blob: 0a8eb59b1140d35b4e881ab7c4d4b70df27f016c [file] [log] [blame]
Chris Lattner30fdc8d2010-06-08 16:52:24 +00001//===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Created by Greg Clayton on 3/23/07.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DNB.h"
15#include <signal.h>
16#include <stdio.h>
17#include <stdlib.h>
18#include <sys/resource.h>
19#include <sys/stat.h>
20#include <sys/types.h>
21#include <sys/wait.h>
22#include <unistd.h>
23#include <sys/sysctl.h>
24#include <map>
25#include <vector>
26
27#include "MacOSX/MachProcess.h"
28#include "MacOSX/MachTask.h"
29#include "CFString.h"
30#include "DNBLog.h"
31#include "DNBDataRef.h"
32#include "DNBThreadResumeActions.h"
33#include "DNBTimer.h"
34
35typedef std::tr1::shared_ptr<MachProcess> MachProcessSP;
36typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
37typedef ProcessMap::iterator ProcessMapIter;
38typedef ProcessMap::const_iterator ProcessMapConstIter;
39
40static size_t GetAllInfos (std::vector<struct kinfo_proc>& proc_infos);
41static size_t GetAllInfosMatchingName (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos);
42
43//----------------------------------------------------------------------
44// A Thread safe singleton to get a process map pointer.
45//
46// Returns a pointer to the existing process map, or a pointer to a
47// newly created process map if CAN_CREATE is non-zero.
48//----------------------------------------------------------------------
49static ProcessMap*
50GetProcessMap(bool can_create)
51{
52 static ProcessMap* g_process_map_ptr = NULL;
53
54 if (can_create && g_process_map_ptr == NULL)
55 {
56 static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
57 PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex);
58 if (g_process_map_ptr == NULL)
59 g_process_map_ptr = new ProcessMap;
60 }
61 return g_process_map_ptr;
62}
63
64//----------------------------------------------------------------------
65// Add PID to the shared process pointer map.
66//
67// Return non-zero value if we succeed in adding the process to the map.
68// The only time this should fail is if we run out of memory and can't
69// allocate a ProcessMap.
70//----------------------------------------------------------------------
71static nub_bool_t
72AddProcessToMap (nub_process_t pid, MachProcessSP& procSP)
73{
74 ProcessMap* process_map = GetProcessMap(true);
75 if (process_map)
76 {
77 process_map->insert(std::make_pair(pid, procSP));
78 return true;
79 }
80 return false;
81}
82
83//----------------------------------------------------------------------
84// Remove the shared pointer for PID from the process map.
85//
86// Returns the number of items removed from the process map.
87//----------------------------------------------------------------------
88static size_t
89RemoveProcessFromMap (nub_process_t pid)
90{
91 ProcessMap* process_map = GetProcessMap(false);
92 if (process_map)
93 {
94 return process_map->erase(pid);
95 }
96 return 0;
97}
98
99//----------------------------------------------------------------------
100// Get the shared pointer for PID from the existing process map.
101//
102// Returns true if we successfully find a shared pointer to a
103// MachProcess object.
104//----------------------------------------------------------------------
105static nub_bool_t
106GetProcessSP (nub_process_t pid, MachProcessSP& procSP)
107{
108 ProcessMap* process_map = GetProcessMap(false);
109 if (process_map != NULL)
110 {
111 ProcessMapIter pos = process_map->find(pid);
112 if (pos != process_map->end())
113 {
114 procSP = pos->second;
115 return true;
116 }
117 }
118 procSP.reset();
119 return false;
120}
121
122
123static void *
124waitpid_thread (void *arg)
125{
126 const pid_t pid = (pid_t)(intptr_t)arg;
127 int status;
128 while (1)
129 {
130 pid_t child_pid = waitpid(pid, &status, 0);
131 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno);
132
133 if (child_pid < 0)
134 {
135 if (errno == EINTR)
136 continue;
137 break;
138 }
139 else
140 {
141 if (WIFSTOPPED(status))
142 {
143 continue;
144 }
145 else// if (WIFEXITED(status) || WIFSIGNALED(status))
146 {
147 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, status);
148 DNBProcessSetExitStatus (child_pid, status);
149 return NULL;
150 }
151 }
152 }
153
154 // We should never exit as long as our child process is alive, so if we
155 // do something else went wrong and we should exit...
156 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid);
157 DNBProcessSetExitStatus (pid, -1);
158 return NULL;
159}
160
161static bool
162spawn_waitpid_thread (pid_t pid)
163{
164 pthread_t thread = THREAD_NULL;
165 ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
166 if (thread != THREAD_NULL)
167 {
168 ::pthread_detach (thread);
169 return true;
170 }
171 return false;
172}
173
174nub_process_t
175DNBProcessLaunch (const char *path,
176 char const *argv[],
177 const char *envp[],
178 const char *stdio_path,
Caroline Ticef8da8632010-12-03 18:46:09 +0000179 bool no_stdio,
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000180 nub_launch_flavor_t launch_flavor,
Greg Claytonf681b942010-08-31 18:35:14 +0000181 int disable_aslr,
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000182 char *err_str,
183 size_t err_len)
184{
Greg Claytonf681b942010-08-31 18:35:14 +0000185 DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %zu) called...", __FUNCTION__, path, argv, envp, launch_flavor, disable_aslr, err_str, err_len);
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000186
187 if (err_str && err_len > 0)
188 err_str[0] = '\0';
189 struct stat path_stat;
190 if (::stat(path, &path_stat) == -1)
191 {
192 char stat_error[256];
193 ::strerror_r (errno, stat_error, sizeof(stat_error));
194 snprintf(err_str, err_len, "%s (%s)", stat_error, path);
195 return INVALID_NUB_PROCESS;
196 }
197
198 MachProcessSP processSP (new MachProcess);
199 if (processSP.get())
200 {
201 DNBError launch_err;
Caroline Ticef8da8632010-12-03 18:46:09 +0000202 pid_t pid = processSP->LaunchForDebug(path, argv, envp, stdio_path, no_stdio, launch_flavor, disable_aslr, launch_err);
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000203 if (err_str)
204 {
205 *err_str = '\0';
206 if (launch_err.Fail())
207 {
208 const char *launch_err_str = launch_err.AsString();
209 if (launch_err_str)
210 {
211 strncpy(err_str, launch_err_str, err_len-1);
212 err_str[err_len-1] = '\0'; // Make sure the error string is terminated
213 }
214 }
215 }
216
217 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
218
219 if (pid != INVALID_NUB_PROCESS)
220 {
221 // Spawn a thread to reap our child inferior process...
222 spawn_waitpid_thread (pid);
223
224 if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL)
225 {
226 // We failed to get the task for our process ID which is bad.
