blob: 6a1b01255a8307f1f4d68a6856c68ffe3c01e16f [file] [log] [blame]
Chris Lattner158e1f52006-02-05 05:50:24 +00001//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions. Note that the machine may be running in 32-bit mode.
26def HasV9 : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions. Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate. In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11 : PatLeaf<(imm), [{
47 // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48 return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
49}]>;
50
51def simm13 : PatLeaf<(imm), [{
52 // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
53 return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
54}]>;
55
56def LO10 : SDNodeXForm<imm, [{
57 return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
58}]>;
59
60def HI22 : SDNodeXForm<imm, [{
61 // Transformation function: shift the immediate value down into the low bits.
62 return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66 return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
70def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
Chris Lattnerfcb8a3a2006-02-10 07:35:42 +000071def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex]>;
Chris Lattner158e1f52006-02-05 05:50:24 +000072
73// Address operands
74def MEMrr : Operand<i32> {
75 let PrintMethod = "printMemOperand";
76 let NumMIOperands = 2;
77 let MIOperandInfo = (ops IntRegs, IntRegs);
78}
79def MEMri : Operand<i32> {
80 let PrintMethod = "printMemOperand";
81 let NumMIOperands = 2;
82 let MIOperandInfo = (ops IntRegs, i32imm);
83}
84
85// Branch targets have OtherVT type.
86def brtarget : Operand<OtherVT>;
87def calltarget : Operand<i32>;
88
89// Operand for printing out a condition code.
90let PrintMethod = "printCCOperand" in
91 def CCOp : Operand<i32>;
92
93def SDTSPcmpfcc :
Chris Lattner0c4dea42006-02-10 06:58:25 +000094SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
Chris Lattner158e1f52006-02-05 05:50:24 +000095def SDTSPbrcc :
Chris Lattner0c4dea42006-02-10 06:58:25 +000096SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
Chris Lattner158e1f52006-02-05 05:50:24 +000097def SDTSPselectcc :
Chris Lattner0c4dea42006-02-10 06:58:25 +000098SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
Chris Lattner158e1f52006-02-05 05:50:24 +000099def SDTSPFTOI :
100SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
101def SDTSPITOF :
102SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
103
104def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
105def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
Chris Lattner0c4dea42006-02-10 06:58:25 +0000106def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
107def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000108
109def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
110def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
111
112def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
113def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
114
Chris Lattner0c4dea42006-02-10 06:58:25 +0000115def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
116def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000117
118// These are target-independent nodes, but have target-specific formats.
119def SDT_SPCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
120def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeq, [SDNPHasChain]>;
121def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeq, [SDNPHasChain]>;
122
123def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
124def call : SDNode<"SPISD::CALL", SDT_SPCall,
125 [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
126
127def SDT_SPRetFlag : SDTypeProfile<0, 0, []>;
128def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRetFlag,
129 [SDNPHasChain, SDNPOptInFlag]>;
130
131//===----------------------------------------------------------------------===//
132// SPARC Flag Conditions
133//===----------------------------------------------------------------------===//
134
135// Note that these values must be kept in sync with the CCOp::CondCode enum
136// values.
137class ICC_VAL<int N> : PatLeaf<(i32 N)>;
138def ICC_NE : ICC_VAL< 9>; // Not Equal
139def ICC_E : ICC_VAL< 1>; // Equal
140def ICC_G : ICC_VAL<10>; // Greater
141def ICC_LE : ICC_VAL< 2>; // Less or Equal
142def ICC_GE : ICC_VAL<11>; // Greater or Equal
143def ICC_L : ICC_VAL< 3>; // Less
144def ICC_GU : ICC_VAL<12>; // Greater Unsigned
145def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
146def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
147def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
148def ICC_POS : ICC_VAL<14>; // Positive
149def ICC_NEG : ICC_VAL< 6>; // Negative
150def ICC_VC : ICC_VAL<15>; // Overflow Clear
151def ICC_VS : ICC_VAL< 7>; // Overflow Set
152
153class FCC_VAL<int N> : PatLeaf<(i32 N)>;
154def FCC_U : FCC_VAL<23>; // Unordered
155def FCC_G : FCC_VAL<22>; // Greater
156def FCC_UG : FCC_VAL<21>; // Unordered or Greater
157def FCC_L : FCC_VAL<20>; // Less
158def FCC_UL : FCC_VAL<19>; // Unordered or Less
159def FCC_LG : FCC_VAL<18>; // Less or Greater
160def FCC_NE : FCC_VAL<17>; // Not Equal
161def FCC_E : FCC_VAL<25>; // Equal
162def FCC_UE : FCC_VAL<24>; // Unordered or Equal
163def FCC_GE : FCC_VAL<25>; // Greater or Equal
164def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal
165def FCC_LE : FCC_VAL<27>; // Less or Equal
166def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal
167def FCC_O : FCC_VAL<29>; // Ordered
168
169
170//===----------------------------------------------------------------------===//
171// Instructions
172//===----------------------------------------------------------------------===//
173
174// Pseudo instructions.
