block)
149 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
150};
151
Philip Reamesd16a9b12015-02-20 01:06:44 +0000152// The type of the internal cache used inside the findBasePointers family
153// of functions. From the callers perspective, this is an opaque type and
154// should not be inspected.
155//
156// In the actual implementation this caches two relations:
157// - The base relation itself (i.e. this pointer is based on that one)
158// - The base defining value relation (i.e. before base_phi insertion)
159// Generally, after the execution of a full findBasePointer call, only the
160// base relation will remain. Internally, we add a mixture of the two
161// types, then update all the second type to the first type
Philip Reamese9c3b9b2015-02-20 22:48:20 +0000162typedef DenseMap<Value *, Value *> DefiningValueMapTy;
Philip Reames1f017542015-02-20 23:16:52 +0000163typedef DenseSet<llvm::Value *> StatepointLiveSetTy;
Igor Laevskye0317182015-05-19 15:59:05 +0000164typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000165
Philip Reamesd16a9b12015-02-20 01:06:44 +0000166struct PartiallyConstructedSafepointRecord {
167 /// The set of values known to be live accross this safepoint
Philip Reames860660e2015-02-20 22:05:18 +0000168 StatepointLiveSetTy liveset;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000169
170 /// Mapping from live pointers to a base-defining-value
Philip Reamesf2041322015-02-20 19:26:04 +0000171 DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000172
Philip Reames0a3240f2015-02-20 21:34:11 +0000173 /// The *new* gc.statepoint instruction itself. This produces the token
174 /// that normal path gc.relocates and the gc.result are tied to.
175 Instruction *StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000176
Philip Reamesf2041322015-02-20 19:26:04 +0000177 /// Instruction to which exceptional gc relocates are attached
178 /// Makes it easier to iterate through them during relocationViaAlloca.
179 Instruction *UnwindToken;
Igor Laevskye0317182015-05-19 15:59:05 +0000180
181 /// Record live values we are rematerialized instead of relocating.
182 /// They are not included into 'liveset' field.
183 /// Maps rematerialized copy to it's original value.
184 RematerializedValueMapTy RematerializedValues;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000185};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000186}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000187
Philip Reamesdf1ef082015-04-10 22:53:14 +0000188/// Compute the live-in set for every basic block in the function
189static void computeLiveInValues(DominatorTree &DT, Function &F,
190 GCPtrLivenessData &Data);
191
192/// Given results from the dataflow liveness computation, find the set of live
193/// Values at a particular instruction.
194static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
195 StatepointLiveSetTy &out);
196
Philip Reamesd16a9b12015-02-20 01:06:44 +0000197// TODO: Once we can get to the GCStrategy, this becomes
198// Optional<bool> isGCManagedPointer(const Value *V) const override {
199
200static bool isGCPointerType(const Type *T) {
201 if (const PointerType *PT = dyn_cast<PointerType>(T))
202 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
203 // GC managed heap. We know that a pointer into this heap needs to be
204 // updated and that no other pointer does.
205 return (1 == PT->getAddressSpace());
206 return false;
207}
208
Philip Reames8531d8c2015-04-10 21:48:25 +0000209// Return true if this type is one which a) is a gc pointer or contains a GC
210// pointer and b) is of a type this code expects to encounter as a live value.
211// (The insertion code will assert that a type which matches (a) and not (b)
Philip Reames704e78b2015-04-10 22:34:56 +0000212// is not encountered.)
Philip Reames8531d8c2015-04-10 21:48:25 +0000213static bool isHandledGCPointerType(Type *T) {
214 // We fully support gc pointers
215 if (isGCPointerType(T))
216 return true;
217 // We partially support vectors of gc pointers. The code will assert if it
218 // can't handle something.
219 if (auto VT = dyn_cast<VectorType>(T))
220 if (isGCPointerType(VT->getElementType()))
221 return true;
222 return false;
223}
224
225#ifndef NDEBUG
226/// Returns true if this type contains a gc pointer whether we know how to
227/// handle that type or not.
228static bool containsGCPtrType(Type *Ty) {
Philip Reames704e78b2015-04-10 22:34:56 +0000229 if (isGCPointerType(Ty))
Philip Reames8531d8c2015-04-10 21:48:25 +0000230 return true;
231 if (VectorType *VT = dyn_cast<VectorType>(Ty))
232 return isGCPointerType(VT->getScalarType());
233 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
234 return containsGCPtrType(AT->getElementType());
235 if (StructType *ST = dyn_cast<StructType>(Ty))
Philip Reames704e78b2015-04-10 22:34:56 +0000236 return std::any_of(
237 ST->subtypes().begin(), ST->subtypes().end(),
238 [](Type *SubType) { return containsGCPtrType(SubType); });
Philip Reames8531d8c2015-04-10 21:48:25 +0000239 return false;
240}
241
242// Returns true if this is a type which a) is a gc pointer or contains a GC
243// pointer and b) is of a type which the code doesn't expect (i.e. first class
244// aggregates). Used to trip assertions.
245static bool isUnhandledGCPointerType(Type *Ty) {
246 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
247}
248#endif
249
Philip Reamesd16a9b12015-02-20 01:06:44 +0000250static bool order_by_name(llvm::Value *a, llvm::Value *b) {
251 if (a->hasName() && b->hasName()) {
252 return -1 == a->getName().compare(b->getName());
253 } else if (a->hasName() && !b->hasName()) {
254 return true;
255 } else if (!a->hasName() && b->hasName()) {
256 return false;
257 } else {
258 // Better than nothing, but not stable
259 return a < b;
260 }
261}
262
Philip Reamesdf1ef082015-04-10 22:53:14 +0000263// Conservatively identifies any definitions which might be live at the
264// given instruction. The analysis is performed immediately before the
265// given instruction. Values defined by that instruction are not considered
266// live. Values used by that instruction are considered live.
267static void analyzeParsePointLiveness(
268 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
269 const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000270 Instruction *inst = CS.getInstruction();
271
Philip Reames1f017542015-02-20 23:16:52 +0000272 StatepointLiveSetTy liveset;
Philip Reamesdf1ef082015-04-10 22:53:14 +0000273 findLiveSetAtInst(inst, OriginalLivenessData, liveset);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000274
275 if (PrintLiveSet) {
276 // Note: This output is used by several of the test cases
277 // The order of elemtns in a set is not stable, put them in a vec and sort
278 // by name
Philip Reames860660e2015-02-20 22:05:18 +0000279 SmallVector<Value *, 64> temp;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000280 temp.insert(temp.end(), liveset.begin(), liveset.end());
281 std::sort(temp.begin(), temp.end(), order_by_name);
282 errs() << "Live Variables:\n";
283 for (Value *V : temp) {
284 errs() << " " << V->getName(); // no newline
285 V->dump();
286 }
287 }
288 if (PrintLiveSetSize) {
289 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
290 errs() << "Number live values: " << liveset.size() << "\n";
291 }
292 result.liveset = liveset;
293}
294
Philip Reames311f7102015-05-12 22:19:52 +0000295static Value *findBaseDefiningValue(Value *I);
296
Philip Reames8fe7f132015-06-26 22:47:37 +0000297/// Return a base defining value for the 'Index' element of the given vector
298/// instruction 'I'. If Index is null, returns a BDV for the entire vector
299/// 'I'. As an optimization, this method will try to determine when the
300/// element is known to already be a base pointer. If this can be established,
301/// the second value in the returned pair will be true. Note that either a
302/// vector or a pointer typed value can be returned. For the former, the
303/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
304/// If the later, the return pointer is a BDV (or possibly a base) for the
305/// particular element in 'I'.
306static std::pair<Value *, bool>
307findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) {
Philip Reames8531d8c2015-04-10 21:48:25 +0000308 assert(I->getType()->isVectorTy() &&
309 cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
310 "Illegal to ask for the base pointer of a non-pointer type");
311
312 // Each case parallels findBaseDefiningValue below, see that code for
313 // detailed motivation.
314
315 if (isa<Argument>(I))
316 // An incoming argument to the function is a base pointer
Philip Reames8fe7f132015-06-26 22:47:37 +0000317 return std::make_pair(I, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000318
319 // We shouldn't see the address of a global as a vector value?
320 assert(!isa<GlobalVariable>(I) &&
321 "unexpected global variable found in base of vector");
322
323 // inlining could possibly introduce phi node that contains
324 // undef if callee has multiple returns
325 if (isa<UndefValue>(I))
326 // utterly meaningless, but useful for dealing with partially optimized
327 // code.
Philip Reames8fe7f132015-06-26 22:47:37 +0000328 return std::make_pair(I, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000329
330 // Due to inheritance, this must be _after_ the global variable and undef
331 // checks
332 if (Constant *Con = dyn_cast<Constant>(I)) {
333 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
334 "order of checks wrong!");
335 assert(Con->isNullValue() && "null is the only case which makes sense");
Philip Reames8fe7f132015-06-26 22:47:37 +0000336 return std::make_pair(Con, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000337 }
Philip Reames8fe7f132015-06-26 22:47:37 +0000338
Philip Reames8531d8c2015-04-10 21:48:25 +0000339 if (isa<LoadInst>(I))
Philip Reames8fe7f132015-06-26 22:47:37 +0000340 return std::make_pair(I, true);
341
Philip Reames311f7102015-05-12 22:19:52 +0000342 // For an insert element, we might be able to look through it if we know
Philip Reames8fe7f132015-06-26 22:47:37 +0000343 // something about the indexes.
Philip Reames311f7102015-05-12 22:19:52 +0000344 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) {
Philip Reames8fe7f132015-06-26 22:47:37 +0000345 if (Index) {
346 Value *InsertIndex = IEI->getOperand(2);
347 // This index is inserting the value, look for its BDV
348 if (InsertIndex == Index)
349 return std::make_pair(findBaseDefiningValue(IEI->getOperand(1)), false);
350 // Both constant, and can't be equal per above. This insert is definitely
351 // not relevant, look back at the rest of the vector and keep trying.
352 if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex))
353 return findBaseDefiningValueOfVector(IEI->getOperand(0), Index);
354 }
355
356 // We don't know whether this vector contains entirely base pointers or
357 // not. To be conservatively correct, we treat it as a BDV and will
358 // duplicate code as needed to construct a parallel vector of bases.
359 return std::make_pair(IEI, false);
Philip Reames311f7102015-05-12 22:19:52 +0000360 }
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +0000361
Philip Reames8fe7f132015-06-26 22:47:37 +0000362 if (isa<ShuffleVectorInst>(I))
363 // We don't know whether this vector contains entirely base pointers or
364 // not. To be conservatively correct, we treat it as a BDV and will
365 // duplicate code as needed to construct a parallel vector of bases.
366 // TODO: There a number of local optimizations which could be applied here
367 // for particular sufflevector patterns.
368 return std::make_pair(I, false);
369
370 // A PHI or Select is a base defining value. The outer findBasePointer
371 // algorithm is responsible for constructing a base value for this BDV.
372 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
373 "unknown vector instruction - no base found for vector element");
374 return std::make_pair(I, false);
Philip Reames8531d8c2015-04-10 21:48:25 +0000375}
376
Philip Reames8fe7f132015-06-26 22:47:37 +0000377static bool isKnownBaseResult(Value *V);
378
Philip Reamesd16a9b12015-02-20 01:06:44 +0000379/// Helper function for findBasePointer - Will return a value which either a)
380/// defines the base pointer for the input or b) blocks the simple search
381/// (i.e. a PHI or Select of two derived pointers)
382static Value *findBaseDefiningValue(Value *I) {
Philip Reames8fe7f132015-06-26 22:47:37 +0000383 if (I->getType()->isVectorTy())
384 return findBaseDefiningValueOfVector(I).first;
385
Philip Reamesd16a9b12015-02-20 01:06:44 +0000386 assert(I->getType()->isPointerTy() &&
387 "Illegal to ask for the base pointer of a non-pointer type");
388
Philip Reames8531d8c2015-04-10 21:48:25 +0000389 // This case is a bit of a hack - it only handles extracts from vectors which
Philip Reames311f7102015-05-12 22:19:52 +0000390 // trivially contain only base pointers or cases where we can directly match
391 // the index of the original extract element to an insertion into the vector.
392 // See note inside the function for how to improve this.
Philip Reames8531d8c2015-04-10 21:48:25 +0000393 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) {
394 Value *VectorOperand = EEI->getVectorOperand();
Philip Reames311f7102015-05-12 22:19:52 +0000395 Value *Index = EEI->getIndexOperand();
Philip Reames8fe7f132015-06-26 22:47:37 +0000396 std::pair<Value *, bool> pair =
397 findBaseDefiningValueOfVector(VectorOperand, Index);
398 Value *VectorBase = pair.first;
399 if (VectorBase->getType()->isPointerTy())
400 // We found a BDV for this specific element with the vector. This is an
401 // optimization, but in practice it covers most of the useful cases
402 // created via scalarization.
403 return VectorBase;
404 else {
405 assert(VectorBase->getType()->isVectorTy());
406 if (pair.second)
407 // If the entire vector returned is known to be entirely base pointers,
408 // then the extractelement is valid base for this value.
409 return EEI;
410 else {
411 // Otherwise, we have an instruction which potentially produces a
412 // derived pointer and we need findBasePointers to clone code for us
413 // such that we can create an instruction which produces the
414 // accompanying base pointer.
415 // Note: This code is currently rather incomplete. We don't currently
416 // support the general form of shufflevector of insertelement.
417 // Conceptually, these are just 'base defining values' of the same
418 // variety as phi or select instructions. We need to update the
419 // findBasePointers algorithm to insert new 'base-only' versions of the
420 // original instructions. This is relative straight forward to do, but
421 // the case which would motivate the work hasn't shown up in real
422 // workloads yet.
423 assert((isa<PHINode>(VectorBase) || isa<SelectInst>(VectorBase)) &&
424 "need to extend findBasePointers for generic vector"
425 "instruction cases");
426 return VectorBase;
427 }
428 }
Philip Reames8531d8c2015-04-10 21:48:25 +0000429 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000430
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000431 if (isa<Argument>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000432 // An incoming argument to the function is a base pointer
433 // We should have never reached here if this argument isn't an gc value
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000434 return I;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000435
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000436 if (isa<GlobalVariable>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000437 // base case
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000438 return I;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000439
440 // inlining could possibly introduce phi node that contains
441 // undef if callee has multiple returns
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000442 if (isa<UndefValue>(I))
443 // utterly meaningless, but useful for dealing with
444 // partially optimized code.