227 if (err_str && err_len > 0)
228 {
229 if (launch_err.AsString())
230 {
231 ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString());
232 }
233 else
234 {
235 ::snprintf (err_str, err_len, "failed to get the task for process %i", pid);
236 }
237 }
238 }
239 else
240 {
241 assert(AddProcessToMap(pid, processSP));
242 return pid;
243 }
244 }
245 }
246 return INVALID_NUB_PROCESS;
247}
248
249nub_process_t
250DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len)
251{
252 if (err_str && err_len > 0)
253 err_str[0] = '\0';
254 std::vector<struct kinfo_proc> matching_proc_infos;
255 size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos);
256 if (num_matching_proc_infos == 0)
257 {
258 DNBLogError ("error: no processes match '%s'\n", name);
259 return INVALID_NUB_PROCESS;
260 }
261 else if (num_matching_proc_infos > 1)
262 {
263 DNBLogError ("error: %u processes match '%s':\n", num_matching_proc_infos, name);
264 size_t i;
265 for (i=0; i<num_matching_proc_infos; ++i)
266 DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm);
267 return INVALID_NUB_PROCESS;
268 }
Greg Clayton3af9ea52010-11-18 05:57:03 +0000269
270 return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len);
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000271}
272
273nub_process_t
274DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len)
275{
276 if (err_str && err_len > 0)
277 err_str[0] = '\0';
278
279 pid_t pid;
280 MachProcessSP processSP(new MachProcess);
281 if (processSP.get())
282 {
283 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid);
284 pid = processSP->AttachForDebug (attach_pid, err_str, err_len);
285
286 if (pid != INVALID_NUB_PROCESS)
287 {
288 assert(AddProcessToMap(pid, processSP));
289 spawn_waitpid_thread(pid);
290 }
291 }
292
293 while (pid != INVALID_NUB_PROCESS)
294 {
295 // Wait for process to start up and hit entry point
Greg Clayton3af9ea52010-11-18 05:57:03 +0000296 DNBLogThreadedIf (LOG_PROCESS,
297 "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...",
298 __FUNCTION__,
299 pid);
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000300 nub_event_t set_events = DNBProcessWaitForEvents (pid,
Greg Clayton3af9ea52010-11-18 05:57:03 +0000301 eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged,
302 true,
303 timeout);
304
305 DNBLogThreadedIf (LOG_PROCESS,
306 "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x",
307 __FUNCTION__,
308 pid,
309 set_events);
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000310
311 if (set_events == 0)
312 {
313 if (err_str && err_len > 0)
314 snprintf(err_str, err_len, "operation timed out");
315 pid = INVALID_NUB_PROCESS;
316 }
317 else
318 {
319 if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged))
320 {
321 nub_state_t pid_state = DNBProcessGetState (pid);
322 DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s",
323 __FUNCTION__, pid, DNBStateAsString(pid_state));
324
325 switch (pid_state)
326 {
Greg Clayton3af9ea52010-11-18 05:57:03 +0000327 default:
328 case eStateInvalid:
329 case eStateUnloaded:
330 case eStateAttaching:
331 case eStateLaunching:
332 case eStateSuspended:
333 break; // Ignore
334
335 case eStateRunning:
336 case eStateStepping:
337 // Still waiting to stop at entry point...
338 break;
339
340 case eStateStopped:
341 case eStateCrashed:
342 return pid;
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000343
Greg Clayton3af9ea52010-11-18 05:57:03 +0000344 case eStateDetached:
345 case eStateExited:
346 if (err_str && err_len > 0)
347 snprintf(err_str, err_len, "process exited");
348 return INVALID_NUB_PROCESS;
349 }
350 }
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000351
352 DNBProcessResetEvents(pid, set_events);
353 }
354 }
355
356 return INVALID_NUB_PROCESS;
357}
358
359static size_t
Greg Clayton3af9ea52010-11-18 05:57:03 +0000360GetAllInfos (std::vector<struct kinfo_proc>& proc_infos)
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000361{
362 size_t size;
363 int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
364 u_int namelen = sizeof(name)/sizeof(int);
365 int err;
366
367 // Try to find out how many processes are around so we can
368 // size the buffer appropriately. sysctl's man page specifically suggests
369 // this approach, and says it returns a bit larger size than needed to
370 // handle any new processes created between then and now.
371
372 err = ::sysctl (name, namelen, NULL, &size, NULL, 0);
373
374 if ((err < 0) && (err != ENOMEM))
375 {
376 proc_infos.clear();
377 perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
378 return 0;
379 }
380
381
382 // Increase the size of the buffer by a few processes in case more have
383 // been spawned
384 proc_infos.resize (size / sizeof(struct kinfo_proc));
385 size = proc_infos.size() * sizeof(struct kinfo_proc); // Make sure we don't exceed our resize...
386 err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0);
387 if (err < 0)
388 {
389 proc_infos.clear();
390 return 0;
391 }
392
393 // Trim down our array to fit what we actually got back
394 proc_infos.resize(size / sizeof(struct kinfo_proc));
395 return proc_infos.size();
396}
397
398
399static size_t
400GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos)
401{
402
403 matching_proc_infos.clear();
404 if (full_process_name && full_process_name[0])
405 {
406 // We only get the process name, not the full path, from the proc_info. So just take the
407 // base name of the process name...
408 const char *process_name;
409 process_name = strrchr (full_process_name, '/');
410 if (process_name == NULL)
411 process_name = full_process_name;
412 else
413 process_name++;
414
415 std::vector<struct kinfo_proc> proc_infos;
416 const size_t num_proc_infos = GetAllInfos(proc_infos);
417 if (num_proc_infos > 0)
418 {
419 uint32_t i;
420 for (i=0; i<num_proc_infos; i++)
421 {
422 // Skip zombie processes and processes with unset status
423 if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB)
424 continue;
425
426 // Check for process by name. We only check the first MAXCOMLEN
427 // chars as that is all that kp_proc.p_comm holds.
428 if (::strncasecmp(proc_infos[i].kp_proc.p_comm, process_name, MAXCOMLEN) == 0)
429 {
430 // We found a matching process, add it to our list
431 matching_proc_infos.push_back(proc_infos[i]);
432 }
433 }
434 }
435 }
436 // return the newly added matches.
437 return matching_proc_infos.size();
438}
439
440nub_process_t
Greg Clayton19388cf2010-10-18 01:45:30 +0000441DNBProcessAttachWait (const char *waitfor_process_name,
442 nub_launch_flavor_t launch_flavor,
443 struct timespec *timeout_abstime,
444 useconds_t waitfor_interval,
445 char *err_str,
446 size_t err_len,
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000447 DNBShouldCancelCallback should_cancel_callback,
448 void *callback_data)
449{
450 DNBError prepare_error;
451 std::vector<struct kinfo_proc> exclude_proc_infos;
452 size_t num_exclude_proc_infos;
453
454 // If the PrepareForAttach returns a valid token, use MachProcess to check
455 // for the process, otherwise scan the process table.
456
457 const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error);
458
459 if (prepare_error.Fail())
460 {
461 DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString());
462 return INVALID_NUB_PROCESS;
463 }
464
465 if (attach_token == NULL)
466 num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos);
467
468 DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name);
469
470 // Loop and try to find the process by name
471 nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
472
473 while (waitfor_pid == INVALID_NUB_PROCESS)
474 {
475 if (attach_token != NULL)
476 {
477 nub_process_t pid;
478 pid = MachProcess::CheckForProcess(attach_token);
479 if (pid != INVALID_NUB_PROCESS)
480 {
481 waitfor_pid = pid;
482 break;
483 }
484 }
485 else
486 {
487
488 // Get the current process list, and check for matches that
489 // aren't in our original list. If anyone wants to attach
490 // to an existing process by name, they should do it with
491 // --attach=PROCNAME. Else we will wait for the first matching
492 // process that wasn't in our exclusion list.