175class Pseudo<dag ops, string asmstr, list<dag> pattern>
176 : InstSP<ops, asmstr, pattern>;
177
178def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
179 "!ADJCALLSTACKDOWN $amt",
180 [(callseq_start imm:$amt)]>;
181def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
182 "!ADJCALLSTACKUP $amt",
183 [(callseq_end imm:$amt)]>;
184def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
185 "!IMPLICIT_DEF $dst",
186 [(set IntRegs:$dst, (undef))]>;
187def IMPLICIT_DEF_FP : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
188 [(set FPRegs:$dst, (undef))]>;
189def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
190 [(set DFPRegs:$dst, (undef))]>;
191
192// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the
193// fpmover pass.
194let Predicates = [HasNoV9] in { // Only emit these in SP mode.
195 def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
196 "!FpMOVD $src, $dst", []>;
197 def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
198 "!FpNEGD $src, $dst",
199 [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
200 def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
201 "!FpABSD $src, $dst",
202 [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
203}
204
205// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded by the
206// scheduler into a branch sequence. This has to handle all permutations of
207// selection between i32/f32/f64 on ICC and FCC.
208let usesCustomDAGSchedInserter = 1, // Expanded by the scheduler.
209 Predicates = [HasNoV9] in { // V9 has conditional moves
210 def SELECT_CC_Int_ICC
211 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
212 "; SELECT_CC_Int_ICC PSEUDO!",
213 [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000214 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000215 def SELECT_CC_Int_FCC
216 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
217 "; SELECT_CC_Int_FCC PSEUDO!",
218 [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000219 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000220 def SELECT_CC_FP_ICC
221 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
222 "; SELECT_CC_FP_ICC PSEUDO!",
223 [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000224 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000225 def SELECT_CC_FP_FCC
226 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
227 "; SELECT_CC_FP_FCC PSEUDO!",
228 [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000229 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000230 def SELECT_CC_DFP_ICC
231 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
232 "; SELECT_CC_DFP_ICC PSEUDO!",
233 [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000234 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000235 def SELECT_CC_DFP_FCC
236 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
237 "; SELECT_CC_DFP_FCC PSEUDO!",
238 [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000239 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000240}
241
242
243// Section A.3 - Synthetic Instructions, p. 85
244// special cases of JMPL:
245let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
246 let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
247 def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
248}
249
250// Section B.1 - Load Integer Instructions, p. 90
251def LDSBrr : F3_1<3, 0b001001,
252 (ops IntRegs:$dst, MEMrr:$addr),
253 "ldsb [$addr], $dst",
254 [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
255def LDSBri : F3_2<3, 0b001001,
256 (ops IntRegs:$dst, MEMri:$addr),
257 "ldsb [$addr], $dst",
258 [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
259def LDSHrr : F3_1<3, 0b001010,
260 (ops IntRegs:$dst, MEMrr:$addr),
261 "ldsh [$addr], $dst",
262 [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
263def LDSHri : F3_2<3, 0b001010,
264 (ops IntRegs:$dst, MEMri:$addr),
265 "ldsh [$addr], $dst",
266 [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
267def LDUBrr : F3_1<3, 0b000001,
268 (ops IntRegs:$dst, MEMrr:$addr),
269 "ldub [$addr], $dst",
270 [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
271def LDUBri : F3_2<3, 0b000001,
272 (ops IntRegs:$dst, MEMri:$addr),
273 "ldub [$addr], $dst",
274 [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
275def LDUHrr : F3_1<3, 0b000010,
276 (ops IntRegs:$dst, MEMrr:$addr),
277 "lduh [$addr], $dst",
278 [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