Philip Reames704e78b2015-04-10 22:34:56 +0000445 return I;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000446
447 // Due to inheritance, this must be _after_ the global variable and undef
448 // checks
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000449 if (Constant *Con = dyn_cast<Constant>(I)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000450 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
451 "order of checks wrong!");
452 // Note: Finding a constant base for something marked for relocation
453 // doesn't really make sense. The most likely case is either a) some
454 // screwed up the address space usage or b) your validating against
455 // compiled C++ code w/o the proper separation. The only real exception
456 // is a null pointer. You could have generic code written to index of
457 // off a potentially null value and have proven it null. We also use
458 // null pointers in dead paths of relocation phis (which we might later
459 // want to find a base pointer for).
Philip Reames24c6cd52015-03-27 05:47:00 +0000460 assert(isa<ConstantPointerNull>(Con) &&
461 "null is the only case which makes sense");
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000462 return Con;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000463 }
464
465 if (CastInst *CI = dyn_cast<CastInst>(I)) {
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000466 Value *Def = CI->stripPointerCasts();
David Blaikie82ad7872015-02-20 23:44:24 +0000467 // If we find a cast instruction here, it means we've found a cast which is
468 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
469 // handle int->ptr conversion.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000470 assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
471 return findBaseDefiningValue(Def);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000472 }
473
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000474 if (isa<LoadInst>(I))
475 return I; // The value loaded is an gc base itself
Philip Reamesd16a9b12015-02-20 01:06:44 +0000476
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000477 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
478 // The base of this GEP is the base
479 return findBaseDefiningValue(GEP->getPointerOperand());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000480
481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
482 switch (II->getIntrinsicID()) {
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000483 case Intrinsic::experimental_gc_result_ptr:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000484 default:
485 // fall through to general call handling
486 break;
487 case Intrinsic::experimental_gc_statepoint:
488 case Intrinsic::experimental_gc_result_float:
489 case Intrinsic::experimental_gc_result_int:
490 llvm_unreachable("these don't produce pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000491 case Intrinsic::experimental_gc_relocate: {
492 // Rerunning safepoint insertion after safepoints are already
493 // inserted is not supported. It could probably be made to work,
494 // but why are you doing this? There's no good reason.
495 llvm_unreachable("repeat safepoint insertion is not supported");
496 }
497 case Intrinsic::gcroot:
498 // Currently, this mechanism hasn't been extended to work with gcroot.
499 // There's no reason it couldn't be, but I haven't thought about the
500 // implications much.
501 llvm_unreachable(
502 "interaction with the gcroot mechanism is not supported");
503 }
504 }
505 // We assume that functions in the source language only return base
506 // pointers. This should probably be generalized via attributes to support
507 // both source language and internal functions.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000508 if (isa<CallInst>(I) || isa<InvokeInst>(I))
509 return I;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000510
511 // I have absolutely no idea how to implement this part yet. It's not
512 // neccessarily hard, I just haven't really looked at it yet.
513 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
514
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000515 if (isa<AtomicCmpXchgInst>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000516 // A CAS is effectively a atomic store and load combined under a
517 // predicate. From the perspective of base pointers, we just treat it
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000518 // like a load.
519 return I;
Philip Reames704e78b2015-04-10 22:34:56 +0000520
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000521 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
Philip Reames704e78b2015-04-10 22:34:56 +0000522 "binary ops which don't apply to pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000523
524 // The aggregate ops. Aggregates can either be in the heap or on the
525 // stack, but in either case, this is simply a field load. As a result,
526 // this is a defining definition of the base just like a load is.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000527 if (isa<ExtractValueInst>(I))
528 return I;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000529
530 // We should never see an insert vector since that would require we be
531 // tracing back a struct value not a pointer value.
532 assert(!isa<InsertValueInst>(I) &&
533 "Base pointer for a struct is meaningless");
534
535 // The last two cases here don't return a base pointer. Instead, they
536 // return a value which dynamically selects from amoung several base
537 // derived pointers (each with it's own base potentially). It's the job of
538 // the caller to resolve these.
Philip Reames704e78b2015-04-10 22:34:56 +0000539 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000540 "missing instruction case in findBaseDefiningValing");
541 return I;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000542}
543
544/// Returns the base defining value for this value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000545static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
546 Value *&Cached = Cache[I];
Benjamin Kramer6f665452015-02-20 14:00:58 +0000547 if (!Cached) {
548 Cached = findBaseDefiningValue(I);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000549 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000550 assert(Cache[I] != nullptr);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000551
552 if (TraceLSP) {
Philip Reames18d0feb2015-03-27 05:39:32 +0000553 dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName()
Philip Reamesd16a9b12015-02-20 01:06:44 +0000554 << "\n";
555 }
Benjamin Kramer6f665452015-02-20 14:00:58 +0000556 return Cached;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000557}
558
559/// Return a base pointer for this value if known. Otherwise, return it's
560/// base defining value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000561static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
562 Value *Def = findBaseDefiningValueCached(I, Cache);
563 auto Found = Cache.find(Def);
564 if (Found != Cache.end()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000565 // Either a base-of relation, or a self reference. Caller must check.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000566 return Found->second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000567 }
568 // Only a BDV available
Philip Reames18d0feb2015-03-27 05:39:32 +0000569 return Def;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000570}
571
572/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
573/// is it known to be a base pointer? Or do we need to continue searching.
Philip Reames18d0feb2015-03-27 05:39:32 +0000574static bool isKnownBaseResult(Value *V) {
575 if (!isa<PHINode>(V) && !isa<SelectInst>(V)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000576 // no recursion possible
577 return true;
578 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000579 if (isa<Instruction>(V) &&
580 cast<Instruction>(V)->getMetadata("is_base_value")) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000581 // This is a previously inserted base phi or select. We know
582 // that this is a base value.
583 return true;
584 }
585
586 // We need to keep searching
587 return false;
588}
589
590// TODO: find a better name for this
591namespace {
592class PhiState {
593public:
594 enum Status { Unknown, Base, Conflict };
595
596 PhiState(Status s, Value *b = nullptr) : status(s), base(b) {
597 assert(status != Base || b);
598 }
599 PhiState(Value *b) : status(Base), base(b) {}
600 PhiState() : status(Unknown), base(nullptr) {}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000601
602 Status getStatus() const { return status; }
603 Value *getBase() const { return base; }
604
605 bool isBase() const { return getStatus() == Base; }
606 bool isUnknown() const { return getStatus() == Unknown; }
607 bool isConflict() const { return getStatus() == Conflict; }
608
609 bool operator==(const PhiState &other) const {
610 return base == other.base && status == other.status;
611 }
612
613 bool operator!=(const PhiState &other) const { return !(*this == other); }
614
615 void dump() {
616 errs() << status << " (" << base << " - "
617 << (base ? base->getName() : "nullptr") << "): ";
618 }
619
620private:
621 Status status;
622 Value *base; // non null only if status == base
623};
624
Philip Reamese9c3b9b2015-02-20 22:48:20 +0000625typedef DenseMap<Value *, PhiState> ConflictStateMapTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000626// Values of type PhiState form a lattice, and this is a helper
627// class that implementes the meet operation. The meat of the meet
628// operation is implemented in MeetPhiStates::pureMeet
629class MeetPhiStates {
630public:
631 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates.
Philip Reames860660e2015-02-20 22:05:18 +0000632 explicit MeetPhiStates(const ConflictStateMapTy &phiStates)
Philip Reamesd16a9b12015-02-20 01:06:44 +0000633 : phiStates(phiStates) {}
634
635 // Destructively meet the current result with the base V. V can
636 // either be a merge instruction (SelectInst / PHINode), in which
637 // case its status is looked up in the phiStates map; or a regular
638 // SSA value, in which case it is assumed to be a base.
639 void meetWith(Value *V) {
640 PhiState otherState = getStateForBDV(V);
641 assert((MeetPhiStates::pureMeet(otherState, currentResult) ==
642 MeetPhiStates::pureMeet(currentResult, otherState)) &&
643 "math is wrong: meet does not commute!");
644 currentResult = MeetPhiStates::pureMeet(otherState, currentResult);
645 }
646
647 PhiState getResult() const { return currentResult; }
648
649private:
Philip Reames860660e2015-02-20 22:05:18 +0000650 const ConflictStateMapTy &phiStates;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000651 PhiState currentResult;
652
653 /// Return a phi state for a base defining value. We'll generate a new
654 /// base state for known bases and expect to find a cached state otherwise
655 PhiState getStateForBDV(Value *baseValue) {
656 if (isKnownBaseResult(baseValue)) {
657 return PhiState(baseValue);
658 } else {
659 return lookupFromMap(baseValue);
660 }
661 }
662
663 PhiState lookupFromMap(Value *V) {
664 auto I = phiStates.find(V);
665 assert(I != phiStates.end() && "lookup failed!");
666 return I->second;
667 }
668
669 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) {
670 switch (stateA.getStatus()) {
671 case PhiState::Unknown:
672 return stateB;
673
674 case PhiState::Base:
675 assert(stateA.getBase() && "can't be null");
David Blaikie82ad7872015-02-20 23:44:24 +0000676 if (stateB.isUnknown())
Philip Reamesd16a9b12015-02-20 01:06:44 +0000677 return stateA;
David Blaikie82ad7872015-02-20 23:44:24 +0000678
679 if (stateB.isBase()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000680 if (stateA.getBase() == stateB.getBase()) {
681 assert(stateA == stateB && "equality broken!");
682 return stateA;
683 }
684 return PhiState(PhiState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000685 }
David Blaikie82ad7872015-02-20 23:44:24 +0000686 assert(stateB.isConflict() && "only three states!");
687 return PhiState(PhiState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000688
689 case PhiState::Conflict:
690 return stateA;
691 }
Reid Klecknera070ee52015-02-20 19:46:02 +0000692 llvm_unreachable("only three states!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000693 }
694};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000695}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000696/// For a given value or instruction, figure out what base ptr it's derived
697/// from. For gc objects, this is simply itself. On success, returns a value
698/// which is the base pointer. (This is reliable and can be used for
699/// relocation.) On failure, returns nullptr.
Philip Reamesba198492015-04-14 00:41:34 +0000700static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000701 Value *def = findBaseOrBDV(I, cache);
702
703 if (isKnownBaseResult(def)) {
704 return def;
705 }
706
707 // Here's the rough algorithm:
708 // - For every SSA value, construct a mapping to either an actual base
709 // pointer or a PHI which obscures the base pointer.
710 // - Construct a mapping from PHI to unknown TOP state. Use an
711 // optimistic algorithm to propagate base pointer information. Lattice
712 // looks like:
713 // UNKNOWN
714 // b1 b2 b3 b4
715 // CONFLICT
716 // When algorithm terminates, all PHIs will either have a single concrete
717 // base or be in a conflict state.
718 // - For every conflict, insert a dummy PHI node without arguments. Add
719 // these to the base[Instruction] = BasePtr mapping. For every
720 // non-conflict, add the actual base.
721 // - For every conflict, add arguments for the base[a] of each input
722 // arguments.
723 //
724 // Note: A simpler form of this would be to add the conflict form of all
725 // PHIs without running the optimistic algorithm. This would be
726 // analougous to pessimistic data flow and would likely lead to an
727 // overall worse solution.
728
Philip Reames860660e2015-02-20 22:05:18 +0000729 ConflictStateMapTy states;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000730 states[def] = PhiState();
731 // Recursively fill in all phis & selects reachable from the initial one
732 // for which we don't already know a definite base value for
Philip Reamesa226e612015-02-28 00:47:50 +0000733 // TODO: This should be rewritten with a worklist
Philip Reamesd16a9b12015-02-20 01:06:44 +0000734 bool done = false;
735 while (!done) {
736 done = true;
Philip Reamesa226e612015-02-28 00:47:50 +0000737 // Since we're adding elements to 'states' as we run, we can't keep
738 // iterators into the set.
Philip Reames704e78b2015-04-10 22:34:56 +0000739 SmallVector<Value *, 16> Keys;
Philip Reamesa226e612015-02-28 00:47:50 +0000740 Keys.reserve(states.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000741 for (auto Pair : states) {
Philip Reamesa226e612015-02-28 00:47:50 +0000742 Value *V = Pair.first;
743 Keys.push_back(V);
744 }
745 for (Value *v : Keys) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000746 assert(!isKnownBaseResult(v) && "why did it get added?");
747 if (PHINode *phi = dyn_cast<PHINode>(v)) {
David Blaikie82ad7872015-02-20 23:44:24 +0000748 assert(phi->getNumIncomingValues() > 0 &&
749 "zero input phis are illegal");
750 for (Value *InVal : phi->incoming_values()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000751 Value *local = findBaseOrBDV(InVal, cache);
752 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
753 states[local] = PhiState();
754 done = false;
755 }
756 }
757 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
758 Value *local = findBaseOrBDV(sel->getTrueValue(), cache);
759 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
760 states[local] = PhiState();
761 done = false;
762 }
763 local = findBaseOrBDV(sel->getFalseValue(), cache);
764 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
765 states[local] = PhiState();
766 done = false;
767 }
768 }
769 }
770 }
771
772 if (TraceLSP) {
773 errs() << "States after initialization:\n";
774 for (auto Pair : states) {
775 Instruction *v = cast<Instruction>(Pair.first);
776 PhiState state = Pair.second;
777 state.dump();
778 v->dump();
779 }
780 }
781
782 // TODO: come back and revisit the state transitions around inputs which
783 // have reached conflict state. The current version seems too conservative.
784
785 bool progress = true;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000786 while (progress) {
Yaron Keren42a7adf2015-02-28 13:11:24 +0000787#ifndef NDEBUG
788 size_t oldSize = states.size();
789#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000790 progress = false;
Philip Reamesa226e612015-02-28 00:47:50 +0000791 // We're only changing keys in this loop, thus safe to keep iterators
Philip Reamesd16a9b12015-02-20 01:06:44 +0000792 for (auto Pair : states) {
793 MeetPhiStates calculateMeet(states);
794 Value *v = Pair.first;
795 assert(!isKnownBaseResult(v) && "why did it get added?");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000796 if (SelectInst *select = dyn_cast<SelectInst>(v)) {
797 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache));
798 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache));
David Blaikie82ad7872015-02-20 23:44:24 +0000799 } else
800 for (Value *Val : cast<PHINode>(v)->incoming_values())
801 calculateMeet.meetWith(findBaseOrBDV(Val, cache));
Philip Reamesd16a9b12015-02-20 01:06:44 +0000802
803 PhiState oldState = states[v];
804 PhiState newState = calculateMeet.getResult();
805 if (oldState != newState) {
806 progress = true;
807 states[v] = newState;
808 }
809 }
810
811 assert(oldSize <= states.size());
812 assert(oldSize == states.size() || progress);
813 }
814
815 if (TraceLSP) {
816 errs() << "States after meet iteration:\n";
817 for (auto Pair : states) {
818 Instruction *v = cast<Instruction>(Pair.first);
819 PhiState state = Pair.second;
820 state.dump();
821 v->dump();
822 }
823 }
824
825 // Insert Phis for all conflicts
Philip Reames2e5bcbe2015-02-28 01:52:09 +0000826 // We want to keep naming deterministic in the loop that follows, so
827 // sort the keys before iteration. This is useful in allowing us to
828 // write stable tests. Note that there is no invalidation issue here.
