blob: 3671711964c9eabe4bf664c3352956860a49db35 [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000023#include "llvm/Support/Compiler.h"
24#include <algorithm>
25
26namespace clang {
27
28/// GetConversionCategory - Retrieve the implicit conversion
29/// category corresponding to the given implicit conversion kind.
30ImplicitConversionCategory
31GetConversionCategory(ImplicitConversionKind Kind) {
32 static const ImplicitConversionCategory
33 Category[(int)ICK_Num_Conversion_Kinds] = {
34 ICC_Identity,
35 ICC_Lvalue_Transformation,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Qualification_Adjustment,
39 ICC_Promotion,
40 ICC_Promotion,
41 ICC_Conversion,
42 ICC_Conversion,
43 ICC_Conversion,
44 ICC_Conversion,
45 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000046 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000047 ICC_Conversion
48 };
49 return Category[(int)Kind];
50}
51
52/// GetConversionRank - Retrieve the implicit conversion rank
53/// corresponding to the given implicit conversion kind.
54ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
55 static const ImplicitConversionRank
56 Rank[(int)ICK_Num_Conversion_Kinds] = {
57 ICR_Exact_Match,
58 ICR_Exact_Match,
59 ICR_Exact_Match,
60 ICR_Exact_Match,
61 ICR_Exact_Match,
62 ICR_Promotion,
63 ICR_Promotion,
64 ICR_Conversion,
65 ICR_Conversion,
66 ICR_Conversion,
67 ICR_Conversion,
68 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000069 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000070 ICR_Conversion
71 };
72 return Rank[(int)Kind];
73}
74
75/// GetImplicitConversionName - Return the name of this kind of
76/// implicit conversion.
77const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
78 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
79 "No conversion",
80 "Lvalue-to-rvalue",
81 "Array-to-pointer",
82 "Function-to-pointer",
83 "Qualification",
84 "Integral promotion",
85 "Floating point promotion",
86 "Integral conversion",
87 "Floating conversion",
88 "Floating-integral conversion",
89 "Pointer conversion",
90 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +000091 "Boolean conversion",
92 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000093 };
94 return Name[Kind];
95}
96
Douglas Gregor60d62c22008-10-31 16:23:19 +000097/// StandardConversionSequence - Set the standard conversion
98/// sequence to the identity conversion.
99void StandardConversionSequence::setAsIdentityConversion() {
100 First = ICK_Identity;
101 Second = ICK_Identity;
102 Third = ICK_Identity;
103 Deprecated = false;
104 ReferenceBinding = false;
105 DirectBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000106 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000107}
108
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000109/// getRank - Retrieve the rank of this standard conversion sequence
110/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
111/// implicit conversions.
112ImplicitConversionRank StandardConversionSequence::getRank() const {
113 ImplicitConversionRank Rank = ICR_Exact_Match;
114 if (GetConversionRank(First) > Rank)
115 Rank = GetConversionRank(First);
116 if (GetConversionRank(Second) > Rank)
117 Rank = GetConversionRank(Second);
118 if (GetConversionRank(Third) > Rank)
119 Rank = GetConversionRank(Third);
120 return Rank;
121}
122
123/// isPointerConversionToBool - Determines whether this conversion is
124/// a conversion of a pointer or pointer-to-member to bool. This is
125/// used as part of the ranking of standard conversion sequences
126/// (C++ 13.3.3.2p4).
127bool StandardConversionSequence::isPointerConversionToBool() const
128{
129 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
130 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
131
132 // Note that FromType has not necessarily been transformed by the
133 // array-to-pointer or function-to-pointer implicit conversions, so
134 // check for their presence as well as checking whether FromType is
135 // a pointer.
136 if (ToType->isBooleanType() &&
137 (FromType->isPointerType() ||
138 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
139 return true;
140
141 return false;
142}
143
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000144/// isPointerConversionToVoidPointer - Determines whether this
145/// conversion is a conversion of a pointer to a void pointer. This is
146/// used as part of the ranking of standard conversion sequences (C++
147/// 13.3.3.2p4).
148bool
149StandardConversionSequence::
150isPointerConversionToVoidPointer(ASTContext& Context) const
151{
152 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
153 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
154
155 // Note that FromType has not necessarily been transformed by the
156 // array-to-pointer implicit conversion, so check for its presence
157 // and redo the conversion to get a pointer.
158 if (First == ICK_Array_To_Pointer)
159 FromType = Context.getArrayDecayedType(FromType);
160
161 if (Second == ICK_Pointer_Conversion)
162 if (const PointerType* ToPtrType = ToType->getAsPointerType())
163 return ToPtrType->getPointeeType()->isVoidType();
164
165 return false;
166}
167
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000168/// DebugPrint - Print this standard conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void StandardConversionSequence::DebugPrint() const {
171 bool PrintedSomething = false;
172 if (First != ICK_Identity) {
173 fprintf(stderr, "%s", GetImplicitConversionName(First));
174 PrintedSomething = true;
175 }
176
177 if (Second != ICK_Identity) {
178 if (PrintedSomething) {
179 fprintf(stderr, " -> ");
180 }
181 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000182
183 if (CopyConstructor) {
184 fprintf(stderr, " (by copy constructor)");
185 } else if (DirectBinding) {
186 fprintf(stderr, " (direct reference binding)");
187 } else if (ReferenceBinding) {
188 fprintf(stderr, " (reference binding)");
189 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000190 PrintedSomething = true;
191 }
192
193 if (Third != ICK_Identity) {
194 if (PrintedSomething) {
195 fprintf(stderr, " -> ");
196 }
197 fprintf(stderr, "%s", GetImplicitConversionName(Third));
198 PrintedSomething = true;
199 }
200
201 if (!PrintedSomething) {
202 fprintf(stderr, "No conversions required");
203 }
204}
205
206/// DebugPrint - Print this user-defined conversion sequence to standard
207/// error. Useful for debugging overloading issues.
