blob: f03c7a4e901b30f64d54fcaedf2af9cc710af262 [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000023#include "llvm/Support/Compiler.h"
24#include <algorithm>
25
26namespace clang {
27
28/// GetConversionCategory - Retrieve the implicit conversion
29/// category corresponding to the given implicit conversion kind.
30ImplicitConversionCategory
31GetConversionCategory(ImplicitConversionKind Kind) {
32 static const ImplicitConversionCategory
33 Category[(int)ICK_Num_Conversion_Kinds] = {
34 ICC_Identity,
35 ICC_Lvalue_Transformation,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Qualification_Adjustment,
39 ICC_Promotion,
40 ICC_Promotion,
41 ICC_Conversion,
42 ICC_Conversion,
43 ICC_Conversion,
44 ICC_Conversion,
45 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000046 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000047 ICC_Conversion
48 };
49 return Category[(int)Kind];
50}
51
52/// GetConversionRank - Retrieve the implicit conversion rank
53/// corresponding to the given implicit conversion kind.
54ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
55 static const ImplicitConversionRank
56 Rank[(int)ICK_Num_Conversion_Kinds] = {
57 ICR_Exact_Match,
58 ICR_Exact_Match,
59 ICR_Exact_Match,
60 ICR_Exact_Match,
61 ICR_Exact_Match,
62 ICR_Promotion,
63 ICR_Promotion,
64 ICR_Conversion,
65 ICR_Conversion,
66 ICR_Conversion,
67 ICR_Conversion,
68 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000069 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000070 ICR_Conversion
71 };
72 return Rank[(int)Kind];
73}
74
75/// GetImplicitConversionName - Return the name of this kind of
76/// implicit conversion.
77const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
78 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
79 "No conversion",
80 "Lvalue-to-rvalue",
81 "Array-to-pointer",
82 "Function-to-pointer",
83 "Qualification",
84 "Integral promotion",
85 "Floating point promotion",
86 "Integral conversion",
87 "Floating conversion",
88 "Floating-integral conversion",
89 "Pointer conversion",
90 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +000091 "Boolean conversion",
92 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000093 };
94 return Name[Kind];
95}
96
Douglas Gregor60d62c22008-10-31 16:23:19 +000097/// StandardConversionSequence - Set the standard conversion
98/// sequence to the identity conversion.
99void StandardConversionSequence::setAsIdentityConversion() {
100 First = ICK_Identity;
101 Second = ICK_Identity;
102 Third = ICK_Identity;
103 Deprecated = false;
104 ReferenceBinding = false;
105 DirectBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000106 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000107}
108
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000109/// getRank - Retrieve the rank of this standard conversion sequence
110/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
111/// implicit conversions.
112ImplicitConversionRank StandardConversionSequence::getRank() const {
113 ImplicitConversionRank Rank = ICR_Exact_Match;
114 if (GetConversionRank(First) > Rank)
115 Rank = GetConversionRank(First);
116 if (GetConversionRank(Second) > Rank)
117 Rank = GetConversionRank(Second);
118 if (GetConversionRank(Third) > Rank)
119 Rank = GetConversionRank(Third);
120 return Rank;
121}
122
123/// isPointerConversionToBool - Determines whether this conversion is
124/// a conversion of a pointer or pointer-to-member to bool. This is
125/// used as part of the ranking of standard conversion sequences
126/// (C++ 13.3.3.2p4).
127bool StandardConversionSequence::isPointerConversionToBool() const
128{
129 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
130 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
131
132 // Note that FromType has not necessarily been transformed by the
133 // array-to-pointer or function-to-pointer implicit conversions, so
134 // check for their presence as well as checking whether FromType is
135 // a pointer.
136 if (ToType->isBooleanType() &&
137 (FromType->isPointerType() ||
138 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
139 return true;
140
141 return false;
142}
143
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000144/// isPointerConversionToVoidPointer - Determines whether this
145/// conversion is a conversion of a pointer to a void pointer. This is
146/// used as part of the ranking of standard conversion sequences (C++
147/// 13.3.3.2p4).
148bool
149StandardConversionSequence::
150isPointerConversionToVoidPointer(ASTContext& Context) const
151{
152 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
153 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
154
155 // Note that FromType has not necessarily been transformed by the
156 // array-to-pointer implicit conversion, so check for its presence
157 // and redo the conversion to get a pointer.
158 if (First == ICK_Array_To_Pointer)
159 FromType = Context.getArrayDecayedType(FromType);
160
161 if (Second == ICK_Pointer_Conversion)
162 if (const PointerType* ToPtrType = ToType->getAsPointerType())
163 return ToPtrType->getPointeeType()->isVoidType();
164
165 return false;
166}
167
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000168/// DebugPrint - Print this standard conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void StandardConversionSequence::DebugPrint() const {
171 bool PrintedSomething = false;
172 if (First != ICK_Identity) {
173 fprintf(stderr, "%s", GetImplicitConversionName(First));
174 PrintedSomething = true;
175 }
176
177 if (Second != ICK_Identity) {
178 if (PrintedSomething) {
179 fprintf(stderr, " -> ");
180 }
181 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000182
183 if (CopyConstructor) {
184 fprintf(stderr, " (by copy constructor)");
185 } else if (DirectBinding) {
186 fprintf(stderr, " (direct reference binding)");
187 } else if (ReferenceBinding) {
188 fprintf(stderr, " (reference binding)");
189 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000190 PrintedSomething = true;
191 }
192
193 if (Third != ICK_Identity) {
194 if (PrintedSomething) {
195 fprintf(stderr, " -> ");
196 }
197 fprintf(stderr, "%s", GetImplicitConversionName(Third));
198 PrintedSomething = true;
199 }
200
201 if (!PrintedSomething) {
202 fprintf(stderr, "No conversions required");
203 }
204}
205
206/// DebugPrint - Print this user-defined conversion sequence to standard
207/// error. Useful for debugging overloading issues.
208void UserDefinedConversionSequence::DebugPrint() const {
209 if (Before.First || Before.Second || Before.Third) {
210 Before.DebugPrint();
211 fprintf(stderr, " -> ");
212 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000213 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000214 if (After.First || After.Second || After.Third) {
215 fprintf(stderr, " -> ");
216 After.DebugPrint();
217 }
218}
219
220/// DebugPrint - Print this implicit conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void ImplicitConversionSequence::DebugPrint() const {
223 switch (ConversionKind) {
224 case StandardConversion:
225 fprintf(stderr, "Standard conversion: ");
226 Standard.DebugPrint();
227 break;
228 case UserDefinedConversion:
229 fprintf(stderr, "User-defined conversion: ");
230 UserDefined.DebugPrint();
231 break;
232 case EllipsisConversion:
233 fprintf(stderr, "Ellipsis conversion");
234 break;
235 case BadConversion:
236 fprintf(stderr, "Bad conversion");
237 break;
238 }
239
240 fprintf(stderr, "\n");
241}
242
243// IsOverload - Determine whether the given New declaration is an
244// overload of the Old declaration. This routine returns false if New
245// and Old cannot be overloaded, e.g., if they are functions with the
246// same signature (C++ 1.3.10) or if the Old declaration isn't a
247// function (or overload set). When it does return false and Old is an
248// OverloadedFunctionDecl, MatchedDecl will be set to point to the
249// FunctionDecl that New cannot be overloaded with.
250//
251// Example: Given the following input:
252//
253// void f(int, float); // #1
254// void f(int, int); // #2
255// int f(int, int); // #3
256//
257// When we process #1, there is no previous declaration of "f",
258// so IsOverload will not be used.
259//
260// When we process #2, Old is a FunctionDecl for #1. By comparing the
261// parameter types, we see that #1 and #2 are overloaded (since they
262// have different signatures), so this routine returns false;
263// MatchedDecl is unchanged.
264//
265// When we process #3, Old is an OverloadedFunctionDecl containing #1
266// and #2. We compare the signatures of #3 to #1 (they're overloaded,
267// so we do nothing) and then #3 to #2. Since the signatures of #3 and
268// #2 are identical (return types of functions are not part of the
269// signature), IsOverload returns false and MatchedDecl will be set to
270// point to the FunctionDecl for #2.
271bool
272Sema::IsOverload(FunctionDecl *New, Decl* OldD,
273 OverloadedFunctionDecl::function_iterator& MatchedDecl)
274{
275 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
276 // Is this new function an overload of every function in the
277 // overload set?
278 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
279 FuncEnd = Ovl->function_end();
280 for (; Func != FuncEnd; ++Func) {
281 if (!IsOverload(New, *Func, MatchedDecl)) {
282 MatchedDecl = Func;
283 return false;
284 }
285 }
286
287 // This function overloads every function in the overload set.
288 return true;
289 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
290 // Is the function New an overload of the function Old?
291 QualType OldQType = Context.getCanonicalType(Old->getType());
292 QualType NewQType = Context.getCanonicalType(New->getType());
293
294 // Compare the signatures (C++ 1.3.10) of the two functions to
295 // determine whether they are overloads. If we find any mismatch
296 // in the signature, they are overloads.
297
298 // If either of these functions is a K&R-style function (no
299 // prototype), then we consider them to have matching signatures.
300 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
301 isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
302 return false;
303
304 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
305 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
306
307 // The signature of a function includes the types of its
308 // parameters (C++ 1.3.10), which includes the presence or absence
309 // of the ellipsis; see C++ DR 357).
310 if (OldQType != NewQType &&
311 (OldType->getNumArgs() != NewType->getNumArgs() ||
312 OldType->isVariadic() != NewType->isVariadic() ||
313 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
314 NewType->arg_type_begin())))
315 return true;
316
317 // If the function is a class member, its signature includes the
318 // cv-qualifiers (if any) on the function itself.
319 //
320 // As part of this, also check whether one of the member functions
321 // is static, in which case they are not overloads (C++
322 // 13.1p2). While not part of the definition of the signature,
323 // this check is important to determine whether these functions
324 // can be overloaded.
325 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
326 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
327 if (OldMethod && NewMethod &&
328 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000329 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000330 return true;
331
332 // The signatures match; this is not an overload.
333 return false;
334 } else {
335 // (C++ 13p1):
336 // Only function declarations can be overloaded; object and type
337 // declarations cannot be overloaded.
338 return false;
339 }
340}
341
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000342/// TryImplicitConversion - Attempt to perform an implicit conversion
343/// from the given expression (Expr) to the given type (ToType). This
344/// function returns an implicit conversion sequence that can be used
345/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000346///
347/// void f(float f);
348/// void g(int i) { f(i); }
349///
350/// this routine would produce an implicit conversion sequence to
351/// describe the initialization of f from i, which will be a standard
352/// conversion sequence containing an lvalue-to-rvalue conversion (C++
353/// 4.1) followed by a floating-integral conversion (C++ 4.9).
354//
355/// Note that this routine only determines how the conversion can be
356/// performed; it does not actually perform the conversion. As such,
357/// it will not produce any diagnostics if no conversion is available,
358/// but will instead return an implicit conversion sequence of kind
359/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000360///
361/// If @p SuppressUserConversions, then user-defined conversions are
362/// not permitted.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000363ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000364Sema::TryImplicitConversion(Expr* From, QualType ToType,
365 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000366{
367 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000368 if (IsStandardConversion(From, ToType, ICS.Standard))
369 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000370 else if (!SuppressUserConversions &&
371 IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000372 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000373 // C++ [over.ics.user]p4:
374 // A conversion of an expression of class type to the same class
375 // type is given Exact Match rank, and a conversion of an
376 // expression of class type to a base class of that type is
377 // given Conversion rank, in spite of the fact that a copy
378 // constructor (i.e., a user-defined conversion function) is
379 // called for those cases.
380 if (CXXConstructorDecl *Constructor
381 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
382 if (Constructor->isCopyConstructor(Context)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000383 // Turn this into a "standard" conversion sequence, so that it
384 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000385 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
386 ICS.Standard.setAsIdentityConversion();
387 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
388 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000389 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000390 if (IsDerivedFrom(From->getType().getUnqualifiedType(),
391 ToType.getUnqualifiedType()))
392 ICS.Standard.Second = ICK_Derived_To_Base;
393 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000394 }
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000395 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000396 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000397
398 return ICS;
399}
400
401/// IsStandardConversion - Determines whether there is a standard
402/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
403/// expression From to the type ToType. Standard conversion sequences
404/// only consider non-class types; for conversions that involve class
405/// types, use TryImplicitConversion. If a conversion exists, SCS will
406/// contain the standard conversion sequence required to perform this
407/// conversion and this routine will return true. Otherwise, this
408/// routine will return false and the value of SCS is unspecified.
409bool
410Sema::IsStandardConversion(Expr* From, QualType ToType,
411 StandardConversionSequence &SCS)
412{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000413 QualType FromType = From->getType();
414
Douglas Gregor60d62c22008-10-31 16:23:19 +0000415 // There are no standard conversions for class types, so abort early.
416 if (FromType->isRecordType() || ToType->isRecordType())
417 return false;
418
419 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000420 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000421 SCS.Deprecated = false;
Douglas Gregor45920e82008-12-19 17:40:08 +0000422 SCS.IncompatibleObjC = false;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000423 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000424 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000425
426 // The first conversion can be an lvalue-to-rvalue conversion,
427 // array-to-pointer conversion, or function-to-pointer conversion
428 // (C++ 4p1).
429
430 // Lvalue-to-rvalue conversion (C++ 4.1):
431 // An lvalue (3.10) of a non-function, non-array type T can be
432 // converted to an rvalue.
433 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
434 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000435 !FromType->isFunctionType() && !FromType->isArrayType() &&
436 !FromType->isOverloadType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000437 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000438
439 // If T is a non-class type, the type of the rvalue is the
440 // cv-unqualified version of T. Otherwise, the type of the rvalue
441 // is T (C++ 4.1p1).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000442 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000443 }
444 // Array-to-pointer conversion (C++ 4.2)
445 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000446 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000447
448 // An lvalue or rvalue of type "array of N T" or "array of unknown
449 // bound of T" can be converted to an rvalue of type "pointer to
450 // T" (C++ 4.2p1).
451 FromType = Context.getArrayDecayedType(FromType);
452
453 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
454 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000455 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000456
457 // For the purpose of ranking in overload resolution
458 // (13.3.3.1.1), this conversion is considered an
459 // array-to-pointer conversion followed by a qualification
460 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000461 SCS.Second = ICK_Identity;
462 SCS.Third = ICK_Qualification;
463 SCS.ToTypePtr = ToType.getAsOpaquePtr();
464 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000465 }
466 }
467 // Function-to-pointer conversion (C++ 4.3).