Philip Reames704e78b2015-04-10 22:34:56 +0000829 SmallVector<Value *, 16> Keys;
Philip Reames2e5bcbe2015-02-28 01:52:09 +0000830 Keys.reserve(states.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000831 for (auto Pair : states) {
Philip Reames2e5bcbe2015-02-28 01:52:09 +0000832 Value *V = Pair.first;
833 Keys.push_back(V);
834 }
835 std::sort(Keys.begin(), Keys.end(), order_by_name);
836 // TODO: adjust naming patterns to avoid this order of iteration dependency
837 for (Value *V : Keys) {
838 Instruction *v = cast<Instruction>(V);
839 PhiState state = states[V];
Philip Reamesd16a9b12015-02-20 01:06:44 +0000840 assert(!isKnownBaseResult(v) && "why did it get added?");
841 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
Philip Reamesf986d682015-02-28 00:54:41 +0000842 if (!state.isConflict())
843 continue;
Philip Reames704e78b2015-04-10 22:34:56 +0000844
Philip Reamesf986d682015-02-28 00:54:41 +0000845 if (isa<PHINode>(v)) {
846 int num_preds =
847 std::distance(pred_begin(v->getParent()), pred_end(v->getParent()));
848 assert(num_preds > 0 && "how did we reach here");
849 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v);
Philip Reamesf986d682015-02-28 00:54:41 +0000850 // Add metadata marking this as a base value
Philip Reamesf3880502015-07-21 00:49:55 +0000851 phi->setMetadata("is_base_value", MDNode::get(v->getContext(), {}));
Philip Reamesf986d682015-02-28 00:54:41 +0000852 states[v] = PhiState(PhiState::Conflict, phi);
853 } else {
854 SelectInst *sel = cast<SelectInst>(v);
855 // The undef will be replaced later
856 UndefValue *undef = UndefValue::get(sel->getType());
857 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef,
858 undef, "base_select", sel);
Philip Reamesf986d682015-02-28 00:54:41 +0000859 // Add metadata marking this as a base value
Philip Reamesf3880502015-07-21 00:49:55 +0000860 basesel->setMetadata("is_base_value", MDNode::get(v->getContext(), {}));
Philip Reamesf986d682015-02-28 00:54:41 +0000861 states[v] = PhiState(PhiState::Conflict, basesel);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000862 }
863 }
864
865 // Fixup all the inputs of the new PHIs
866 for (auto Pair : states) {
867 Instruction *v = cast<Instruction>(Pair.first);
868 PhiState state = Pair.second;
869
870 assert(!isKnownBaseResult(v) && "why did it get added?");
871 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
Philip Reames28e61ce2015-02-28 01:57:44 +0000872 if (!state.isConflict())
873 continue;
Philip Reames704e78b2015-04-10 22:34:56 +0000874
Philip Reames28e61ce2015-02-28 01:57:44 +0000875 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
876 PHINode *phi = cast<PHINode>(v);
877 unsigned NumPHIValues = phi->getNumIncomingValues();
878 for (unsigned i = 0; i < NumPHIValues; i++) {
879 Value *InVal = phi->getIncomingValue(i);
880 BasicBlock *InBB = phi->getIncomingBlock(i);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000881
Philip Reames28e61ce2015-02-28 01:57:44 +0000882 // If we've already seen InBB, add the same incoming value
883 // we added for it earlier. The IR verifier requires phi
884 // nodes with multiple entries from the same basic block
885 // to have the same incoming value for each of those
886 // entries. If we don't do this check here and basephi
887 // has a different type than base, we'll end up adding two
888 // bitcasts (and hence two distinct values) as incoming
889 // values for the same basic block.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000890
Philip Reames28e61ce2015-02-28 01:57:44 +0000891 int blockIndex = basephi->getBasicBlockIndex(InBB);
892 if (blockIndex != -1) {
893 Value *oldBase = basephi->getIncomingValue(blockIndex);
894 basephi->addIncoming(oldBase, InBB);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000895#ifndef NDEBUG
Philip Reames28e61ce2015-02-28 01:57:44 +0000896 Value *base = findBaseOrBDV(InVal, cache);
897 if (!isKnownBaseResult(base)) {
898 // Either conflict or base.
899 assert(states.count(base));
900 base = states[base].getBase();
901 assert(base != nullptr && "unknown PhiState!");
Philip Reames28e61ce2015-02-28 01:57:44 +0000902 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000903
Philip Reames28e61ce2015-02-28 01:57:44 +0000904 // In essense this assert states: the only way two
905 // values incoming from the same basic block may be
906 // different is by being different bitcasts of the same
907 // value. A cleanup that remains TODO is changing
908 // findBaseOrBDV to return an llvm::Value of the correct
909 // type (and still remain pure). This will remove the
910 // need to add bitcasts.
911 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
912 "sanity -- findBaseOrBDV should be pure!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000913#endif
Philip Reames28e61ce2015-02-28 01:57:44 +0000914 continue;
915 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000916
Philip Reames28e61ce2015-02-28 01:57:44 +0000917 // Find either the defining value for the PHI or the normal base for
918 // a non-phi node
919 Value *base = findBaseOrBDV(InVal, cache);
920 if (!isKnownBaseResult(base)) {
921 // Either conflict or base.
922 assert(states.count(base));
923 base = states[base].getBase();
924 assert(base != nullptr && "unknown PhiState!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000925 }
Philip Reames28e61ce2015-02-28 01:57:44 +0000926 assert(base && "can't be null");
927 // Must use original input BB since base may not be Instruction
928 // The cast is needed since base traversal may strip away bitcasts
929 if (base->getType() != basephi->getType()) {
930 base = new BitCastInst(base, basephi->getType(), "cast",
931 InBB->getTerminator());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000932 }
Philip Reames28e61ce2015-02-28 01:57:44 +0000933 basephi->addIncoming(base, InBB);
934 }
935 assert(basephi->getNumIncomingValues() == NumPHIValues);
936 } else {
937 SelectInst *basesel = cast<SelectInst>(state.getBase());
938 SelectInst *sel = cast<SelectInst>(v);
939 // Operand 1 & 2 are true, false path respectively. TODO: refactor to
940 // something more safe and less hacky.
941 for (int i = 1; i <= 2; i++) {
942 Value *InVal = sel->getOperand(i);
943 // Find either the defining value for the PHI or the normal base for
944 // a non-phi node
945 Value *base = findBaseOrBDV(InVal, cache);
946 if (!isKnownBaseResult(base)) {
947 // Either conflict or base.
948 assert(states.count(base));
949 base = states[base].getBase();
950 assert(base != nullptr && "unknown PhiState!");
951 }
952 assert(base && "can't be null");
953 // Must use original input BB since base may not be Instruction
954 // The cast is needed since base traversal may strip away bitcasts
955 if (base->getType() != basesel->getType()) {
956 base = new BitCastInst(base, basesel->getType(), "cast", basesel);
Philip Reames28e61ce2015-02-28 01:57:44 +0000957 }
958 basesel->setOperand(i, base);
959 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000960 }
961 }
962
963 // Cache all of our results so we can cheaply reuse them
964 // NOTE: This is actually two caches: one of the base defining value
965 // relation and one of the base pointer relation! FIXME
966 for (auto item : states) {
967 Value *v = item.first;
968 Value *base = item.second.getBase();
969 assert(v && base);
970 assert(!isKnownBaseResult(v) && "why did it get added?");
971
972 if (TraceLSP) {
973 std::string fromstr =
974 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
975 : "none";
976 errs() << "Updating base value cache"
977 << " for: " << (v->hasName() ? v->getName() : "")
978 << " from: " << fromstr
979 << " to: " << (base->hasName() ? base->getName() : "") << "\n";
980 }
981
982 assert(isKnownBaseResult(base) &&
983 "must be something we 'know' is a base pointer");
984 if (cache.count(v)) {
985 // Once we transition from the BDV relation being store in the cache to
986 // the base relation being stored, it must be stable
987 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
988 "base relation should be stable");
989 }
990 cache[v] = base;
991 }
992 assert(cache.find(def) != cache.end());
993 return cache[def];
994}
995
996// For a set of live pointers (base and/or derived), identify the base
997// pointer of the object which they are derived from. This routine will
998// mutate the IR graph as needed to make the 'base' pointer live at the
999// definition site of 'derived'. This ensures that any use of 'derived' can
1000// also use 'base'. This may involve the insertion of a number of
1001// additional PHI nodes.
1002//
1003// preconditions: live is a set of pointer type Values
1004//
1005// side effects: may insert PHI nodes into the existing CFG, will preserve
1006// CFG, will not remove or mutate any existing nodes
1007//
Philip Reamesf2041322015-02-20 19:26:04 +00001008// post condition: PointerToBase contains one (derived, base) pair for every
Philip Reamesd16a9b12015-02-20 01:06:44 +00001009// pointer in live. Note that derived can be equal to base if the original
1010// pointer was a base pointer.
Philip Reames704e78b2015-04-10 22:34:56 +00001011static void
1012findBasePointers(const StatepointLiveSetTy &live,
1013 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
Philip Reamesba198492015-04-14 00:41:34 +00001014 DominatorTree *DT, DefiningValueMapTy &DVCache) {
Philip Reames2e5bcbe2015-02-28 01:52:09 +00001015 // For the naming of values inserted to be deterministic - which makes for
1016 // much cleaner and more stable tests - we need to assign an order to the
1017 // live values. DenseSets do not provide a deterministic order across runs.
Philip Reames704e78b2015-04-10 22:34:56 +00001018 SmallVector<Value *, 64> Temp;
Philip Reames2e5bcbe2015-02-28 01:52:09 +00001019 Temp.insert(Temp.end(), live.begin(), live.end());
1020 std::sort(Temp.begin(), Temp.end(), order_by_name);
1021 for (Value *ptr : Temp) {
Philip Reamesba198492015-04-14 00:41:34 +00001022 Value *base = findBasePointer(ptr, DVCache);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001023 assert(base && "failed to find base pointer");
Philip Reamesf2041322015-02-20 19:26:04 +00001024 PointerToBase[ptr] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001025 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1026 DT->dominates(cast<Instruction>(base)->getParent(),
1027 cast<Instruction>(ptr)->getParent())) &&
1028 "The base we found better dominate the derived pointer");
1029
David Blaikie82ad7872015-02-20 23:44:24 +00001030 // If you see this trip and like to live really dangerously, the code should
1031 // be correct, just with idioms the verifier can't handle. You can try
1032 // disabling the verifier at your own substaintial risk.
Philip Reames704e78b2015-04-10 22:34:56 +00001033 assert(!isa<ConstantPointerNull>(base) &&
Philip Reames24c6cd52015-03-27 05:47:00 +00001034 "the relocation code needs adjustment to handle the relocation of "
1035 "a null pointer constant without causing false positives in the "
1036 "safepoint ir verifier.");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001037 }
1038}
1039
1040/// Find the required based pointers (and adjust the live set) for the given
1041/// parse point.
1042static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1043 const CallSite &CS,
1044 PartiallyConstructedSafepointRecord &result) {
Philip Reamesf2041322015-02-20 19:26:04 +00001045 DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
Philip Reamesba198492015-04-14 00:41:34 +00001046 findBasePointers(result.liveset, PointerToBase, &DT, DVCache);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001047
1048 if (PrintBasePointers) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001049 // Note: Need to print these in a stable order since this is checked in
1050 // some tests.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001051 errs() << "Base Pairs (w/o Relocation):\n";
Philip Reames704e78b2015-04-10 22:34:56 +00001052 SmallVector<Value *, 64> Temp;
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001053 Temp.reserve(PointerToBase.size());
Philip Reamesf2041322015-02-20 19:26:04 +00001054 for (auto Pair : PointerToBase) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001055 Temp.push_back(Pair.first);
1056 }
1057 std::sort(Temp.begin(), Temp.end(), order_by_name);
1058 for (Value *Ptr : Temp) {
1059 Value *Base = PointerToBase[Ptr];
Philip Reames704e78b2015-04-10 22:34:56 +00001060 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
1061 << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +00001062 }
1063 }
1064
Philip Reamesf2041322015-02-20 19:26:04 +00001065 result.PointerToBase = PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001066}
1067
Philip Reamesdf1ef082015-04-10 22:53:14 +00001068/// Given an updated version of the dataflow liveness results, update the
1069/// liveset and base pointer maps for the call site CS.
1070static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1071 const CallSite &CS,
1072 PartiallyConstructedSafepointRecord &result);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001073
Philip Reamesdf1ef082015-04-10 22:53:14 +00001074static void recomputeLiveInValues(
1075 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
Philip Reamesd2b66462015-02-20 22:39:41 +00001076 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00001077 // TODO-PERF: reuse the original liveness, then simply run the dataflow
1078 // again. The old values are still live and will help it stablize quickly.
1079 GCPtrLivenessData RevisedLivenessData;
1080 computeLiveInValues(DT, F, RevisedLivenessData);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001081 for (size_t i = 0; i < records.size(); i++) {
1082 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001083 const CallSite &CS = toUpdate[i];
Philip Reamesdf1ef082015-04-10 22:53:14 +00001084 recomputeLiveInValues(RevisedLivenessData, CS, info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001085 }
1086}
1087
Philip Reames69e51ca2015-04-13 18:07:21 +00001088// When inserting gc.relocate calls, we need to ensure there are no uses
1089// of the original value between the gc.statepoint and the gc.relocate call.
1090// One case which can arise is a phi node starting one of the successor blocks.
1091// We also need to be able to insert the gc.relocates only on the path which
1092// goes through the statepoint. We might need to split an edge to make this
Philip Reamesf209a152015-04-13 20:00:30 +00001093// possible.