208void UserDefinedConversionSequence::DebugPrint() const {
209 if (Before.First || Before.Second || Before.Third) {
210 Before.DebugPrint();
211 fprintf(stderr, " -> ");
212 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000213 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000214 if (After.First || After.Second || After.Third) {
215 fprintf(stderr, " -> ");
216 After.DebugPrint();
217 }
218}
219
220/// DebugPrint - Print this implicit conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void ImplicitConversionSequence::DebugPrint() const {
223 switch (ConversionKind) {
224 case StandardConversion:
225 fprintf(stderr, "Standard conversion: ");
226 Standard.DebugPrint();
227 break;
228 case UserDefinedConversion:
229 fprintf(stderr, "User-defined conversion: ");
230 UserDefined.DebugPrint();
231 break;
232 case EllipsisConversion:
233 fprintf(stderr, "Ellipsis conversion");
234 break;
235 case BadConversion:
236 fprintf(stderr, "Bad conversion");
237 break;
238 }
239
240 fprintf(stderr, "\n");
241}
242
243// IsOverload - Determine whether the given New declaration is an
244// overload of the Old declaration. This routine returns false if New
245// and Old cannot be overloaded, e.g., if they are functions with the
246// same signature (C++ 1.3.10) or if the Old declaration isn't a
247// function (or overload set). When it does return false and Old is an
248// OverloadedFunctionDecl, MatchedDecl will be set to point to the
249// FunctionDecl that New cannot be overloaded with.
250//
251// Example: Given the following input:
252//
253// void f(int, float); // #1
254// void f(int, int); // #2
255// int f(int, int); // #3
256//
257// When we process #1, there is no previous declaration of "f",
258// so IsOverload will not be used.
259//
260// When we process #2, Old is a FunctionDecl for #1. By comparing the
261// parameter types, we see that #1 and #2 are overloaded (since they
262// have different signatures), so this routine returns false;
263// MatchedDecl is unchanged.
264//
265// When we process #3, Old is an OverloadedFunctionDecl containing #1
266// and #2. We compare the signatures of #3 to #1 (they're overloaded,
267// so we do nothing) and then #3 to #2. Since the signatures of #3 and
268// #2 are identical (return types of functions are not part of the
269// signature), IsOverload returns false and MatchedDecl will be set to
270// point to the FunctionDecl for #2.
271bool
272Sema::IsOverload(FunctionDecl *New, Decl* OldD,
273 OverloadedFunctionDecl::function_iterator& MatchedDecl)
274{
275 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
276 // Is this new function an overload of every function in the
277 // overload set?
278 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
279 FuncEnd = Ovl->function_end();
280 for (; Func != FuncEnd; ++Func) {
281 if (!IsOverload(New, *Func, MatchedDecl)) {
282 MatchedDecl = Func;
283 return false;
284 }
285 }
286
287 // This function overloads every function in the overload set.
288 return true;
289 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
290 // Is the function New an overload of the function Old?
291 QualType OldQType = Context.getCanonicalType(Old->getType());
292 QualType NewQType = Context.getCanonicalType(New->getType());
293
294 // Compare the signatures (C++ 1.3.10) of the two functions to
295 // determine whether they are overloads. If we find any mismatch
296 // in the signature, they are overloads.
297
298 // If either of these functions is a K&R-style function (no
299 // prototype), then we consider them to have matching signatures.
300 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
301 isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
302 return false;
303
304 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
305 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
306
307 // The signature of a function includes the types of its
308 // parameters (C++ 1.3.10), which includes the presence or absence
309 // of the ellipsis; see C++ DR 357).
310 if (OldQType != NewQType &&
311 (OldType->getNumArgs() != NewType->getNumArgs() ||
312 OldType->isVariadic() != NewType->isVariadic() ||
313 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
314 NewType->arg_type_begin())))
315 return true;
316
317 // If the function is a class member, its signature includes the
318 // cv-qualifiers (if any) on the function itself.
319 //
320 // As part of this, also check whether one of the member functions
321 // is static, in which case they are not overloads (C++
322 // 13.1p2). While not part of the definition of the signature,
323 // this check is important to determine whether these functions
324 // can be overloaded.
325 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
326 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
327 if (OldMethod && NewMethod &&
328 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000329 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000330 return true;
331
332 // The signatures match; this is not an overload.
333 return false;
334 } else {
335 // (C++ 13p1):
336 // Only function declarations can be overloaded; object and type
337 // declarations cannot be overloaded.
338 return false;
339 }
340}
341
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000342/// TryImplicitConversion - Attempt to perform an implicit conversion
343/// from the given expression (Expr) to the given type (ToType). This
344/// function returns an implicit conversion sequence that can be used
345/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000346///
347/// void f(float f);
348/// void g(int i) { f(i); }
349///
350/// this routine would produce an implicit conversion sequence to
351/// describe the initialization of f from i, which will be a standard
352/// conversion sequence containing an lvalue-to-rvalue conversion (C++
353/// 4.1) followed by a floating-integral conversion (C++ 4.9).
354//
355/// Note that this routine only determines how the conversion can be
356/// performed; it does not actually perform the conversion. As such,
357/// it will not produce any diagnostics if no conversion is available,
358/// but will instead return an implicit conversion sequence of kind
359/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000360///
361/// If @p SuppressUserConversions, then user-defined conversions are
362/// not permitted.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000363ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000364Sema::TryImplicitConversion(Expr* From, QualType ToType,
365 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000366{
367 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000368 if (IsStandardConversion(From, ToType, ICS.Standard))
369 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000370 else if (!SuppressUserConversions &&
371 IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000372 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000373 // C++ [over.ics.user]p4:
374 // A conversion of an expression of class type to the same class
375 // type is given Exact Match rank, and a conversion of an
376 // expression of class type to a base class of that type is
377 // given Conversion rank, in spite of the fact that a copy
378 // constructor (i.e., a user-defined conversion function) is
379 // called for those cases.
380 if (CXXConstructorDecl *Constructor
381 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
382 if (Constructor->isCopyConstructor(Context)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000383 // Turn this into a "standard" conversion sequence, so that it
384 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000385 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
386 ICS.Standard.setAsIdentityConversion();
387 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
388 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000389 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000390 if (IsDerivedFrom(From->getType().getUnqualifiedType(),
391 ToType.getUnqualifiedType()))
392 ICS.Standard.Second = ICK_Derived_To_Base;
393 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000394 }
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000395 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000396 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000397
398 return ICS;
399}
400
401/// IsStandardConversion - Determines whether there is a standard
402/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
403/// expression From to the type ToType. Standard conversion sequences
404/// only consider non-class types; for conversions that involve class
405/// types, use TryImplicitConversion. If a conversion exists, SCS will
406/// contain the standard conversion sequence required to perform this
407/// conversion and this routine will return true. Otherwise, this
408/// routine will return false and the value of SCS is unspecified.