493 std::vector<struct kinfo_proc> proc_infos;
494 const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos);
495 for (size_t i=0; i<num_proc_infos; i++)
496 {
497 nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
498 for (size_t j=0; j<num_exclude_proc_infos; j++)
499 {
500 if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid)
501 {
502 // This process was in our exclusion list, don't use it.
503 curr_pid = INVALID_NUB_PROCESS;
504 break;
505 }
506 }
507
508 // If we didn't find CURR_PID in our exclusion list, then use it.
509 if (curr_pid != INVALID_NUB_PROCESS)
510 {
511 // We found our process!
512 waitfor_pid = curr_pid;
513 break;
514 }
515 }
516 }
517
518 // If we haven't found our process yet, check for a timeout
519 // and then sleep for a bit until we poll again.
520 if (waitfor_pid == INVALID_NUB_PROCESS)
521 {
522 if (timeout_abstime != NULL)
523 {
524 // Check to see if we have a waitfor-duration option that
525 // has timed out?
526 if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime))
527 {
528 if (err_str && err_len > 0)
529 snprintf(err_str, err_len, "operation timed out");
530 DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name);
531 return INVALID_NUB_PROCESS;
532 }
533 }
534
535 // Call the should cancel callback as well...
536
537 if (should_cancel_callback != NULL
538 && should_cancel_callback (callback_data))
539 {
540 DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback.");
541 waitfor_pid = INVALID_NUB_PROCESS;
542 break;
543 }
544
545 ::usleep (waitfor_interval); // Sleep for WAITFOR_INTERVAL, then poll again
546 }
547 }
548
549 if (waitfor_pid != INVALID_NUB_PROCESS)
550 {
551 DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid);
552 waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len);
553 }
554
555 bool success = waitfor_pid != INVALID_NUB_PROCESS;
556 MachProcess::CleanupAfterAttach (attach_token, success, prepare_error);
557
558 return waitfor_pid;
559}
560
561nub_bool_t
562DNBProcessDetach (nub_process_t pid)
563{
564 MachProcessSP procSP;
565 if (GetProcessSP (pid, procSP))
566 {
567 return procSP->Detach();
568 }
569 return false;
570}
571
572nub_bool_t
573DNBProcessKill (nub_process_t pid)
574{
575 MachProcessSP procSP;
576 if (GetProcessSP (pid, procSP))
577 {
578 return procSP->Kill ();
579 }
580 return false;
581}
582
583nub_bool_t
584DNBProcessSignal (nub_process_t pid, int signal)
585{
586 MachProcessSP procSP;
587 if (GetProcessSP (pid, procSP))
588 {
589 return procSP->Signal (signal);
590 }
591 return false;
592}
593
594
595nub_bool_t
596DNBProcessIsAlive (nub_process_t pid)
597{
598 MachProcessSP procSP;
599 if (GetProcessSP (pid, procSP))
600 {
601 return MachTask::IsValid (procSP->Task().TaskPort());
602 }
603 return eStateInvalid;
604}
605
606//----------------------------------------------------------------------
607// Process and Thread state information
608//----------------------------------------------------------------------
609nub_state_t
610DNBProcessGetState (nub_process_t pid)
611{
612 MachProcessSP procSP;
613 if (GetProcessSP (pid, procSP))
614 {
615 return procSP->GetState();
616 }
617 return eStateInvalid;
618}
619
620//----------------------------------------------------------------------
621// Process and Thread state information
622//----------------------------------------------------------------------
623nub_bool_t
624DNBProcessGetExitStatus (nub_process_t pid, int* status)
625{
626 MachProcessSP procSP;
627 if (GetProcessSP (pid, procSP))
628 {
629 return procSP->GetExitStatus(status);
630 }
631 return false;
632}
633
634nub_bool_t
635DNBProcessSetExitStatus (nub_process_t pid, int status)
636{
637 MachProcessSP procSP;
638 if (GetProcessSP (pid, procSP))
639 {
640 procSP->SetExitStatus(status);
641 return true;
642 }
643 return false;
644}
645
646
647const char *
648DNBThreadGetName (nub_process_t pid, nub_thread_t tid)
649{
650 MachProcessSP procSP;
651 if (GetProcessSP (pid, procSP))
652 return procSP->ThreadGetName(tid);
653 return NULL;
654}
655
656
657nub_bool_t
658DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info)
659{
660 MachProcessSP procSP;
661 if (GetProcessSP (pid, procSP))
662 return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
663 return false;
664}
665
666nub_state_t
667DNBThreadGetState (nub_process_t pid, nub_thread_t tid)
668{
669 MachProcessSP procSP;
670 if (GetProcessSP (pid, procSP))
671 {
672 return procSP->ThreadGetState(tid);
673 }
674 return eStateInvalid;
675}
676
677const char *
678DNBStateAsString(nub_state_t state)
679{
680 switch (state)
681 {
682 case eStateUnloaded: return "Unloaded";
683 case eStateAttaching: return "Attaching";
684 case eStateLaunching: return "Launching";
685 case eStateStopped: return "Stopped";
686 case eStateRunning: return "Running";
687 case eStateStepping: return "Stepping";
688 case eStateCrashed: return "Crashed";
689 case eStateDetached: return "Detached";
690 case eStateExited: return "Exited";
691 case eStateSuspended: return "Suspended";
692 }
693 return "nub_state_t ???";
694}
695
696const char *
697DNBProcessGetExecutablePath (nub_process_t pid)
698{
699 MachProcessSP procSP;
700 if (GetProcessSP (pid, procSP))
701 {
702 return procSP->Path();
703 }
704 return NULL;
705}
706
707nub_size_t
708DNBProcessGetArgumentCount (nub_process_t pid)
709{
710 MachProcessSP procSP;
711 if (GetProcessSP (pid, procSP))
712 {
713 return procSP->ArgumentCount();
714 }
715 return 0;
716}
717
718const char *
719DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx)
720{
721 MachProcessSP procSP;
722 if (GetProcessSP (pid, procSP))
723 {
724 return procSP->ArgumentAtIndex (idx);
725 }
726 return NULL;
727}
728
729
730//----------------------------------------------------------------------
731// Execution control
732//----------------------------------------------------------------------
733nub_bool_t
734DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions)
735{
736 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
737 MachProcessSP procSP;
738 if (GetProcessSP (pid, procSP))
739 {
740 DNBThreadResumeActions thread_actions (actions, num_actions);
741
742 // Below we add a default thread plan just in case one wasn't
743 // provided so all threads always know what they were supposed to do
744 if (thread_actions.IsEmpty())
745 {
746 // No thread plans were given, so the default it to run all threads
747 thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
748 }
749 else
750 {
751 // Some thread plans were given which means anything that wasn't
752 // specified should remain stopped.