1094static BasicBlock *
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00001095normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1096 DominatorTree &DT) {
Philip Reames69e51ca2015-04-13 18:07:21 +00001097 BasicBlock *Ret = BB;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001098 if (!BB->getUniquePredecessor()) {
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00001099 Ret = SplitBlockPredecessors(BB, InvokeParent, "", nullptr, &DT);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001100 }
1101
Philip Reames69e51ca2015-04-13 18:07:21 +00001102 // Now that 'ret' has unique predecessor we can safely remove all phi nodes
1103 // from it
1104 FoldSingleEntryPHINodes(Ret);
1105 assert(!isa<PHINode>(Ret->begin()));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001106
Philip Reames69e51ca2015-04-13 18:07:21 +00001107 // At this point, we can safely insert a gc.relocate as the first instruction
1108 // in Ret if needed.
1109 return Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001110}
1111
Philip Reamesd2b66462015-02-20 22:39:41 +00001112static int find_index(ArrayRef<Value *> livevec, Value *val) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001113 auto itr = std::find(livevec.begin(), livevec.end(), val);
1114 assert(livevec.end() != itr);
1115 size_t index = std::distance(livevec.begin(), itr);
1116 assert(index < livevec.size());
1117 return index;
1118}
1119
1120// Create new attribute set containing only attributes which can be transfered
1121// from original call to the safepoint.
1122static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1123 AttributeSet ret;
1124
1125 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1126 unsigned index = AS.getSlotIndex(Slot);
1127
1128 if (index == AttributeSet::ReturnIndex ||
1129 index == AttributeSet::FunctionIndex) {
1130
1131 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
1132 ++it) {
1133 Attribute attr = *it;
1134
1135 // Do not allow certain attributes - just skip them
1136 // Safepoint can not be read only or read none.
1137 if (attr.hasAttribute(Attribute::ReadNone) ||
1138 attr.hasAttribute(Attribute::ReadOnly))
1139 continue;
1140
1141 ret = ret.addAttributes(
1142 AS.getContext(), index,
1143 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
1144 }
1145 }
1146
1147 // Just skip parameter attributes for now
1148 }
1149
1150 return ret;
1151}
1152
1153/// Helper function to place all gc relocates necessary for the given
1154/// statepoint.
1155/// Inputs:
1156/// liveVariables - list of variables to be relocated.
1157/// liveStart - index of the first live variable.
1158/// basePtrs - base pointers.
1159/// statepointToken - statepoint instruction to which relocates should be
1160/// bound.
1161/// Builder - Llvm IR builder to be used to construct new calls.
Sanjoy Das5665c992015-05-11 23:47:27 +00001162static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables,
1163 const int LiveStart,
1164 ArrayRef<llvm::Value *> BasePtrs,
1165 Instruction *StatepointToken,
Benjamin Kramerf044d3f2015-03-09 16:23:46 +00001166 IRBuilder<> Builder) {
Philip Reamesd2b66462015-02-20 22:39:41 +00001167 SmallVector<Instruction *, 64> NewDefs;
Sanjoy Das5665c992015-05-11 23:47:27 +00001168 NewDefs.reserve(LiveVariables.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001169
Sanjoy Das5665c992015-05-11 23:47:27 +00001170 Module *M = StatepointToken->getParent()->getParent()->getParent();
Philip Reamesd16a9b12015-02-20 01:06:44 +00001171
Sanjoy Das5665c992015-05-11 23:47:27 +00001172 for (unsigned i = 0; i < LiveVariables.size(); i++) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001173 // We generate a (potentially) unique declaration for every pointer type
1174 // combination. This results is some blow up the function declarations in
1175 // the IR, but removes the need for argument bitcasts which shrinks the IR
1176 // greatly and makes it much more readable.
Sanjoy Das5665c992015-05-11 23:47:27 +00001177 SmallVector<Type *, 1> Types; // one per 'any' type
Sanjoy Das89c54912015-05-11 18:49:34 +00001178 // All gc_relocate are set to i8 addrspace(1)* type. This could help avoid
1179 // cases where the actual value's type mangling is not supported by llvm. A
1180 // bitcast is added later to convert gc_relocate to the actual value's type.
Sanjoy Das5665c992015-05-11 23:47:27 +00001181 Types.push_back(Type::getInt8PtrTy(M->getContext(), 1));
1182 Value *GCRelocateDecl = Intrinsic::getDeclaration(
1183 M, Intrinsic::experimental_gc_relocate, Types);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001184
1185 // Generate the gc.relocate call and save the result
Sanjoy Das5665c992015-05-11 23:47:27 +00001186 Value *BaseIdx =
Philip Reamesf3880502015-07-21 00:49:55 +00001187 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i]));
1188 Value *LiveIdx =
1189 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i]));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001190
1191 // only specify a debug name if we can give a useful one
David Blaikieff6409d2015-05-18 22:13:54 +00001192 Value *Reloc = Builder.CreateCall(
1193 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
Sanjoy Das5665c992015-05-11 23:47:27 +00001194 LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated"
Philip Reamesd16a9b12015-02-20 01:06:44 +00001195 : "");
1196 // Trick CodeGen into thinking there are lots of free registers at this
1197 // fake call.
Sanjoy Das5665c992015-05-11 23:47:27 +00001198 cast<CallInst>(Reloc)->setCallingConv(CallingConv::Cold);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001199
Sanjoy Das5665c992015-05-11 23:47:27 +00001200 NewDefs.push_back(cast<Instruction>(Reloc));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001201 }
Sanjoy Das5665c992015-05-11 23:47:27 +00001202 assert(NewDefs.size() == LiveVariables.size() &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001203 "missing or extra redefinition at safepoint");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001204}
1205
1206static void
1207makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
1208 const SmallVectorImpl<llvm::Value *> &basePtrs,
1209 const SmallVectorImpl<llvm::Value *> &liveVariables,
1210 Pass *P,
1211 PartiallyConstructedSafepointRecord &result) {
1212 assert(basePtrs.size() == liveVariables.size());
1213 assert(isStatepoint(CS) &&
1214 "This method expects to be rewriting a statepoint");
1215
1216 BasicBlock *BB = CS.getInstruction()->getParent();
1217 assert(BB);
1218 Function *F = BB->getParent();
1219 assert(F && "must be set");
1220 Module *M = F->getParent();
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001221 (void)M;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001222 assert(M && "must be set");
1223
1224 // We're not changing the function signature of the statepoint since the gc
1225 // arguments go into the var args section.
1226 Function *gc_statepoint_decl = CS.getCalledFunction();
1227
1228 // Then go ahead and use the builder do actually do the inserts. We insert
1229 // immediately before the previous instruction under the assumption that all
1230 // arguments will be available here. We can't insert afterwards since we may
1231 // be replacing a terminator.
1232 Instruction *insertBefore = CS.getInstruction();
1233 IRBuilder<> Builder(insertBefore);
1234 // Copy all of the arguments from the original statepoint - this includes the
1235 // target, call args, and deopt args
Philip Reamesd2b66462015-02-20 22:39:41 +00001236 SmallVector<llvm::Value *, 64> args;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001237 args.insert(args.end(), CS.arg_begin(), CS.arg_end());
1238 // TODO: Clear the 'needs rewrite' flag
1239
1240 // add all the pointers to be relocated (gc arguments)
1241 // Capture the start of the live variable list for use in the gc_relocates
1242 const int live_start = args.size();
1243 args.insert(args.end(), liveVariables.begin(), liveVariables.end());
1244
1245 // Create the statepoint given all the arguments
1246 Instruction *token = nullptr;
1247 AttributeSet return_attributes;
1248 if (CS.isCall()) {
1249 CallInst *toReplace = cast<CallInst>(CS.getInstruction());
1250 CallInst *call =
1251 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
1252 call->setTailCall(toReplace->isTailCall());
1253 call->setCallingConv(toReplace->getCallingConv());
1254
1255 // Currently we will fail on parameter attributes and on certain
1256 // function attributes.
1257 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
1258 // In case if we can handle this set of sttributes - set up function attrs
1259 // directly on statepoint and return attrs later for gc_result intrinsic.
1260 call->setAttributes(new_attrs.getFnAttributes());
1261 return_attributes = new_attrs.getRetAttributes();
1262
1263 token = call;
1264
1265 // Put the following gc_result and gc_relocate calls immediately after the
1266 // the old call (which we're about to delete)
1267 BasicBlock::iterator next(toReplace);
1268 assert(BB->end() != next && "not a terminator, must have next");
1269 next++;
1270 Instruction *IP = &*(next);
1271 Builder.SetInsertPoint(IP);
1272 Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1273
David Blaikie82ad7872015-02-20 23:44:24 +00001274 } else {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001275 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
1276
1277 // Insert the new invoke into the old block. We'll remove the old one in a
1278 // moment at which point this will become the new terminator for the
1279 // original block.
1280 InvokeInst *invoke = InvokeInst::Create(
1281 gc_statepoint_decl, toReplace->getNormalDest(),
1282 toReplace->getUnwindDest(), args, "", toReplace->getParent());
1283 invoke->setCallingConv(toReplace->getCallingConv());
1284
1285 // Currently we will fail on parameter attributes and on certain
1286 // function attributes.
1287 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
1288 // In case if we can handle this set of sttributes - set up function attrs
1289 // directly on statepoint and return attrs later for gc_result intrinsic.
1290 invoke->setAttributes(new_attrs.getFnAttributes());
1291 return_attributes = new_attrs.getRetAttributes();
1292
1293 token = invoke;
1294
1295 // Generate gc relocates in exceptional path
Philip Reames69e51ca2015-04-13 18:07:21 +00001296 BasicBlock *unwindBlock = toReplace->getUnwindDest();
1297 assert(!isa<PHINode>(unwindBlock->begin()) &&
1298 unwindBlock->getUniquePredecessor() &&
1299 "can't safely insert in this block!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001300
1301 Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
1302 Builder.SetInsertPoint(IP);
1303 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
1304
1305 // Extract second element from landingpad return value. We will attach
1306 // exceptional gc relocates to it.
1307 const unsigned idx = 1;
1308 Instruction *exceptional_token =
1309 cast<Instruction>(Builder.CreateExtractValue(
1310 unwindBlock->getLandingPadInst(), idx, "relocate_token"));
Philip Reamesf2041322015-02-20 19:26:04 +00001311 result.UnwindToken = exceptional_token;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001312
1313 // Just throw away return value. We will use the one we got for normal
1314 // block.
1315 (void)CreateGCRelocates(liveVariables, live_start, basePtrs,
1316 exceptional_token, Builder);
1317
1318 // Generate gc relocates and returns for normal block
Philip Reames69e51ca2015-04-13 18:07:21 +00001319 BasicBlock *normalDest = toReplace->getNormalDest();
1320 assert(!isa<PHINode>(normalDest->begin()) &&
1321 normalDest->getUniquePredecessor() &&
1322 "can't safely insert in this block!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001323
1324 IP = &*(normalDest->getFirstInsertionPt());
1325 Builder.SetInsertPoint(IP);
1326
1327 // gc relocates will be generated later as if it were regular call
1328 // statepoint
Philip Reamesd16a9b12015-02-20 01:06:44 +00001329 }
1330 assert(token);
1331
1332 // Take the name of the original value call if it had one.
1333 token->takeName(CS.getInstruction());
1334
Philip Reames704e78b2015-04-10 22:34:56 +00001335// The GCResult is already inserted, we just need to find it
David Blaikie5e5d7842015-02-22 20:58:38 +00001336#ifndef NDEBUG
1337 Instruction *toReplace = CS.getInstruction();
1338 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
1339 "only valid use before rewrite is gc.result");
1340 assert(!toReplace->hasOneUse() ||
1341 isGCResult(cast<Instruction>(*toReplace->user_begin())));
1342#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00001343
1344 // Update the gc.result of the original statepoint (if any) to use the newly
1345 // inserted statepoint. This is safe to do here since the token can't be
1346 // considered a live reference.
1347 CS.getInstruction()->replaceAllUsesWith(token);
1348
Philip Reames0a3240f2015-02-20 21:34:11 +00001349 result.StatepointToken = token;
1350
Philip Reamesd16a9b12015-02-20 01:06:44 +00001351 // Second, create a gc.relocate for every live variable
Philip Reames0a3240f2015-02-20 21:34:11 +00001352 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001353}
1354
1355namespace {
1356struct name_ordering {
1357 Value *base;
1358 Value *derived;
1359 bool operator()(name_ordering const &a, name_ordering const &b) {
1360 return -1 == a.derived->getName().compare(b.derived->getName());
1361 }
1362};
1363}
1364static void stablize_order(SmallVectorImpl<Value *> &basevec,
1365 SmallVectorImpl<Value *> &livevec) {
1366 assert(basevec.size() == livevec.size());
1367
Philip Reames860660e2015-02-20 22:05:18 +00001368 SmallVector<name_ordering, 64> temp;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001369 for (size_t i = 0; i < basevec.size(); i++) {
1370 name_ordering v;
1371 v.base = basevec[i];
1372 v.derived = livevec[i];
1373 temp.push_back(v);
1374 }
1375 std::sort(temp.begin(), temp.end(), name_ordering());
1376 for (size_t i = 0; i < basevec.size(); i++) {
1377 basevec[i] = temp[i].base;
1378 livevec[i] = temp[i].derived;
1379 }
1380}
1381
1382// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1383// which make the relocations happening at this safepoint explicit.
Philip Reames704e78b2015-04-10 22:34:56 +00001384//
Philip Reamesd16a9b12015-02-20 01:06:44 +00001385// WARNING: Does not do any fixup to adjust users of the original live
1386// values. That's the callers responsibility.
1387static void
1388makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
1389 PartiallyConstructedSafepointRecord &result) {
Philip Reamesf2041322015-02-20 19:26:04 +00001390 auto liveset = result.liveset;
1391 auto PointerToBase = result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001392
1393 // Convert to vector for efficient cross referencing.
1394 SmallVector<Value *, 64> basevec, livevec;
1395 livevec.reserve(liveset.size());
1396 basevec.reserve(liveset.size());
1397 for (Value *L : liveset) {
1398 livevec.push_back(L);
1399
Philip Reamesf2041322015-02-20 19:26:04 +00001400 assert(PointerToBase.find(L) != PointerToBase.end());
1401 Value *base = PointerToBase[L];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001402 basevec.push_back(base);
1403 }
1404 assert(livevec.size() == basevec.size());
1405
1406 // To make the output IR slightly more stable (for use in diffs), ensure a
1407 // fixed order of the values in the safepoint (by sorting the value name).