409bool
410Sema::IsStandardConversion(Expr* From, QualType ToType,
411 StandardConversionSequence &SCS)
412{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000413 QualType FromType = From->getType();
414
Douglas Gregor60d62c22008-10-31 16:23:19 +0000415 // There are no standard conversions for class types, so abort early.
416 if (FromType->isRecordType() || ToType->isRecordType())
417 return false;
418
419 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000420 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000421 SCS.Deprecated = false;
422 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000423 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000424
425 // The first conversion can be an lvalue-to-rvalue conversion,
426 // array-to-pointer conversion, or function-to-pointer conversion
427 // (C++ 4p1).
428
429 // Lvalue-to-rvalue conversion (C++ 4.1):
430 // An lvalue (3.10) of a non-function, non-array type T can be
431 // converted to an rvalue.
432 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
433 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000434 !FromType->isFunctionType() && !FromType->isArrayType() &&
435 !FromType->isOverloadType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000436 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000437
438 // If T is a non-class type, the type of the rvalue is the
439 // cv-unqualified version of T. Otherwise, the type of the rvalue
440 // is T (C++ 4.1p1).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000441 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000442 }
443 // Array-to-pointer conversion (C++ 4.2)
444 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000445 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000446
447 // An lvalue or rvalue of type "array of N T" or "array of unknown
448 // bound of T" can be converted to an rvalue of type "pointer to
449 // T" (C++ 4.2p1).
450 FromType = Context.getArrayDecayedType(FromType);
451
452 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
453 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000454 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000455
456 // For the purpose of ranking in overload resolution
457 // (13.3.3.1.1), this conversion is considered an
458 // array-to-pointer conversion followed by a qualification
459 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000460 SCS.Second = ICK_Identity;
461 SCS.Third = ICK_Qualification;
462 SCS.ToTypePtr = ToType.getAsOpaquePtr();
463 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000464 }
465 }
466 // Function-to-pointer conversion (C++ 4.3).
467 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000468 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000469
470 // An lvalue of function type T can be converted to an rvalue of
471 // type "pointer to T." The result is a pointer to the
472 // function. (C++ 4.3p1).
473 FromType = Context.getPointerType(FromType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000474 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000475 // Address of overloaded function (C++ [over.over]).
476 else if (FunctionDecl *Fn
477 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
478 SCS.First = ICK_Function_To_Pointer;
479
480 // We were able to resolve the address of the overloaded function,
481 // so we can convert to the type of that function.
482 FromType = Fn->getType();
483 if (ToType->isReferenceType())
484 FromType = Context.getReferenceType(FromType);
485 else
486 FromType = Context.getPointerType(FromType);
487 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000488 // We don't require any conversions for the first step.
489 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000490 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000491 }
492
493 // The second conversion can be an integral promotion, floating
494 // point promotion, integral conversion, floating point conversion,
495 // floating-integral conversion, pointer conversion,
496 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
497 if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
498 Context.getCanonicalType(ToType).getUnqualifiedType()) {
499 // The unqualified versions of the types are the same: there's no
500 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000501 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000502 }
503 // Integral promotion (C++ 4.5).
504 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000505 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000506 FromType = ToType.getUnqualifiedType();
507 }
508 // Floating point promotion (C++ 4.6).
509 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000510 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000511 FromType = ToType.getUnqualifiedType();
512 }
513 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000514 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000515 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000516 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000517 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000518 FromType = ToType.getUnqualifiedType();
519 }
520 // Floating point conversions (C++ 4.8).
521 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000522 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000523 FromType = ToType.getUnqualifiedType();
524 }
525 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000526 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000527 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000528 ToType->isIntegralType() && !ToType->isBooleanType() &&
529 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000530 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
531 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000532 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000533 FromType = ToType.getUnqualifiedType();
534 }
535 // Pointer conversions (C++ 4.10).
Sebastian Redl07779722008-10-31 14:43:28 +0000536 else if (IsPointerConversion(From, FromType, ToType, FromType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000537 SCS.Second = ICK_Pointer_Conversion;
Sebastian Redl07779722008-10-31 14:43:28 +0000538 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000539 // FIXME: Pointer to member conversions (4.11).
540 // Boolean conversions (C++ 4.12).
541 // FIXME: pointer-to-member type
542 else if (ToType->isBooleanType() &&
543 (FromType->isArithmeticType() ||
544 FromType->isEnumeralType() ||
545 FromType->isPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000546 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000547 FromType = Context.BoolTy;
548 } else {
549 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000550 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000551 }
552
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000553 QualType CanonFrom;
554 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000555 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000556 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000557 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000558 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000559 CanonFrom = Context.getCanonicalType(FromType);
560 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000561 } else {
562 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000563 SCS.Third = ICK_Identity;
564
565 // C++ [over.best.ics]p6:
566 // [...] Any difference in top-level cv-qualification is
567 // subsumed by the initialization itself and does not constitute
568 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000569 CanonFrom = Context.getCanonicalType(FromType);
570 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000571 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000572 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
573 FromType = ToType;
574 CanonFrom = CanonTo;
575 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000576 }
577
578 // If we have not converted the argument type to the parameter type,
579 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000580 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000581 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000582
Douglas Gregor60d62c22008-10-31 16:23:19 +0000583 SCS.ToTypePtr = FromType.getAsOpaquePtr();
584 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000585}
586
587/// IsIntegralPromotion - Determines whether the conversion from the
588/// expression From (whose potentially-adjusted type is FromType) to
589/// ToType is an integral promotion (C++ 4.5). If so, returns true and
590/// sets PromotedType to the promoted type.
591bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
592{
593 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000594 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000595 if (!To) {
596 return false;
597 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000598
599 // An rvalue of type char, signed char, unsigned char, short int, or
600 // unsigned short int can be converted to an rvalue of type int if
601 // int can represent all the values of the source type; otherwise,
602 // the source rvalue can be converted to an rvalue of type unsigned
603 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000604 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000605 if (// We can promote any signed, promotable integer type to an int
606 (FromType->isSignedIntegerType() ||
607 // We can promote any unsigned integer type whose size is
608 // less than int to an int.
609 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000610 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000611 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000612 }
613
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000614 return To->getKind() == BuiltinType::UInt;
615 }
616
617 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
618 // can be converted to an rvalue of the first of the following types
619 // that can represent all the values of its underlying type: int,
620 // unsigned int, long, or unsigned long (C++ 4.5p2).
621 if ((FromType->isEnumeralType() || FromType->isWideCharType())
622 && ToType->isIntegerType()) {
623 // Determine whether the type we're converting from is signed or
624 // unsigned.
625 bool FromIsSigned;
626 uint64_t FromSize = Context.getTypeSize(FromType);
627 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
628 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
629 FromIsSigned = UnderlyingType->isSignedIntegerType();
630 } else {
631 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
632 FromIsSigned = true;
633 }
634
635 // The types we'll try to promote to, in the appropriate
636 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000637 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000638 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000639 Context.LongTy, Context.UnsignedLongTy ,
640 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000641 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000642 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000643 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
644 if (FromSize < ToSize ||
645 (FromSize == ToSize &&
646 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
647 // We found the type that we can promote to. If this is the
648 // type we wanted, we have a promotion. Otherwise, no
649 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000650 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000651 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
652 }
653 }
654 }
655
656 // An rvalue for an integral bit-field (9.6) can be converted to an
657 // rvalue of type int if int can represent all the values of the
658 // bit-field; otherwise, it can be converted to unsigned int if
659 // unsigned int can represent all the values of the bit-field. If
660 // the bit-field is larger yet, no integral promotion applies to
661 // it. If the bit-field has an enumerated type, it is treated as any
662 // other value of that type for promotion purposes (C++ 4.5p3).
663 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
664 using llvm::APSInt;
665 FieldDecl *MemberDecl = MemRef->getMemberDecl();
666 APSInt BitWidth;
667 if (MemberDecl->isBitField() &&
668 FromType->isIntegralType() && !FromType->isEnumeralType() &&
669 From->isIntegerConstantExpr(BitWidth, Context)) {
670 APSInt ToSize(Context.getTypeSize(ToType));
671
672 // Are we promoting to an int from a bitfield that fits in an int?
673 if (BitWidth < ToSize ||
Sebastian Redl07779722008-10-31 14:43:28 +0000674 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000675 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000676 }
677
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000678 // Are we promoting to an unsigned int from an unsigned bitfield
679 // that fits into an unsigned int?
Sebastian Redl07779722008-10-31 14:43:28 +0000680 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000681 return To->getKind() == BuiltinType::UInt;
Sebastian Redl07779722008-10-31 14:43:28 +0000682 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000683
684 return false;
685 }
686 }
687
688 // An rvalue of type bool can be converted to an rvalue of type int,
689 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000690 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000691 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000692 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000693
694 return false;
695}
696
697/// IsFloatingPointPromotion - Determines whether the conversion from
698/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
699/// returns true and sets PromotedType to the promoted type.
700bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
701{
702 /// An rvalue of type float can be converted to an rvalue of type
703 /// double. (C++ 4.6p1).
704 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
705 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
706 if (FromBuiltin->getKind() == BuiltinType::Float &&
707 ToBuiltin->getKind() == BuiltinType::Double)
708 return true;
709
710 return false;
711}
712
Douglas Gregorcb7de522008-11-26 23:31:11 +0000713/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
714/// the pointer type FromPtr to a pointer to type ToPointee, with the
715/// same type qualifiers as FromPtr has on its pointee type. ToType,
716/// if non-empty, will be a pointer to ToType that may or may not have
717/// the right set of qualifiers on its pointee.
718static QualType
719BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
720 QualType ToPointee, QualType ToType,
721 ASTContext &Context) {
722 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
723 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
724 unsigned Quals = CanonFromPointee.getCVRQualifiers();
725
726 // Exact qualifier match -> return the pointer type we're converting to.
727 if (CanonToPointee.getCVRQualifiers() == Quals) {
728 // ToType is exactly what we need. Return it.
729 if (ToType.getTypePtr())
730 return ToType;
731
732 // Build a pointer to ToPointee. It has the right qualifiers
733 // already.
734 return Context.getPointerType(ToPointee);
735 }
736
737 // Just build a canonical type that has the right qualifiers.
738 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
739}
740
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000741/// IsPointerConversion - Determines whether the conversion of the
742/// expression From, which has the (possibly adjusted) type FromType,
743/// can be converted to the type ToType via a pointer conversion (C++
744/// 4.10). If so, returns true and places the converted type (that
745/// might differ from ToType in its cv-qualifiers at some level) into
746/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000747///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000748/// This routine also supports conversions to and from block pointers
749/// and conversions with Objective-C's 'id', 'id<protocols...>', and
750/// pointers to interfaces. FIXME: Once we've determined the
751/// appropriate overloading rules for Objective-C, we may want to
752/// split the Objective-C checks into a different routine; however,
753/// GCC seems to consider all of these conversions to be pointer
754/// conversions, so for now they live here.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000755bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
756 QualType& ConvertedType)
757{
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000758 // Blocks: Block pointers can be converted to void*.
759 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
760 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
761 ConvertedType = ToType;
762 return true;
763 }
764 // Blocks: A null pointer constant can be converted to a block
765 // pointer type.
766 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
767 ConvertedType = ToType;
768 return true;
769 }
770
Douglas Gregor7ca09762008-11-27 01:19:21 +0000771 // Conversions with Objective-C's id<...>.
772 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
773 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
774 ConvertedType = ToType;
775 return true;
776 }
777
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000778 const PointerType* ToTypePtr = ToType->getAsPointerType();
779 if (!ToTypePtr)
780 return false;
781
782 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
783 if (From->isNullPointerConstant(Context)) {
784 ConvertedType = ToType;
785 return true;
786 }
Sebastian Redl07779722008-10-31 14:43:28 +0000787
Douglas Gregorcb7de522008-11-26 23:31:11 +0000788 // Beyond this point, both types need to be pointers.