468 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000469 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000470
471 // An lvalue of function type T can be converted to an rvalue of
472 // type "pointer to T." The result is a pointer to the
473 // function. (C++ 4.3p1).
474 FromType = Context.getPointerType(FromType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000475 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000476 // Address of overloaded function (C++ [over.over]).
477 else if (FunctionDecl *Fn
478 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
479 SCS.First = ICK_Function_To_Pointer;
480
481 // We were able to resolve the address of the overloaded function,
482 // so we can convert to the type of that function.
483 FromType = Fn->getType();
484 if (ToType->isReferenceType())
485 FromType = Context.getReferenceType(FromType);
486 else
487 FromType = Context.getPointerType(FromType);
488 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000489 // We don't require any conversions for the first step.
490 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000491 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000492 }
493
494 // The second conversion can be an integral promotion, floating
495 // point promotion, integral conversion, floating point conversion,
496 // floating-integral conversion, pointer conversion,
497 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregor45920e82008-12-19 17:40:08 +0000498 bool IncompatibleObjC = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000499 if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
500 Context.getCanonicalType(ToType).getUnqualifiedType()) {
501 // The unqualified versions of the types are the same: there's no
502 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000503 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000504 }
505 // Integral promotion (C++ 4.5).
506 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000507 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000508 FromType = ToType.getUnqualifiedType();
509 }
510 // Floating point promotion (C++ 4.6).
511 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000512 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000513 FromType = ToType.getUnqualifiedType();
514 }
515 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000516 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000517 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000518 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000519 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000520 FromType = ToType.getUnqualifiedType();
521 }
522 // Floating point conversions (C++ 4.8).
523 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000524 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000525 FromType = ToType.getUnqualifiedType();
526 }
527 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000528 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000529 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000530 ToType->isIntegralType() && !ToType->isBooleanType() &&
531 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000532 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
533 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000534 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000535 FromType = ToType.getUnqualifiedType();
536 }
537 // Pointer conversions (C++ 4.10).
Douglas Gregor45920e82008-12-19 17:40:08 +0000538 else if (IsPointerConversion(From, FromType, ToType, FromType,
539 IncompatibleObjC)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000540 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor45920e82008-12-19 17:40:08 +0000541 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl07779722008-10-31 14:43:28 +0000542 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000543 // FIXME: Pointer to member conversions (4.11).
544 // Boolean conversions (C++ 4.12).
545 // FIXME: pointer-to-member type
546 else if (ToType->isBooleanType() &&
547 (FromType->isArithmeticType() ||
548 FromType->isEnumeralType() ||
549 FromType->isPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000550 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000551 FromType = Context.BoolTy;
552 } else {
553 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000554 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000555 }
556
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000557 QualType CanonFrom;
558 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000559 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000560 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000561 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000562 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000563 CanonFrom = Context.getCanonicalType(FromType);
564 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000565 } else {
566 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000567 SCS.Third = ICK_Identity;
568
569 // C++ [over.best.ics]p6:
570 // [...] Any difference in top-level cv-qualification is
571 // subsumed by the initialization itself and does not constitute
572 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000573 CanonFrom = Context.getCanonicalType(FromType);
574 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000575 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000576 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
577 FromType = ToType;
578 CanonFrom = CanonTo;
579 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000580 }
581
582 // If we have not converted the argument type to the parameter type,
583 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000584 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000585 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000586
Douglas Gregor60d62c22008-10-31 16:23:19 +0000587 SCS.ToTypePtr = FromType.getAsOpaquePtr();
588 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000589}
590
591/// IsIntegralPromotion - Determines whether the conversion from the
592/// expression From (whose potentially-adjusted type is FromType) to
593/// ToType is an integral promotion (C++ 4.5). If so, returns true and
594/// sets PromotedType to the promoted type.
595bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
596{
597 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000598 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000599 if (!To) {
600 return false;
601 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000602
603 // An rvalue of type char, signed char, unsigned char, short int, or
604 // unsigned short int can be converted to an rvalue of type int if
605 // int can represent all the values of the source type; otherwise,
606 // the source rvalue can be converted to an rvalue of type unsigned
607 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000608 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000609 if (// We can promote any signed, promotable integer type to an int
610 (FromType->isSignedIntegerType() ||
611 // We can promote any unsigned integer type whose size is
612 // less than int to an int.
613 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000614 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000615 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000616 }
617
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000618 return To->getKind() == BuiltinType::UInt;
619 }
620
621 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
622 // can be converted to an rvalue of the first of the following types
623 // that can represent all the values of its underlying type: int,
624 // unsigned int, long, or unsigned long (C++ 4.5p2).
625 if ((FromType->isEnumeralType() || FromType->isWideCharType())
626 && ToType->isIntegerType()) {
627 // Determine whether the type we're converting from is signed or
628 // unsigned.
629 bool FromIsSigned;
630 uint64_t FromSize = Context.getTypeSize(FromType);
631 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
632 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
633 FromIsSigned = UnderlyingType->isSignedIntegerType();
634 } else {
635 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
636 FromIsSigned = true;
637 }
638
639 // The types we'll try to promote to, in the appropriate
640 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000641 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000642 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000643 Context.LongTy, Context.UnsignedLongTy ,
644 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000645 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000646 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000647 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
648 if (FromSize < ToSize ||
649 (FromSize == ToSize &&
650 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
651 // We found the type that we can promote to. If this is the
652 // type we wanted, we have a promotion. Otherwise, no
653 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000654 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000655 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
656 }
657 }
658 }
659
660 // An rvalue for an integral bit-field (9.6) can be converted to an
661 // rvalue of type int if int can represent all the values of the
662 // bit-field; otherwise, it can be converted to unsigned int if
663 // unsigned int can represent all the values of the bit-field. If
664 // the bit-field is larger yet, no integral promotion applies to
665 // it. If the bit-field has an enumerated type, it is treated as any
666 // other value of that type for promotion purposes (C++ 4.5p3).
667 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
668 using llvm::APSInt;
669 FieldDecl *MemberDecl = MemRef->getMemberDecl();
670 APSInt BitWidth;
671 if (MemberDecl->isBitField() &&
672 FromType->isIntegralType() && !FromType->isEnumeralType() &&
673 From->isIntegerConstantExpr(BitWidth, Context)) {
674 APSInt ToSize(Context.getTypeSize(ToType));
675
676 // Are we promoting to an int from a bitfield that fits in an int?
677 if (BitWidth < ToSize ||
Sebastian Redl07779722008-10-31 14:43:28 +0000678 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000679 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000680 }
681
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000682 // Are we promoting to an unsigned int from an unsigned bitfield
683 // that fits into an unsigned int?
Sebastian Redl07779722008-10-31 14:43:28 +0000684 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000685 return To->getKind() == BuiltinType::UInt;
Sebastian Redl07779722008-10-31 14:43:28 +0000686 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000687
688 return false;
689 }
690 }
691
692 // An rvalue of type bool can be converted to an rvalue of type int,
693 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000694 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000695 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000696 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000697
698 return false;
699}
700
701/// IsFloatingPointPromotion - Determines whether the conversion from
702/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
703/// returns true and sets PromotedType to the promoted type.
704bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
705{
706 /// An rvalue of type float can be converted to an rvalue of type
707 /// double. (C++ 4.6p1).
708 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
709 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
710 if (FromBuiltin->getKind() == BuiltinType::Float &&
711 ToBuiltin->getKind() == BuiltinType::Double)
712 return true;
713
714 return false;
715}
716
Douglas Gregorcb7de522008-11-26 23:31:11 +0000717/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
718/// the pointer type FromPtr to a pointer to type ToPointee, with the
719/// same type qualifiers as FromPtr has on its pointee type. ToType,
720/// if non-empty, will be a pointer to ToType that may or may not have
721/// the right set of qualifiers on its pointee.
722static QualType
723BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
724 QualType ToPointee, QualType ToType,
725 ASTContext &Context) {
726 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
727 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
728 unsigned Quals = CanonFromPointee.getCVRQualifiers();
729
730 // Exact qualifier match -> return the pointer type we're converting to.
731 if (CanonToPointee.getCVRQualifiers() == Quals) {
732 // ToType is exactly what we need. Return it.
733 if (ToType.getTypePtr())
734 return ToType;
735
736 // Build a pointer to ToPointee. It has the right qualifiers
737 // already.
738 return Context.getPointerType(ToPointee);
739 }
740
741 // Just build a canonical type that has the right qualifiers.
742 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
743}
744
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000745/// IsPointerConversion - Determines whether the conversion of the
746/// expression From, which has the (possibly adjusted) type FromType,
747/// can be converted to the type ToType via a pointer conversion (C++
748/// 4.10). If so, returns true and places the converted type (that
749/// might differ from ToType in its cv-qualifiers at some level) into
750/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000751///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000752/// This routine also supports conversions to and from block pointers
753/// and conversions with Objective-C's 'id', 'id<protocols...>', and
754/// pointers to interfaces. FIXME: Once we've determined the
755/// appropriate overloading rules for Objective-C, we may want to
756/// split the Objective-C checks into a different routine; however,
757/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor45920e82008-12-19 17:40:08 +0000758/// conversions, so for now they live here. IncompatibleObjC will be
759/// set if the conversion is an allowed Objective-C conversion that
760/// should result in a warning.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000761bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor45920e82008-12-19 17:40:08 +0000762 QualType& ConvertedType,
763 bool &IncompatibleObjC)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000764{
Douglas Gregor45920e82008-12-19 17:40:08 +0000765 IncompatibleObjC = false;
766
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000767 // Blocks: Block pointers can be converted to void*.
768 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
769 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
770 ConvertedType = ToType;
771 return true;
772 }
773 // Blocks: A null pointer constant can be converted to a block
774 // pointer type.
775 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
776 ConvertedType = ToType;
777 return true;
778 }
779
Douglas Gregor7ca09762008-11-27 01:19:21 +0000780 // Conversions with Objective-C's id<...>.
781 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
782 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
783 ConvertedType = ToType;
784 return true;
785 }
786
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000787 const PointerType* ToTypePtr = ToType->getAsPointerType();
788 if (!ToTypePtr)
789 return false;
790
791 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
792 if (From->isNullPointerConstant(Context)) {
793 ConvertedType = ToType;
794 return true;
795 }
Sebastian Redl07779722008-10-31 14:43:28 +0000796
Douglas Gregorcb7de522008-11-26 23:31:11 +0000797 // Beyond this point, both types need to be pointers.
798 const PointerType *FromTypePtr = FromType->getAsPointerType();
799 if (!FromTypePtr)
800 return false;
801
802 QualType FromPointeeType = FromTypePtr->getPointeeType();
803 QualType ToPointeeType = ToTypePtr->getPointeeType();
804
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000805 // An rvalue of type "pointer to cv T," where T is an object type,
806 // can be converted to an rvalue of type "pointer to cv void" (C++
807 // 4.10p2).
Douglas Gregorcb7de522008-11-26 23:31:11 +0000808 if (FromPointeeType->isIncompleteOrObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000809 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
810 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000811 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000812 return true;
813 }
814
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000815 // C++ [conv.ptr]p3:
816 //
817 // An rvalue of type "pointer to cv D," where D is a class type,
818 // can be converted to an rvalue of type "pointer to cv B," where
819 // B is a base class (clause 10) of D. If B is an inaccessible
820 // (clause 11) or ambiguous (10.2) base class of D, a program that
821 // necessitates this conversion is ill-formed. The result of the
822 // conversion is a pointer to the base class sub-object of the
823 // derived class object. The null pointer value is converted to
824 // the null pointer value of the destination type.
825 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000826 // Note that we do not check for ambiguity or inaccessibility
827 // here. That is handled by CheckPointerConversion.
Douglas Gregorcb7de522008-11-26 23:31:11 +0000828 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
829 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000830 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
831 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000832 ToType, Context);
833 return true;
834 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000835
Douglas Gregorcb7de522008-11-26 23:31:11 +0000836 // Objective C++: We're able to convert from a pointer to an
837 // interface to a pointer to a different interface.
838 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
839 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
840 if (FromIface && ToIface &&
841 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000842 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
843 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000844 ToType, Context);
845 return true;
846 }
847
Douglas Gregor45920e82008-12-19 17:40:08 +0000848 if (FromIface && ToIface &&
849 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
850 // Okay: this is some kind of implicit downcast of Objective-C
851 // interfaces, which is permitted. However, we're going to
852 // complain about it.
853 IncompatibleObjC = true;
854 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
855 ToPointeeType,
856 ToType, Context);
857 return true;
858 }
859
Douglas Gregorcb7de522008-11-26 23:31:11 +0000860 // Objective C++: We're able to convert between "id" and a pointer
861 // to any interface (in both directions).
862 if ((FromIface && Context.isObjCIdType(ToPointeeType))
863 || (ToIface && Context.isObjCIdType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000864 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
865 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000866 ToType, Context);
867 return true;
868 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000869
Douglas Gregordda78892008-12-18 23:43:31 +0000870 // Objective C++: Allow conversions between the Objective-C "id" and
871 // "Class", in either direction.
872 if ((Context.isObjCIdType(FromPointeeType) &&
873 Context.isObjCClassType(ToPointeeType)) ||
874 (Context.isObjCClassType(FromPointeeType) &&
875 Context.isObjCIdType(ToPointeeType))) {
876 ConvertedType = ToType;
877 return true;
878 }
879
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000880 return false;
881}
882
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000883/// CheckPointerConversion - Check the pointer conversion from the
884/// expression From to the type ToType. This routine checks for
885/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
886/// conversions for which IsPointerConversion has already returned
887/// true. It returns true and produces a diagnostic if there was an
888/// error, or returns false otherwise.
889bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
890 QualType FromType = From->getType();
891
892 if (const PointerType *FromPtrType = FromType->getAsPointerType())
893 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Sebastian Redl07779722008-10-31 14:43:28 +0000894 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
895 /*DetectVirtual=*/false);
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000896 QualType FromPointeeType = FromPtrType->getPointeeType(),
897 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregordda78892008-12-18 23:43:31 +0000898
899 // Objective-C++ conversions are always okay.
900 // FIXME: We should have a different class of conversions for
901 // the Objective-C++ implicit conversions.