1408 // The order is otherwise meaningless.
1409 stablize_order(basevec, livevec);
1410
1411 // Do the actual rewriting and delete the old statepoint
1412 makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
1413 CS.getInstruction()->eraseFromParent();
1414}
1415
1416// Helper function for the relocationViaAlloca.
1417// It receives iterator to the statepoint gc relocates and emits store to the
1418// assigned
1419// location (via allocaMap) for the each one of them.
1420// Add visited values into the visitedLiveValues set we will later use them
1421// for sanity check.
1422static void
Sanjoy Das5665c992015-05-11 23:47:27 +00001423insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1424 DenseMap<Value *, Value *> &AllocaMap,
1425 DenseSet<Value *> &VisitedLiveValues) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001426
Sanjoy Das5665c992015-05-11 23:47:27 +00001427 for (User *U : GCRelocs) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001428 if (!isa<IntrinsicInst>(U))
1429 continue;
1430
Sanjoy Das5665c992015-05-11 23:47:27 +00001431 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001432
1433 // We only care about relocates
Sanjoy Das5665c992015-05-11 23:47:27 +00001434 if (RelocatedValue->getIntrinsicID() !=
Philip Reamesd16a9b12015-02-20 01:06:44 +00001435 Intrinsic::experimental_gc_relocate) {
1436 continue;
1437 }
1438
Sanjoy Das5665c992015-05-11 23:47:27 +00001439 GCRelocateOperands RelocateOperands(RelocatedValue);
1440 Value *OriginalValue =
1441 const_cast<Value *>(RelocateOperands.getDerivedPtr());
1442 assert(AllocaMap.count(OriginalValue));
1443 Value *Alloca = AllocaMap[OriginalValue];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001444
1445 // Emit store into the related alloca
Sanjoy Das89c54912015-05-11 18:49:34 +00001446 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to
1447 // the correct type according to alloca.
Sanjoy Das5665c992015-05-11 23:47:27 +00001448 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator");
1449 IRBuilder<> Builder(RelocatedValue->getNextNode());
Sanjoy Das89c54912015-05-11 18:49:34 +00001450 Value *CastedRelocatedValue =
Sanjoy Das5665c992015-05-11 23:47:27 +00001451 Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(),
1452 RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : "");
Sanjoy Das89c54912015-05-11 18:49:34 +00001453
Sanjoy Das5665c992015-05-11 23:47:27 +00001454 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1455 Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001456
1457#ifndef NDEBUG
Sanjoy Das5665c992015-05-11 23:47:27 +00001458 VisitedLiveValues.insert(OriginalValue);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001459#endif
1460 }
1461}
1462
Igor Laevskye0317182015-05-19 15:59:05 +00001463// Helper function for the "relocationViaAlloca". Similar to the
1464// "insertRelocationStores" but works for rematerialized values.
1465static void
1466insertRematerializationStores(
1467 RematerializedValueMapTy RematerializedValues,
1468 DenseMap<Value *, Value *> &AllocaMap,
1469 DenseSet<Value *> &VisitedLiveValues) {
1470
1471 for (auto RematerializedValuePair: RematerializedValues) {
1472 Instruction *RematerializedValue = RematerializedValuePair.first;
1473 Value *OriginalValue = RematerializedValuePair.second;
1474
1475 assert(AllocaMap.count(OriginalValue) &&
1476 "Can not find alloca for rematerialized value");
1477 Value *Alloca = AllocaMap[OriginalValue];
1478
1479 StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1480 Store->insertAfter(RematerializedValue);
1481
1482#ifndef NDEBUG
1483 VisitedLiveValues.insert(OriginalValue);
1484#endif
1485 }
1486}
1487
Philip Reamesd16a9b12015-02-20 01:06:44 +00001488/// do all the relocation update via allocas and mem2reg
1489static void relocationViaAlloca(
Igor Laevsky285fe842015-05-19 16:29:43 +00001490 Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1491 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001492#ifndef NDEBUG
Philip Reamesa6ebf072015-03-27 05:53:16 +00001493 // record initial number of (static) allocas; we'll check we have the same
1494 // number when we get done.
1495 int InitialAllocaNum = 0;
Philip Reames704e78b2015-04-10 22:34:56 +00001496 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1497 I++)
Philip Reamesa6ebf072015-03-27 05:53:16 +00001498 if (isa<AllocaInst>(*I))
1499 InitialAllocaNum++;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001500#endif
1501
1502 // TODO-PERF: change data structures, reserve
Igor Laevsky285fe842015-05-19 16:29:43 +00001503 DenseMap<Value *, Value *> AllocaMap;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001504 SmallVector<AllocaInst *, 200> PromotableAllocas;
Igor Laevskye0317182015-05-19 15:59:05 +00001505 // Used later to chack that we have enough allocas to store all values
1506 std::size_t NumRematerializedValues = 0;
Igor Laevsky285fe842015-05-19 16:29:43 +00001507 PromotableAllocas.reserve(Live.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001508
Igor Laevskye0317182015-05-19 15:59:05 +00001509 // Emit alloca for "LiveValue" and record it in "allocaMap" and
1510 // "PromotableAllocas"
1511 auto emitAllocaFor = [&](Value *LiveValue) {
1512 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1513 F.getEntryBlock().getFirstNonPHI());
Igor Laevsky285fe842015-05-19 16:29:43 +00001514 AllocaMap[LiveValue] = Alloca;
Igor Laevskye0317182015-05-19 15:59:05 +00001515 PromotableAllocas.push_back(Alloca);
1516 };
1517
Philip Reamesd16a9b12015-02-20 01:06:44 +00001518 // emit alloca for each live gc pointer
Igor Laevsky285fe842015-05-19 16:29:43 +00001519 for (unsigned i = 0; i < Live.size(); i++) {
1520 emitAllocaFor(Live[i]);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001521 }
1522
Igor Laevskye0317182015-05-19 15:59:05 +00001523 // emit allocas for rematerialized values
Igor Laevsky285fe842015-05-19 16:29:43 +00001524 for (size_t i = 0; i < Records.size(); i++) {
1525 const struct PartiallyConstructedSafepointRecord &Info = Records[i];
Igor Laevskye0317182015-05-19 15:59:05 +00001526
Igor Laevsky285fe842015-05-19 16:29:43 +00001527 for (auto RematerializedValuePair : Info.RematerializedValues) {
Igor Laevskye0317182015-05-19 15:59:05 +00001528 Value *OriginalValue = RematerializedValuePair.second;
Igor Laevsky285fe842015-05-19 16:29:43 +00001529 if (AllocaMap.count(OriginalValue) != 0)
Igor Laevskye0317182015-05-19 15:59:05 +00001530 continue;
1531
1532 emitAllocaFor(OriginalValue);
1533 ++NumRematerializedValues;
1534 }
1535 }
Igor Laevsky285fe842015-05-19 16:29:43 +00001536
Philip Reamesd16a9b12015-02-20 01:06:44 +00001537 // The next two loops are part of the same conceptual operation. We need to
1538 // insert a store to the alloca after the original def and at each
1539 // redefinition. We need to insert a load before each use. These are split
1540 // into distinct loops for performance reasons.
1541
1542 // update gc pointer after each statepoint
1543 // either store a relocated value or null (if no relocated value found for
1544 // this gc pointer and it is not a gc_result)
1545 // this must happen before we update the statepoint with load of alloca
1546 // otherwise we lose the link between statepoint and old def
Igor Laevsky285fe842015-05-19 16:29:43 +00001547 for (size_t i = 0; i < Records.size(); i++) {
1548 const struct PartiallyConstructedSafepointRecord &Info = Records[i];
1549 Value *Statepoint = Info.StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001550
1551 // This will be used for consistency check
Igor Laevsky285fe842015-05-19 16:29:43 +00001552 DenseSet<Value *> VisitedLiveValues;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001553
1554 // Insert stores for normal statepoint gc relocates
Igor Laevsky285fe842015-05-19 16:29:43 +00001555 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001556
1557 // In case if it was invoke statepoint
1558 // we will insert stores for exceptional path gc relocates.
Philip Reames0a3240f2015-02-20 21:34:11 +00001559 if (isa<InvokeInst>(Statepoint)) {
Igor Laevsky285fe842015-05-19 16:29:43 +00001560 insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1561 VisitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001562 }
1563
Igor Laevskye0317182015-05-19 15:59:05 +00001564 // Do similar thing with rematerialized values
Igor Laevsky285fe842015-05-19 16:29:43 +00001565 insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1566 VisitedLiveValues);
Igor Laevskye0317182015-05-19 15:59:05 +00001567
Philip Reamese73300b2015-04-13 16:41:32 +00001568 if (ClobberNonLive) {
1569 // As a debuging aid, pretend that an unrelocated pointer becomes null at
1570 // the gc.statepoint. This will turn some subtle GC problems into
1571 // slightly easier to debug SEGVs. Note that on large IR files with
1572 // lots of gc.statepoints this is extremely costly both memory and time
1573 // wise.
1574 SmallVector<AllocaInst *, 64> ToClobber;
Igor Laevsky285fe842015-05-19 16:29:43 +00001575 for (auto Pair : AllocaMap) {
Philip Reamese73300b2015-04-13 16:41:32 +00001576 Value *Def = Pair.first;
1577 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001578
Philip Reamese73300b2015-04-13 16:41:32 +00001579 // This value was relocated
Igor Laevsky285fe842015-05-19 16:29:43 +00001580 if (VisitedLiveValues.count(Def)) {
Philip Reamese73300b2015-04-13 16:41:32 +00001581 continue;
1582 }
1583 ToClobber.push_back(Alloca);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001584 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001585
Philip Reamese73300b2015-04-13 16:41:32 +00001586 auto InsertClobbersAt = [&](Instruction *IP) {
1587 for (auto *AI : ToClobber) {
1588 auto AIType = cast<PointerType>(AI->getType());
1589 auto PT = cast<PointerType>(AIType->getElementType());
1590 Constant *CPN = ConstantPointerNull::get(PT);
Igor Laevsky285fe842015-05-19 16:29:43 +00001591 StoreInst *Store = new StoreInst(CPN, AI);
1592 Store->insertBefore(IP);
Philip Reamese73300b2015-04-13 16:41:32 +00001593 }
1594 };
1595
1596 // Insert the clobbering stores. These may get intermixed with the
1597 // gc.results and gc.relocates, but that's fine.
1598 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1599 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
1600 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
1601 } else {
1602 BasicBlock::iterator Next(cast<CallInst>(Statepoint));
1603 Next++;
1604 InsertClobbersAt(Next);
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001605 }
David Blaikie82ad7872015-02-20 23:44:24 +00001606 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001607 }
1608 // update use with load allocas and add store for gc_relocated
Igor Laevsky285fe842015-05-19 16:29:43 +00001609 for (auto Pair : AllocaMap) {
1610 Value *Def = Pair.first;
1611 Value *Alloca = Pair.second;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001612
1613 // we pre-record the uses of allocas so that we dont have to worry about
1614 // later update
1615 // that change the user information.
Igor Laevsky285fe842015-05-19 16:29:43 +00001616 SmallVector<Instruction *, 20> Uses;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001617 // PERF: trade a linear scan for repeated reallocation
Igor Laevsky285fe842015-05-19 16:29:43 +00001618 Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1619 for (User *U : Def->users()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001620 if (!isa<ConstantExpr>(U)) {
1621 // If the def has a ConstantExpr use, then the def is either a
1622 // ConstantExpr use itself or null. In either case
1623 // (recursively in the first, directly in the second), the oop
1624 // it is ultimately dependent on is null and this particular
1625 // use does not need to be fixed up.
Igor Laevsky285fe842015-05-19 16:29:43 +00001626 Uses.push_back(cast<Instruction>(U));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001627 }
1628 }
1629
Igor Laevsky285fe842015-05-19 16:29:43 +00001630 std::sort(Uses.begin(), Uses.end());
1631 auto Last = std::unique(Uses.begin(), Uses.end());
1632 Uses.erase(Last, Uses.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001633
Igor Laevsky285fe842015-05-19 16:29:43 +00001634 for (Instruction *Use : Uses) {
1635 if (isa<PHINode>(Use)) {
1636 PHINode *Phi = cast<PHINode>(Use);
1637 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1638 if (Def == Phi->getIncomingValue(i)) {
1639 LoadInst *Load = new LoadInst(
1640 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1641 Phi->setIncomingValue(i, Load);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001642 }
1643 }
1644 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001645 LoadInst *Load = new LoadInst(Alloca, "", Use);
1646 Use->replaceUsesOfWith(Def, Load);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001647 }
1648 }
1649
1650 // emit store for the initial gc value
1651 // store must be inserted after load, otherwise store will be in alloca's
1652 // use list and an extra load will be inserted before it
Igor Laevsky285fe842015-05-19 16:29:43 +00001653 StoreInst *Store = new StoreInst(Def, Alloca);
1654 if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1655 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
Philip Reames6da37852015-03-04 00:13:52 +00001656 // InvokeInst is a TerminatorInst so the store need to be inserted
1657 // into its normal destination block.
Igor Laevsky285fe842015-05-19 16:29:43 +00001658 BasicBlock *NormalDest = Invoke->getNormalDest();
1659 Store->insertBefore(NormalDest->getFirstNonPHI());
Philip Reames6da37852015-03-04 00:13:52 +00001660 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001661 assert(!Inst->isTerminator() &&
Philip Reames6da37852015-03-04 00:13:52 +00001662 "The only TerminatorInst that can produce a value is "
1663 "InvokeInst which is handled above.");
Igor Laevsky285fe842015-05-19 16:29:43 +00001664 Store->insertAfter(Inst);
Philip Reames6da37852015-03-04 00:13:52 +00001665 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001666 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001667 assert(isa<Argument>(Def));
1668 Store->insertAfter(cast<Instruction>(Alloca));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001669 }
1670 }
1671
Igor Laevsky285fe842015-05-19 16:29:43 +00001672 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001673 "we must have the same allocas with lives");
1674 if (!PromotableAllocas.empty()) {
1675 // apply mem2reg to promote alloca to SSA
1676 PromoteMemToReg(PromotableAllocas, DT);
1677 }
1678
1679#ifndef NDEBUG
Philip Reames704e78b2015-04-10 22:34:56 +00001680 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1681 I++)
Philip Reamesa6ebf072015-03-27 05:53:16 +00001682 if (isa<AllocaInst>(*I))
1683 InitialAllocaNum--;
1684 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001685#endif
1686}
1687
1688/// Implement a unique function which doesn't require we sort the input
1689/// vector. Doing so has the effect of changing the output of a couple of
1690/// tests in ways which make them less useful in testing fused safepoints.