789 const PointerType *FromTypePtr = FromType->getAsPointerType();
790 if (!FromTypePtr)
791 return false;
792
793 QualType FromPointeeType = FromTypePtr->getPointeeType();
794 QualType ToPointeeType = ToTypePtr->getPointeeType();
795
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000796 // An rvalue of type "pointer to cv T," where T is an object type,
797 // can be converted to an rvalue of type "pointer to cv void" (C++
798 // 4.10p2).
Douglas Gregorcb7de522008-11-26 23:31:11 +0000799 if (FromPointeeType->isIncompleteOrObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000800 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
801 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000802 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000803 return true;
804 }
805
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000806 // C++ [conv.ptr]p3:
807 //
808 // An rvalue of type "pointer to cv D," where D is a class type,
809 // can be converted to an rvalue of type "pointer to cv B," where
810 // B is a base class (clause 10) of D. If B is an inaccessible
811 // (clause 11) or ambiguous (10.2) base class of D, a program that
812 // necessitates this conversion is ill-formed. The result of the
813 // conversion is a pointer to the base class sub-object of the
814 // derived class object. The null pointer value is converted to
815 // the null pointer value of the destination type.
816 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000817 // Note that we do not check for ambiguity or inaccessibility
818 // here. That is handled by CheckPointerConversion.
Douglas Gregorcb7de522008-11-26 23:31:11 +0000819 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
820 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000821 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
822 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000823 ToType, Context);
824 return true;
825 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000826
Douglas Gregorcb7de522008-11-26 23:31:11 +0000827 // Objective C++: We're able to convert from a pointer to an
828 // interface to a pointer to a different interface.
829 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
830 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
831 if (FromIface && ToIface &&
832 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000833 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
834 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000835 ToType, Context);
836 return true;
837 }
838
839 // Objective C++: We're able to convert between "id" and a pointer
840 // to any interface (in both directions).
841 if ((FromIface && Context.isObjCIdType(ToPointeeType))
842 || (ToIface && Context.isObjCIdType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000843 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
844 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000845 ToType, Context);
846 return true;
847 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000848
Douglas Gregordda78892008-12-18 23:43:31 +0000849 // Objective C++: Allow conversions between the Objective-C "id" and
850 // "Class", in either direction.
851 if ((Context.isObjCIdType(FromPointeeType) &&
852 Context.isObjCClassType(ToPointeeType)) ||
853 (Context.isObjCClassType(FromPointeeType) &&
854 Context.isObjCIdType(ToPointeeType))) {
855 ConvertedType = ToType;
856 return true;
857 }
858
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000859 return false;
860}
861
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000862/// CheckPointerConversion - Check the pointer conversion from the
863/// expression From to the type ToType. This routine checks for
864/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
865/// conversions for which IsPointerConversion has already returned
866/// true. It returns true and produces a diagnostic if there was an
867/// error, or returns false otherwise.
868bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
869 QualType FromType = From->getType();
870
871 if (const PointerType *FromPtrType = FromType->getAsPointerType())
872 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Sebastian Redl07779722008-10-31 14:43:28 +0000873 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
874 /*DetectVirtual=*/false);
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000875 QualType FromPointeeType = FromPtrType->getPointeeType(),
876 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregordda78892008-12-18 23:43:31 +0000877
878 // Objective-C++ conversions are always okay.
879 // FIXME: We should have a different class of conversions for
880 // the Objective-C++ implicit conversions.
881 if (Context.isObjCIdType(FromPointeeType) ||
882 Context.isObjCIdType(ToPointeeType) ||
883 Context.isObjCClassType(FromPointeeType) ||
884 Context.isObjCClassType(ToPointeeType))
885 return false;
886
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000887 if (FromPointeeType->isRecordType() &&
888 ToPointeeType->isRecordType()) {
889 // We must have a derived-to-base conversion. Check an
890 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +0000891 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
892 From->getExprLoc(),
893 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000894 }
895 }
896
897 return false;
898}
899
Douglas Gregor98cd5992008-10-21 23:43:52 +0000900/// IsQualificationConversion - Determines whether the conversion from
901/// an rvalue of type FromType to ToType is a qualification conversion
902/// (C++ 4.4).
903bool
904Sema::IsQualificationConversion(QualType FromType, QualType ToType)
905{
906 FromType = Context.getCanonicalType(FromType);
907 ToType = Context.getCanonicalType(ToType);
908
909 // If FromType and ToType are the same type, this is not a
910 // qualification conversion.
911 if (FromType == ToType)
912 return false;
913
914 // (C++ 4.4p4):
915 // A conversion can add cv-qualifiers at levels other than the first
916 // in multi-level pointers, subject to the following rules: [...]
917 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +0000918 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +0000919 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +0000920 // Within each iteration of the loop, we check the qualifiers to
921 // determine if this still looks like a qualification
922 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +0000923 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +0000924 // until there are no more pointers or pointers-to-members left to
925 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +0000926 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +0000927
928 // -- for every j > 0, if const is in cv 1,j then const is in cv
929 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +0000930 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +0000931 return false;
Douglas Gregor57373262008-10-22 14:17:15 +0000932
Douglas Gregor98cd5992008-10-21 23:43:52 +0000933 // -- if the cv 1,j and cv 2,j are different, then const is in
934 // every cv for 0 < k < j.
935 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +0000936 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +0000937 return false;
Douglas Gregor57373262008-10-22 14:17:15 +0000938
Douglas Gregor98cd5992008-10-21 23:43:52 +0000939 // Keep track of whether all prior cv-qualifiers in the "to" type
940 // include const.
941 PreviousToQualsIncludeConst
942 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +0000943 }
Douglas Gregor98cd5992008-10-21 23:43:52 +0000944
945 // We are left with FromType and ToType being the pointee types
946 // after unwrapping the original FromType and ToType the same number
947 // of types. If we unwrapped any pointers, and if FromType and
948 // ToType have the same unqualified type (since we checked
949 // qualifiers above), then this is a qualification conversion.