279def LDUHri : F3_2<3, 0b000010,
280 (ops IntRegs:$dst, MEMri:$addr),
281 "lduh [$addr], $dst",
282 [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
283def LDrr : F3_1<3, 0b000000,
284 (ops IntRegs:$dst, MEMrr:$addr),
285 "ld [$addr], $dst",
286 [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
287def LDri : F3_2<3, 0b000000,
288 (ops IntRegs:$dst, MEMri:$addr),
289 "ld [$addr], $dst",
290 [(set IntRegs:$dst, (load ADDRri:$addr))]>;
291
292// Section B.2 - Load Floating-point Instructions, p. 92
293def LDFrr : F3_1<3, 0b100000,
294 (ops FPRegs:$dst, MEMrr:$addr),
295 "ld [$addr], $dst",
296 [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
297def LDFri : F3_2<3, 0b100000,
298 (ops FPRegs:$dst, MEMri:$addr),
299 "ld [$addr], $dst",
300 [(set FPRegs:$dst, (load ADDRri:$addr))]>;
301def LDDFrr : F3_1<3, 0b100011,
302 (ops DFPRegs:$dst, MEMrr:$addr),
303 "ldd [$addr], $dst",
304 [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
305def LDDFri : F3_2<3, 0b100011,
306 (ops DFPRegs:$dst, MEMri:$addr),
307 "ldd [$addr], $dst",
308 [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
309
310// Section B.4 - Store Integer Instructions, p. 95
311def STBrr : F3_1<3, 0b000101,
312 (ops MEMrr:$addr, IntRegs:$src),
313 "stb $src, [$addr]",
314 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
315def STBri : F3_2<3, 0b000101,
316 (ops MEMri:$addr, IntRegs:$src),
317 "stb $src, [$addr]",
318 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
319def STHrr : F3_1<3, 0b000110,
320 (ops MEMrr:$addr, IntRegs:$src),
321 "sth $src, [$addr]",
322 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
323def STHri : F3_2<3, 0b000110,
324 (ops MEMri:$addr, IntRegs:$src),
325 "sth $src, [$addr]",
326 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
327def STrr : F3_1<3, 0b000100,
328 (ops MEMrr:$addr, IntRegs:$src),
329 "st $src, [$addr]",
330 [(store IntRegs:$src, ADDRrr:$addr)]>;
331def STri : F3_2<3, 0b000100,
332 (ops MEMri:$addr, IntRegs:$src),
333 "st $src, [$addr]",
334 [(store IntRegs:$src, ADDRri:$addr)]>;
335
336// Section B.5 - Store Floating-point Instructions, p. 97
337def STFrr : F3_1<3, 0b100100,
338 (ops MEMrr:$addr, FPRegs:$src),
339 "st $src, [$addr]",
340 [(store FPRegs:$src, ADDRrr:$addr)]>;
341def STFri : F3_2<3, 0b100100,
342 (ops MEMri:$addr, FPRegs:$src),
343 "st $src, [$addr]",
344 [(store FPRegs:$src, ADDRri:$addr)]>;
345def STDFrr : F3_1<3, 0b100111,
346 (ops MEMrr:$addr, DFPRegs:$src),
347 "std $src, [$addr]",
348 [(store DFPRegs:$src, ADDRrr:$addr)]>;
349def STDFri : F3_2<3, 0b100111,
350 (ops MEMri:$addr, DFPRegs:$src),
351 "std $src, [$addr]",
352 [(store DFPRegs:$src, ADDRri:$addr)]>;
353
354// Section B.9 - SETHI Instruction, p. 104
355def SETHIi: F2_1<0b100,
356 (ops IntRegs:$dst, i32imm:$src),
357 "sethi $src, $dst",
358 [(set IntRegs:$dst, SETHIimm:$src)]>;
359
360// Section B.10 - NOP Instruction, p. 105
361// (It's a special case of SETHI)
362let rd = 0, imm22 = 0 in
363 def NOP : F2_1<0b100, (ops), "nop", []>;
364
365// Section B.11 - Logical Instructions, p. 106
366def ANDrr : F3_1<2, 0b000001,
367 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
368 "and $b, $c, $dst",
369 [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
370def ANDri : F3_2<2, 0b000001,
371 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
372 "and $b, $c, $dst",
373 [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
374def ANDNrr : F3_1<2, 0b000101,
375 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
376 "andn $b, $c, $dst",
377 [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
378def ANDNri : F3_2<2, 0b000101,
379 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
380 "andn $b, $c, $dst", []>;
381def ORrr : F3_1<2, 0b000010,
382 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
383 "or $b, $c, $dst",
384 [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
385def ORri : F3_2<2, 0b000010,
386 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
387 "or $b, $c, $dst",
388 [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
389def ORNrr : F3_1<2, 0b000110,
390 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
391 "orn $b, $c, $dst",
392 [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
393def ORNri : F3_2<2, 0b000110,
394 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
395 "orn $b, $c, $dst", []>;