902 if (Context.isObjCIdType(FromPointeeType) ||
903 Context.isObjCIdType(ToPointeeType) ||
904 Context.isObjCClassType(FromPointeeType) ||
905 Context.isObjCClassType(ToPointeeType))
906 return false;
907
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000908 if (FromPointeeType->isRecordType() &&
909 ToPointeeType->isRecordType()) {
910 // We must have a derived-to-base conversion. Check an
911 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +0000912 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
913 From->getExprLoc(),
914 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000915 }
916 }
917
918 return false;
919}
920
Douglas Gregor98cd5992008-10-21 23:43:52 +0000921/// IsQualificationConversion - Determines whether the conversion from
922/// an rvalue of type FromType to ToType is a qualification conversion
923/// (C++ 4.4).
924bool
925Sema::IsQualificationConversion(QualType FromType, QualType ToType)
926{
927 FromType = Context.getCanonicalType(FromType);
928 ToType = Context.getCanonicalType(ToType);
929
930 // If FromType and ToType are the same type, this is not a
931 // qualification conversion.
932 if (FromType == ToType)
933 return false;
934
935 // (C++ 4.4p4):
936 // A conversion can add cv-qualifiers at levels other than the first
937 // in multi-level pointers, subject to the following rules: [...]
938 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +0000939 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +0000940 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +0000941 // Within each iteration of the loop, we check the qualifiers to
942 // determine if this still looks like a qualification
943 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +0000944 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +0000945 // until there are no more pointers or pointers-to-members left to
946 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +0000947 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +0000948
949 // -- for every j > 0, if const is in cv 1,j then const is in cv
950 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +0000951 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +0000952 return false;
Douglas Gregor57373262008-10-22 14:17:15 +0000953
Douglas Gregor98cd5992008-10-21 23:43:52 +0000954 // -- if the cv 1,j and cv 2,j are different, then const is in
955 // every cv for 0 < k < j.
956 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +0000957 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +0000958 return false;
Douglas Gregor57373262008-10-22 14:17:15 +0000959
Douglas Gregor98cd5992008-10-21 23:43:52 +0000960 // Keep track of whether all prior cv-qualifiers in the "to" type
961 // include const.
962 PreviousToQualsIncludeConst
963 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +0000964 }
Douglas Gregor98cd5992008-10-21 23:43:52 +0000965
966 // We are left with FromType and ToType being the pointee types
967 // after unwrapping the original FromType and ToType the same number
968 // of types. If we unwrapped any pointers, and if FromType and
969 // ToType have the same unqualified type (since we checked
970 // qualifiers above), then this is a qualification conversion.
971 return UnwrappedAnyPointer &&
972 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
973}
974
Douglas Gregor60d62c22008-10-31 16:23:19 +0000975/// IsUserDefinedConversion - Determines whether there is a
976/// user-defined conversion sequence (C++ [over.ics.user]) that
977/// converts expression From to the type ToType. If such a conversion
978/// exists, User will contain the user-defined conversion sequence
979/// that performs such a conversion and this routine will return
980/// true. Otherwise, this routine returns false and User is
981/// unspecified.
982bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
983 UserDefinedConversionSequence& User)
984{
985 OverloadCandidateSet CandidateSet;
986 if (const CXXRecordType *ToRecordType
987 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
988 // C++ [over.match.ctor]p1:
989 // When objects of class type are direct-initialized (8.5), or
990 // copy-initialized from an expression of the same or a
991 // derived class type (8.5), overload resolution selects the
992 // constructor. [...] For copy-initialization, the candidate
993 // functions are all the converting constructors (12.3.1) of
994 // that class. The argument list is the expression-list within
995 // the parentheses of the initializer.
996 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
Douglas Gregor9e7d9de2008-12-15 21:24:18 +0000997 DeclarationName ConstructorName
998 = Context.DeclarationNames.getCXXConstructorName(
999 Context.getCanonicalType(ToType));
1000 DeclContext::lookup_result Lookup
1001 = ToRecordDecl->lookup(Context, ConstructorName);
1002 if (Lookup.first == Lookup.second)
1003 /* No constructors. FIXME: Implicit copy constructor? */;
1004 else if (OverloadedFunctionDecl *Constructors
1005 = dyn_cast<OverloadedFunctionDecl>(*Lookup.first)) {
1006 for (OverloadedFunctionDecl::function_const_iterator func
1007 = Constructors->function_begin();
1008 func != Constructors->function_end(); ++func) {
1009 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
1010 if (Constructor->isConvertingConstructor())
1011 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1012 /*SuppressUserConversions=*/true);
1013 }
1014 } else if (CXXConstructorDecl *Constructor
1015 = dyn_cast<CXXConstructorDecl>(*Lookup.first)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +00001016 if (Constructor->isConvertingConstructor())
Douglas Gregor225c41e2008-11-03 19:09:14 +00001017 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1018 /*SuppressUserConversions=*/true);
Douglas Gregor60d62c22008-10-31 16:23:19 +00001019 }
1020 }
1021
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001022 if (const CXXRecordType *FromRecordType
1023 = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
1024 // Add all of the conversion functions as candidates.
1025 // FIXME: Look for conversions in base classes!
1026 CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
1027 OverloadedFunctionDecl *Conversions
1028 = FromRecordDecl->getConversionFunctions();
1029 for (OverloadedFunctionDecl::function_iterator Func
1030 = Conversions->function_begin();
1031 Func != Conversions->function_end(); ++Func) {
1032 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1033 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1034 }
1035 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001036
1037 OverloadCandidateSet::iterator Best;
1038 switch (BestViableFunction(CandidateSet, Best)) {
1039 case OR_Success:
1040 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001041 if (CXXConstructorDecl *Constructor
1042 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1043 // C++ [over.ics.user]p1:
1044 // If the user-defined conversion is specified by a
1045 // constructor (12.3.1), the initial standard conversion
1046 // sequence converts the source type to the type required by
1047 // the argument of the constructor.
1048 //
1049 // FIXME: What about ellipsis conversions?
1050 QualType ThisType = Constructor->getThisType(Context);
1051 User.Before = Best->Conversions[0].Standard;
1052 User.ConversionFunction = Constructor;
1053 User.After.setAsIdentityConversion();
1054 User.After.FromTypePtr
1055 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1056 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1057 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001058 } else if (CXXConversionDecl *Conversion
1059 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1060 // C++ [over.ics.user]p1:
1061 //
1062 // [...] If the user-defined conversion is specified by a
1063 // conversion function (12.3.2), the initial standard
1064 // conversion sequence converts the source type to the
1065 // implicit object parameter of the conversion function.
1066 User.Before = Best->Conversions[0].Standard;
1067 User.ConversionFunction = Conversion;
1068
1069 // C++ [over.ics.user]p2:
1070 // The second standard conversion sequence converts the
1071 // result of the user-defined conversion to the target type
1072 // for the sequence. Since an implicit conversion sequence
1073 // is an initialization, the special rules for
1074 // initialization by user-defined conversion apply when
1075 // selecting the best user-defined conversion for a
1076 // user-defined conversion sequence (see 13.3.3 and
1077 // 13.3.3.1).
1078 User.After = Best->FinalConversion;
1079 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001080 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001081 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001082 return false;
1083 }
1084
1085 case OR_No_Viable_Function:
1086 // No conversion here! We're done.
1087 return false;
1088
1089 case OR_Ambiguous:
1090 // FIXME: See C++ [over.best.ics]p10 for the handling of
1091 // ambiguous conversion sequences.
1092 return false;
1093 }
1094
1095 return false;
1096}
1097
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001098/// CompareImplicitConversionSequences - Compare two implicit
1099/// conversion sequences to determine whether one is better than the
1100/// other or if they are indistinguishable (C++ 13.3.3.2).
1101ImplicitConversionSequence::CompareKind
1102Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1103 const ImplicitConversionSequence& ICS2)
1104{
1105 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1106 // conversion sequences (as defined in 13.3.3.1)
1107 // -- a standard conversion sequence (13.3.3.1.1) is a better
1108 // conversion sequence than a user-defined conversion sequence or
1109 // an ellipsis conversion sequence, and
1110 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1111 // conversion sequence than an ellipsis conversion sequence
1112 // (13.3.3.1.3).
1113 //
1114 if (ICS1.ConversionKind < ICS2.ConversionKind)
1115 return ImplicitConversionSequence::Better;
1116 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1117 return ImplicitConversionSequence::Worse;
1118
1119 // Two implicit conversion sequences of the same form are
1120 // indistinguishable conversion sequences unless one of the
1121 // following rules apply: (C++ 13.3.3.2p3):
1122 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1123 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1124 else if (ICS1.ConversionKind ==
1125 ImplicitConversionSequence::UserDefinedConversion) {
1126 // User-defined conversion sequence U1 is a better conversion
1127 // sequence than another user-defined conversion sequence U2 if
1128 // they contain the same user-defined conversion function or
1129 // constructor and if the second standard conversion sequence of
1130 // U1 is better than the second standard conversion sequence of
1131 // U2 (C++ 13.3.3.2p3).
1132 if (ICS1.UserDefined.ConversionFunction ==
1133 ICS2.UserDefined.ConversionFunction)
1134 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1135 ICS2.UserDefined.After);
1136 }
1137
1138 return ImplicitConversionSequence::Indistinguishable;
1139}
1140
1141/// CompareStandardConversionSequences - Compare two standard
1142/// conversion sequences to determine whether one is better than the
1143/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1144ImplicitConversionSequence::CompareKind
1145Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1146 const StandardConversionSequence& SCS2)
1147{
1148 // Standard conversion sequence S1 is a better conversion sequence
1149 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1150
1151 // -- S1 is a proper subsequence of S2 (comparing the conversion
1152 // sequences in the canonical form defined by 13.3.3.1.1,
1153 // excluding any Lvalue Transformation; the identity conversion
1154 // sequence is considered to be a subsequence of any
1155 // non-identity conversion sequence) or, if not that,
1156 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1157 // Neither is a proper subsequence of the other. Do nothing.
1158 ;
1159 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1160 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1161 (SCS1.Second == ICK_Identity &&
1162 SCS1.Third == ICK_Identity))
1163 // SCS1 is a proper subsequence of SCS2.
1164 return ImplicitConversionSequence::Better;
1165 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1166 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1167 (SCS2.Second == ICK_Identity &&
1168 SCS2.Third == ICK_Identity))
1169 // SCS2 is a proper subsequence of SCS1.
1170 return ImplicitConversionSequence::Worse;
1171
1172 // -- the rank of S1 is better than the rank of S2 (by the rules
1173 // defined below), or, if not that,
1174 ImplicitConversionRank Rank1 = SCS1.getRank();
1175 ImplicitConversionRank Rank2 = SCS2.getRank();
1176 if (Rank1 < Rank2)
1177 return ImplicitConversionSequence::Better;
1178 else if (Rank2 < Rank1)
1179 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001180
Douglas Gregor57373262008-10-22 14:17:15 +00001181 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1182 // are indistinguishable unless one of the following rules
1183 // applies:
1184
1185 // A conversion that is not a conversion of a pointer, or
1186 // pointer to member, to bool is better than another conversion
1187 // that is such a conversion.
1188 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1189 return SCS2.isPointerConversionToBool()
1190 ? ImplicitConversionSequence::Better
1191 : ImplicitConversionSequence::Worse;
1192
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001193 // C++ [over.ics.rank]p4b2:
1194 //
1195 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001196 // conversion of B* to A* is better than conversion of B* to
1197 // void*, and conversion of A* to void* is better than conversion
1198 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001199 bool SCS1ConvertsToVoid
1200 = SCS1.isPointerConversionToVoidPointer(Context);
1201 bool SCS2ConvertsToVoid
1202 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001203 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1204 // Exactly one of the conversion sequences is a conversion to
1205 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001206 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1207 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001208 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1209 // Neither conversion sequence converts to a void pointer; compare
1210 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001211 if (ImplicitConversionSequence::CompareKind DerivedCK
1212 = CompareDerivedToBaseConversions(SCS1, SCS2))
1213 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001214 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1215 // Both conversion sequences are conversions to void
1216 // pointers. Compare the source types to determine if there's an
1217 // inheritance relationship in their sources.
1218 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1219 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1220
1221 // Adjust the types we're converting from via the array-to-pointer
1222 // conversion, if we need to.
1223 if (SCS1.First == ICK_Array_To_Pointer)
1224 FromType1 = Context.getArrayDecayedType(FromType1);
1225 if (SCS2.First == ICK_Array_To_Pointer)
1226 FromType2 = Context.getArrayDecayedType(FromType2);
1227
1228 QualType FromPointee1
1229 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1230 QualType FromPointee2
1231 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1232
1233 if (IsDerivedFrom(FromPointee2, FromPointee1))
1234 return ImplicitConversionSequence::Better;
1235 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1236 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001237
1238 // Objective-C++: If one interface is more specific than the
1239 // other, it is the better one.
1240 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1241 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1242 if (FromIface1 && FromIface1) {
1243 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1244 return ImplicitConversionSequence::Better;
1245 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1246 return ImplicitConversionSequence::Worse;
1247 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001248 }
Douglas Gregor57373262008-10-22 14:17:15 +00001249
1250 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1251 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001252 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001253 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001254 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001255
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001256 // C++ [over.ics.rank]p3b4:
1257 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1258 // which the references refer are the same type except for
1259 // top-level cv-qualifiers, and the type to which the reference
1260 // initialized by S2 refers is more cv-qualified than the type
1261 // to which the reference initialized by S1 refers.
1262 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1263 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1264 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1265 T1 = Context.getCanonicalType(T1);
1266 T2 = Context.getCanonicalType(T2);
1267 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1268 if (T2.isMoreQualifiedThan(T1))
1269 return ImplicitConversionSequence::Better;
1270 else if (T1.isMoreQualifiedThan(T2))
1271 return ImplicitConversionSequence::Worse;
1272 }
1273 }
Douglas Gregor57373262008-10-22 14:17:15 +00001274
1275 return ImplicitConversionSequence::Indistinguishable;
1276}
1277
1278/// CompareQualificationConversions - Compares two standard conversion
1279/// sequences to determine whether they can be ranked based on their
1280/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1281ImplicitConversionSequence::CompareKind
1282Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1283 const StandardConversionSequence& SCS2)
1284{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001285 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001286 // -- S1 and S2 differ only in their qualification conversion and
1287 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1288 // cv-qualification signature of type T1 is a proper subset of
1289 // the cv-qualification signature of type T2, and S1 is not the
1290 // deprecated string literal array-to-pointer conversion (4.2).
1291 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1292 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1293 return ImplicitConversionSequence::Indistinguishable;
1294
1295 // FIXME: the example in the standard doesn't use a qualification
1296 // conversion (!)
1297 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1298 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1299 T1 = Context.getCanonicalType(T1);
1300 T2 = Context.getCanonicalType(T2);
1301
1302 // If the types are the same, we won't learn anything by unwrapped
1303 // them.