753 thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
754 }
755 return procSP->Resume (thread_actions);
756 }
757 return false;
758}
759
760nub_bool_t
761DNBProcessHalt (nub_process_t pid)
762{
763 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
764 MachProcessSP procSP;
765 if (GetProcessSP (pid, procSP))
766 return procSP->Signal (SIGSTOP);
767 return false;
768}
769//
770//nub_bool_t
771//DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
772//{
773// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step);
774// MachProcessSP procSP;
775// if (GetProcessSP (pid, procSP))
776// {
777// return procSP->Resume(tid, step, 0);
778// }
779// return false;
780//}
781//
782//nub_bool_t
783//DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal)
784//{
785// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
786// MachProcessSP procSP;
787// if (GetProcessSP (pid, procSP))
788// {
789// return procSP->Resume(tid, step, signal);
790// }
791// return false;
792//}
793
794nub_event_t
795DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout)
796{
797 nub_event_t result = 0;
798 MachProcessSP procSP;
799 if (GetProcessSP (pid, procSP))
800 {
801 if (wait_for_set)
802 result = procSP->Events().WaitForSetEvents(event_mask, timeout);
803 else
804 result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
805 }
806 return result;
807}
808
809void
810DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask)
811{
812 MachProcessSP procSP;
813 if (GetProcessSP (pid, procSP))
814 procSP->Events().ResetEvents(event_mask);
815}
816
817void
818DNBProcessInterruptEvents (nub_process_t pid)
819{
820 MachProcessSP procSP;
821 if (GetProcessSP (pid, procSP))
822 procSP->Events().SetEvents(eEventProcessAsyncInterrupt);
823}
824
825
826// Breakpoints
827nub_break_t
828DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware)
829{
830 MachProcessSP procSP;
831 if (GetProcessSP (pid, procSP))
832 {
833 return procSP->CreateBreakpoint(addr, size, hardware, THREAD_NULL);
834 }
835 return INVALID_NUB_BREAK_ID;
836}
837
838nub_bool_t
839DNBBreakpointClear (nub_process_t pid, nub_break_t breakID)
840{
841 if (NUB_BREAK_ID_IS_VALID(breakID))
842 {
843 MachProcessSP procSP;
844 if (GetProcessSP (pid, procSP))
845 {
846 return procSP->DisableBreakpoint(breakID, true);
847 }
848 }
849 return false; // Failed
850}
851
852nub_ssize_t
853DNBBreakpointGetHitCount (nub_process_t pid, nub_break_t breakID)
854{
855 if (NUB_BREAK_ID_IS_VALID(breakID))
856 {
857 MachProcessSP procSP;
858 if (GetProcessSP (pid, procSP))
859 {
860 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
861 if (bp)
862 return bp->GetHitCount();
863 }
864 }
865 return 0;
866}
867
868nub_ssize_t
869DNBBreakpointGetIgnoreCount (nub_process_t pid, nub_break_t breakID)
870{
871 if (NUB_BREAK_ID_IS_VALID(breakID))
872 {
873 MachProcessSP procSP;
874 if (GetProcessSP (pid, procSP))
875 {
876 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
877 if (bp)
878 return bp->GetIgnoreCount();
879 }
880 }
881 return 0;
882}
883
884nub_bool_t
885DNBBreakpointSetIgnoreCount (nub_process_t pid, nub_break_t breakID, nub_size_t ignore_count)
886{
887 if (NUB_BREAK_ID_IS_VALID(breakID))
888 {
889 MachProcessSP procSP;
890 if (GetProcessSP (pid, procSP))
891 {
892 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
893 if (bp)
894 {
895 bp->SetIgnoreCount(ignore_count);
896 return true;
897 }
898 }
899 }
900 return false;
901}
902
903// Set the callback function for a given breakpoint. The callback function will
904// get called as soon as the breakpoint is hit. The function will be called
905// with the process ID, thread ID, breakpoint ID and the baton, and can return
906//
907nub_bool_t
908DNBBreakpointSetCallback (nub_process_t pid, nub_break_t breakID, DNBCallbackBreakpointHit callback, void *baton)
909{
910 if (NUB_BREAK_ID_IS_VALID(breakID))
911 {
912 MachProcessSP procSP;
913 if (GetProcessSP (pid, procSP))
914 {
915 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
916 if (bp)
917 {
918 bp->SetCallback(callback, baton);
919 return true;
920 }
921 }
922 }
923 return false;
924}
925
926//----------------------------------------------------------------------
927// Dump the breakpoints stats for process PID for a breakpoint by ID.
928//----------------------------------------------------------------------
929void
930DNBBreakpointPrint (nub_process_t pid, nub_break_t breakID)
931{
932 MachProcessSP procSP;
933 if (GetProcessSP (pid, procSP))
934 procSP->DumpBreakpoint(breakID);
935}
936
937//----------------------------------------------------------------------
938// Watchpoints
939//----------------------------------------------------------------------
940nub_watch_t
941DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware)
942{
943 MachProcessSP procSP;
944 if (GetProcessSP (pid, procSP))
945 {
946 return procSP->CreateWatchpoint(addr, size, watch_flags, hardware, THREAD_NULL);
947 }
948 return INVALID_NUB_BREAK_ID;
949}
950
951nub_bool_t
952DNBWatchpointClear (nub_process_t pid, nub_watch_t watchID)
953{
954 if (NUB_BREAK_ID_IS_VALID(watchID))
955 {
956 MachProcessSP procSP;
957 if (GetProcessSP (pid, procSP))
958 {
959 return procSP->DisableWatchpoint(watchID, true);
960 }
961 }
962 return false; // Failed
963}
964
965nub_ssize_t
966DNBWatchpointGetHitCount (nub_process_t pid, nub_watch_t watchID)
967{
968 if (NUB_BREAK_ID_IS_VALID(watchID))
969 {
970 MachProcessSP procSP;
971 if (GetProcessSP (pid, procSP))
972 {
973 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
974 if (bp)
975 return bp->GetHitCount();
976 }
977 }
978 return 0;
979}
980
981nub_ssize_t
982DNBWatchpointGetIgnoreCount (nub_process_t pid, nub_watch_t watchID)
983{
984 if (NUB_BREAK_ID_IS_VALID(watchID))
985 {
986 MachProcessSP procSP;
987 if (GetProcessSP (pid, procSP))
988 {
989 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
990 if (bp)
991 return bp->GetIgnoreCount();
992 }
993 }
994 return 0;
995}
996
997nub_bool_t
998DNBWatchpointSetIgnoreCount (nub_process_t pid, nub_watch_t watchID, nub_size_t ignore_count)
999{
1000 if (NUB_BREAK_ID_IS_VALID(watchID))
1001 {
1002 MachProcessSP procSP;
1003 if (GetProcessSP (pid, procSP))
1004 {
1005 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1006 if (bp)
1007 {
1008 bp->SetIgnoreCount(ignore_count);
1009 return true;
1010 }
1011 }
1012 }
1013 return false;
1014}
1015
1016// Set the callback function for a given watchpoint. The callback function will
1017// get called as soon as the watchpoint is hit. The function will be called
1018// with the process ID, thread ID, watchpoint ID and the baton, and can return
1019//
1020nub_bool_t
1021DNBWatchpointSetCallback (nub_process_t pid, nub_watch_t watchID, DNBCallbackBreakpointHit callback, void *baton)
1022{
1023 if (NUB_BREAK_ID_IS_VALID(watchID))
1024 {
1025 MachProcessSP procSP;
1026 if (GetProcessSP (pid, procSP))
1027 {
1028 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1029 if (bp)
1030 {
1031 bp->SetCallback(callback, baton);
1032 return true;
1033 }
1034 }
1035 }
1036 return false;
1037}
1038
1039//----------------------------------------------------------------------
1040// Dump the watchpoints stats for process PID for a watchpoint by ID.