396def XORrr : F3_1<2, 0b000011,
397 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
398 "xor $b, $c, $dst",
399 [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
400def XORri : F3_2<2, 0b000011,
401 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
402 "xor $b, $c, $dst",
403 [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
404def XNORrr : F3_1<2, 0b000111,
405 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
406 "xnor $b, $c, $dst",
407 [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
408def XNORri : F3_2<2, 0b000111,
409 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
410 "xnor $b, $c, $dst", []>;
411
412// Section B.12 - Shift Instructions, p. 107
413def SLLrr : F3_1<2, 0b100101,
414 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
415 "sll $b, $c, $dst",
416 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
417def SLLri : F3_2<2, 0b100101,
418 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
419 "sll $b, $c, $dst",
420 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
421def SRLrr : F3_1<2, 0b100110,
422 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
423 "srl $b, $c, $dst",
424 [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
425def SRLri : F3_2<2, 0b100110,
426 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
427 "srl $b, $c, $dst",
428 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
429def SRArr : F3_1<2, 0b100111,
430 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
431 "sra $b, $c, $dst",
432 [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
433def SRAri : F3_2<2, 0b100111,
434 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
435 "sra $b, $c, $dst",
436 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
437
438// Section B.13 - Add Instructions, p. 108
439def ADDrr : F3_1<2, 0b000000,
440 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
441 "add $b, $c, $dst",
442 [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
443def ADDri : F3_2<2, 0b000000,
444 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
445 "add $b, $c, $dst",
446 [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
Chris Lattnerfcb8a3a2006-02-10 07:35:42 +0000447
448// "LEA" forms of add (patterns to make tblgen happy)
449def LEA_ADDri : F3_2<2, 0b000000,
450 (ops IntRegs:$dst, MEMri:$addr),
451 "add ${addr:arith}, $dst",
452 [(set IntRegs:$dst, ADDRri:$addr)]>;
453
Chris Lattner158e1f52006-02-05 05:50:24 +0000454def ADDCCrr : F3_1<2, 0b010000,
455 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
456 "addcc $b, $c, $dst", []>;
457def ADDCCri : F3_2<2, 0b010000,
458 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
459 "addcc $b, $c, $dst", []>;
460def ADDXrr : F3_1<2, 0b001000,
461 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
462 "addx $b, $c, $dst", []>;
463def ADDXri : F3_2<2, 0b001000,
464 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
465 "addx $b, $c, $dst", []>;
466
467// Section B.15 - Subtract Instructions, p. 110
468def SUBrr : F3_1<2, 0b000100,
469 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
470 "sub $b, $c, $dst",
471 [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
472def SUBri : F3_2<2, 0b000100,
473 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
474 "sub $b, $c, $dst",
475 [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
476def SUBXrr : F3_1<2, 0b001100,
477 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
478 "subx $b, $c, $dst", []>;
479def SUBXri : F3_2<2, 0b001100,
480 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
481 "subx $b, $c, $dst", []>;
482def SUBCCrr : F3_1<2, 0b010100,
483 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
484 "subcc $b, $c, $dst",
485 [(set IntRegs:$dst, (SPcmpicc IntRegs:$b, IntRegs:$c))]>;
486def SUBCCri : F3_2<2, 0b010100,
487 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
488 "subcc $b, $c, $dst",
489 [(set IntRegs:$dst, (SPcmpicc IntRegs:$b, simm13:$c))]>;
490def SUBXCCrr: F3_1<2, 0b011100,
491 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
492 "subxcc $b, $c, $dst", []>;
493
494// Section B.18 - Multiply Instructions, p. 113
495def UMULrr : F3_1<2, 0b001010,
496 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
497 "umul $b, $c, $dst", []>;
498def UMULri : F3_2<2, 0b001010,
499 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
500 "umul $b, $c, $dst", []>;
Chris Lattnerc75d5b02006-02-09 05:06:36 +0000501