1304 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1305 return ImplicitConversionSequence::Indistinguishable;
1306
1307 ImplicitConversionSequence::CompareKind Result
1308 = ImplicitConversionSequence::Indistinguishable;
1309 while (UnwrapSimilarPointerTypes(T1, T2)) {
1310 // Within each iteration of the loop, we check the qualifiers to
1311 // determine if this still looks like a qualification
1312 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001313 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001314 // until there are no more pointers or pointers-to-members left
1315 // to unwrap. This essentially mimics what
1316 // IsQualificationConversion does, but here we're checking for a
1317 // strict subset of qualifiers.
1318 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1319 // The qualifiers are the same, so this doesn't tell us anything
1320 // about how the sequences rank.
1321 ;
1322 else if (T2.isMoreQualifiedThan(T1)) {
1323 // T1 has fewer qualifiers, so it could be the better sequence.
1324 if (Result == ImplicitConversionSequence::Worse)
1325 // Neither has qualifiers that are a subset of the other's
1326 // qualifiers.
1327 return ImplicitConversionSequence::Indistinguishable;
1328
1329 Result = ImplicitConversionSequence::Better;
1330 } else if (T1.isMoreQualifiedThan(T2)) {
1331 // T2 has fewer qualifiers, so it could be the better sequence.
1332 if (Result == ImplicitConversionSequence::Better)
1333 // Neither has qualifiers that are a subset of the other's
1334 // qualifiers.
1335 return ImplicitConversionSequence::Indistinguishable;
1336
1337 Result = ImplicitConversionSequence::Worse;
1338 } else {
1339 // Qualifiers are disjoint.
1340 return ImplicitConversionSequence::Indistinguishable;
1341 }
1342
1343 // If the types after this point are equivalent, we're done.
1344 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1345 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001346 }
1347
Douglas Gregor57373262008-10-22 14:17:15 +00001348 // Check that the winning standard conversion sequence isn't using
1349 // the deprecated string literal array to pointer conversion.
1350 switch (Result) {
1351 case ImplicitConversionSequence::Better:
1352 if (SCS1.Deprecated)
1353 Result = ImplicitConversionSequence::Indistinguishable;
1354 break;
1355
1356 case ImplicitConversionSequence::Indistinguishable:
1357 break;
1358
1359 case ImplicitConversionSequence::Worse:
1360 if (SCS2.Deprecated)
1361 Result = ImplicitConversionSequence::Indistinguishable;
1362 break;
1363 }
1364
1365 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001366}
1367
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001368/// CompareDerivedToBaseConversions - Compares two standard conversion
1369/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001370/// various kinds of derived-to-base conversions (C++
1371/// [over.ics.rank]p4b3). As part of these checks, we also look at
1372/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001373ImplicitConversionSequence::CompareKind
1374Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1375 const StandardConversionSequence& SCS2) {
1376 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1377 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1378 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1379 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1380
1381 // Adjust the types we're converting from via the array-to-pointer
1382 // conversion, if we need to.
1383 if (SCS1.First == ICK_Array_To_Pointer)
1384 FromType1 = Context.getArrayDecayedType(FromType1);
1385 if (SCS2.First == ICK_Array_To_Pointer)
1386 FromType2 = Context.getArrayDecayedType(FromType2);
1387
1388 // Canonicalize all of the types.
1389 FromType1 = Context.getCanonicalType(FromType1);
1390 ToType1 = Context.getCanonicalType(ToType1);
1391 FromType2 = Context.getCanonicalType(FromType2);
1392 ToType2 = Context.getCanonicalType(ToType2);
1393
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001394 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001395 //
1396 // If class B is derived directly or indirectly from class A and
1397 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001398 //
1399 // For Objective-C, we let A, B, and C also be Objective-C
1400 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001401
1402 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001403 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001404 SCS2.Second == ICK_Pointer_Conversion &&
1405 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1406 FromType1->isPointerType() && FromType2->isPointerType() &&
1407 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001408 QualType FromPointee1
1409 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1410 QualType ToPointee1
1411 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1412 QualType FromPointee2
1413 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1414 QualType ToPointee2
1415 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001416
1417 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1418 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1419 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1420 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1421
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001422 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001423 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1424 if (IsDerivedFrom(ToPointee1, ToPointee2))
1425 return ImplicitConversionSequence::Better;
1426 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1427 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001428
1429 if (ToIface1 && ToIface2) {
1430 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1431 return ImplicitConversionSequence::Better;
1432 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1433 return ImplicitConversionSequence::Worse;
1434 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001435 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001436
1437 // -- conversion of B* to A* is better than conversion of C* to A*,
1438 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1439 if (IsDerivedFrom(FromPointee2, FromPointee1))
1440 return ImplicitConversionSequence::Better;
1441 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1442 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001443
1444 if (FromIface1 && FromIface2) {
1445 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1446 return ImplicitConversionSequence::Better;
1447 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1448 return ImplicitConversionSequence::Worse;
1449 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001450 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001451 }
1452
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001453 // Compare based on reference bindings.
1454 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1455 SCS1.Second == ICK_Derived_To_Base) {
1456 // -- binding of an expression of type C to a reference of type
1457 // B& is better than binding an expression of type C to a
1458 // reference of type A&,
1459 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1460 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1461 if (IsDerivedFrom(ToType1, ToType2))
1462 return ImplicitConversionSequence::Better;
1463 else if (IsDerivedFrom(ToType2, ToType1))
1464 return ImplicitConversionSequence::Worse;
1465 }
1466
Douglas Gregor225c41e2008-11-03 19:09:14 +00001467 // -- binding of an expression of type B to a reference of type
1468 // A& is better than binding an expression of type C to a
1469 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001470 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1471 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1472 if (IsDerivedFrom(FromType2, FromType1))
1473 return ImplicitConversionSequence::Better;
1474 else if (IsDerivedFrom(FromType1, FromType2))
1475 return ImplicitConversionSequence::Worse;
1476 }
1477 }
1478
1479
1480 // FIXME: conversion of A::* to B::* is better than conversion of
1481 // A::* to C::*,
1482
1483 // FIXME: conversion of B::* to C::* is better than conversion of
1484 // A::* to C::*, and
1485
Douglas Gregor225c41e2008-11-03 19:09:14 +00001486 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1487 SCS1.Second == ICK_Derived_To_Base) {
1488 // -- conversion of C to B is better than conversion of C to A,
1489 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1490 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1491 if (IsDerivedFrom(ToType1, ToType2))
1492 return ImplicitConversionSequence::Better;
1493 else if (IsDerivedFrom(ToType2, ToType1))
1494 return ImplicitConversionSequence::Worse;
1495 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001496
Douglas Gregor225c41e2008-11-03 19:09:14 +00001497 // -- conversion of B to A is better than conversion of C to A.
1498 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1499 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1500 if (IsDerivedFrom(FromType2, FromType1))
1501 return ImplicitConversionSequence::Better;
1502 else if (IsDerivedFrom(FromType1, FromType2))
1503 return ImplicitConversionSequence::Worse;
1504 }
1505 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001506
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001507 return ImplicitConversionSequence::Indistinguishable;
1508}
1509
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001510/// TryCopyInitialization - Try to copy-initialize a value of type
1511/// ToType from the expression From. Return the implicit conversion
1512/// sequence required to pass this argument, which may be a bad
1513/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001514/// a parameter of this type). If @p SuppressUserConversions, then we
1515/// do not permit any user-defined conversion sequences.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001516ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001517Sema::TryCopyInitialization(Expr *From, QualType ToType,
1518 bool SuppressUserConversions) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001519 if (!getLangOptions().CPlusPlus) {
Douglas Gregor60d62c22008-10-31 16:23:19 +00001520 // In C, copy initialization is the same as performing an assignment.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001521 AssignConvertType ConvTy =
1522 CheckSingleAssignmentConstraints(ToType, From);
1523 ImplicitConversionSequence ICS;
1524 if (getLangOptions().NoExtensions? ConvTy != Compatible
1525 : ConvTy == Incompatible)
1526 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1527 else
1528 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1529 return ICS;
1530 } else if (ToType->isReferenceType()) {
1531 ImplicitConversionSequence ICS;
Douglas Gregor225c41e2008-11-03 19:09:14 +00001532 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001533 return ICS;
1534 } else {
Douglas Gregor225c41e2008-11-03 19:09:14 +00001535 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001536 }
1537}
1538
1539/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1540/// type ToType. Returns true (and emits a diagnostic) if there was
1541/// an error, returns false if the initialization succeeded.
1542bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1543 const char* Flavor) {
1544 if (!getLangOptions().CPlusPlus) {
1545 // In C, argument passing is the same as performing an assignment.
1546 QualType FromType = From->getType();
1547 AssignConvertType ConvTy =
1548 CheckSingleAssignmentConstraints(ToType, From);
1549
1550 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1551 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001552 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001553
1554 if (ToType->isReferenceType())
1555 return CheckReferenceInit(From, ToType);
1556
Douglas Gregor45920e82008-12-19 17:40:08 +00001557 if (!PerformImplicitConversion(From, ToType, Flavor))
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001558 return false;
1559
1560 return Diag(From->getSourceRange().getBegin(),
1561 diag::err_typecheck_convert_incompatible)
1562 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001563}
1564
Douglas Gregor96176b32008-11-18 23:14:02 +00001565/// TryObjectArgumentInitialization - Try to initialize the object
1566/// parameter of the given member function (@c Method) from the
1567/// expression @p From.
1568ImplicitConversionSequence
1569Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1570 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1571 unsigned MethodQuals = Method->getTypeQualifiers();
1572 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1573
1574 // Set up the conversion sequence as a "bad" conversion, to allow us
1575 // to exit early.
1576 ImplicitConversionSequence ICS;
1577 ICS.Standard.setAsIdentityConversion();
1578 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1579
1580 // We need to have an object of class type.
1581 QualType FromType = From->getType();
1582 if (!FromType->isRecordType())
1583 return ICS;
1584
1585 // The implicit object parmeter is has the type "reference to cv X",
1586 // where X is the class of which the function is a member
1587 // (C++ [over.match.funcs]p4). However, when finding an implicit
1588 // conversion sequence for the argument, we are not allowed to
1589 // create temporaries or perform user-defined conversions
1590 // (C++ [over.match.funcs]p5). We perform a simplified version of
1591 // reference binding here, that allows class rvalues to bind to
1592 // non-constant references.
1593
1594 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1595 // with the implicit object parameter (C++ [over.match.funcs]p5).
1596 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1597 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1598 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1599 return ICS;
1600
1601 // Check that we have either the same type or a derived type. It
1602 // affects the conversion rank.
1603 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1604 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1605 ICS.Standard.Second = ICK_Identity;
1606 else if (IsDerivedFrom(FromType, ClassType))
1607 ICS.Standard.Second = ICK_Derived_To_Base;
1608 else
1609 return ICS;
1610
1611 // Success. Mark this as a reference binding.
1612 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1613 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1614 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1615 ICS.Standard.ReferenceBinding = true;
1616 ICS.Standard.DirectBinding = true;
1617 return ICS;
1618}
1619
1620/// PerformObjectArgumentInitialization - Perform initialization of
1621/// the implicit object parameter for the given Method with the given
1622/// expression.
1623bool
1624Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1625 QualType ImplicitParamType
1626 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1627 ImplicitConversionSequence ICS
1628 = TryObjectArgumentInitialization(From, Method);
1629 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1630 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001631 diag::err_implicit_object_parameter_init)
Chris Lattnerd1625842008-11-24 06:25:27 +00001632 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001633
1634 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1635 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1636 From->getSourceRange().getBegin(),
1637 From->getSourceRange()))
1638 return true;
1639
1640 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1641 return false;
1642}
1643
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001644/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00001645/// candidate functions, using the given function call arguments. If
1646/// @p SuppressUserConversions, then don't allow user-defined
1647/// conversions via constructors or conversion operators.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001648void
1649Sema::AddOverloadCandidate(FunctionDecl *Function,
1650 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00001651 OverloadCandidateSet& CandidateSet,
1652 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001653{
1654 const FunctionTypeProto* Proto
1655 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1656 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001657 assert(!isa<CXXConversionDecl>(Function) &&
1658 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001659
1660 // Add this candidate
1661 CandidateSet.push_back(OverloadCandidate());
1662 OverloadCandidate& Candidate = CandidateSet.back();
1663 Candidate.Function = Function;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001664 Candidate.IsSurrogate = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001665
1666 unsigned NumArgsInProto = Proto->getNumArgs();
1667
1668 // (C++ 13.3.2p2): A candidate function having fewer than m
1669 // parameters is viable only if it has an ellipsis in its parameter
1670 // list (8.3.5).
1671 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1672 Candidate.Viable = false;
1673 return;
1674 }
1675
1676 // (C++ 13.3.2p2): A candidate function having more than m parameters
1677 // is viable only if the (m+1)st parameter has a default argument
1678 // (8.3.6). For the purposes of overload resolution, the
1679 // parameter list is truncated on the right, so that there are
1680 // exactly m parameters.
1681 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1682 if (NumArgs < MinRequiredArgs) {
1683 // Not enough arguments.
1684 Candidate.Viable = false;
1685 return;
1686 }
1687
1688 // Determine the implicit conversion sequences for each of the
1689 // arguments.
1690 Candidate.Viable = true;
1691 Candidate.Conversions.resize(NumArgs);
1692 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1693 if (ArgIdx < NumArgsInProto) {
1694 // (C++ 13.3.2p3): for F to be a viable function, there shall
1695 // exist for each argument an implicit conversion sequence
1696 // (13.3.3.1) that converts that argument to the corresponding
1697 // parameter of F.
1698 QualType ParamType = Proto->getArgType(ArgIdx);
1699 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00001700 = TryCopyInitialization(Args[ArgIdx], ParamType,
1701 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001702 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00001703 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001704 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001705 break;
1706 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001707 } else {
1708 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1709 // argument for which there is no corresponding parameter is
1710 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1711 Candidate.Conversions[ArgIdx].ConversionKind
1712 = ImplicitConversionSequence::EllipsisConversion;
1713 }
1714 }
1715}
1716
Douglas Gregor96176b32008-11-18 23:14:02 +00001717/// AddMethodCandidate - Adds the given C++ member function to the set
1718/// of candidate functions, using the given function call arguments
1719/// and the object argument (@c Object). For example, in a call
1720/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1721/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1722/// allow user-defined conversions via constructors or conversion
1723/// operators.