1041//----------------------------------------------------------------------
1042void
1043DNBWatchpointPrint (nub_process_t pid, nub_watch_t watchID)
1044{
1045 MachProcessSP procSP;
1046 if (GetProcessSP (pid, procSP))
1047 procSP->DumpWatchpoint(watchID);
1048}
1049
1050//----------------------------------------------------------------------
1051// Read memory in the address space of process PID. This call will take
1052// care of setting and restoring permissions and breaking up the memory
1053// read into multiple chunks as required.
1054//
1055// RETURNS: number of bytes actually read
1056//----------------------------------------------------------------------
1057nub_size_t
1058DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf)
1059{
1060 MachProcessSP procSP;
1061 if (GetProcessSP (pid, procSP))
1062 return procSP->ReadMemory(addr, size, buf);
1063 return 0;
1064}
1065
1066//----------------------------------------------------------------------
1067// Write memory to the address space of process PID. This call will take
1068// care of setting and restoring permissions and breaking up the memory
1069// write into multiple chunks as required.
1070//
1071// RETURNS: number of bytes actually written
1072//----------------------------------------------------------------------
1073nub_size_t
1074DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf)
1075{
1076 MachProcessSP procSP;
1077 if (GetProcessSP (pid, procSP))
1078 return procSP->WriteMemory(addr, size, buf);
1079 return 0;
1080}
1081
1082nub_addr_t
1083DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions)
1084{
1085 MachProcessSP procSP;
1086 if (GetProcessSP (pid, procSP))
1087 return procSP->Task().AllocateMemory (size, permissions);
1088 return 0;
1089}
1090
1091nub_bool_t
1092DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr)
1093{
1094 MachProcessSP procSP;
1095 if (GetProcessSP (pid, procSP))
1096 return procSP->Task().DeallocateMemory (addr);
1097 return 0;
1098}
1099
1100
1101//----------------------------------------------------------------------
1102// Formatted output that uses memory and registers from process and
1103// thread in place of arguments.
1104//----------------------------------------------------------------------
1105nub_size_t
1106DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format)
1107{
1108 if (file == NULL)
1109 return 0;
1110 enum printf_flags
1111 {
1112 alternate_form = (1 << 0),
1113 zero_padding = (1 << 1),
1114 negative_field_width = (1 << 2),
1115 blank_space = (1 << 3),
1116 show_sign = (1 << 4),
1117 show_thousands_separator= (1 << 5),
1118 };
1119
1120 enum printf_length_modifiers
1121 {
1122 length_mod_h = (1 << 0),
1123 length_mod_hh = (1 << 1),
1124 length_mod_l = (1 << 2),
1125 length_mod_ll = (1 << 3),
1126 length_mod_L = (1 << 4),
1127 length_mod_j = (1 << 5),
1128 length_mod_t = (1 << 6),
1129 length_mod_z = (1 << 7),
1130 length_mod_q = (1 << 8),
1131 };
1132
1133 nub_addr_t addr = base_addr;
1134 char *end_format = (char*)format + strlen(format);
1135 char *end = NULL; // For strtoXXXX calls;
1136 std::basic_string<uint8_t> buf;
1137 nub_size_t total_bytes_read = 0;
1138 DNBDataRef data;
1139 const char *f;
1140 for (f = format; *f != '\0' && f < end_format; f++)
1141 {
1142 char ch = *f;
1143 switch (ch)
1144 {
1145 case '%':
1146 {
1147 f++; // Skip the '%' character
1148 int min_field_width = 0;
1149 int precision = 0;
1150 uint32_t flags = 0;
1151 uint32_t length_modifiers = 0;
1152 uint32_t byte_size = 0;
1153 uint32_t actual_byte_size = 0;
1154 bool is_string = false;
1155 bool is_register = false;
1156 DNBRegisterValue register_value;
1157 int64_t register_offset = 0;
1158 nub_addr_t register_addr = INVALID_NUB_ADDRESS;
1159
1160 // Create the format string to use for this conversion specification
1161 // so we can remove and mprintf specific flags and formatters.
1162 std::string fprintf_format("%");
1163
1164 // Decode any flags
1165 switch (*f)
1166 {
1167 case '#': fprintf_format += *f++; flags |= alternate_form; break;
1168 case '0': fprintf_format += *f++; flags |= zero_padding; break;
1169 case '-': fprintf_format += *f++; flags |= negative_field_width; break;
1170 case ' ': fprintf_format += *f++; flags |= blank_space; break;
1171 case '+': fprintf_format += *f++; flags |= show_sign; break;
1172 case ',': fprintf_format += *f++; flags |= show_thousands_separator;break;
1173 case '{':
1174 case '[':
1175 {
1176 // We have a register name specification that can take two forms:
1177 // ${regname} or ${regname+offset}
1178 // The action is to read the register value and add the signed offset
1179 // (if any) and use that as the value to format.
1180 // $[regname] or $[regname+offset]
1181 // The action is to read the register value and add the signed offset
1182 // (if any) and use the result as an address to dereference. The size
1183 // of what is dereferenced is specified by the actual byte size that
1184 // follows the minimum field width and precision (see comments below).
1185 switch (*f)
1186 {
1187 case '{':
1188 case '[':
1189 {
1190 char open_scope_ch = *f;
1191 f++;
1192 const char *reg_name = f;
1193 size_t reg_name_length = strcspn(f, "+-}]");
1194 if (reg_name_length > 0)
1195 {
1196 std::string register_name(reg_name, reg_name_length);
1197 f += reg_name_length;
1198 register_offset = strtoll(f, &end, 0);
1199 if (f < end)
1200 f = end;
1201 if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']'))
1202 {
1203 fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n");
1204 return total_bytes_read;
1205 }
1206 else
1207 {
1208 f++;
1209 if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), &register_value))
1210 {
1211 // Set the address to dereference using the register value plus the offset
1212 switch (register_value.info.size)
1213 {
1214 default:
1215 case 0:
1216 fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size);
1217 return total_bytes_read;
1218
1219 case 1: register_addr = register_value.value.uint8 + register_offset; break;
1220 case 2: register_addr = register_value.value.uint16 + register_offset; break;
1221 case 4: register_addr = register_value.value.uint32 + register_offset; break;
1222 case 8: register_addr = register_value.value.uint64 + register_offset; break;
1223 case 16:
1224 if (open_scope_ch == '[')
1225 {
1226 fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size);
1227 return total_bytes_read;
1228 }
1229 break;
1230 }
1231
1232 if (open_scope_ch == '{')
1233 {
1234 byte_size = register_value.info.size;
1235 is_register = true; // value is in a register
1236
1237 }
1238 else
1239 {
1240 addr = register_addr; // Use register value and offset as the address
1241 }
1242 }
1243 else
1244 {
1245 fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.4x\n", register_name.c_str(), pid, tid);
1246 return total_bytes_read;
1247 }
1248 }
1249 }
1250 }
1251 break;
1252
1253 default:
1254 fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n");
1255 return total_bytes_read;
1256 }
1257 }
1258 break;
1259 }
1260
1261 // Check for a minimum field width
1262 if (isdigit(*f))
1263 {
1264 min_field_width = strtoul(f, &end, 10);
1265 if (end > f)
1266 {
1267 fprintf_format.append(f, end - f);
1268 f = end;
1269 }
1270 }
1271
1272
1273 // Check for a precision
1274 if (*f == '.')