Philip Reamesd2b66462015-02-20 22:39:41 +00001691template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
Benjamin Kramer258ea0d2015-06-13 19:50:38 +00001692 SmallSet<T, 8> Seen;
1693 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1694 return !Seen.insert(V).second;
1695 }), Vec.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001696}
1697
Philip Reamesd16a9b12015-02-20 01:06:44 +00001698/// Insert holders so that each Value is obviously live through the entire
Philip Reamesf209a152015-04-13 20:00:30 +00001699/// lifetime of the call.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001700static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
Philip Reamesf209a152015-04-13 20:00:30 +00001701 SmallVectorImpl<CallInst *> &Holders) {
Philip Reames21142752015-04-13 19:07:47 +00001702 if (Values.empty())
1703 // No values to hold live, might as well not insert the empty holder
1704 return;
1705
Philip Reamesd16a9b12015-02-20 01:06:44 +00001706 Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
Philip Reamesf209a152015-04-13 20:00:30 +00001707 // Use a dummy vararg function to actually hold the values live
1708 Function *Func = cast<Function>(M->getOrInsertFunction(
1709 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001710 if (CS.isCall()) {
1711 // For call safepoints insert dummy calls right after safepoint
Philip Reamesf209a152015-04-13 20:00:30 +00001712 BasicBlock::iterator Next(CS.getInstruction());
1713 Next++;
1714 Holders.push_back(CallInst::Create(Func, Values, "", Next));
1715 return;
1716 }
1717 // For invoke safepooints insert dummy calls both in normal and
1718 // exceptional destination blocks
1719 auto *II = cast<InvokeInst>(CS.getInstruction());
1720 Holders.push_back(CallInst::Create(
1721 Func, Values, "", II->getNormalDest()->getFirstInsertionPt()));
1722 Holders.push_back(CallInst::Create(
1723 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt()));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001724}
1725
1726static void findLiveReferences(
Philip Reamesd2b66462015-02-20 22:39:41 +00001727 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
1728 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00001729 GCPtrLivenessData OriginalLivenessData;
1730 computeLiveInValues(DT, F, OriginalLivenessData);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001731 for (size_t i = 0; i < records.size(); i++) {
1732 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001733 const CallSite &CS = toUpdate[i];
Philip Reamesdf1ef082015-04-10 22:53:14 +00001734 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001735 }
1736}
1737
Philip Reames8531d8c2015-04-10 21:48:25 +00001738/// Remove any vector of pointers from the liveset by scalarizing them over the
1739/// statepoint instruction. Adds the scalarized pieces to the liveset. It
1740/// would be preferrable to include the vector in the statepoint itself, but
1741/// the lowering code currently does not handle that. Extending it would be
1742/// slightly non-trivial since it requires a format change. Given how rare
1743/// such cases are (for the moment?) scalarizing is an acceptable comprimise.
1744static void splitVectorValues(Instruction *StatepointInst,
Philip Reames8fe7f132015-06-26 22:47:37 +00001745 StatepointLiveSetTy &LiveSet,
1746 DenseMap<Value *, Value *>& PointerToBase,
1747 DominatorTree &DT) {
Philip Reames8531d8c2015-04-10 21:48:25 +00001748 SmallVector<Value *, 16> ToSplit;
1749 for (Value *V : LiveSet)
1750 if (isa<VectorType>(V->getType()))
1751 ToSplit.push_back(V);
1752
1753 if (ToSplit.empty())
1754 return;
1755
Philip Reames8fe7f132015-06-26 22:47:37 +00001756 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
1757
Philip Reames8531d8c2015-04-10 21:48:25 +00001758 Function &F = *(StatepointInst->getParent()->getParent());
1759
Philip Reames704e78b2015-04-10 22:34:56 +00001760 DenseMap<Value *, AllocaInst *> AllocaMap;
Philip Reames8531d8c2015-04-10 21:48:25 +00001761 // First is normal return, second is exceptional return (invoke only)
Philip Reames704e78b2015-04-10 22:34:56 +00001762 DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
Philip Reames8531d8c2015-04-10 21:48:25 +00001763 for (Value *V : ToSplit) {
Philip Reames704e78b2015-04-10 22:34:56 +00001764 AllocaInst *Alloca =
1765 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
Philip Reames8531d8c2015-04-10 21:48:25 +00001766 AllocaMap[V] = Alloca;
1767
1768 VectorType *VT = cast<VectorType>(V->getType());
1769 IRBuilder<> Builder(StatepointInst);
Philip Reames704e78b2015-04-10 22:34:56 +00001770 SmallVector<Value *, 16> Elements;
Philip Reames8531d8c2015-04-10 21:48:25 +00001771 for (unsigned i = 0; i < VT->getNumElements(); i++)
1772 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
Philip Reames8fe7f132015-06-26 22:47:37 +00001773 ElementMapping[V] = Elements;
Philip Reames8531d8c2015-04-10 21:48:25 +00001774
1775 auto InsertVectorReform = [&](Instruction *IP) {
1776 Builder.SetInsertPoint(IP);
1777 Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1778 Value *ResultVec = UndefValue::get(VT);
1779 for (unsigned i = 0; i < VT->getNumElements(); i++)
1780 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
1781 Builder.getInt32(i));
1782 return ResultVec;
1783 };
1784
1785 if (isa<CallInst>(StatepointInst)) {
1786 BasicBlock::iterator Next(StatepointInst);
1787 Next++;
1788 Instruction *IP = &*(Next);
1789 Replacements[V].first = InsertVectorReform(IP);
1790 Replacements[V].second = nullptr;
1791 } else {
1792 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
1793 // We've already normalized - check that we don't have shared destination
Philip Reames704e78b2015-04-10 22:34:56 +00001794 // blocks
Philip Reames8531d8c2015-04-10 21:48:25 +00001795 BasicBlock *NormalDest = Invoke->getNormalDest();
1796 assert(!isa<PHINode>(NormalDest->begin()));
1797 BasicBlock *UnwindDest = Invoke->getUnwindDest();
1798 assert(!isa<PHINode>(UnwindDest->begin()));
1799 // Insert insert element sequences in both successors
1800 Instruction *IP = &*(NormalDest->getFirstInsertionPt());
1801 Replacements[V].first = InsertVectorReform(IP);
1802 IP = &*(UnwindDest->getFirstInsertionPt());
1803 Replacements[V].second = InsertVectorReform(IP);
1804 }
1805 }
Philip Reames8fe7f132015-06-26 22:47:37 +00001806
Philip Reames8531d8c2015-04-10 21:48:25 +00001807 for (Value *V : ToSplit) {
1808 AllocaInst *Alloca = AllocaMap[V];
1809
1810 // Capture all users before we start mutating use lists
Philip Reames704e78b2015-04-10 22:34:56 +00001811 SmallVector<Instruction *, 16> Users;
Philip Reames8531d8c2015-04-10 21:48:25 +00001812 for (User *U : V->users())
1813 Users.push_back(cast<Instruction>(U));
1814
1815 for (Instruction *I : Users) {
1816 if (auto Phi = dyn_cast<PHINode>(I)) {
1817 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
1818 if (V == Phi->getIncomingValue(i)) {
Philip Reames704e78b2015-04-10 22:34:56 +00001819 LoadInst *Load = new LoadInst(
1820 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
Philip Reames8531d8c2015-04-10 21:48:25 +00001821 Phi->setIncomingValue(i, Load);
1822 }
1823 } else {
1824 LoadInst *Load = new LoadInst(Alloca, "", I);
1825 I->replaceUsesOfWith(V, Load);
1826 }
1827 }
1828
1829 // Store the original value and the replacement value into the alloca
1830 StoreInst *Store = new StoreInst(V, Alloca);
1831 if (auto I = dyn_cast<Instruction>(V))
1832 Store->insertAfter(I);
1833 else
1834 Store->insertAfter(Alloca);
Philip Reames704e78b2015-04-10 22:34:56 +00001835
Philip Reames8531d8c2015-04-10 21:48:25 +00001836 // Normal return for invoke, or call return
1837 Instruction *Replacement = cast<Instruction>(Replacements[V].first);
1838 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
1839 // Unwind return for invoke only
1840 Replacement = cast_or_null<Instruction>(Replacements[V].second);
1841 if (Replacement)
1842 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
1843 }
1844
1845 // apply mem2reg to promote alloca to SSA
Philip Reames704e78b2015-04-10 22:34:56 +00001846 SmallVector<AllocaInst *, 16> Allocas;
Philip Reames8531d8c2015-04-10 21:48:25 +00001847 for (Value *V : ToSplit)
1848 Allocas.push_back(AllocaMap[V]);
1849 PromoteMemToReg(Allocas, DT);
Philip Reames8fe7f132015-06-26 22:47:37 +00001850
1851 // Update our tracking of live pointers and base mappings to account for the
1852 // changes we just made.
1853 for (Value *V : ToSplit) {
1854 auto &Elements = ElementMapping[V];
1855
1856 LiveSet.erase(V);
1857 LiveSet.insert(Elements.begin(), Elements.end());
1858 // We need to update the base mapping as well.
1859 assert(PointerToBase.count(V));
1860 Value *OldBase = PointerToBase[V];
1861 auto &BaseElements = ElementMapping[OldBase];
1862 PointerToBase.erase(V);
1863 assert(Elements.size() == BaseElements.size());
1864 for (unsigned i = 0; i < Elements.size(); i++) {
1865 Value *Elem = Elements[i];
1866 PointerToBase[Elem] = BaseElements[i];
1867 }
1868 }
Philip Reames8531d8c2015-04-10 21:48:25 +00001869}
1870
Igor Laevskye0317182015-05-19 15:59:05 +00001871// Helper function for the "rematerializeLiveValues". It walks use chain
1872// starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1873// values are visited (currently it is GEP's and casts). Returns true if it
1874// sucessfully reached "BaseValue" and false otherwise.
1875// Fills "ChainToBase" array with all visited values. "BaseValue" is not
1876// recorded.
1877static bool findRematerializableChainToBasePointer(
1878 SmallVectorImpl<Instruction*> &ChainToBase,
1879 Value *CurrentValue, Value *BaseValue) {
1880
1881 // We have found a base value
1882 if (CurrentValue == BaseValue) {
1883 return true;
1884 }
1885
1886 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1887 ChainToBase.push_back(GEP);
1888 return findRematerializableChainToBasePointer(ChainToBase,
1889 GEP->getPointerOperand(),
1890 BaseValue);
1891 }
1892
1893 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1894 Value *Def = CI->stripPointerCasts();
1895
1896 // This two checks are basically similar. First one is here for the
1897 // consistency with findBasePointers logic.
1898 assert(!isa<CastInst>(Def) && "not a pointer cast found");
1899 if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1900 return false;
1901
1902 ChainToBase.push_back(CI);
1903 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue);
1904 }
1905
1906 // Not supported instruction in the chain
1907 return false;
1908}
1909
1910// Helper function for the "rematerializeLiveValues". Compute cost of the use
1911// chain we are going to rematerialize.
1912static unsigned
1913chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1914 TargetTransformInfo &TTI) {
1915 unsigned Cost = 0;
1916
1917 for (Instruction *Instr : Chain) {
1918 if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1919 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1920 "non noop cast is found during rematerialization");
1921
1922 Type *SrcTy = CI->getOperand(0)->getType();
1923 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1924
1925 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1926 // Cost of the address calculation
1927 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
1928 Cost += TTI.getAddressComputationCost(ValTy);
1929
1930 // And cost of the GEP itself
1931 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1932 // allowed for the external usage)
1933 if (!GEP->hasAllConstantIndices())
1934 Cost += 2;
1935
1936 } else {
1937 llvm_unreachable("unsupported instruciton type during rematerialization");
1938 }
1939 }
1940
1941 return Cost;
1942}
1943
1944// From the statepoint liveset pick values that are cheaper to recompute then to
1945// relocate. Remove this values from the liveset, rematerialize them after
1946// statepoint and record them in "Info" structure. Note that similar to
1947// relocated values we don't do any user adjustments here.
1948static void rematerializeLiveValues(CallSite CS,
1949 PartiallyConstructedSafepointRecord &Info,
1950 TargetTransformInfo &TTI) {
Aaron Ballmanff7d4fa2015-05-20 14:53:50 +00001951 const unsigned int ChainLengthThreshold = 10;
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00001952
Igor Laevskye0317182015-05-19 15:59:05 +00001953 // Record values we are going to delete from this statepoint live set.
1954 // We can not di this in following loop due to iterator invalidation.
1955 SmallVector<Value *, 32> LiveValuesToBeDeleted;
1956
1957 for (Value *LiveValue: Info.liveset) {
1958 // For each live pointer find it's defining chain
1959 SmallVector<Instruction *, 3> ChainToBase;
1960 assert(Info.PointerToBase.find(LiveValue) != Info.PointerToBase.end());
1961 bool FoundChain =
1962 findRematerializableChainToBasePointer(ChainToBase,
1963 LiveValue,
1964 Info.PointerToBase[LiveValue]);
1965 // Nothing to do, or chain is too long
1966 if (!FoundChain ||
1967 ChainToBase.size() == 0 ||
1968 ChainToBase.size() > ChainLengthThreshold)
1969 continue;
1970
1971 // Compute cost of this chain
1972 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1973 // TODO: We can also account for cases when we will be able to remove some
1974 // of the rematerialized values by later optimization passes. I.e if
1975 // we rematerialized several intersecting chains. Or if original values
1976 // don't have any uses besides this statepoint.
1977
1978 // For invokes we need to rematerialize each chain twice - for normal and
1979 // for unwind basic blocks. Model this by multiplying cost by two.
1980 if (CS.isInvoke()) {
1981 Cost *= 2;
1982 }
1983 // If it's too expensive - skip it
1984 if (Cost >= RematerializationThreshold)
1985 continue;
1986
1987 // Remove value from the live set
1988 LiveValuesToBeDeleted.push_back(LiveValue);
1989
1990 // Clone instructions and record them inside "Info" structure
1991
1992 // Walk backwards to visit top-most instructions first
1993 std::reverse(ChainToBase.begin(), ChainToBase.end());
1994
1995 // Utility function which clones all instructions from "ChainToBase"
1996 // and inserts them before "InsertBefore". Returns rematerialized value
1997 // which should be used after statepoint.