1724void
1725Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1726 Expr **Args, unsigned NumArgs,
1727 OverloadCandidateSet& CandidateSet,
1728 bool SuppressUserConversions)
1729{
1730 const FunctionTypeProto* Proto
1731 = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1732 assert(Proto && "Methods without a prototype cannot be overloaded");
1733 assert(!isa<CXXConversionDecl>(Method) &&
1734 "Use AddConversionCandidate for conversion functions");
1735
1736 // Add this candidate
1737 CandidateSet.push_back(OverloadCandidate());
1738 OverloadCandidate& Candidate = CandidateSet.back();
1739 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001740 Candidate.IsSurrogate = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001741
1742 unsigned NumArgsInProto = Proto->getNumArgs();
1743
1744 // (C++ 13.3.2p2): A candidate function having fewer than m
1745 // parameters is viable only if it has an ellipsis in its parameter
1746 // list (8.3.5).
1747 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1748 Candidate.Viable = false;
1749 return;
1750 }
1751
1752 // (C++ 13.3.2p2): A candidate function having more than m parameters
1753 // is viable only if the (m+1)st parameter has a default argument
1754 // (8.3.6). For the purposes of overload resolution, the
1755 // parameter list is truncated on the right, so that there are
1756 // exactly m parameters.
1757 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
1758 if (NumArgs < MinRequiredArgs) {
1759 // Not enough arguments.
1760 Candidate.Viable = false;
1761 return;
1762 }
1763
1764 Candidate.Viable = true;
1765 Candidate.Conversions.resize(NumArgs + 1);
1766
1767 // Determine the implicit conversion sequence for the object
1768 // parameter.
1769 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
1770 if (Candidate.Conversions[0].ConversionKind
1771 == ImplicitConversionSequence::BadConversion) {
1772 Candidate.Viable = false;
1773 return;
1774 }
1775
1776 // Determine the implicit conversion sequences for each of the
1777 // arguments.
1778 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1779 if (ArgIdx < NumArgsInProto) {
1780 // (C++ 13.3.2p3): for F to be a viable function, there shall
1781 // exist for each argument an implicit conversion sequence
1782 // (13.3.3.1) that converts that argument to the corresponding
1783 // parameter of F.
1784 QualType ParamType = Proto->getArgType(ArgIdx);
1785 Candidate.Conversions[ArgIdx + 1]
1786 = TryCopyInitialization(Args[ArgIdx], ParamType,
1787 SuppressUserConversions);
1788 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1789 == ImplicitConversionSequence::BadConversion) {
1790 Candidate.Viable = false;
1791 break;
1792 }
1793 } else {
1794 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1795 // argument for which there is no corresponding parameter is
1796 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1797 Candidate.Conversions[ArgIdx + 1].ConversionKind
1798 = ImplicitConversionSequence::EllipsisConversion;
1799 }
1800 }
1801}
1802
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001803/// AddConversionCandidate - Add a C++ conversion function as a
1804/// candidate in the candidate set (C++ [over.match.conv],
1805/// C++ [over.match.copy]). From is the expression we're converting from,
1806/// and ToType is the type that we're eventually trying to convert to
1807/// (which may or may not be the same type as the type that the
1808/// conversion function produces).
1809void
1810Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1811 Expr *From, QualType ToType,
1812 OverloadCandidateSet& CandidateSet) {
1813 // Add this candidate
1814 CandidateSet.push_back(OverloadCandidate());
1815 OverloadCandidate& Candidate = CandidateSet.back();
1816 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001817 Candidate.IsSurrogate = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001818 Candidate.FinalConversion.setAsIdentityConversion();
1819 Candidate.FinalConversion.FromTypePtr
1820 = Conversion->getConversionType().getAsOpaquePtr();
1821 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1822
Douglas Gregor96176b32008-11-18 23:14:02 +00001823 // Determine the implicit conversion sequence for the implicit
1824 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001825 Candidate.Viable = true;
1826 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00001827 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001828
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001829 if (Candidate.Conversions[0].ConversionKind
1830 == ImplicitConversionSequence::BadConversion) {
1831 Candidate.Viable = false;
1832 return;
1833 }
1834
1835 // To determine what the conversion from the result of calling the
1836 // conversion function to the type we're eventually trying to
1837 // convert to (ToType), we need to synthesize a call to the
1838 // conversion function and attempt copy initialization from it. This
1839 // makes sure that we get the right semantics with respect to
1840 // lvalues/rvalues and the type. Fortunately, we can allocate this
1841 // call on the stack and we don't need its arguments to be
1842 // well-formed.
1843 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1844 SourceLocation());
1845 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00001846 &ConversionRef, false);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001847 CallExpr Call(&ConversionFn, 0, 0,
1848 Conversion->getConversionType().getNonReferenceType(),
1849 SourceLocation());
1850 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1851 switch (ICS.ConversionKind) {
1852 case ImplicitConversionSequence::StandardConversion:
1853 Candidate.FinalConversion = ICS.Standard;
1854 break;
1855
1856 case ImplicitConversionSequence::BadConversion:
1857 Candidate.Viable = false;
1858 break;
1859
1860 default:
1861 assert(false &&
1862 "Can only end up with a standard conversion sequence or failure");
1863 }
1864}
1865
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001866/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
1867/// converts the given @c Object to a function pointer via the
1868/// conversion function @c Conversion, and then attempts to call it
1869/// with the given arguments (C++ [over.call.object]p2-4). Proto is
1870/// the type of function that we'll eventually be calling.
1871void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
1872 const FunctionTypeProto *Proto,
1873 Expr *Object, Expr **Args, unsigned NumArgs,
1874 OverloadCandidateSet& CandidateSet) {
1875 CandidateSet.push_back(OverloadCandidate());
1876 OverloadCandidate& Candidate = CandidateSet.back();
1877 Candidate.Function = 0;
1878 Candidate.Surrogate = Conversion;
1879 Candidate.Viable = true;
1880 Candidate.IsSurrogate = true;
1881 Candidate.Conversions.resize(NumArgs + 1);
1882
1883 // Determine the implicit conversion sequence for the implicit
1884 // object parameter.
1885 ImplicitConversionSequence ObjectInit
1886 = TryObjectArgumentInitialization(Object, Conversion);
1887 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
1888 Candidate.Viable = false;
1889 return;
1890 }
1891
1892 // The first conversion is actually a user-defined conversion whose
1893 // first conversion is ObjectInit's standard conversion (which is
1894 // effectively a reference binding). Record it as such.
1895 Candidate.Conversions[0].ConversionKind
1896 = ImplicitConversionSequence::UserDefinedConversion;
1897 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
1898 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
1899 Candidate.Conversions[0].UserDefined.After
1900 = Candidate.Conversions[0].UserDefined.Before;
1901 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
1902
1903 // Find the
1904 unsigned NumArgsInProto = Proto->getNumArgs();
1905
1906 // (C++ 13.3.2p2): A candidate function having fewer than m
1907 // parameters is viable only if it has an ellipsis in its parameter
1908 // list (8.3.5).
1909 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1910 Candidate.Viable = false;
1911 return;
1912 }
1913
1914 // Function types don't have any default arguments, so just check if
1915 // we have enough arguments.
1916 if (NumArgs < NumArgsInProto) {
1917 // Not enough arguments.
1918 Candidate.Viable = false;
1919 return;
1920 }
1921
1922 // Determine the implicit conversion sequences for each of the
1923 // arguments.
1924 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1925 if (ArgIdx < NumArgsInProto) {
1926 // (C++ 13.3.2p3): for F to be a viable function, there shall
1927 // exist for each argument an implicit conversion sequence
1928 // (13.3.3.1) that converts that argument to the corresponding
1929 // parameter of F.
1930 QualType ParamType = Proto->getArgType(ArgIdx);
1931 Candidate.Conversions[ArgIdx + 1]
1932 = TryCopyInitialization(Args[ArgIdx], ParamType,
1933 /*SuppressUserConversions=*/false);
1934 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1935 == ImplicitConversionSequence::BadConversion) {
1936 Candidate.Viable = false;
1937 break;
1938 }
1939 } else {
1940 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1941 // argument for which there is no corresponding parameter is
1942 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1943 Candidate.Conversions[ArgIdx + 1].ConversionKind
1944 = ImplicitConversionSequence::EllipsisConversion;
1945 }
1946 }
1947}
1948
Douglas Gregor447b69e2008-11-19 03:25:36 +00001949/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1950/// an acceptable non-member overloaded operator for a call whose
1951/// arguments have types T1 (and, if non-empty, T2). This routine
1952/// implements the check in C++ [over.match.oper]p3b2 concerning
1953/// enumeration types.
1954static bool
1955IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1956 QualType T1, QualType T2,
1957 ASTContext &Context) {
1958 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1959 return true;
1960
1961 const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
1962 if (Proto->getNumArgs() < 1)
1963 return false;
1964
1965 if (T1->isEnumeralType()) {
1966 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1967 if (Context.getCanonicalType(T1).getUnqualifiedType()
1968 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1969 return true;
1970 }
1971
1972 if (Proto->getNumArgs() < 2)
1973 return false;
1974
1975 if (!T2.isNull() && T2->isEnumeralType()) {
1976 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1977 if (Context.getCanonicalType(T2).getUnqualifiedType()
1978 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1979 return true;
1980 }
1981
1982 return false;
1983}
1984
Douglas Gregor96176b32008-11-18 23:14:02 +00001985/// AddOperatorCandidates - Add the overloaded operator candidates for
1986/// the operator Op that was used in an operator expression such as "x
1987/// Op y". S is the scope in which the expression occurred (used for
1988/// name lookup of the operator), Args/NumArgs provides the operator
1989/// arguments, and CandidateSet will store the added overload
1990/// candidates. (C++ [over.match.oper]).
1991void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
1992 Expr **Args, unsigned NumArgs,
1993 OverloadCandidateSet& CandidateSet) {
1994 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1995
1996 // C++ [over.match.oper]p3:
1997 // For a unary operator @ with an operand of a type whose
1998 // cv-unqualified version is T1, and for a binary operator @ with
1999 // a left operand of a type whose cv-unqualified version is T1 and
2000 // a right operand of a type whose cv-unqualified version is T2,
2001 // three sets of candidate functions, designated member
2002 // candidates, non-member candidates and built-in candidates, are
2003 // constructed as follows:
2004 QualType T1 = Args[0]->getType();
2005 QualType T2;
2006 if (NumArgs > 1)
2007 T2 = Args[1]->getType();
2008
2009 // -- If T1 is a class type, the set of member candidates is the
2010 // result of the qualified lookup of T1::operator@
2011 // (13.3.1.1.1); otherwise, the set of member candidates is
2012 // empty.
2013 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregor44b43212008-12-11 16:49:14 +00002014 DeclContext::lookup_const_result Lookup
Douglas Gregore267ff32008-12-11 20:41:00 +00002015 = T1Rec->getDecl()->lookup(Context, OpName);
Douglas Gregor44b43212008-12-11 16:49:14 +00002016 NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
Douglas Gregor96176b32008-11-18 23:14:02 +00002017 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
2018 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2019 /*SuppressUserConversions=*/false);
2020 else if (OverloadedFunctionDecl *Ovl
2021 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
2022 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2023 FEnd = Ovl->function_end();
2024 F != FEnd; ++F) {
2025 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
2026 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2027 /*SuppressUserConversions=*/false);
2028 }
2029 }
2030 }
2031
2032 // -- The set of non-member candidates is the result of the
2033 // unqualified lookup of operator@ in the context of the
2034 // expression according to the usual rules for name lookup in
2035 // unqualified function calls (3.4.2) except that all member
2036 // functions are ignored. However, if no operand has a class
2037 // type, only those non-member functions in the lookup set
2038 // that have a first parameter of type T1 or “reference to
2039 // (possibly cv-qualified) T1”, when T1 is an enumeration
2040 // type, or (if there is a right operand) a second parameter
2041 // of type T2 or “reference to (possibly cv-qualified) T2”,
2042 // when T2 is an enumeration type, are candidate functions.
2043 {
2044 NamedDecl *NonMemberOps = 0;
2045 for (IdentifierResolver::iterator I
2046 = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/);
2047 I != IdResolver.end(); ++I) {
2048 // We don't need to check the identifier namespace, because
2049 // operator names can only be ordinary identifiers.
2050
2051 // Ignore member functions.
2052 if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
2053 if (SD->getDeclContext()->isCXXRecord())
2054 continue;
2055 }
2056
2057 // We found something with this name. We're done.
2058 NonMemberOps = *I;
2059 break;
2060 }
2061
Douglas Gregor447b69e2008-11-19 03:25:36 +00002062 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NonMemberOps)) {
2063 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2064 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2065 /*SuppressUserConversions=*/false);
2066 } else if (OverloadedFunctionDecl *Ovl
2067 = dyn_cast_or_null<OverloadedFunctionDecl>(NonMemberOps)) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002068 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2069 FEnd = Ovl->function_end();
Douglas Gregor447b69e2008-11-19 03:25:36 +00002070 F != FEnd; ++F) {
2071 if (IsAcceptableNonMemberOperatorCandidate(*F, T1, T2, Context))
2072 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2073 /*SuppressUserConversions=*/false);
2074 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002075 }
2076 }
2077
2078 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor74253732008-11-19 15:42:04 +00002079 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregor96176b32008-11-18 23:14:02 +00002080}
2081
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002082/// AddBuiltinCandidate - Add a candidate for a built-in
2083/// operator. ResultTy and ParamTys are the result and parameter types
2084/// of the built-in candidate, respectively. Args and NumArgs are the
2085/// arguments being passed to the candidate.
2086void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2087 Expr **Args, unsigned NumArgs,
2088 OverloadCandidateSet& CandidateSet) {
2089 // Add this candidate
2090 CandidateSet.push_back(OverloadCandidate());
2091 OverloadCandidate& Candidate = CandidateSet.back();
2092 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002093 Candidate.IsSurrogate = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002094 Candidate.BuiltinTypes.ResultTy = ResultTy;
2095 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2096 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2097
2098 // Determine the implicit conversion sequences for each of the
2099 // arguments.
2100 Candidate.Viable = true;
2101 Candidate.Conversions.resize(NumArgs);
2102 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2103 Candidate.Conversions[ArgIdx]
2104 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
2105 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002106 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002107 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002108 break;
2109 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002110 }
2111}
2112
2113/// BuiltinCandidateTypeSet - A set of types that will be used for the
2114/// candidate operator functions for built-in operators (C++
2115/// [over.built]). The types are separated into pointer types and
2116/// enumeration types.