950 return UnwrappedAnyPointer &&
951 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
952}
953
Douglas Gregor60d62c22008-10-31 16:23:19 +0000954/// IsUserDefinedConversion - Determines whether there is a
955/// user-defined conversion sequence (C++ [over.ics.user]) that
956/// converts expression From to the type ToType. If such a conversion
957/// exists, User will contain the user-defined conversion sequence
958/// that performs such a conversion and this routine will return
959/// true. Otherwise, this routine returns false and User is
960/// unspecified.
961bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
962 UserDefinedConversionSequence& User)
963{
964 OverloadCandidateSet CandidateSet;
965 if (const CXXRecordType *ToRecordType
966 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
967 // C++ [over.match.ctor]p1:
968 // When objects of class type are direct-initialized (8.5), or
969 // copy-initialized from an expression of the same or a
970 // derived class type (8.5), overload resolution selects the
971 // constructor. [...] For copy-initialization, the candidate
972 // functions are all the converting constructors (12.3.1) of
973 // that class. The argument list is the expression-list within
974 // the parentheses of the initializer.
975 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
Douglas Gregor9e7d9de2008-12-15 21:24:18 +0000976 DeclarationName ConstructorName
977 = Context.DeclarationNames.getCXXConstructorName(
978 Context.getCanonicalType(ToType));
979 DeclContext::lookup_result Lookup
980 = ToRecordDecl->lookup(Context, ConstructorName);
981 if (Lookup.first == Lookup.second)
982 /* No constructors. FIXME: Implicit copy constructor? */;
983 else if (OverloadedFunctionDecl *Constructors
984 = dyn_cast<OverloadedFunctionDecl>(*Lookup.first)) {
985 for (OverloadedFunctionDecl::function_const_iterator func
986 = Constructors->function_begin();
987 func != Constructors->function_end(); ++func) {
988 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
989 if (Constructor->isConvertingConstructor())
990 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
991 /*SuppressUserConversions=*/true);
992 }
993 } else if (CXXConstructorDecl *Constructor
994 = dyn_cast<CXXConstructorDecl>(*Lookup.first)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000995 if (Constructor->isConvertingConstructor())
Douglas Gregor225c41e2008-11-03 19:09:14 +0000996 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
997 /*SuppressUserConversions=*/true);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000998 }
999 }
1000
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001001 if (const CXXRecordType *FromRecordType
1002 = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
1003 // Add all of the conversion functions as candidates.
1004 // FIXME: Look for conversions in base classes!
1005 CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
1006 OverloadedFunctionDecl *Conversions
1007 = FromRecordDecl->getConversionFunctions();
1008 for (OverloadedFunctionDecl::function_iterator Func
1009 = Conversions->function_begin();
1010 Func != Conversions->function_end(); ++Func) {
1011 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1012 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1013 }
1014 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001015
1016 OverloadCandidateSet::iterator Best;
1017 switch (BestViableFunction(CandidateSet, Best)) {
1018 case OR_Success:
1019 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001020 if (CXXConstructorDecl *Constructor
1021 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1022 // C++ [over.ics.user]p1:
1023 // If the user-defined conversion is specified by a
1024 // constructor (12.3.1), the initial standard conversion
1025 // sequence converts the source type to the type required by
1026 // the argument of the constructor.
1027 //
1028 // FIXME: What about ellipsis conversions?
1029 QualType ThisType = Constructor->getThisType(Context);
1030 User.Before = Best->Conversions[0].Standard;
1031 User.ConversionFunction = Constructor;
1032 User.After.setAsIdentityConversion();
1033 User.After.FromTypePtr
1034 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1035 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1036 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001037 } else if (CXXConversionDecl *Conversion
1038 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1039 // C++ [over.ics.user]p1:
1040 //
1041 // [...] If the user-defined conversion is specified by a
1042 // conversion function (12.3.2), the initial standard
1043 // conversion sequence converts the source type to the
1044 // implicit object parameter of the conversion function.
1045 User.Before = Best->Conversions[0].Standard;
1046 User.ConversionFunction = Conversion;
1047
1048 // C++ [over.ics.user]p2:
1049 // The second standard conversion sequence converts the
1050 // result of the user-defined conversion to the target type
1051 // for the sequence. Since an implicit conversion sequence
1052 // is an initialization, the special rules for
1053 // initialization by user-defined conversion apply when
1054 // selecting the best user-defined conversion for a
1055 // user-defined conversion sequence (see 13.3.3 and
1056 // 13.3.3.1).
1057 User.After = Best->FinalConversion;
1058 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001059 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001060 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001061 return false;
1062 }
1063
1064 case OR_No_Viable_Function:
1065 // No conversion here! We're done.
1066 return false;
1067
1068 case OR_Ambiguous:
1069 // FIXME: See C++ [over.best.ics]p10 for the handling of
1070 // ambiguous conversion sequences.
1071 return false;
1072 }
1073
1074 return false;
1075}
1076
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001077/// CompareImplicitConversionSequences - Compare two implicit
1078/// conversion sequences to determine whether one is better than the
1079/// other or if they are indistinguishable (C++ 13.3.3.2).
1080ImplicitConversionSequence::CompareKind
1081Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1082 const ImplicitConversionSequence& ICS2)
1083{
1084 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1085 // conversion sequences (as defined in 13.3.3.1)
1086 // -- a standard conversion sequence (13.3.3.1.1) is a better
1087 // conversion sequence than a user-defined conversion sequence or
1088 // an ellipsis conversion sequence, and
1089 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1090 // conversion sequence than an ellipsis conversion sequence
1091 // (13.3.3.1.3).
1092 //
1093 if (ICS1.ConversionKind < ICS2.ConversionKind)
1094 return ImplicitConversionSequence::Better;
1095 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1096 return ImplicitConversionSequence::Worse;
1097
1098 // Two implicit conversion sequences of the same form are
1099 // indistinguishable conversion sequences unless one of the
1100 // following rules apply: (C++ 13.3.3.2p3):
1101 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1102 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1103 else if (ICS1.ConversionKind ==
1104 ImplicitConversionSequence::UserDefinedConversion) {
1105 // User-defined conversion sequence U1 is a better conversion
1106 // sequence than another user-defined conversion sequence U2 if
1107 // they contain the same user-defined conversion function or
1108 // constructor and if the second standard conversion sequence of
1109 // U1 is better than the second standard conversion sequence of
1110 // U2 (C++ 13.3.3.2p3).