1998 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1999 Instruction *LastClonedValue = nullptr;
2000 Instruction *LastValue = nullptr;
2001 for (Instruction *Instr: ChainToBase) {
2002 // Only GEP's and casts are suported as we need to be careful to not
2003 // introduce any new uses of pointers not in the liveset.
2004 // Note that it's fine to introduce new uses of pointers which were
2005 // otherwise not used after this statepoint.
2006 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2007
2008 Instruction *ClonedValue = Instr->clone();
2009 ClonedValue->insertBefore(InsertBefore);
2010 ClonedValue->setName(Instr->getName() + ".remat");
2011
2012 // If it is not first instruction in the chain then it uses previously
2013 // cloned value. We should update it to use cloned value.
2014 if (LastClonedValue) {
2015 assert(LastValue);
2016 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2017#ifndef NDEBUG
Igor Laevskyd83f6972015-05-21 13:02:14 +00002018 // Assert that cloned instruction does not use any instructions from
2019 // this chain other than LastClonedValue
2020 for (auto OpValue : ClonedValue->operand_values()) {
2021 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
2022 ChainToBase.end() &&
2023 "incorrect use in rematerialization chain");
Igor Laevskye0317182015-05-19 15:59:05 +00002024 }
2025#endif
2026 }
2027
2028 LastClonedValue = ClonedValue;
2029 LastValue = Instr;
2030 }
2031 assert(LastClonedValue);
2032 return LastClonedValue;
2033 };
2034
2035 // Different cases for calls and invokes. For invokes we need to clone
2036 // instructions both on normal and unwind path.
2037 if (CS.isCall()) {
2038 Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2039 assert(InsertBefore);
2040 Instruction *RematerializedValue = rematerializeChain(InsertBefore);
2041 Info.RematerializedValues[RematerializedValue] = LiveValue;
2042 } else {
2043 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2044
2045 Instruction *NormalInsertBefore =
2046 Invoke->getNormalDest()->getFirstInsertionPt();
2047 Instruction *UnwindInsertBefore =
2048 Invoke->getUnwindDest()->getFirstInsertionPt();
2049
2050 Instruction *NormalRematerializedValue =
2051 rematerializeChain(NormalInsertBefore);
2052 Instruction *UnwindRematerializedValue =
2053 rematerializeChain(UnwindInsertBefore);
2054
2055 Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2056 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2057 }
2058 }
2059
2060 // Remove rematerializaed values from the live set
2061 for (auto LiveValue: LiveValuesToBeDeleted) {
2062 Info.liveset.erase(LiveValue);
2063 }
2064}
2065
Philip Reamesd16a9b12015-02-20 01:06:44 +00002066static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
Philip Reamesd2b66462015-02-20 22:39:41 +00002067 SmallVectorImpl<CallSite> &toUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002068#ifndef NDEBUG
2069 // sanity check the input
2070 std::set<CallSite> uniqued;
2071 uniqued.insert(toUpdate.begin(), toUpdate.end());
2072 assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
2073
2074 for (size_t i = 0; i < toUpdate.size(); i++) {
2075 CallSite &CS = toUpdate[i];
2076 assert(CS.getInstruction()->getParent()->getParent() == &F);
2077 assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
2078 }
2079#endif
2080
Philip Reames69e51ca2015-04-13 18:07:21 +00002081 // When inserting gc.relocates for invokes, we need to be able to insert at
2082 // the top of the successor blocks. See the comment on
2083 // normalForInvokeSafepoint on exactly what is needed. Note that this step
Philip Reamesf209a152015-04-13 20:00:30 +00002084 // may restructure the CFG.
2085 for (CallSite CS : toUpdate) {
2086 if (!CS.isInvoke())
2087 continue;
2088 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
2089 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(),
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00002090 DT);
Philip Reamesf209a152015-04-13 20:00:30 +00002091 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(),
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00002092 DT);
Philip Reamesf209a152015-04-13 20:00:30 +00002093 }
Philip Reames69e51ca2015-04-13 18:07:21 +00002094
Philip Reamesd16a9b12015-02-20 01:06:44 +00002095 // A list of dummy calls added to the IR to keep various values obviously
2096 // live in the IR. We'll remove all of these when done.
Philip Reamesd2b66462015-02-20 22:39:41 +00002097 SmallVector<CallInst *, 64> holders;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002098
2099 // Insert a dummy call with all of the arguments to the vm_state we'll need
2100 // for the actual safepoint insertion. This ensures reference arguments in
2101 // the deopt argument list are considered live through the safepoint (and
2102 // thus makes sure they get relocated.)
2103 for (size_t i = 0; i < toUpdate.size(); i++) {
2104 CallSite &CS = toUpdate[i];
2105 Statepoint StatepointCS(CS);
2106
2107 SmallVector<Value *, 64> DeoptValues;
2108 for (Use &U : StatepointCS.vm_state_args()) {
2109 Value *Arg = cast<Value>(&U);
Philip Reames8531d8c2015-04-10 21:48:25 +00002110 assert(!isUnhandledGCPointerType(Arg->getType()) &&
2111 "support for FCA unimplemented");
2112 if (isHandledGCPointerType(Arg->getType()))
Philip Reamesd16a9b12015-02-20 01:06:44 +00002113 DeoptValues.push_back(Arg);
2114 }
2115 insertUseHolderAfter(CS, DeoptValues, holders);
2116 }
2117
Philip Reamesd2b66462015-02-20 22:39:41 +00002118 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002119 records.reserve(toUpdate.size());
2120 for (size_t i = 0; i < toUpdate.size(); i++) {
2121 struct PartiallyConstructedSafepointRecord info;
2122 records.push_back(info);
2123 }
2124 assert(records.size() == toUpdate.size());
2125
2126 // A) Identify all gc pointers which are staticly live at the given call
2127 // site.
2128 findLiveReferences(F, DT, P, toUpdate, records);
2129
2130 // B) Find the base pointers for each live pointer
2131 /* scope for caching */ {
2132 // Cache the 'defining value' relation used in the computation and
2133 // insertion of base phis and selects. This ensures that we don't insert
2134 // large numbers of duplicate base_phis.
2135 DefiningValueMapTy DVCache;
2136
2137 for (size_t i = 0; i < records.size(); i++) {
2138 struct PartiallyConstructedSafepointRecord &info = records[i];
2139 CallSite &CS = toUpdate[i];
2140 findBasePointers(DT, DVCache, CS, info);
2141 }
2142 } // end of cache scope
2143
2144 // The base phi insertion logic (for any safepoint) may have inserted new
2145 // instructions which are now live at some safepoint. The simplest such
2146 // example is:
2147 // loop:
2148 // phi a <-- will be a new base_phi here
2149 // safepoint 1 <-- that needs to be live here
2150 // gep a + 1
2151 // safepoint 2
2152 // br loop
Philip Reamesd16a9b12015-02-20 01:06:44 +00002153 // We insert some dummy calls after each safepoint to definitely hold live
2154 // the base pointers which were identified for that safepoint. We'll then
2155 // ask liveness for _every_ base inserted to see what is now live. Then we
2156 // remove the dummy calls.
2157 holders.reserve(holders.size() + records.size());
2158 for (size_t i = 0; i < records.size(); i++) {
2159 struct PartiallyConstructedSafepointRecord &info = records[i];
2160 CallSite &CS = toUpdate[i];
2161
2162 SmallVector<Value *, 128> Bases;
Philip Reamesf2041322015-02-20 19:26:04 +00002163 for (auto Pair : info.PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002164 Bases.push_back(Pair.second);
2165 }
2166 insertUseHolderAfter(CS, Bases, holders);
2167 }
2168
Philip Reamesdf1ef082015-04-10 22:53:14 +00002169 // By selecting base pointers, we've effectively inserted new uses. Thus, we
2170 // need to rerun liveness. We may *also* have inserted new defs, but that's
2171 // not the key issue.
2172 recomputeLiveInValues(F, DT, P, toUpdate, records);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002173
Philip Reamesd16a9b12015-02-20 01:06:44 +00002174 if (PrintBasePointers) {
2175 for (size_t i = 0; i < records.size(); i++) {
2176 struct PartiallyConstructedSafepointRecord &info = records[i];
2177 errs() << "Base Pairs: (w/Relocation)\n";
Philip Reamesf2041322015-02-20 19:26:04 +00002178 for (auto Pair : info.PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002179 errs() << " derived %" << Pair.first->getName() << " base %"
2180 << Pair.second->getName() << "\n";
2181 }
2182 }
2183 }
2184 for (size_t i = 0; i < holders.size(); i++) {
2185 holders[i]->eraseFromParent();
2186 holders[i] = nullptr;
2187 }
2188 holders.clear();
2189
Philip Reames8fe7f132015-06-26 22:47:37 +00002190 // Do a limited scalarization of any live at safepoint vector values which
2191 // contain pointers. This enables this pass to run after vectorization at
2192 // the cost of some possible performance loss. TODO: it would be nice to
2193 // natively support vectors all the way through the backend so we don't need
2194 // to scalarize here.
2195 for (size_t i = 0; i < records.size(); i++) {
2196 struct PartiallyConstructedSafepointRecord &info = records[i];
2197 Instruction *statepoint = toUpdate[i].getInstruction();
2198 splitVectorValues(cast<Instruction>(statepoint), info.liveset,
2199 info.PointerToBase, DT);
2200 }
2201
Igor Laevskye0317182015-05-19 15:59:05 +00002202 // In order to reduce live set of statepoint we might choose to rematerialize
2203 // some values instead of relocating them. This is purelly an optimization and
2204 // does not influence correctness.
2205 TargetTransformInfo &TTI =
2206 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2207
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00002208 for (size_t i = 0; i < records.size(); i++) {
Igor Laevskye0317182015-05-19 15:59:05 +00002209 struct PartiallyConstructedSafepointRecord &info = records[i];
2210 CallSite &CS = toUpdate[i];
2211
2212 rematerializeLiveValues(CS, info, TTI);
2213 }
2214
Philip Reamesd16a9b12015-02-20 01:06:44 +00002215 // Now run through and replace the existing statepoints with new ones with
2216 // the live variables listed. We do not yet update uses of the values being
2217 // relocated. We have references to live variables that need to
2218 // survive to the last iteration of this loop. (By construction, the
2219 // previous statepoint can not be a live variable, thus we can and remove
2220 // the old statepoint calls as we go.)
2221 for (size_t i = 0; i < records.size(); i++) {
2222 struct PartiallyConstructedSafepointRecord &info = records[i];
2223 CallSite &CS = toUpdate[i];
2224 makeStatepointExplicit(DT, CS, P, info);
2225 }
2226 toUpdate.clear(); // prevent accident use of invalid CallSites
2227
Philip Reamesd16a9b12015-02-20 01:06:44 +00002228 // Do all the fixups of the original live variables to their relocated selves
Philip Reamesd2b66462015-02-20 22:39:41 +00002229 SmallVector<Value *, 128> live;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002230 for (size_t i = 0; i < records.size(); i++) {
2231 struct PartiallyConstructedSafepointRecord &info = records[i];
2232 // We can't simply save the live set from the original insertion. One of
2233 // the live values might be the result of a call which needs a safepoint.
2234 // That Value* no longer exists and we need to use the new gc_result.
2235 // Thankfully, the liveset is embedded in the statepoint (and updated), so
2236 // we just grab that.
Philip Reames0a3240f2015-02-20 21:34:11 +00002237 Statepoint statepoint(info.StatepointToken);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002238 live.insert(live.end(), statepoint.gc_args_begin(),
2239 statepoint.gc_args_end());
Philip Reames9a2e01d2015-04-13 17:35:55 +00002240#ifndef NDEBUG
2241 // Do some basic sanity checks on our liveness results before performing
2242 // relocation. Relocation can and will turn mistakes in liveness results
2243 // into non-sensical code which is must harder to debug.
2244 // TODO: It would be nice to test consistency as well
2245 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) &&
2246 "statepoint must be reachable or liveness is meaningless");
2247 for (Value *V : statepoint.gc_args()) {
2248 if (!isa<Instruction>(V))
2249 // Non-instruction values trivial dominate all possible uses
2250 continue;
2251 auto LiveInst = cast<Instruction>(V);
2252 assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2253 "unreachable values should never be live");
2254 assert(DT.dominates(LiveInst, info.StatepointToken) &&
2255 "basic SSA liveness expectation violated by liveness analysis");
2256 }
2257#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002258 }
2259 unique_unsorted(live);
2260
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002261#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +00002262 // sanity check
2263 for (auto ptr : live) {
2264 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
2265 }
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002266#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002267
2268 relocationViaAlloca(F, DT, live, records);
2269 return !records.empty();
2270}
2271
Sanjoy Das353a19e2015-06-02 22:33:37 +00002272// Handles both return values and arguments for Functions and CallSites.
2273template <typename AttrHolder>
2274static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2275 unsigned Index) {
2276 AttrBuilder R;
2277 if (AH.getDereferenceableBytes(Index))
2278 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2279 AH.getDereferenceableBytes(Index)));
2280 if (AH.getDereferenceableOrNullBytes(Index))
2281 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2282 AH.getDereferenceableOrNullBytes(Index)));
2283
2284 if (!R.empty())
2285 AH.setAttributes(AH.getAttributes().removeAttributes(
2286 Ctx, Index, AttributeSet::get(Ctx, Index, R)));
Vasileios Kalintiris9f77f612015-06-03 08:51:30 +00002287}
Sanjoy Das353a19e2015-06-02 22:33:37 +00002288
2289void
2290RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) {
2291 LLVMContext &Ctx = F.getContext();
2292
2293 for (Argument &A : F.args())
2294 if (isa<PointerType>(A.getType()))
2295 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2296
2297 if (isa<PointerType>(F.getReturnType()))
2298 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2299}
2300
2301void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) {
2302 if (F.empty())
2303 return;
2304
2305 LLVMContext &Ctx = F.getContext();
2306 MDBuilder Builder(Ctx);
2307
2308 for (Instruction &I : inst_range(F)) {
2309 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2310 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2311 bool IsImmutableTBAA =
2312 MD->getNumOperands() == 4 &&
2313 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2314
2315 if (!IsImmutableTBAA)
2316 continue; // no work to do, MD_tbaa is already marked mutable
2317
2318 MDNode *Base = cast<MDNode>(MD->getOperand(0));
2319 MDNode *Access = cast<MDNode>(MD->getOperand(1));
2320 uint64_t Offset =
2321 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2322
2323 MDNode *MutableTBAA =
2324 Builder.createTBAAStructTagNode(Base, Access, Offset);
2325 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2326 }
2327
2328 if (CallSite CS = CallSite(&I)) {
2329 for (int i = 0, e = CS.arg_size(); i != e; i++)
2330 if (isa<PointerType>(CS.getArgument(i)->getType()))
2331 RemoveDerefAttrAtIndex(Ctx, CS, i + 1);
2332 if (isa<PointerType>(CS.getType()))
2333 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2334 }
2335 }
2336}
2337
Philip Reamesd16a9b12015-02-20 01:06:44 +00002338/// Returns true if this function should be rewritten by this pass. The main
2339/// point of this function is as an extension point for custom logic.