2117class BuiltinCandidateTypeSet {
2118 /// TypeSet - A set of types.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002119 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002120
2121 /// PointerTypes - The set of pointer types that will be used in the
2122 /// built-in candidates.
2123 TypeSet PointerTypes;
2124
2125 /// EnumerationTypes - The set of enumeration types that will be
2126 /// used in the built-in candidates.
2127 TypeSet EnumerationTypes;
2128
2129 /// Context - The AST context in which we will build the type sets.
2130 ASTContext &Context;
2131
2132 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2133
2134public:
2135 /// iterator - Iterates through the types that are part of the set.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002136 class iterator {
2137 TypeSet::iterator Base;
2138
2139 public:
2140 typedef QualType value_type;
2141 typedef QualType reference;
2142 typedef QualType pointer;
2143 typedef std::ptrdiff_t difference_type;
2144 typedef std::input_iterator_tag iterator_category;
2145
2146 iterator(TypeSet::iterator B) : Base(B) { }
2147
2148 iterator& operator++() {
2149 ++Base;
2150 return *this;
2151 }
2152
2153 iterator operator++(int) {
2154 iterator tmp(*this);
2155 ++(*this);
2156 return tmp;
2157 }
2158
2159 reference operator*() const {
2160 return QualType::getFromOpaquePtr(*Base);
2161 }
2162
2163 pointer operator->() const {
2164 return **this;
2165 }
2166
2167 friend bool operator==(iterator LHS, iterator RHS) {
2168 return LHS.Base == RHS.Base;
2169 }
2170
2171 friend bool operator!=(iterator LHS, iterator RHS) {
2172 return LHS.Base != RHS.Base;
2173 }
2174 };
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002175
2176 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2177
2178 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);
2179
2180 /// pointer_begin - First pointer type found;
2181 iterator pointer_begin() { return PointerTypes.begin(); }
2182
2183 /// pointer_end - Last pointer type found;
2184 iterator pointer_end() { return PointerTypes.end(); }
2185
2186 /// enumeration_begin - First enumeration type found;
2187 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2188
2189 /// enumeration_end - Last enumeration type found;
2190 iterator enumeration_end() { return EnumerationTypes.end(); }
2191};
2192
2193/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2194/// the set of pointer types along with any more-qualified variants of
2195/// that type. For example, if @p Ty is "int const *", this routine
2196/// will add "int const *", "int const volatile *", "int const
2197/// restrict *", and "int const volatile restrict *" to the set of
2198/// pointer types. Returns true if the add of @p Ty itself succeeded,
2199/// false otherwise.
2200bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2201 // Insert this type.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002202 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002203 return false;
2204
2205 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2206 QualType PointeeTy = PointerTy->getPointeeType();
2207 // FIXME: Optimize this so that we don't keep trying to add the same types.
2208
2209 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2210 // with all pointer conversions that don't cast away constness?
2211 if (!PointeeTy.isConstQualified())
2212 AddWithMoreQualifiedTypeVariants
2213 (Context.getPointerType(PointeeTy.withConst()));
2214 if (!PointeeTy.isVolatileQualified())
2215 AddWithMoreQualifiedTypeVariants
2216 (Context.getPointerType(PointeeTy.withVolatile()));
2217 if (!PointeeTy.isRestrictQualified())
2218 AddWithMoreQualifiedTypeVariants
2219 (Context.getPointerType(PointeeTy.withRestrict()));
2220 }
2221
2222 return true;
2223}
2224
2225/// AddTypesConvertedFrom - Add each of the types to which the type @p
2226/// Ty can be implicit converted to the given set of @p Types. We're
2227/// primarily interested in pointer types, enumeration types,
2228void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2229 bool AllowUserConversions) {
2230 // Only deal with canonical types.
2231 Ty = Context.getCanonicalType(Ty);
2232
2233 // Look through reference types; they aren't part of the type of an
2234 // expression for the purposes of conversions.
2235 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2236 Ty = RefTy->getPointeeType();
2237
2238 // We don't care about qualifiers on the type.
2239 Ty = Ty.getUnqualifiedType();
2240
2241 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2242 QualType PointeeTy = PointerTy->getPointeeType();
2243
2244 // Insert our type, and its more-qualified variants, into the set
2245 // of types.
2246 if (!AddWithMoreQualifiedTypeVariants(Ty))
2247 return;
2248
2249 // Add 'cv void*' to our set of types.
2250 if (!Ty->isVoidType()) {
2251 QualType QualVoid
2252 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2253 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2254 }
2255
2256 // If this is a pointer to a class type, add pointers to its bases
2257 // (with the same level of cv-qualification as the original
2258 // derived class, of course).
2259 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2260 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2261 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2262 Base != ClassDecl->bases_end(); ++Base) {
2263 QualType BaseTy = Context.getCanonicalType(Base->getType());
2264 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2265
2266 // Add the pointer type, recursively, so that we get all of
2267 // the indirect base classes, too.
2268 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
2269 }
2270 }
2271 } else if (Ty->isEnumeralType()) {
Douglas Gregorbf3af052008-11-13 20:12:29 +00002272 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002273 } else if (AllowUserConversions) {
2274 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2275 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2276 // FIXME: Visit conversion functions in the base classes, too.
2277 OverloadedFunctionDecl *Conversions
2278 = ClassDecl->getConversionFunctions();
2279 for (OverloadedFunctionDecl::function_iterator Func
2280 = Conversions->function_begin();
2281 Func != Conversions->function_end(); ++Func) {
2282 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2283 AddTypesConvertedFrom(Conv->getConversionType(), false);
2284 }
2285 }
2286 }
2287}
2288
Douglas Gregor74253732008-11-19 15:42:04 +00002289/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2290/// operator overloads to the candidate set (C++ [over.built]), based
2291/// on the operator @p Op and the arguments given. For example, if the
2292/// operator is a binary '+', this routine might add "int
2293/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002294void
Douglas Gregor74253732008-11-19 15:42:04 +00002295Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2296 Expr **Args, unsigned NumArgs,
2297 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002298 // The set of "promoted arithmetic types", which are the arithmetic
2299 // types are that preserved by promotion (C++ [over.built]p2). Note
2300 // that the first few of these types are the promoted integral
2301 // types; these types need to be first.
2302 // FIXME: What about complex?
2303 const unsigned FirstIntegralType = 0;
2304 const unsigned LastIntegralType = 13;
2305 const unsigned FirstPromotedIntegralType = 7,
2306 LastPromotedIntegralType = 13;
2307 const unsigned FirstPromotedArithmeticType = 7,
2308 LastPromotedArithmeticType = 16;
2309 const unsigned NumArithmeticTypes = 16;
2310 QualType ArithmeticTypes[NumArithmeticTypes] = {
2311 Context.BoolTy, Context.CharTy, Context.WCharTy,
2312 Context.SignedCharTy, Context.ShortTy,
2313 Context.UnsignedCharTy, Context.UnsignedShortTy,
2314 Context.IntTy, Context.LongTy, Context.LongLongTy,
2315 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2316 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2317 };
2318
2319 // Find all of the types that the arguments can convert to, but only
2320 // if the operator we're looking at has built-in operator candidates
2321 // that make use of these types.
2322 BuiltinCandidateTypeSet CandidateTypes(Context);
2323 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2324 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002325 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002326 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002327 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2328 (Op == OO_Star && NumArgs == 1)) {
2329 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002330 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
2331 }
2332
2333 bool isComparison = false;
2334 switch (Op) {
2335 case OO_None:
2336 case NUM_OVERLOADED_OPERATORS:
2337 assert(false && "Expected an overloaded operator");
2338 break;
2339
Douglas Gregor74253732008-11-19 15:42:04 +00002340 case OO_Star: // '*' is either unary or binary
2341 if (NumArgs == 1)
2342 goto UnaryStar;
2343 else
2344 goto BinaryStar;
2345 break;
2346
2347 case OO_Plus: // '+' is either unary or binary
2348 if (NumArgs == 1)
2349 goto UnaryPlus;
2350 else
2351 goto BinaryPlus;
2352 break;
2353
2354 case OO_Minus: // '-' is either unary or binary
2355 if (NumArgs == 1)
2356 goto UnaryMinus;
2357 else
2358 goto BinaryMinus;
2359 break;
2360
2361 case OO_Amp: // '&' is either unary or binary
2362 if (NumArgs == 1)
2363 goto UnaryAmp;
2364 else
2365 goto BinaryAmp;
2366
2367 case OO_PlusPlus:
2368 case OO_MinusMinus:
2369 // C++ [over.built]p3:
2370 //
2371 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2372 // is either volatile or empty, there exist candidate operator
2373 // functions of the form
2374 //
2375 // VQ T& operator++(VQ T&);
2376 // T operator++(VQ T&, int);
2377 //
2378 // C++ [over.built]p4:
2379 //
2380 // For every pair (T, VQ), where T is an arithmetic type other
2381 // than bool, and VQ is either volatile or empty, there exist
2382 // candidate operator functions of the form
2383 //
2384 // VQ T& operator--(VQ T&);
2385 // T operator--(VQ T&, int);
2386 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2387 Arith < NumArithmeticTypes; ++Arith) {
2388 QualType ArithTy = ArithmeticTypes[Arith];
2389 QualType ParamTypes[2]
2390 = { Context.getReferenceType(ArithTy), Context.IntTy };
2391
2392 // Non-volatile version.
2393 if (NumArgs == 1)
2394 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2395 else
2396 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2397
2398 // Volatile version
2399 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2400 if (NumArgs == 1)
2401 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2402 else
2403 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2404 }
2405
2406 // C++ [over.built]p5:
2407 //
2408 // For every pair (T, VQ), where T is a cv-qualified or
2409 // cv-unqualified object type, and VQ is either volatile or
2410 // empty, there exist candidate operator functions of the form
2411 //
2412 // T*VQ& operator++(T*VQ&);
2413 // T*VQ& operator--(T*VQ&);
2414 // T* operator++(T*VQ&, int);
2415 // T* operator--(T*VQ&, int);
2416 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2417 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2418 // Skip pointer types that aren't pointers to object types.
Douglas Gregorcb7de522008-11-26 23:31:11 +00002419 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002420 continue;
2421
2422 QualType ParamTypes[2] = {
2423 Context.getReferenceType(*Ptr), Context.IntTy
2424 };
2425
2426 // Without volatile
2427 if (NumArgs == 1)
2428 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2429 else
2430 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2431
2432 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2433 // With volatile
2434 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2435 if (NumArgs == 1)
2436 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2437 else
2438 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2439 }
2440 }
2441 break;
2442
2443 UnaryStar:
2444 // C++ [over.built]p6:
2445 // For every cv-qualified or cv-unqualified object type T, there
2446 // exist candidate operator functions of the form
2447 //
2448 // T& operator*(T*);
2449 //
2450 // C++ [over.built]p7:
2451 // For every function type T, there exist candidate operator
2452 // functions of the form
2453 // T& operator*(T*);
2454 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2455 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2456 QualType ParamTy = *Ptr;
2457 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2458 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2459 &ParamTy, Args, 1, CandidateSet);
2460 }
2461 break;
2462
2463 UnaryPlus:
2464 // C++ [over.built]p8:
2465 // For every type T, there exist candidate operator functions of
2466 // the form
2467 //
2468 // T* operator+(T*);
2469 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2470 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2471 QualType ParamTy = *Ptr;
2472 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2473 }
2474
2475 // Fall through
2476
2477 UnaryMinus:
2478 // C++ [over.built]p9:
2479 // For every promoted arithmetic type T, there exist candidate
2480 // operator functions of the form
2481 //
2482 // T operator+(T);
2483 // T operator-(T);
2484 for (unsigned Arith = FirstPromotedArithmeticType;
2485 Arith < LastPromotedArithmeticType; ++Arith) {
2486 QualType ArithTy = ArithmeticTypes[Arith];
2487 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2488 }
2489 break;
2490
2491 case OO_Tilde:
2492 // C++ [over.built]p10:
2493 // For every promoted integral type T, there exist candidate
2494 // operator functions of the form
2495 //
2496 // T operator~(T);
2497 for (unsigned Int = FirstPromotedIntegralType;
2498 Int < LastPromotedIntegralType; ++Int) {
2499 QualType IntTy = ArithmeticTypes[Int];
2500 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2501 }
2502 break;
2503
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002504 case OO_New:
2505 case OO_Delete:
2506 case OO_Array_New:
2507 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002508 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002509 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002510 break;
2511
2512 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002513 UnaryAmp:
2514 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002515 // C++ [over.match.oper]p3:
2516 // -- For the operator ',', the unary operator '&', or the
2517 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002518 break;
2519
2520 case OO_Less:
2521 case OO_Greater:
2522 case OO_LessEqual:
2523 case OO_GreaterEqual:
2524 case OO_EqualEqual:
2525 case OO_ExclaimEqual:
2526 // C++ [over.built]p15:
2527 //
2528 // For every pointer or enumeration type T, there exist
2529 // candidate operator functions of the form
2530 //
2531 // bool operator<(T, T);
2532 // bool operator>(T, T);
2533 // bool operator<=(T, T);
2534 // bool operator>=(T, T);
2535 // bool operator==(T, T);
2536 // bool operator!=(T, T);
2537 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2538 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2539 QualType ParamTypes[2] = { *Ptr, *Ptr };
2540 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2541 }
2542 for (BuiltinCandidateTypeSet::iterator Enum
2543 = CandidateTypes.enumeration_begin();
2544 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2545 QualType ParamTypes[2] = { *Enum, *Enum };
2546 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2547 }
2548
2549 // Fall through.