Chris Lattner158e1f52006-02-05 05:50:24 +0000502def SMULrr : F3_1<2, 0b001011,
503 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
504 "smul $b, $c, $dst",
505 [(set IntRegs:$dst, (mul IntRegs:$b, IntRegs:$c))]>;
506def SMULri : F3_2<2, 0b001011,
507 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
508 "smul $b, $c, $dst",
509 [(set IntRegs:$dst, (mul IntRegs:$b, simm13:$c))]>;
510
Chris Lattnerc75d5b02006-02-09 05:06:36 +0000511/*
512//===-------------------------
513// Sparc Example
514defm intinst<id OPC1, id OPC2, bits Opc, string asmstr, SDNode code> {
515 def OPC1 : F3_1<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
516 [(set IntRegs:$dst, (code IntRegs:$b, IntRegs:$c))]>;
517 def OPC2 : F3_2<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
518 [(set IntRegs:$dst, (code IntRegs:$b, simm13:$c))]>;
519}
520defm intinst_np<id OPC1, id OPC2, bits Opc, string asmstr> {
521 def OPC1 : F3_1<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
522 []>;
523 def OPC2 : F3_2<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
524 []>;
525}
526
527def intinstnp< ADDXrr, ADDXri, 0b001000, "addx $b, $c, $dst">;
528def intinst < SUBrr, SUBri, 0b000100, "sub $b, $c, $dst", sub>;
529def intinstnp< SUBXrr, SUBXri, 0b001100, "subx $b, $c, $dst">;
530def intinst <SUBCCrr, SUBCCri, 0b010100, "subcc $b, $c, $dst", SPcmpicc>;
531def intinst < SMULrr, SMULri, 0b001011, "smul $b, $c, $dst", mul>;
532
533//===-------------------------
534// X86 Example
535defm cmov32<id OPC1, id OPC2, int opc, string asmstr, PatLeaf cond> {
536 def OPC1 : I<opc, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
537 asmstr+" {$src2, $dst|$dst, $src2}",
538 [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, cond))]>, TB;
539 def OPC2 : I<opc, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
540 asmstr+" {$src2, $dst|$dst, $src2}",
541 [(set R32:$dst, (X86cmov R32:$src1,
542 (loadi32 addr:$src2), cond))]>, TB;
543}
544
545def cmov<CMOVL32rr, CMOVL32rm, 0x4C, "cmovl", X86_COND_L>;
546def cmov<CMOVB32rr, CMOVB32rm, 0x4C, "cmovb", X86_COND_B>;
547
548//===-------------------------
549// PPC Example
550
551def fpunop<id OPC1, id OPC2, id FORM, int op1, int op2, int op3, string asmstr,
552 SDNode code> {
553 def OPC1 : FORM<op1, op3, (ops F4RC:$frD, F4RC:$frB),
554 asmstr+" $frD, $frB", FPGeneral,
555 [(set F4RC:$frD, (code F4RC:$frB))]>;
556 def OPC2 : FORM<op2, op3, (ops F8RC:$frD, F8RC:$frB),
557 asmstr+" $frD, $frB", FPGeneral,
558 [(set F8RC:$frD, (code F8RC:$frB))]>;
559}
560
561def fpunop< FABSS, FABSD, XForm_26, 63, 63, 264, "fabs", fabs>;
562def fpunop<FNABSS, FNABSD, XForm_26, 63, 63, 136, "fnabs", fnabs>;
563def fpunop< FNEGS, FNEGD, XForm_26, 63, 63, 40, "fneg", fneg>;
564*/
565
Chris Lattner158e1f52006-02-05 05:50:24 +0000566// Section B.19 - Divide Instructions, p. 115
567def UDIVrr : F3_1<2, 0b001110,
568 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
569 "udiv $b, $c, $dst", []>;
570def UDIVri : F3_2<2, 0b001110,
571 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
572 "udiv $b, $c, $dst", []>;
573def SDIVrr : F3_1<2, 0b001111,
574 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
575 "sdiv $b, $c, $dst", []>;
576def SDIVri : F3_2<2, 0b001111,
577 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
578 "sdiv $b, $c, $dst", []>;
579
580// Section B.20 - SAVE and RESTORE, p. 117
581def SAVErr : F3_1<2, 0b111100,
582 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
583 "save $b, $c, $dst", []>;
584def SAVEri : F3_2<2, 0b111100,
585 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
586 "save $b, $c, $dst", []>;
587def RESTORErr : F3_1<2, 0b111101,
588 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
589 "restore $b, $c, $dst", []>;
590def RESTOREri : F3_2<2, 0b111101,
591 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
592 "restore $b, $c, $dst", []>;
593
594// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
595
596// conditional branch class:
597class BranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
598 : F2_2<cc, 0b010, ops, asmstr, pattern> {
599 let isBranch = 1;
600 let isTerminator = 1;
601 let hasDelaySlot = 1;
602 let noResults = 1;
603}
604
605let isBarrier = 1 in
606 def BA : BranchSP<0b1000, (ops brtarget:$dst),
607 "ba $dst",
608 [(br bb:$dst)]>;
609
610// FIXME: the encoding for the JIT should look at the condition field.