1275 {
1276 f++;
1277 if (isdigit(*f))
1278 {
1279 fprintf_format += '.';
1280 precision = strtoul(f, &end, 10);
1281 if (end > f)
1282 {
1283 fprintf_format.append(f, end - f);
1284 f = end;
1285 }
1286 }
1287 }
1288
1289
1290 // mprintf specific: read the optional actual byte size (abs)
1291 // after the standard minimum field width (mfw) and precision (prec).
1292 // Standard printf calls you can have "mfw.prec" or ".prec", but
1293 // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice
1294 // for strings that may be in a fixed size buffer, but may not use all bytes
1295 // in that buffer for printable characters.
1296 if (*f == '.')
1297 {
1298 f++;
1299 actual_byte_size = strtoul(f, &end, 10);
1300 if (end > f)
1301 {
1302 byte_size = actual_byte_size;
1303 f = end;
1304 }
1305 }
1306
1307 // Decode the length modifiers
1308 switch (*f)
1309 {
1310 case 'h': // h and hh length modifiers
1311 fprintf_format += *f++;
1312 length_modifiers |= length_mod_h;
1313 if (*f == 'h')
1314 {
1315 fprintf_format += *f++;
1316 length_modifiers |= length_mod_hh;
1317 }
1318 break;
1319
1320 case 'l': // l and ll length modifiers
1321 fprintf_format += *f++;
1322 length_modifiers |= length_mod_l;
1323 if (*f == 'h')
1324 {
1325 fprintf_format += *f++;
1326 length_modifiers |= length_mod_ll;
1327 }
1328 break;
1329
1330 case 'L': fprintf_format += *f++; length_modifiers |= length_mod_L; break;
1331 case 'j': fprintf_format += *f++; length_modifiers |= length_mod_j; break;
1332 case 't': fprintf_format += *f++; length_modifiers |= length_mod_t; break;
1333 case 'z': fprintf_format += *f++; length_modifiers |= length_mod_z; break;
1334 case 'q': fprintf_format += *f++; length_modifiers |= length_mod_q; break;
1335 }
1336
1337 // Decode the conversion specifier
1338 switch (*f)
1339 {
1340 case '_':
1341 // mprintf specific format items
1342 {
1343 ++f; // Skip the '_' character
1344 switch (*f)
1345 {
1346 case 'a': // Print the current address
1347 ++f;
1348 fprintf_format += "ll";
1349 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ax")
1350 fprintf (file, fprintf_format.c_str(), addr);
1351 break;
1352 case 'o': // offset from base address
1353 ++f;
1354 fprintf_format += "ll";
1355 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ox")
1356 fprintf(file, fprintf_format.c_str(), addr - base_addr);
1357 break;
1358 default:
1359 fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f);
1360 break;
1361 }
1362 continue;
1363 }
1364 break;
1365
1366 case 'D':
1367 case 'O':
1368 case 'U':
1369 fprintf_format += *f;
1370 if (byte_size == 0)
1371 byte_size = sizeof(long int);
1372 break;
1373
1374 case 'd':
1375 case 'i':
1376 case 'o':
1377 case 'u':
1378 case 'x':
1379 case 'X':
1380 fprintf_format += *f;
1381 if (byte_size == 0)
1382 {
1383 if (length_modifiers & length_mod_hh)
1384 byte_size = sizeof(char);
1385 else if (length_modifiers & length_mod_h)
1386 byte_size = sizeof(short);
1387 if (length_modifiers & length_mod_ll)
1388 byte_size = sizeof(long long);
1389 else if (length_modifiers & length_mod_l)
1390 byte_size = sizeof(long);
1391 else
1392 byte_size = sizeof(int);
1393 }
1394 break;
1395
1396 case 'a':
1397 case 'A':
1398 case 'f':
1399 case 'F':
1400 case 'e':
1401 case 'E':
1402 case 'g':
1403 case 'G':
1404 fprintf_format += *f;
1405 if (byte_size == 0)
1406 {
1407 if (length_modifiers & length_mod_L)
1408 byte_size = sizeof(long double);
1409 else
1410 byte_size = sizeof(double);
1411 }
1412 break;
1413
1414 case 'c':
1415 if ((length_modifiers & length_mod_l) == 0)
1416 {
1417 fprintf_format += *f;
1418 if (byte_size == 0)
1419 byte_size = sizeof(char);
1420 break;
1421 }
1422 // Fall through to 'C' modifier below...
1423
1424 case 'C':
1425 fprintf_format += *f;
1426 if (byte_size == 0)
1427 byte_size = sizeof(wchar_t);
1428 break;
1429
1430 case 's':
1431 fprintf_format += *f;
1432 if (is_register || byte_size == 0)
1433 is_string = 1;
1434 break;
1435
1436 case 'p':
1437 fprintf_format += *f;
1438 if (byte_size == 0)
1439 byte_size = sizeof(void*);
1440 break;
1441 }
1442
1443 if (is_string)
1444 {
1445 std::string mem_string;
1446 const size_t string_buf_len = 4;
1447 char string_buf[string_buf_len+1];
1448 char *string_buf_end = string_buf + string_buf_len;
1449 string_buf[string_buf_len] = '\0';
1450 nub_size_t bytes_read;
1451 nub_addr_t str_addr = is_register ? register_addr : addr;
1452 while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0)
1453 {
1454 // Did we get a NULL termination character yet?