2550 isComparison = true;
2551
Douglas Gregor74253732008-11-19 15:42:04 +00002552 BinaryPlus:
2553 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002554 if (!isComparison) {
2555 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2556
2557 // C++ [over.built]p13:
2558 //
2559 // For every cv-qualified or cv-unqualified object type T
2560 // there exist candidate operator functions of the form
2561 //
2562 // T* operator+(T*, ptrdiff_t);
2563 // T& operator[](T*, ptrdiff_t); [BELOW]
2564 // T* operator-(T*, ptrdiff_t);
2565 // T* operator+(ptrdiff_t, T*);
2566 // T& operator[](ptrdiff_t, T*); [BELOW]
2567 //
2568 // C++ [over.built]p14:
2569 //
2570 // For every T, where T is a pointer to object type, there
2571 // exist candidate operator functions of the form
2572 //
2573 // ptrdiff_t operator-(T, T);
2574 for (BuiltinCandidateTypeSet::iterator Ptr
2575 = CandidateTypes.pointer_begin();
2576 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2577 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2578
2579 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2580 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2581
2582 if (Op == OO_Plus) {
2583 // T* operator+(ptrdiff_t, T*);
2584 ParamTypes[0] = ParamTypes[1];
2585 ParamTypes[1] = *Ptr;
2586 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2587 } else {
2588 // ptrdiff_t operator-(T, T);
2589 ParamTypes[1] = *Ptr;
2590 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2591 Args, 2, CandidateSet);
2592 }
2593 }
2594 }
2595 // Fall through
2596
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002597 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002598 BinaryStar:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002599 // C++ [over.built]p12:
2600 //
2601 // For every pair of promoted arithmetic types L and R, there
2602 // exist candidate operator functions of the form
2603 //
2604 // LR operator*(L, R);
2605 // LR operator/(L, R);
2606 // LR operator+(L, R);
2607 // LR operator-(L, R);
2608 // bool operator<(L, R);
2609 // bool operator>(L, R);
2610 // bool operator<=(L, R);
2611 // bool operator>=(L, R);
2612 // bool operator==(L, R);
2613 // bool operator!=(L, R);
2614 //
2615 // where LR is the result of the usual arithmetic conversions
2616 // between types L and R.
2617 for (unsigned Left = FirstPromotedArithmeticType;
2618 Left < LastPromotedArithmeticType; ++Left) {
2619 for (unsigned Right = FirstPromotedArithmeticType;
2620 Right < LastPromotedArithmeticType; ++Right) {
2621 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2622 QualType Result
2623 = isComparison? Context.BoolTy
2624 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2625 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2626 }
2627 }
2628 break;
2629
2630 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00002631 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002632 case OO_Caret:
2633 case OO_Pipe:
2634 case OO_LessLess:
2635 case OO_GreaterGreater:
2636 // C++ [over.built]p17:
2637 //
2638 // For every pair of promoted integral types L and R, there
2639 // exist candidate operator functions of the form
2640 //
2641 // LR operator%(L, R);
2642 // LR operator&(L, R);
2643 // LR operator^(L, R);
2644 // LR operator|(L, R);
2645 // L operator<<(L, R);
2646 // L operator>>(L, R);
2647 //
2648 // where LR is the result of the usual arithmetic conversions
2649 // between types L and R.
2650 for (unsigned Left = FirstPromotedIntegralType;
2651 Left < LastPromotedIntegralType; ++Left) {
2652 for (unsigned Right = FirstPromotedIntegralType;
2653 Right < LastPromotedIntegralType; ++Right) {
2654 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2655 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2656 ? LandR[0]
2657 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2658 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2659 }
2660 }
2661 break;
2662
2663 case OO_Equal:
2664 // C++ [over.built]p20:
2665 //
2666 // For every pair (T, VQ), where T is an enumeration or
2667 // (FIXME:) pointer to member type and VQ is either volatile or
2668 // empty, there exist candidate operator functions of the form
2669 //
2670 // VQ T& operator=(VQ T&, T);
2671 for (BuiltinCandidateTypeSet::iterator Enum
2672 = CandidateTypes.enumeration_begin();
2673 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2674 QualType ParamTypes[2];
2675
2676 // T& operator=(T&, T)
2677 ParamTypes[0] = Context.getReferenceType(*Enum);
2678 ParamTypes[1] = *Enum;
2679 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2680
Douglas Gregor74253732008-11-19 15:42:04 +00002681 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2682 // volatile T& operator=(volatile T&, T)
2683 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2684 ParamTypes[1] = *Enum;
2685 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2686 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002687 }
2688 // Fall through.
2689
2690 case OO_PlusEqual:
2691 case OO_MinusEqual:
2692 // C++ [over.built]p19:
2693 //
2694 // For every pair (T, VQ), where T is any type and VQ is either
2695 // volatile or empty, there exist candidate operator functions
2696 // of the form
2697 //
2698 // T*VQ& operator=(T*VQ&, T*);
2699 //
2700 // C++ [over.built]p21:
2701 //
2702 // For every pair (T, VQ), where T is a cv-qualified or
2703 // cv-unqualified object type and VQ is either volatile or
2704 // empty, there exist candidate operator functions of the form
2705 //
2706 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
2707 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
2708 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2709 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2710 QualType ParamTypes[2];
2711 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2712
2713 // non-volatile version
2714 ParamTypes[0] = Context.getReferenceType(*Ptr);
2715 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2716
Douglas Gregor74253732008-11-19 15:42:04 +00002717 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2718 // volatile version
2719 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2720 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2721 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002722 }
2723 // Fall through.
2724
2725 case OO_StarEqual:
2726 case OO_SlashEqual:
2727 // C++ [over.built]p18:
2728 //
2729 // For every triple (L, VQ, R), where L is an arithmetic type,
2730 // VQ is either volatile or empty, and R is a promoted
2731 // arithmetic type, there exist candidate operator functions of
2732 // the form
2733 //
2734 // VQ L& operator=(VQ L&, R);
2735 // VQ L& operator*=(VQ L&, R);
2736 // VQ L& operator/=(VQ L&, R);
2737 // VQ L& operator+=(VQ L&, R);
2738 // VQ L& operator-=(VQ L&, R);
2739 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
2740 for (unsigned Right = FirstPromotedArithmeticType;
2741 Right < LastPromotedArithmeticType; ++Right) {
2742 QualType ParamTypes[2];
2743 ParamTypes[1] = ArithmeticTypes[Right];
2744
2745 // Add this built-in operator as a candidate (VQ is empty).
2746 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2747 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2748
2749 // Add this built-in operator as a candidate (VQ is 'volatile').
2750 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
2751 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2752 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2753 }
2754 }
2755 break;
2756
2757 case OO_PercentEqual:
2758 case OO_LessLessEqual:
2759 case OO_GreaterGreaterEqual:
2760 case OO_AmpEqual:
2761 case OO_CaretEqual:
2762 case OO_PipeEqual:
2763 // C++ [over.built]p22:
2764 //
2765 // For every triple (L, VQ, R), where L is an integral type, VQ
2766 // is either volatile or empty, and R is a promoted integral
2767 // type, there exist candidate operator functions of the form
2768 //
2769 // VQ L& operator%=(VQ L&, R);
2770 // VQ L& operator<<=(VQ L&, R);
2771 // VQ L& operator>>=(VQ L&, R);
2772 // VQ L& operator&=(VQ L&, R);
2773 // VQ L& operator^=(VQ L&, R);
2774 // VQ L& operator|=(VQ L&, R);
2775 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
2776 for (unsigned Right = FirstPromotedIntegralType;
2777 Right < LastPromotedIntegralType; ++Right) {
2778 QualType ParamTypes[2];
2779 ParamTypes[1] = ArithmeticTypes[Right];
2780
2781 // Add this built-in operator as a candidate (VQ is empty).
2782 // FIXME: We should be caching these declarations somewhere,
2783 // rather than re-building them every time.
2784 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2785 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2786
2787 // Add this built-in operator as a candidate (VQ is 'volatile').
2788 ParamTypes[0] = ArithmeticTypes[Left];
2789 ParamTypes[0].addVolatile();
2790 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2791 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2792 }
2793 }
2794 break;
2795
Douglas Gregor74253732008-11-19 15:42:04 +00002796 case OO_Exclaim: {
2797 // C++ [over.operator]p23:
2798 //
2799 // There also exist candidate operator functions of the form
2800 //
2801 // bool operator!(bool);
2802 // bool operator&&(bool, bool); [BELOW]
2803 // bool operator||(bool, bool); [BELOW]
2804 QualType ParamTy = Context.BoolTy;
2805 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2806 break;
2807 }
2808
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002809 case OO_AmpAmp:
2810 case OO_PipePipe: {
2811 // C++ [over.operator]p23:
2812 //
2813 // There also exist candidate operator functions of the form
2814 //
Douglas Gregor74253732008-11-19 15:42:04 +00002815 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002816 // bool operator&&(bool, bool);
2817 // bool operator||(bool, bool);
2818 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
2819 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2820 break;
2821 }
2822
2823 case OO_Subscript:
2824 // C++ [over.built]p13:
2825 //
2826 // For every cv-qualified or cv-unqualified object type T there
2827 // exist candidate operator functions of the form
2828 //
2829 // T* operator+(T*, ptrdiff_t); [ABOVE]
2830 // T& operator[](T*, ptrdiff_t);
2831 // T* operator-(T*, ptrdiff_t); [ABOVE]
2832 // T* operator+(ptrdiff_t, T*); [ABOVE]
2833 // T& operator[](ptrdiff_t, T*);
2834 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2835 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2836 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2837 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
2838 QualType ResultTy = Context.getReferenceType(PointeeType);
2839
2840 // T& operator[](T*, ptrdiff_t)
2841 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2842
2843 // T& operator[](ptrdiff_t, T*);
2844 ParamTypes[0] = ParamTypes[1];
2845 ParamTypes[1] = *Ptr;
2846 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2847 }
2848 break;
2849
2850 case OO_ArrowStar:
2851 // FIXME: No support for pointer-to-members yet.
2852 break;
2853 }
2854}
2855
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002856/// AddOverloadCandidates - Add all of the function overloads in Ovl
2857/// to the candidate set.
2858void
Douglas Gregor18fe5682008-11-03 20:45:27 +00002859Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002860 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00002861 OverloadCandidateSet& CandidateSet,
2862 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002863{
Douglas Gregor18fe5682008-11-03 20:45:27 +00002864 for (OverloadedFunctionDecl::function_const_iterator Func
2865 = Ovl->function_begin();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002866 Func != Ovl->function_end(); ++Func)
Douglas Gregor225c41e2008-11-03 19:09:14 +00002867 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
2868 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002869}
2870
2871/// isBetterOverloadCandidate - Determines whether the first overload
2872/// candidate is a better candidate than the second (C++ 13.3.3p1).
2873bool
2874Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
2875 const OverloadCandidate& Cand2)
2876{
2877 // Define viable functions to be better candidates than non-viable
2878 // functions.
2879 if (!Cand2.Viable)
2880 return Cand1.Viable;
2881 else if (!Cand1.Viable)
2882 return false;
2883
2884 // FIXME: Deal with the implicit object parameter for static member
2885 // functions. (C++ 13.3.3p1).
2886
2887 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
2888 // function than another viable function F2 if for all arguments i,
2889 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
2890 // then...
2891 unsigned NumArgs = Cand1.Conversions.size();
2892 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
2893 bool HasBetterConversion = false;
2894 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2895 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
2896 Cand2.Conversions[ArgIdx])) {
2897 case ImplicitConversionSequence::Better:
2898 // Cand1 has a better conversion sequence.
2899 HasBetterConversion = true;
2900 break;
2901
2902 case ImplicitConversionSequence::Worse:
2903 // Cand1 can't be better than Cand2.
2904 return false;
2905
2906 case ImplicitConversionSequence::Indistinguishable:
2907 // Do nothing.
2908 break;
2909 }
2910 }
2911
2912 if (HasBetterConversion)
2913 return true;
2914
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002915 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
2916 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002917
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002918 // C++ [over.match.best]p1b4:
2919 //
2920 // -- the context is an initialization by user-defined conversion
2921 // (see 8.5, 13.3.1.5) and the standard conversion sequence
2922 // from the return type of F1 to the destination type (i.e.,
2923 // the type of the entity being initialized) is a better
2924 // conversion sequence than the standard conversion sequence
2925 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00002926 if (Cand1.Function && Cand2.Function &&
2927 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002928 isa<CXXConversionDecl>(Cand2.Function)) {
2929 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
2930 Cand2.FinalConversion)) {
2931 case ImplicitConversionSequence::Better:
2932 // Cand1 has a better conversion sequence.
2933 return true;
2934
2935 case ImplicitConversionSequence::Worse:
2936 // Cand1 can't be better than Cand2.
2937 return false;
2938
2939 case ImplicitConversionSequence::Indistinguishable:
2940 // Do nothing
2941 break;
2942 }
2943 }
2944
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002945 return false;
2946}
2947
2948/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
2949/// within an overload candidate set. If overloading is successful,
2950/// the result will be OR_Success and Best will be set to point to the
2951/// best viable function within the candidate set. Otherwise, one of
2952/// several kinds of errors will be returned; see
2953/// Sema::OverloadingResult.
2954Sema::OverloadingResult
2955Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
2956 OverloadCandidateSet::iterator& Best)
2957{
2958 // Find the best viable function.
2959 Best = CandidateSet.end();
2960 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2961 Cand != CandidateSet.end(); ++Cand) {
2962 if (Cand->Viable) {
2963 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
2964 Best = Cand;
2965 }
2966 }
2967
2968 // If we didn't find any viable functions, abort.
2969 if (Best == CandidateSet.end())
2970 return OR_No_Viable_Function;
2971
2972 // Make sure that this function is better than every other viable
2973 // function. If not, we have an ambiguity.
2974 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2975 Cand != CandidateSet.end(); ++Cand) {
2976 if (Cand->Viable &&
2977 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002978 !isBetterOverloadCandidate(*Best, *Cand)) {
2979 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002980 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002981 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002982 }
2983
2984 // Best is the best viable function.
2985 return OR_Success;
2986}
2987
2988/// PrintOverloadCandidates - When overload resolution fails, prints
2989/// diagnostic messages containing the candidates in the candidate
2990/// set. If OnlyViable is true, only viable candidates will be printed.
2991void
2992Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
2993 bool OnlyViable)
2994{
2995 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
2996 LastCand = CandidateSet.end();
2997 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002998 if (Cand->Viable || !OnlyViable) {
2999 if (Cand->Function) {
3000 // Normal function
3001 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003002 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003003 // Desugar the type of the surrogate down to a function type,
3004 // retaining as many typedefs as possible while still showing
3005 // the function type (and, therefore, its parameter types).
3006 QualType FnType = Cand->Surrogate->getConversionType();
3007 bool isReference = false;
3008 bool isPointer = false;
3009 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
3010 FnType = FnTypeRef->getPointeeType();
3011 isReference = true;
3012 }
3013 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3014 FnType = FnTypePtr->getPointeeType();
3015 isPointer = true;
3016 }
3017 // Desugar down to a function type.
3018 FnType = QualType(FnType->getAsFunctionType(), 0);
3019 // Reconstruct the pointer/reference as appropriate.