2340static bool shouldRewriteStatepointsIn(Function &F) {
2341 // TODO: This should check the GCStrategy
Philip Reames2ef029c2015-02-20 18:56:14 +00002342 if (F.hasGC()) {
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00002343 const char *FunctionGCName = F.getGC();
2344 const StringRef StatepointExampleName("statepoint-example");
2345 const StringRef CoreCLRName("coreclr");
2346 return (StatepointExampleName == FunctionGCName) ||
NAKAMURA Takumi5582a6a2015-05-25 01:43:34 +00002347 (CoreCLRName == FunctionGCName);
2348 } else
Philip Reames2ef029c2015-02-20 18:56:14 +00002349 return false;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002350}
2351
Sanjoy Das353a19e2015-06-02 22:33:37 +00002352void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) {
2353#ifndef NDEBUG
2354 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2355 "precondition!");
2356#endif
2357
2358 for (Function &F : M)
2359 stripDereferenceabilityInfoFromPrototype(F);
2360
2361 for (Function &F : M)
2362 stripDereferenceabilityInfoFromBody(F);
2363}
2364
Philip Reamesd16a9b12015-02-20 01:06:44 +00002365bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2366 // Nothing to do for declarations.
2367 if (F.isDeclaration() || F.empty())
2368 return false;
2369
2370 // Policy choice says not to rewrite - the most common reason is that we're
2371 // compiling code without a GCStrategy.
2372 if (!shouldRewriteStatepointsIn(F))
2373 return false;
2374
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00002375 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
Philip Reames704e78b2015-04-10 22:34:56 +00002376
Philip Reames85b36a82015-04-10 22:07:04 +00002377 // Gather all the statepoints which need rewritten. Be careful to only
2378 // consider those in reachable code since we need to ask dominance queries
2379 // when rewriting. We'll delete the unreachable ones in a moment.
Philip Reamesd2b66462015-02-20 22:39:41 +00002380 SmallVector<CallSite, 64> ParsePointNeeded;
Philip Reamesf66d7372015-04-10 22:16:58 +00002381 bool HasUnreachableStatepoint = false;
Philip Reamesd2b66462015-02-20 22:39:41 +00002382 for (Instruction &I : inst_range(F)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002383 // TODO: only the ones with the flag set!
Philip Reames85b36a82015-04-10 22:07:04 +00002384 if (isStatepoint(I)) {
2385 if (DT.isReachableFromEntry(I.getParent()))
2386 ParsePointNeeded.push_back(CallSite(&I));
2387 else
Philip Reamesf66d7372015-04-10 22:16:58 +00002388 HasUnreachableStatepoint = true;
Philip Reames85b36a82015-04-10 22:07:04 +00002389 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00002390 }
2391
Philip Reames85b36a82015-04-10 22:07:04 +00002392 bool MadeChange = false;
Philip Reames704e78b2015-04-10 22:34:56 +00002393
Philip Reames85b36a82015-04-10 22:07:04 +00002394 // Delete any unreachable statepoints so that we don't have unrewritten
2395 // statepoints surviving this pass. This makes testing easier and the
2396 // resulting IR less confusing to human readers. Rather than be fancy, we
2397 // just reuse a utility function which removes the unreachable blocks.
Philip Reamesf66d7372015-04-10 22:16:58 +00002398 if (HasUnreachableStatepoint)
Philip Reames85b36a82015-04-10 22:07:04 +00002399 MadeChange |= removeUnreachableBlocks(F);
2400
Philip Reamesd16a9b12015-02-20 01:06:44 +00002401 // Return early if no work to do.
2402 if (ParsePointNeeded.empty())
Philip Reames85b36a82015-04-10 22:07:04 +00002403 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002404
Philip Reames85b36a82015-04-10 22:07:04 +00002405 // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2406 // These are created by LCSSA. They have the effect of increasing the size
2407 // of liveness sets for no good reason. It may be harder to do this post
2408 // insertion since relocations and base phis can confuse things.
2409 for (BasicBlock &BB : F)
2410 if (BB.getUniquePredecessor()) {
2411 MadeChange = true;
2412 FoldSingleEntryPHINodes(&BB);
2413 }
2414
2415 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
2416 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002417}
Philip Reamesdf1ef082015-04-10 22:53:14 +00002418
2419// liveness computation via standard dataflow
2420// -------------------------------------------------------------------
2421
2422// TODO: Consider using bitvectors for liveness, the set of potentially
2423// interesting values should be small and easy to pre-compute.
2424
Philip Reamesdf1ef082015-04-10 22:53:14 +00002425/// Compute the live-in set for the location rbegin starting from
2426/// the live-out set of the basic block
2427static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2428 BasicBlock::reverse_iterator rend,
2429 DenseSet<Value *> &LiveTmp) {
2430
2431 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2432 Instruction *I = &*ritr;
2433
2434 // KILL/Def - Remove this definition from LiveIn
2435 LiveTmp.erase(I);
2436
2437 // Don't consider *uses* in PHI nodes, we handle their contribution to
2438 // predecessor blocks when we seed the LiveOut sets
2439 if (isa<PHINode>(I))
2440 continue;
2441
2442 // USE - Add to the LiveIn set for this instruction
2443 for (Value *V : I->operands()) {
2444 assert(!isUnhandledGCPointerType(V->getType()) &&
2445 "support for FCA unimplemented");
Philip Reames63294cb2015-04-26 19:48:03 +00002446 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2447 // The choice to exclude all things constant here is slightly subtle.
2448 // There are two idependent reasons:
2449 // - We assume that things which are constant (from LLVM's definition)
2450 // do not move at runtime. For example, the address of a global
2451 // variable is fixed, even though it's contents may not be.
2452 // - Second, we can't disallow arbitrary inttoptr constants even
2453 // if the language frontend does. Optimization passes are free to
2454 // locally exploit facts without respect to global reachability. This
2455 // can create sections of code which are dynamically unreachable and
2456 // contain just about anything. (see constants.ll in tests)
Philip Reamesdf1ef082015-04-10 22:53:14 +00002457 LiveTmp.insert(V);
2458 }
2459 }
2460 }
2461}
2462
2463static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
2464
2465 for (BasicBlock *Succ : successors(BB)) {
2466 const BasicBlock::iterator E(Succ->getFirstNonPHI());
2467 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2468 PHINode *Phi = cast<PHINode>(&*I);
2469 Value *V = Phi->getIncomingValueForBlock(BB);
2470 assert(!isUnhandledGCPointerType(V->getType()) &&
2471 "support for FCA unimplemented");
Philip Reames63294cb2015-04-26 19:48:03 +00002472 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002473 LiveTmp.insert(V);
2474 }
2475 }
2476 }
2477}
2478
2479static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
2480 DenseSet<Value *> KillSet;
2481 for (Instruction &I : *BB)
2482 if (isHandledGCPointerType(I.getType()))
2483 KillSet.insert(&I);
2484 return KillSet;
2485}
2486
Philip Reames9638ff92015-04-11 00:06:47 +00002487#ifndef NDEBUG
Philip Reamesdf1ef082015-04-10 22:53:14 +00002488/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
2489/// sanity check for the liveness computation.
2490static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
2491 TerminatorInst *TI, bool TermOkay = false) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002492 for (Value *V : Live) {
2493 if (auto *I = dyn_cast<Instruction>(V)) {
2494 // The terminator can be a member of the LiveOut set. LLVM's definition
2495 // of instruction dominance states that V does not dominate itself. As
2496 // such, we need to special case this to allow it.
2497 if (TermOkay && TI == I)
2498 continue;
2499 assert(DT.dominates(I, TI) &&
2500 "basic SSA liveness expectation violated by liveness analysis");
2501 }
2502 }
Philip Reamesdf1ef082015-04-10 22:53:14 +00002503}
2504
2505/// Check that all the liveness sets used during the computation of liveness
2506/// obey basic SSA properties. This is useful for finding cases where we miss
2507/// a def.
2508static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2509 BasicBlock &BB) {
2510 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2511 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2512 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2513}
Philip Reames9638ff92015-04-11 00:06:47 +00002514#endif
Philip Reamesdf1ef082015-04-10 22:53:14 +00002515
2516static void computeLiveInValues(DominatorTree &DT, Function &F,
2517 GCPtrLivenessData &Data) {
2518
Philip Reames4d80ede2015-04-10 23:11:26 +00002519 SmallSetVector<BasicBlock *, 200> Worklist;
Philip Reamesdf1ef082015-04-10 22:53:14 +00002520 auto AddPredsToWorklist = [&](BasicBlock *BB) {
Philip Reames4d80ede2015-04-10 23:11:26 +00002521 // We use a SetVector so that we don't have duplicates in the worklist.
2522 Worklist.insert(pred_begin(BB), pred_end(BB));
Philip Reamesdf1ef082015-04-10 22:53:14 +00002523 };
2524 auto NextItem = [&]() {
2525 BasicBlock *BB = Worklist.back();
2526 Worklist.pop_back();
Philip Reamesdf1ef082015-04-10 22:53:14 +00002527 return BB;
2528 };
2529
2530 // Seed the liveness for each individual block
2531 for (BasicBlock &BB : F) {
2532 Data.KillSet[&BB] = computeKillSet(&BB);
2533 Data.LiveSet[&BB].clear();
2534 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2535
2536#ifndef NDEBUG
2537 for (Value *Kill : Data.KillSet[&BB])
2538 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2539#endif
2540
2541 Data.LiveOut[&BB] = DenseSet<Value *>();
2542 computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2543 Data.LiveIn[&BB] = Data.LiveSet[&BB];
2544 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
2545 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
2546 if (!Data.LiveIn[&BB].empty())
2547 AddPredsToWorklist(&BB);
2548 }
2549
2550 // Propagate that liveness until stable
2551 while (!Worklist.empty()) {
2552 BasicBlock *BB = NextItem();
2553
2554 // Compute our new liveout set, then exit early if it hasn't changed
2555 // despite the contribution of our successor.
2556 DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2557 const auto OldLiveOutSize = LiveOut.size();
2558 for (BasicBlock *Succ : successors(BB)) {
2559 assert(Data.LiveIn.count(Succ));
2560 set_union(LiveOut, Data.LiveIn[Succ]);
2561 }
2562 // assert OutLiveOut is a subset of LiveOut
2563 if (OldLiveOutSize == LiveOut.size()) {
2564 // If the sets are the same size, then we didn't actually add anything
2565 // when unioning our successors LiveIn Thus, the LiveIn of this block
2566 // hasn't changed.
2567 continue;
2568 }
2569 Data.LiveOut[BB] = LiveOut;
2570
2571 // Apply the effects of this basic block
2572 DenseSet<Value *> LiveTmp = LiveOut;
2573 set_union(LiveTmp, Data.LiveSet[BB]);
2574 set_subtract(LiveTmp, Data.KillSet[BB]);
2575
2576 assert(Data.LiveIn.count(BB));
2577 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
2578 // assert: OldLiveIn is a subset of LiveTmp
2579 if (OldLiveIn.size() != LiveTmp.size()) {
2580 Data.LiveIn[BB] = LiveTmp;
2581 AddPredsToWorklist(BB);
2582 }
2583 } // while( !worklist.empty() )
2584
2585#ifndef NDEBUG
2586 // Sanity check our ouput against SSA properties. This helps catch any
2587 // missing kills during the above iteration.
2588 for (BasicBlock &BB : F) {
2589 checkBasicSSA(DT, Data, BB);
2590 }
2591#endif
2592}
2593
2594static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2595 StatepointLiveSetTy &Out) {
2596
2597 BasicBlock *BB = Inst->getParent();
2598
2599 // Note: The copy is intentional and required
2600 assert(Data.LiveOut.count(BB));
2601 DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2602
2603 // We want to handle the statepoint itself oddly. It's
2604 // call result is not live (normal), nor are it's arguments
2605 // (unless they're used again later). This adjustment is
2606 // specifically what we need to relocate
2607 BasicBlock::reverse_iterator rend(Inst);
2608 computeLiveInValues(BB->rbegin(), rend, LiveOut);
2609 LiveOut.erase(Inst);
2610 Out.insert(LiveOut.begin(), LiveOut.end());
2611}
2612
2613static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2614 const CallSite &CS,
2615 PartiallyConstructedSafepointRecord &Info) {
2616 Instruction *Inst = CS.getInstruction();
2617 StatepointLiveSetTy Updated;
2618 findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2619
2620#ifndef NDEBUG
2621 DenseSet<Value *> Bases;
2622 for (auto KVPair : Info.PointerToBase) {
2623 Bases.insert(KVPair.second);
2624 }
2625#endif
2626 // We may have base pointers which are now live that weren't before. We need
2627 // to update the PointerToBase structure to reflect this.
2628 for (auto V : Updated)
2629 if (!Info.PointerToBase.count(V)) {
2630 assert(Bases.count(V) && "can't find base for unexpected live value");
2631 Info.PointerToBase[V] = V;
2632 continue;
2633 }
2634
2635#ifndef NDEBUG
2636 for (auto V : Updated) {
2637 assert(Info.PointerToBase.count(V) &&
2638 "must be able to find base for live value");
2639 }
2640#endif
2641
2642 // Remove any stale base mappings - this can happen since our liveness is
2643 // more precise then the one inherent in the base pointer analysis
2644 DenseSet<Value *> ToErase;
2645 for (auto KVPair : Info.PointerToBase)
2646 if (!Updated.count(KVPair.first))
2647 ToErase.insert(KVPair.first);
2648 for (auto V : ToErase)
2649 Info.PointerToBase.erase(V);
2650
2651#ifndef NDEBUG
2652 for (auto KVPair : Info.PointerToBase)
2653 assert(Updated.count(KVPair.first) && "record for non-live value");
2654#endif
2655
2656 Info.liveset = Updated;
2657}