1455 if (strchr(string_buf, '\0') == string_buf_end)
1456 {
1457 // no NULL terminator yet, append as a std::string
1458 mem_string.append(string_buf, string_buf_len);
1459 str_addr += string_buf_len;
1460 }
1461 else
1462 {
1463 // yep
1464 break;
1465 }
1466 }
1467 // Append as a C-string so we don't get the extra NULL
1468 // characters in the temp buffer (since it was resized)
1469 mem_string += string_buf;
1470 size_t mem_string_len = mem_string.size() + 1;
1471 fprintf(file, fprintf_format.c_str(), mem_string.c_str());
1472 if (mem_string_len > 0)
1473 {
1474 if (!is_register)
1475 {
1476 addr += mem_string_len;
1477 total_bytes_read += mem_string_len;
1478 }
1479 }
1480 else
1481 return total_bytes_read;
1482 }
1483 else
1484 if (byte_size > 0)
1485 {
1486 buf.resize(byte_size);
1487 nub_size_t bytes_read = 0;
1488 if (is_register)
1489 bytes_read = register_value.info.size;
1490 else
1491 bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]);
1492 if (bytes_read > 0)
1493 {
1494 if (!is_register)
1495 total_bytes_read += bytes_read;
1496
1497 if (bytes_read == byte_size)
1498 {
1499 switch (*f)
1500 {
1501 case 'd':
1502 case 'i':
1503 case 'o':
1504 case 'u':
1505 case 'X':
1506 case 'x':
1507 case 'a':
1508 case 'A':
1509 case 'f':
1510 case 'F':
1511 case 'e':
1512 case 'E':
1513 case 'g':
1514 case 'G':
1515 case 'p':
1516 case 'c':
1517 case 'C':
1518 {
1519 if (is_register)
1520 data.SetData(&register_value.value.v_uint8[0], register_value.info.size);
1521 else
1522 data.SetData(&buf[0], bytes_read);
1523 DNBDataRef::offset_t data_offset = 0;
1524 if (byte_size <= 4)
1525 {
1526 uint32_t u32 = data.GetMax32(&data_offset, byte_size);
1527 // Show the actual byte width when displaying hex
1528 fprintf(file, fprintf_format.c_str(), u32);
1529 }
1530 else if (byte_size <= 8)
1531 {
1532 uint64_t u64 = data.GetMax64(&data_offset, byte_size);
1533 // Show the actual byte width when displaying hex
1534 fprintf(file, fprintf_format.c_str(), u64);
1535 }
1536 else
1537 {
1538 fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size);
1539 }
1540 if (!is_register)
1541 addr += byte_size;
1542 }
1543 break;
1544
1545 case 's':
1546 fprintf(file, fprintf_format.c_str(), buf.c_str());
1547 addr += byte_size;
1548 break;
1549
1550 default:
1551 fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f);
1552 break;
1553 }
1554 }
1555 }
1556 }
1557 else
1558 return total_bytes_read;
1559 }
1560 break;
1561
1562 case '\\':
1563 {
1564 f++;
1565 switch (*f)
1566 {
1567 case 'e': ch = '\e'; break;
1568 case 'a': ch = '\a'; break;
1569 case 'b': ch = '\b'; break;
1570 case 'f': ch = '\f'; break;
1571 case 'n': ch = '\n'; break;
1572 case 'r': ch = '\r'; break;
1573 case 't': ch = '\t'; break;
1574 case 'v': ch = '\v'; break;
1575 case '\'': ch = '\''; break;
1576 case '\\': ch = '\\'; break;
1577 case '0':
1578 case '1':
1579 case '2':
1580 case '3':
1581 case '4':
1582 case '5':
1583 case '6':
1584 case '7':
1585 ch = strtoul(f, &end, 8);
1586 f = end;
1587 break;
1588 default:
1589 ch = *f;
1590 break;
1591 }
1592 fputc(ch, file);
1593 }
1594 break;
1595
1596 default:
1597 fputc(ch, file);
1598 break;
1599 }
1600 }
1601 return total_bytes_read;
1602}
1603
1604
1605//----------------------------------------------------------------------
1606// Get the number of threads for the specified process.
1607//----------------------------------------------------------------------
1608nub_size_t
1609DNBProcessGetNumThreads (nub_process_t pid)
1610{
1611 MachProcessSP procSP;
1612 if (GetProcessSP (pid, procSP))
1613 return procSP->GetNumThreads();
1614 return 0;
1615}
1616
1617//----------------------------------------------------------------------
1618// Get the thread ID of the current thread.
1619//----------------------------------------------------------------------
1620nub_thread_t
1621DNBProcessGetCurrentThread (nub_process_t pid)
1622{
1623 MachProcessSP procSP;
1624 if (GetProcessSP (pid, procSP))
1625 return procSP->GetCurrentThread();
1626 return 0;
1627}
1628
1629//----------------------------------------------------------------------
1630// Change the current thread.
1631//----------------------------------------------------------------------
1632nub_thread_t
1633DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid)
1634{
1635 MachProcessSP procSP;
1636 if (GetProcessSP (pid, procSP))
1637 return procSP->SetCurrentThread (tid);
1638 return INVALID_NUB_THREAD;
1639}
1640
1641
1642//----------------------------------------------------------------------
1643// Dump a string describing a thread's stop reason to the specified file
1644// handle
1645//----------------------------------------------------------------------
1646nub_bool_t
1647DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info)
1648{
1649 MachProcessSP procSP;
1650 if (GetProcessSP (pid, procSP))
1651 return procSP->GetThreadStoppedReason (tid, stop_info);
1652 return false;
1653}
1654
1655//----------------------------------------------------------------------
1656// Return string description for the specified thread.
1657//
1658// RETURNS: NULL if the thread isn't valid, else a NULL terminated C
1659// string from a static buffer that must be copied prior to subsequent
1660// calls.
1661//----------------------------------------------------------------------
1662const char *
1663DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid)
1664{
1665 MachProcessSP procSP;
1666 if (GetProcessSP (pid, procSP))
1667 return procSP->GetThreadInfo (tid);
1668 return NULL;
1669}
1670
1671//----------------------------------------------------------------------
1672// Get the thread ID given a thread index.
1673//----------------------------------------------------------------------
1674nub_thread_t
1675DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx)
1676{
1677 MachProcessSP procSP;
1678 if (GetProcessSP (pid, procSP))
1679 return procSP->GetThreadAtIndex (thread_idx);
1680 return INVALID_NUB_THREAD;
1681}
1682
1683nub_addr_t
1684DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid)
1685{
1686 MachProcessSP procSP;
1687 DNBError err;
1688 if (GetProcessSP (pid, procSP))
1689 return procSP->Task().GetDYLDAllImageInfosAddress (err);
1690 return INVALID_NUB_ADDRESS;
1691}
1692
1693
1694nub_bool_t
1695DNBProcessSharedLibrariesUpdated(nub_process_t pid)
1696{
1697 MachProcessSP procSP;
1698 if (GetProcessSP (pid, procSP))
1699 {
1700 procSP->SharedLibrariesUpdated ();
1701 return true;
1702 }
1703 return false;
1704}
1705
1706//----------------------------------------------------------------------
1707// Get the current shared library information for a process. Only return
1708// the shared libraries that have changed since the last shared library
1709// state changed event if only_changed is non-zero.
1710//----------------------------------------------------------------------
1711nub_size_t
1712DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos)
1713{
1714 MachProcessSP procSP;
1715 if (GetProcessSP (pid, procSP))
1716 return procSP->CopyImageInfos (image_infos, only_changed);
1717
1718 // If we have no process, then return NULL for the shared library info
1719 // and zero for shared library count
1720 *image_infos = NULL;
1721 return 0;
1722}
1723
1724//----------------------------------------------------------------------
1725// Get the register set information for a specific thread.
1726//----------------------------------------------------------------------
1727const DNBRegisterSetInfo *
1728DNBGetRegisterSetInfo (nub_size_t *num_reg_sets)
1729{
Greg Clayton3af9ea52010-11-18 05:57:03 +00001730 return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets);
Chris Lattner30fdc8d2010-06-08 16:52:24 +00001731}
1732
1733
1734//----------------------------------------------------------------------
1735// Read a register value by register set and register index.
1736//----------------------------------------------------------------------
1737nub_bool_t
1738DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value)
1739{
1740 MachProcessSP procSP;
1741 ::bzero (value, sizeof(DNBRegisterValue));
1742 if (GetProcessSP (pid, procSP))
1743 {
1744 if (tid != INVALID_NUB_THREAD)
1745 return procSP->GetRegisterValue (tid, set, reg, value);
1746 }
1747 return false;
1748}
1749
1750nub_bool_t
1751DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value)
1752{
1753 if (tid != INVALID_NUB_THREAD)
1754 {
1755 MachProcessSP procSP;
1756 if (GetProcessSP (pid, procSP))
1757 return procSP->SetRegisterValue (tid, set, reg, value);
1758 }
1759 return false;
1760}
1761
1762nub_size_t
1763DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len)
1764{
1765 MachProcessSP procSP;
1766 if (GetProcessSP (pid, procSP))
1767 {
1768 if (tid != INVALID_NUB_THREAD)
1769 return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len);
1770 }
1771 ::bzero (buf, buf_len);
1772 return 0;
1773
1774}
1775
1776nub_size_t
1777DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len)
1778{
1779 MachProcessSP procSP;
1780 if (GetProcessSP (pid, procSP))
1781 {
1782 if (tid != INVALID_NUB_THREAD)
1783 return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len);
1784 }
1785 return 0;
1786}
1787
1788//----------------------------------------------------------------------
1789// Read a register value by name.