3020 if (isPointer) FnType = Context.getPointerType(FnType);
3021 if (isReference) FnType = Context.getReferenceType(FnType);
3022
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003023 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00003024 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003025 } else {
3026 // FIXME: We need to get the identifier in here
3027 // FIXME: Do we want the error message to point at the
3028 // operator? (built-ins won't have a location)
3029 QualType FnType
3030 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3031 Cand->BuiltinTypes.ParamTypes,
3032 Cand->Conversions.size(),
3033 false, 0);
3034
Chris Lattnerd1625842008-11-24 06:25:27 +00003035 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003036 }
3037 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003038 }
3039}
3040
Douglas Gregor904eed32008-11-10 20:40:00 +00003041/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3042/// an overloaded function (C++ [over.over]), where @p From is an
3043/// expression with overloaded function type and @p ToType is the type
3044/// we're trying to resolve to. For example:
3045///
3046/// @code
3047/// int f(double);
3048/// int f(int);
3049///
3050/// int (*pfd)(double) = f; // selects f(double)
3051/// @endcode
3052///
3053/// This routine returns the resulting FunctionDecl if it could be
3054/// resolved, and NULL otherwise. When @p Complain is true, this
3055/// routine will emit diagnostics if there is an error.
3056FunctionDecl *
3057Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3058 bool Complain) {
3059 QualType FunctionType = ToType;
3060 if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3061 FunctionType = ToTypePtr->getPointeeType();
3062
3063 // We only look at pointers or references to functions.
3064 if (!FunctionType->isFunctionType())
3065 return 0;
3066
3067 // Find the actual overloaded function declaration.
3068 OverloadedFunctionDecl *Ovl = 0;
3069
3070 // C++ [over.over]p1:
3071 // [...] [Note: any redundant set of parentheses surrounding the
3072 // overloaded function name is ignored (5.1). ]
3073 Expr *OvlExpr = From->IgnoreParens();
3074
3075 // C++ [over.over]p1:
3076 // [...] The overloaded function name can be preceded by the &
3077 // operator.
3078 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3079 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3080 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3081 }
3082
3083 // Try to dig out the overloaded function.
3084 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3085 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3086
3087 // If there's no overloaded function declaration, we're done.
3088 if (!Ovl)
3089 return 0;
3090
3091 // Look through all of the overloaded functions, searching for one
3092 // whose type matches exactly.
3093 // FIXME: When templates or using declarations come along, we'll actually
3094 // have to deal with duplicates, partial ordering, etc. For now, we
3095 // can just do a simple search.
3096 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3097 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3098 Fun != Ovl->function_end(); ++Fun) {
3099 // C++ [over.over]p3:
3100 // Non-member functions and static member functions match
3101 // targets of type “pointer-to-function”or
3102 // “reference-to-function.”
3103 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3104 if (!Method->isStatic())
3105 continue;
3106
3107 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3108 return *Fun;
3109 }
3110
3111 return 0;
3112}
3113
Douglas Gregorf6b89692008-11-26 05:54:23 +00003114/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3115/// (which eventually refers to the set of overloaded functions in
3116/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3117/// function call down to a specific function. If overload resolution
Douglas Gregor0a396682008-11-26 06:01:48 +00003118/// succeeds, returns the function declaration produced by overload
3119/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003120/// arguments and Fn, and returns NULL.
Douglas Gregor0a396682008-11-26 06:01:48 +00003121FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3122 SourceLocation LParenLoc,
3123 Expr **Args, unsigned NumArgs,
3124 SourceLocation *CommaLocs,
3125 SourceLocation RParenLoc) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003126 OverloadCandidateSet CandidateSet;
3127 AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3128 OverloadCandidateSet::iterator Best;
3129 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003130 case OR_Success:
3131 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003132
3133 case OR_No_Viable_Function:
3134 Diag(Fn->getSourceRange().getBegin(),
3135 diag::err_ovl_no_viable_function_in_call)
3136 << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3137 << Fn->getSourceRange();
3138 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3139 break;
3140
3141 case OR_Ambiguous:
3142 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3143 << Ovl->getDeclName() << Fn->getSourceRange();
3144 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3145 break;
3146 }
3147
3148 // Overload resolution failed. Destroy all of the subexpressions and
3149 // return NULL.
3150 Fn->Destroy(Context);
3151 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3152 Args[Arg]->Destroy(Context);
3153 return 0;
3154}
3155
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003156/// BuildCallToObjectOfClassType - Build a call to an object of class
3157/// type (C++ [over.call.object]), which can end up invoking an
3158/// overloaded function call operator (@c operator()) or performing a
3159/// user-defined conversion on the object argument.
3160Action::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00003161Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3162 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003163 Expr **Args, unsigned NumArgs,
3164 SourceLocation *CommaLocs,
3165 SourceLocation RParenLoc) {
3166 assert(Object->getType()->isRecordType() && "Requires object type argument");
3167 const RecordType *Record = Object->getType()->getAsRecordType();
3168
3169 // C++ [over.call.object]p1:
3170 // If the primary-expression E in the function call syntax
3171 // evaluates to a class object of type “cv T”, then the set of
3172 // candidate functions includes at least the function call
3173 // operators of T. The function call operators of T are obtained by
3174 // ordinary lookup of the name operator() in the context of
3175 // (E).operator().
3176 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00003177 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
3178 DeclContext::lookup_const_result Lookup
Douglas Gregore267ff32008-12-11 20:41:00 +00003179 = Record->getDecl()->lookup(Context, OpName);
Douglas Gregor44b43212008-12-11 16:49:14 +00003180 NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003181 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3182 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3183 /*SuppressUserConversions=*/false);
3184 else if (OverloadedFunctionDecl *Ovl
3185 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3186 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3187 FEnd = Ovl->function_end();
3188 F != FEnd; ++F) {
3189 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3190 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3191 /*SuppressUserConversions=*/false);
3192 }
3193 }
3194
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003195 // C++ [over.call.object]p2:
3196 // In addition, for each conversion function declared in T of the
3197 // form
3198 //
3199 // operator conversion-type-id () cv-qualifier;
3200 //
3201 // where cv-qualifier is the same cv-qualification as, or a
3202 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00003203 // denotes the type "pointer to function of (P1,...,Pn) returning
3204 // R", or the type "reference to pointer to function of
3205 // (P1,...,Pn) returning R", or the type "reference to function
3206 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003207 // is also considered as a candidate function. Similarly,
3208 // surrogate call functions are added to the set of candidate
3209 // functions for each conversion function declared in an
3210 // accessible base class provided the function is not hidden
3211 // within T by another intervening declaration.
3212 //
3213 // FIXME: Look in base classes for more conversion operators!
3214 OverloadedFunctionDecl *Conversions
3215 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00003216 for (OverloadedFunctionDecl::function_iterator
3217 Func = Conversions->function_begin(),
3218 FuncEnd = Conversions->function_end();
3219 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003220 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3221
3222 // Strip the reference type (if any) and then the pointer type (if
3223 // any) to get down to what might be a function type.
3224 QualType ConvType = Conv->getConversionType().getNonReferenceType();
3225 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3226 ConvType = ConvPtrType->getPointeeType();
3227
3228 if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3229 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3230 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003231
3232 // Perform overload resolution.
3233 OverloadCandidateSet::iterator Best;
3234 switch (BestViableFunction(CandidateSet, Best)) {
3235 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003236 // Overload resolution succeeded; we'll build the appropriate call
3237 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003238 break;
3239
3240 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00003241 Diag(Object->getSourceRange().getBegin(),
3242 diag::err_ovl_no_viable_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003243 << Object->getType() << (unsigned)CandidateSet.size()
Sebastian Redle4c452c2008-11-22 13:44:36 +00003244 << Object->getSourceRange();
3245 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003246 break;
3247
3248 case OR_Ambiguous:
3249 Diag(Object->getSourceRange().getBegin(),
3250 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003251 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003252 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3253 break;
3254 }
3255
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003256 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003257 // We had an error; delete all of the subexpressions and return
3258 // the error.
3259 delete Object;
3260 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3261 delete Args[ArgIdx];
3262 return true;
3263 }
3264
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003265 if (Best->Function == 0) {
3266 // Since there is no function declaration, this is one of the
3267 // surrogate candidates. Dig out the conversion function.
3268 CXXConversionDecl *Conv
3269 = cast<CXXConversionDecl>(
3270 Best->Conversions[0].UserDefined.ConversionFunction);
3271
3272 // We selected one of the surrogate functions that converts the
3273 // object parameter to a function pointer. Perform the conversion
3274 // on the object argument, then let ActOnCallExpr finish the job.
3275 // FIXME: Represent the user-defined conversion in the AST!
3276 ImpCastExprToType(Object,
3277 Conv->getConversionType().getNonReferenceType(),
3278 Conv->getConversionType()->isReferenceType());
Douglas Gregor5c37de72008-12-06 00:22:45 +00003279 return ActOnCallExpr(S, (ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003280 CommaLocs, RParenLoc);
3281 }
3282
3283 // We found an overloaded operator(). Build a CXXOperatorCallExpr
3284 // that calls this method, using Object for the implicit object
3285 // parameter and passing along the remaining arguments.
3286 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003287 const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3288
3289 unsigned NumArgsInProto = Proto->getNumArgs();
3290 unsigned NumArgsToCheck = NumArgs;
3291
3292 // Build the full argument list for the method call (the
3293 // implicit object parameter is placed at the beginning of the
3294 // list).
3295 Expr **MethodArgs;
3296 if (NumArgs < NumArgsInProto) {
3297 NumArgsToCheck = NumArgsInProto;
3298 MethodArgs = new Expr*[NumArgsInProto + 1];
3299 } else {
3300 MethodArgs = new Expr*[NumArgs + 1];
3301 }
3302 MethodArgs[0] = Object;
3303 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3304 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3305
3306 Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3307 SourceLocation());
3308 UsualUnaryConversions(NewFn);
3309
3310 // Once we've built TheCall, all of the expressions are properly
3311 // owned.
3312 QualType ResultTy = Method->getResultType().getNonReferenceType();
3313 llvm::OwningPtr<CXXOperatorCallExpr>
3314 TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3315 ResultTy, RParenLoc));
3316 delete [] MethodArgs;
3317
3318 // Initialize the implicit object parameter.
3319 if (!PerformObjectArgumentInitialization(Object, Method))
3320 return true;
3321 TheCall->setArg(0, Object);
3322
3323 // Check the argument types.
3324 for (unsigned i = 0; i != NumArgsToCheck; i++) {
3325 QualType ProtoArgType = Proto->getArgType(i);
3326
3327 Expr *Arg;
3328 if (i < NumArgs)
3329 Arg = Args[i];
3330 else
3331 Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
3332 QualType ArgType = Arg->getType();
3333
3334 // Pass the argument.
3335 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3336 return true;
3337
3338 TheCall->setArg(i + 1, Arg);
3339 }
3340
3341 // If this is a variadic call, handle args passed through "...".
3342 if (Proto->isVariadic()) {
3343 // Promote the arguments (C99 6.5.2.2p7).
3344 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3345 Expr *Arg = Args[i];
3346 DefaultArgumentPromotion(Arg);
3347 TheCall->setArg(i + 1, Arg);
3348 }
3349 }
3350
3351 return CheckFunctionCall(Method, TheCall.take());
3352}
3353
Douglas Gregor8ba10742008-11-20 16:27:02 +00003354/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3355/// (if one exists), where @c Base is an expression of class type and
3356/// @c Member is the name of the member we're trying to find.
3357Action::ExprResult
3358Sema::BuildOverloadedArrowExpr(Expr *Base, SourceLocation OpLoc,
3359 SourceLocation MemberLoc,
3360 IdentifierInfo &Member) {
3361 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3362
3363 // C++ [over.ref]p1:
3364 //
3365 // [...] An expression x->m is interpreted as (x.operator->())->m
3366 // for a class object x of type T if T::operator->() exists and if
3367 // the operator is selected as the best match function by the
3368 // overload resolution mechanism (13.3).
3369 // FIXME: look in base classes.
3370 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3371 OverloadCandidateSet CandidateSet;
3372 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregor44b43212008-12-11 16:49:14 +00003373 DeclContext::lookup_const_result Lookup
Douglas Gregore267ff32008-12-11 20:41:00 +00003374 = BaseRecord->getDecl()->lookup(Context, OpName);
Douglas Gregor44b43212008-12-11 16:49:14 +00003375 NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
Douglas Gregor8ba10742008-11-20 16:27:02 +00003376 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3377 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3378 /*SuppressUserConversions=*/false);
3379 else if (OverloadedFunctionDecl *Ovl
3380 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3381 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3382 FEnd = Ovl->function_end();
3383 F != FEnd; ++F) {
3384 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3385 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3386 /*SuppressUserConversions=*/false);
3387 }
3388 }
3389
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003390 llvm::OwningPtr<Expr> BasePtr(Base);
3391
Douglas Gregor8ba10742008-11-20 16:27:02 +00003392 // Perform overload resolution.
3393 OverloadCandidateSet::iterator Best;
3394 switch (BestViableFunction(CandidateSet, Best)) {
3395 case OR_Success:
3396 // Overload resolution succeeded; we'll build the call below.
3397 break;
3398
3399 case OR_No_Viable_Function:
3400 if (CandidateSet.empty())
3401 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00003402 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003403 else
3404 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Sebastian Redle4c452c2008-11-22 13:44:36 +00003405 << "operator->" << (unsigned)CandidateSet.size()
3406 << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003407 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003408 return true;
3409
3410 case OR_Ambiguous:
3411 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00003412 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003413 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003414 return true;
3415 }
3416
3417 // Convert the object parameter.
3418 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003419 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00003420 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003421
3422 // No concerns about early exits now.
3423 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003424
3425 // Build the operator call.
3426 Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3427 UsualUnaryConversions(FnExpr);
3428 Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3429 Method->getResultType().getNonReferenceType(),
3430 OpLoc);
3431 return ActOnMemberReferenceExpr(Base, OpLoc, tok::arrow, MemberLoc, Member);
3432}
3433
Douglas Gregor904eed32008-11-10 20:40:00 +00003434/// FixOverloadedFunctionReference - E is an expression that refers to
3435/// a C++ overloaded function (possibly with some parentheses and
3436/// perhaps a '&' around it). We have resolved the overloaded function
3437/// to the function declaration Fn, so patch up the expression E to
3438/// refer (possibly indirectly) to Fn.
3439void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3440 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3441 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3442 E->setType(PE->getSubExpr()->getType());
3443 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3444 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3445 "Can only take the address of an overloaded function");
3446 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3447 E->setType(Context.getPointerType(E->getType()));
3448 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3449 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3450 "Expected overloaded function");
3451 DR->setDecl(Fn);
3452 E->setType(Fn->getType());
3453 } else {
3454 assert(false && "Invalid reference to overloaded function");
3455 }
3456}
3457
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003458} // end namespace clang