611def BCOND : BranchSP<0, (ops brtarget:$dst, CCOp:$cc),
612 "b$cc $dst",
Chris Lattner0c4dea42006-02-10 06:58:25 +0000613 [(SPbricc bb:$dst, imm:$cc)]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000614
615
616// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
617
618// floating-point conditional branch class:
619class FPBranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
620 : F2_2<cc, 0b110, ops, asmstr, pattern> {
621 let isBranch = 1;
622 let isTerminator = 1;
623 let hasDelaySlot = 1;
624 let noResults = 1;
625}
626
627// FIXME: the encoding for the JIT should look at the condition field.
628def FBCOND : FPBranchSP<0, (ops brtarget:$dst, CCOp:$cc),
629 "fb$cc $dst",
Chris Lattner0c4dea42006-02-10 06:58:25 +0000630 [(SPbrfcc bb:$dst, imm:$cc)]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000631
632
633// Section B.24 - Call and Link Instruction, p. 125
634// This is the only Format 1 instruction
635let Uses = [O0, O1, O2, O3, O4, O5],
636 hasDelaySlot = 1, isCall = 1, noResults = 1,
637 Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
638 D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in {
639 def CALL : InstSP<(ops calltarget:$dst),
640 "call $dst", []> {
641 bits<30> disp;
642 let op = 1;
643 let Inst{29-0} = disp;
644 }
645
646 // indirect calls
647 def JMPLrr : F3_1<2, 0b111000,
648 (ops MEMrr:$ptr),
649 "call $ptr",
650 [(call ADDRrr:$ptr)]>;
651 def JMPLri : F3_2<2, 0b111000,
652 (ops MEMri:$ptr),
653 "call $ptr",
654 [(call ADDRri:$ptr)]>;
655}
656
657// Section B.28 - Read State Register Instructions
658def RDY : F3_1<2, 0b101000,
659 (ops IntRegs:$dst),
660 "rd %y, $dst", []>;
661
662// Section B.29 - Write State Register Instructions
663def WRYrr : F3_1<2, 0b110000,
664 (ops IntRegs:$b, IntRegs:$c),
665 "wr $b, $c, %y", []>;
666def WRYri : F3_2<2, 0b110000,
667 (ops IntRegs:$b, i32imm:$c),
668 "wr $b, $c, %y", []>;
669
670// Convert Integer to Floating-point Instructions, p. 141
671def FITOS : F3_3<2, 0b110100, 0b011000100,
672 (ops FPRegs:$dst, FPRegs:$src),
673 "fitos $src, $dst",
674 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
675def FITOD : F3_3<2, 0b110100, 0b011001000,
676 (ops DFPRegs:$dst, FPRegs:$src),
677 "fitod $src, $dst",
678 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
679
680// Convert Floating-point to Integer Instructions, p. 142
681def FSTOI : F3_3<2, 0b110100, 0b011010001,
682 (ops FPRegs:$dst, FPRegs:$src),
683 "fstoi $src, $dst",
684 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
685def FDTOI : F3_3<2, 0b110100, 0b011010010,
686 (ops FPRegs:$dst, DFPRegs:$src),
687 "fdtoi $src, $dst",
688 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
689
690// Convert between Floating-point Formats Instructions, p. 143
691def FSTOD : F3_3<2, 0b110100, 0b011001001,
692 (ops DFPRegs:$dst, FPRegs:$src),
693 "fstod $src, $dst",
694 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
695def FDTOS : F3_3<2, 0b110100, 0b011000110,
696 (ops FPRegs:$dst, DFPRegs:$src),
697 "fdtos $src, $dst",
698 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
699
700// Floating-point Move Instructions, p. 144
701def FMOVS : F3_3<2, 0b110100, 0b000000001,
702 (ops FPRegs:$dst, FPRegs:$src),
703 "fmovs $src, $dst", []>;
704def FNEGS : F3_3<2, 0b110100, 0b000000101,
705 (ops FPRegs:$dst, FPRegs:$src),
706 "fnegs $src, $dst",
707 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
708def FABSS : F3_3<2, 0b110100, 0b000001001,
709 (ops FPRegs:$dst, FPRegs:$src),
710 "fabss $src, $dst",