1111 if (ICS1.UserDefined.ConversionFunction ==
1112 ICS2.UserDefined.ConversionFunction)
1113 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1114 ICS2.UserDefined.After);
1115 }
1116
1117 return ImplicitConversionSequence::Indistinguishable;
1118}
1119
1120/// CompareStandardConversionSequences - Compare two standard
1121/// conversion sequences to determine whether one is better than the
1122/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1123ImplicitConversionSequence::CompareKind
1124Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1125 const StandardConversionSequence& SCS2)
1126{
1127 // Standard conversion sequence S1 is a better conversion sequence
1128 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1129
1130 // -- S1 is a proper subsequence of S2 (comparing the conversion
1131 // sequences in the canonical form defined by 13.3.3.1.1,
1132 // excluding any Lvalue Transformation; the identity conversion
1133 // sequence is considered to be a subsequence of any
1134 // non-identity conversion sequence) or, if not that,
1135 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1136 // Neither is a proper subsequence of the other. Do nothing.
1137 ;
1138 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1139 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1140 (SCS1.Second == ICK_Identity &&
1141 SCS1.Third == ICK_Identity))
1142 // SCS1 is a proper subsequence of SCS2.
1143 return ImplicitConversionSequence::Better;
1144 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1145 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1146 (SCS2.Second == ICK_Identity &&
1147 SCS2.Third == ICK_Identity))
1148 // SCS2 is a proper subsequence of SCS1.
1149 return ImplicitConversionSequence::Worse;
1150
1151 // -- the rank of S1 is better than the rank of S2 (by the rules
1152 // defined below), or, if not that,
1153 ImplicitConversionRank Rank1 = SCS1.getRank();
1154 ImplicitConversionRank Rank2 = SCS2.getRank();
1155 if (Rank1 < Rank2)
1156 return ImplicitConversionSequence::Better;
1157 else if (Rank2 < Rank1)
1158 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001159
Douglas Gregor57373262008-10-22 14:17:15 +00001160 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1161 // are indistinguishable unless one of the following rules
1162 // applies:
1163
1164 // A conversion that is not a conversion of a pointer, or
1165 // pointer to member, to bool is better than another conversion
1166 // that is such a conversion.
1167 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1168 return SCS2.isPointerConversionToBool()
1169 ? ImplicitConversionSequence::Better
1170 : ImplicitConversionSequence::Worse;
1171
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001172 // C++ [over.ics.rank]p4b2:
1173 //
1174 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001175 // conversion of B* to A* is better than conversion of B* to
1176 // void*, and conversion of A* to void* is better than conversion
1177 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001178 bool SCS1ConvertsToVoid
1179 = SCS1.isPointerConversionToVoidPointer(Context);
1180 bool SCS2ConvertsToVoid
1181 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001182 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1183 // Exactly one of the conversion sequences is a conversion to
1184 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001185 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1186 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001187 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1188 // Neither conversion sequence converts to a void pointer; compare
1189 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001190 if (ImplicitConversionSequence::CompareKind DerivedCK
1191 = CompareDerivedToBaseConversions(SCS1, SCS2))
1192 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001193 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1194 // Both conversion sequences are conversions to void
1195 // pointers. Compare the source types to determine if there's an
1196 // inheritance relationship in their sources.
1197 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1198 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1199
1200 // Adjust the types we're converting from via the array-to-pointer
1201 // conversion, if we need to.
1202 if (SCS1.First == ICK_Array_To_Pointer)
1203 FromType1 = Context.getArrayDecayedType(FromType1);
1204 if (SCS2.First == ICK_Array_To_Pointer)
1205 FromType2 = Context.getArrayDecayedType(FromType2);
1206
1207 QualType FromPointee1
1208 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1209 QualType FromPointee2
1210 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1211
1212 if (IsDerivedFrom(FromPointee2, FromPointee1))
1213 return ImplicitConversionSequence::Better;
1214 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1215 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001216
1217 // Objective-C++: If one interface is more specific than the
1218 // other, it is the better one.
1219 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1220 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1221 if (FromIface1 && FromIface1) {
1222 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1223 return ImplicitConversionSequence::Better;
1224 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1225 return ImplicitConversionSequence::Worse;
1226 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001227 }
Douglas Gregor57373262008-10-22 14:17:15 +00001228
1229 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1230 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001231 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001232 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001233 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001234
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001235 // C++ [over.ics.rank]p3b4:
1236 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1237 // which the references refer are the same type except for
1238 // top-level cv-qualifiers, and the type to which the reference
1239 // initialized by S2 refers is more cv-qualified than the type
1240 // to which the reference initialized by S1 refers.
1241 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1242 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1243 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1244 T1 = Context.getCanonicalType(T1);
1245 T2 = Context.getCanonicalType(T2);
1246 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1247 if (T2.isMoreQualifiedThan(T1))
1248 return ImplicitConversionSequence::Better;
1249 else if (T1.isMoreQualifiedThan(T2))
1250 return ImplicitConversionSequence::Worse;
1251 }
1252 }
Douglas Gregor57373262008-10-22 14:17:15 +00001253
1254 return ImplicitConversionSequence::Indistinguishable;
1255}
1256
1257/// CompareQualificationConversions - Compares two standard conversion
1258/// sequences to determine whether they can be ranked based on their
1259/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1260ImplicitConversionSequence::CompareKind
1261Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1262 const StandardConversionSequence& SCS2)
1263{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001264 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001265 // -- S1 and S2 differ only in their qualification conversion and
1266 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1267 // cv-qualification signature of type T1 is a proper subset of
1268 // the cv-qualification signature of type T2, and S1 is not the
1269 // deprecated string literal array-to-pointer conversion (4.2).
1270 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1271 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1272 return ImplicitConversionSequence::Indistinguishable;
1273
1274 // FIXME: the example in the standard doesn't use a qualification
1275 // conversion (!)
1276 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1277 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1278 T1 = Context.getCanonicalType(T1);
1279 T2 = Context.getCanonicalType(T2);
1280
1281 // If the types are the same, we won't learn anything by unwrapped
1282 // them.