1790//----------------------------------------------------------------------
1791nub_bool_t
1792DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value)
1793{
1794 MachProcessSP procSP;
1795 ::bzero (value, sizeof(DNBRegisterValue));
1796 if (GetProcessSP (pid, procSP))
1797 {
1798 const struct DNBRegisterSetInfo *set_info;
1799 nub_size_t num_reg_sets = 0;
1800 set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1801 if (set_info)
1802 {
1803 uint32_t set = reg_set;
1804 uint32_t reg;
1805 if (set == REGISTER_SET_ALL)
1806 {
1807 for (set = 1; set < num_reg_sets; ++set)
1808 {
1809 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1810 {
1811 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1812 return procSP->GetRegisterValue (tid, set, reg, value);
1813 }
1814 }
1815 }
1816 else
1817 {
1818 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1819 {
1820 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1821 return procSP->GetRegisterValue (tid, set, reg, value);
1822 }
1823 }
1824 }
1825 }
1826 return false;
1827}
1828
1829
1830//----------------------------------------------------------------------
1831// Read a register set and register number from the register name.
1832//----------------------------------------------------------------------
1833nub_bool_t
1834DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info)
1835{
1836 const struct DNBRegisterSetInfo *set_info;
1837 nub_size_t num_reg_sets = 0;
1838 set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1839 if (set_info)
1840 {
1841 uint32_t set, reg;
1842 for (set = 1; set < num_reg_sets; ++set)
1843 {
1844 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1845 {
1846 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1847 {
1848 *info = set_info[set].registers[reg];
1849 return true;
1850 }
1851 }
1852 }
1853
1854 for (set = 1; set < num_reg_sets; ++set)
1855 {
1856 uint32_t reg;
1857 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1858 {
1859 if (set_info[set].registers[reg].alt == NULL)
1860 continue;
1861
1862 if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0)
1863 {
1864 *info = set_info[set].registers[reg];
1865 return true;
1866 }
1867 }
1868 }
1869 }
1870
1871 ::bzero (info, sizeof(DNBRegisterInfo));
1872 return false;
1873}
1874
1875
1876//----------------------------------------------------------------------
1877// Set the name to address callback function that this nub can use
1878// for any name to address lookups that are needed.
1879//----------------------------------------------------------------------
1880nub_bool_t
1881DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton)
1882{
1883 MachProcessSP procSP;
1884 if (GetProcessSP (pid, procSP))
1885 {
1886 procSP->SetNameToAddressCallback (callback, baton);
1887 return true;
1888 }
1889 return false;
1890}
1891
1892
1893//----------------------------------------------------------------------
1894// Set the name to address callback function that this nub can use
1895// for any name to address lookups that are needed.
1896//----------------------------------------------------------------------
1897nub_bool_t
1898DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void *baton)
1899{
1900 MachProcessSP procSP;
1901 if (GetProcessSP (pid, procSP))
1902 {
1903 procSP->SetSharedLibraryInfoCallback (callback, baton);
1904 return true;
1905 }
1906 return false;
1907}
1908
1909nub_addr_t
1910DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib)
1911{
1912 MachProcessSP procSP;
1913 if (GetProcessSP (pid, procSP))
1914 {
1915 return procSP->LookupSymbol (name, shlib);
1916 }
1917 return INVALID_NUB_ADDRESS;
1918}
1919
1920
1921nub_size_t
1922DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size)
1923{
1924 MachProcessSP procSP;
1925 if (GetProcessSP (pid, procSP))
1926 return procSP->GetAvailableSTDOUT (buf, buf_size);
1927 return 0;
1928}
1929
1930nub_size_t
1931DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size)
1932{
1933 MachProcessSP procSP;
1934 if (GetProcessSP (pid, procSP))
1935 return procSP->GetAvailableSTDERR (buf, buf_size);
1936 return 0;
1937}
1938
1939nub_size_t
1940DNBProcessGetStopCount (nub_process_t pid)
1941{
1942 MachProcessSP procSP;
1943 if (GetProcessSP (pid, procSP))
1944 return procSP->StopCount();
1945 return 0;
1946}
1947
1948nub_bool_t
1949DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size)
1950{
1951 if (path == NULL || path[0] == '\0')
1952 return false;
1953
1954 char max_path[PATH_MAX];
1955 std::string result;
1956 CFString::GlobPath(path, result);
1957
1958 if (result.empty())
1959 result = path;
1960
1961 if (realpath(path, max_path))
1962 {
1963 // Found the path relatively...
1964 ::strncpy(resolved_path, max_path, resolved_path_size);
1965 return strlen(resolved_path) + 1 < resolved_path_size;
1966 }
1967 else
1968 {
1969 // Not a relative path, check the PATH environment variable if the
1970 const char *PATH = getenv("PATH");
1971 if (PATH)
1972 {
1973 const char *curr_path_start = PATH;
1974 const char *curr_path_end;
1975 while (curr_path_start && *curr_path_start)
1976 {
1977 curr_path_end = strchr(curr_path_start, ':');
1978 if (curr_path_end == NULL)
1979 {
1980 result.assign(curr_path_start);
1981 curr_path_start = NULL;
1982 }
1983 else if (curr_path_end > curr_path_start)
1984 {
1985 size_t len = curr_path_end - curr_path_start;
1986 result.assign(curr_path_start, len);
1987 curr_path_start += len + 1;
1988 }
1989 else
1990 break;
1991
1992 result += '/';
1993 result += path;
1994 struct stat s;
1995 if (stat(result.c_str(), &s) == 0)
1996 {
1997 ::strncpy(resolved_path, result.c_str(), resolved_path_size);
1998 return result.size() + 1 < resolved_path_size;
1999 }
2000 }
2001 }
2002 }
2003 return false;
2004}
2005
Greg Clayton3af9ea52010-11-18 05:57:03 +00002006
2007void
2008DNBInitialize()
2009{
2010 DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()");
2011#if defined (__i386__) || defined (__x86_64__)
2012 DNBArchImplI386::Initialize();
2013 DNBArchImplX86_64::Initialize();
2014#elif defined (__arm__)
2015 DNBArchMachARM::Initialize();
2016#endif
2017}
2018
2019void
2020DNBTerminate()
2021{
2022}
Greg Clayton3c144382010-12-01 22:45:40 +00002023
2024nub_bool_t
2025DNBSetArchitecture (const char *arch)
2026{
2027 if (arch && arch[0])
2028 {
2029 if (strcasecmp (arch, "i386") == 0)
2030 return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386);
2031 else if (strcasecmp (arch, "x86_64") == 0)
2032 return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64);
2033 else if (strstr (arch, "arm") == arch)
2034 return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM);
2035 }
2036 return false;
2037}