711 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
712
713
714// Floating-point Square Root Instructions, p.145
715def FSQRTS : F3_3<2, 0b110100, 0b000101001,
716 (ops FPRegs:$dst, FPRegs:$src),
717 "fsqrts $src, $dst",
718 [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
719def FSQRTD : F3_3<2, 0b110100, 0b000101010,
720 (ops DFPRegs:$dst, DFPRegs:$src),
721 "fsqrtd $src, $dst",
722 [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
723
724
725
726// Floating-point Add and Subtract Instructions, p. 146
727def FADDS : F3_3<2, 0b110100, 0b001000001,
728 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
729 "fadds $src1, $src2, $dst",
730 [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
731def FADDD : F3_3<2, 0b110100, 0b001000010,
732 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
733 "faddd $src1, $src2, $dst",
734 [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
735def FSUBS : F3_3<2, 0b110100, 0b001000101,
736 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
737 "fsubs $src1, $src2, $dst",
738 [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
739def FSUBD : F3_3<2, 0b110100, 0b001000110,
740 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
741 "fsubd $src1, $src2, $dst",
742 [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
743
744// Floating-point Multiply and Divide Instructions, p. 147
745def FMULS : F3_3<2, 0b110100, 0b001001001,
746 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
747 "fmuls $src1, $src2, $dst",
748 [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
749def FMULD : F3_3<2, 0b110100, 0b001001010,
750 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
751 "fmuld $src1, $src2, $dst",
752 [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
753def FSMULD : F3_3<2, 0b110100, 0b001101001,
754 (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
755 "fsmuld $src1, $src2, $dst",
756 [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
757 (fextend FPRegs:$src2)))]>;
758def FDIVS : F3_3<2, 0b110100, 0b001001101,
759 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
760 "fdivs $src1, $src2, $dst",
761 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
762def FDIVD : F3_3<2, 0b110100, 0b001001110,
763 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
764 "fdivd $src1, $src2, $dst",
765 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
766
767// Floating-point Compare Instructions, p. 148
768// Note: the 2nd template arg is different for these guys.
769// Note 2: the result of a FCMP is not available until the 2nd cycle
770// after the instr is retired, but there is no interlock. This behavior
771// is modelled with a forced noop after the instruction.
772def FCMPS : F3_3<2, 0b110101, 0b001010001,
773 (ops FPRegs:$src1, FPRegs:$src2),
774 "fcmps $src1, $src2\n\tnop",
Chris Lattner0c4dea42006-02-10 06:58:25 +0000775 [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000776def FCMPD : F3_3<2, 0b110101, 0b001010010,
777 (ops DFPRegs:$src1, DFPRegs:$src2),
778 "fcmpd $src1, $src2\n\tnop",
Chris Lattner0c4dea42006-02-10 06:58:25 +0000779 [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000780
781
782//===----------------------------------------------------------------------===//
783// V9 Instructions
784//===----------------------------------------------------------------------===//
785
786// V9 Conditional Moves.
787let Predicates = [HasV9], isTwoAddress = 1 in {
788 // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
789 // FIXME: Add instruction encodings for the JIT some day.
790 def MOVICCrr
791 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
792 "mov$cc %icc, $F, $dst",
793 [(set IntRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000794 (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000795 def MOVICCri
796 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
797 "mov$cc %icc, $F, $dst",
798 [(set IntRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000799 (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000800
801 def MOVFCCrr
802 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
803 "mov$cc %fcc0, $F, $dst",
804 [(set IntRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000805 (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000806 def MOVFCCri
807 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
808 "mov$cc %fcc0, $F, $dst",
809 [(set IntRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000810 (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000811
812 def FMOVS_ICC
813 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
814 "fmovs$cc %icc, $F, $dst",
815 [(set FPRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000816 (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000817 def FMOVD_ICC
818 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
819 "fmovd$cc %icc, $F, $dst",
820 [(set DFPRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000821 (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000822 def FMOVS_FCC
823 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
824 "fmovs$cc %fcc0, $F, $dst",
825 [(set FPRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000826 (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000827 def FMOVD_FCC
828 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
829 "fmovd$cc %fcc0, $F, $dst",
830 [(set DFPRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000831 (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000832
833}
834
835// Floating-Point Move Instructions, p. 164 of the V9 manual.
836let Predicates = [HasV9] in {
837 def FMOVD : F3_3<2, 0b110100, 0b000000010,
838 (ops DFPRegs:$dst, DFPRegs:$src),
839 "fmovd $src, $dst", []>;
840 def FNEGD : F3_3<2, 0b110100, 0b000000110,
841 (ops DFPRegs:$dst, DFPRegs:$src),
842 "fnegd $src, $dst",
843 [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
844 def FABSD : F3_3<2, 0b110100, 0b000001010,
845 (ops DFPRegs:$dst, DFPRegs:$src),
846 "fabsd $src, $dst",
847 [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
848}
849
850// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
851// the top 32-bits before using it. To do this clearing, we use a SLLri X,0.
852def POPCrr : F3_1<2, 0b101110,
853 (ops IntRegs:$dst, IntRegs:$src),
854 "popc $src, $dst", []>, Requires<[HasV9]>;
855def : Pat<(ctpop IntRegs:$src),
856 (POPCrr (SLLri IntRegs:$src, 0))>;
857
858//===----------------------------------------------------------------------===//
859// Non-Instruction Patterns
860//===----------------------------------------------------------------------===//
861
862// Small immediates.
863def : Pat<(i32 simm13:$val),
864 (ORri G0, imm:$val)>;
865// Arbitrary immediates.
866def : Pat<(i32 imm:$val),
867 (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
868
869// Global addresses, constant pool entries
870def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
871def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
872def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
873def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
874
875// Add reg, lo. This is used when taking the addr of a global/constpool entry.
876def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
877 (ADDri IntRegs:$r, tglobaladdr:$in)>;
878def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
879 (ADDri IntRegs:$r, tconstpool:$in)>;
880
Chris Lattner158e1f52006-02-05 05:50:24 +0000881// Calls:
882def : Pat<(call tglobaladdr:$dst),
883 (CALL tglobaladdr:$dst)>;
Chris Lattnerfcb8a3a2006-02-10 07:35:42 +0000884def : Pat<(call texternalsym:$dst),
885 (CALL texternalsym:$dst)>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000886
887def : Pat<(ret), (RETL)>;
888
889// Map integer extload's to zextloads.
890def : Pat<(i32 (extload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
891def : Pat<(i32 (extload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
892def : Pat<(i32 (extload ADDRrr:$src, i8)), (LDUBrr ADDRrr:$src)>;
893def : Pat<(i32 (extload ADDRri:$src, i8)), (LDUBri ADDRri:$src)>;
894def : Pat<(i32 (extload ADDRrr:$src, i16)), (LDUHrr ADDRrr:$src)>;
895def : Pat<(i32 (extload ADDRri:$src, i16)), (LDUHri ADDRri:$src)>;
896
897// zextload bool -> zextload byte
898def : Pat<(i32 (zextload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
899def : Pat<(i32 (zextload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
900
901// truncstore bool -> truncstore byte.
902def : Pat<(truncstore IntRegs:$src, ADDRrr:$addr, i1),
903 (STBrr ADDRrr:$addr, IntRegs:$src)>;
904def : Pat<(truncstore IntRegs:$src, ADDRri:$addr, i1),
905 (STBri ADDRri:$addr, IntRegs:$src)>;