1283 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1284 return ImplicitConversionSequence::Indistinguishable;
1285
1286 ImplicitConversionSequence::CompareKind Result
1287 = ImplicitConversionSequence::Indistinguishable;
1288 while (UnwrapSimilarPointerTypes(T1, T2)) {
1289 // Within each iteration of the loop, we check the qualifiers to
1290 // determine if this still looks like a qualification
1291 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001292 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001293 // until there are no more pointers or pointers-to-members left
1294 // to unwrap. This essentially mimics what
1295 // IsQualificationConversion does, but here we're checking for a
1296 // strict subset of qualifiers.
1297 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1298 // The qualifiers are the same, so this doesn't tell us anything
1299 // about how the sequences rank.
1300 ;
1301 else if (T2.isMoreQualifiedThan(T1)) {
1302 // T1 has fewer qualifiers, so it could be the better sequence.
1303 if (Result == ImplicitConversionSequence::Worse)
1304 // Neither has qualifiers that are a subset of the other's
1305 // qualifiers.
1306 return ImplicitConversionSequence::Indistinguishable;
1307
1308 Result = ImplicitConversionSequence::Better;
1309 } else if (T1.isMoreQualifiedThan(T2)) {
1310 // T2 has fewer qualifiers, so it could be the better sequence.
1311 if (Result == ImplicitConversionSequence::Better)
1312 // Neither has qualifiers that are a subset of the other's
1313 // qualifiers.
1314 return ImplicitConversionSequence::Indistinguishable;
1315
1316 Result = ImplicitConversionSequence::Worse;
1317 } else {
1318 // Qualifiers are disjoint.
1319 return ImplicitConversionSequence::Indistinguishable;
1320 }
1321
1322 // If the types after this point are equivalent, we're done.
1323 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1324 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001325 }
1326
Douglas Gregor57373262008-10-22 14:17:15 +00001327 // Check that the winning standard conversion sequence isn't using
1328 // the deprecated string literal array to pointer conversion.
1329 switch (Result) {
1330 case ImplicitConversionSequence::Better:
1331 if (SCS1.Deprecated)
1332 Result = ImplicitConversionSequence::Indistinguishable;
1333 break;
1334
1335 case ImplicitConversionSequence::Indistinguishable:
1336 break;
1337
1338 case ImplicitConversionSequence::Worse:
1339 if (SCS2.Deprecated)
1340 Result = ImplicitConversionSequence::Indistinguishable;
1341 break;
1342 }
1343
1344 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001345}
1346
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001347/// CompareDerivedToBaseConversions - Compares two standard conversion
1348/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001349/// various kinds of derived-to-base conversions (C++
1350/// [over.ics.rank]p4b3). As part of these checks, we also look at
1351/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001352ImplicitConversionSequence::CompareKind
1353Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1354 const StandardConversionSequence& SCS2) {
1355 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1356 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1357 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1358 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1359
1360 // Adjust the types we're converting from via the array-to-pointer
1361 // conversion, if we need to.
1362 if (SCS1.First == ICK_Array_To_Pointer)
1363 FromType1 = Context.getArrayDecayedType(FromType1);
1364 if (SCS2.First == ICK_Array_To_Pointer)
1365 FromType2 = Context.getArrayDecayedType(FromType2);
1366
1367 // Canonicalize all of the types.
1368 FromType1 = Context.getCanonicalType(FromType1);
1369 ToType1 = Context.getCanonicalType(ToType1);
1370 FromType2 = Context.getCanonicalType(FromType2);
1371 ToType2 = Context.getCanonicalType(ToType2);
1372
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001373 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001374 //
1375 // If class B is derived directly or indirectly from class A and
1376 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001377 //
1378 // For Objective-C, we let A, B, and C also be Objective-C
1379 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001380
1381 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001382 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001383 SCS2.Second == ICK_Pointer_Conversion &&
1384 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1385 FromType1->isPointerType() && FromType2->isPointerType() &&
1386 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001387 QualType FromPointee1
1388 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1389 QualType ToPointee1
1390 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1391 QualType FromPointee2
1392 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1393 QualType ToPointee2
1394 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001395
1396 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1397 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1398 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1399 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1400
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001401 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001402 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1403 if (IsDerivedFrom(ToPointee1, ToPointee2))
1404 return ImplicitConversionSequence::Better;
1405 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1406 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001407
1408 if (ToIface1 && ToIface2) {
1409 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1410 return ImplicitConversionSequence::Better;
1411 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1412 return ImplicitConversionSequence::Worse;
1413 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001414 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001415
1416 // -- conversion of B* to A* is better than conversion of C* to A*,
1417 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1418 if (IsDerivedFrom(FromPointee2, FromPointee1))
1419 return ImplicitConversionSequence::Better;
1420 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1421 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001422
1423 if (FromIface1 && FromIface2) {
1424 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1425 return ImplicitConversionSequence::Better;
1426 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1427 return ImplicitConversionSequence::Worse;
1428 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001429 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001430 }
1431
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001432 // Compare based on reference bindings.
1433 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1434 SCS1.Second == ICK_Derived_To_Base) {
1435 // -- binding of an expression of type C to a reference of type
1436 // B& is better than binding an expression of type C to a
1437 // reference of type A&,
1438 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1439 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1440 if (IsDerivedFrom(ToType1, ToType2))
1441 return ImplicitConversionSequence::Better;
1442 else if (IsDerivedFrom(ToType2, ToType1))
1443 return ImplicitConversionSequence::Worse;
1444 }
1445
Douglas Gregor225c41e2008-11-03 19:09:14 +00001446 // -- binding of an expression of type B to a reference of type
1447 // A& is better than binding an expression of type C to a
1448 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001449 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1450 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1451 if (IsDerivedFrom(FromType2, FromType1))
1452 return ImplicitConversionSequence::Better;
1453 else if (IsDerivedFrom(FromType1, FromType2))
1454 return ImplicitConversionSequence::Worse;
1455 }
1456 }
1457
1458
1459 // FIXME: conversion of A::* to B::* is better than conversion of
1460 // A::* to C::*,
1461
1462 // FIXME: conversion of B::* to C::* is better than conversion of
1463 // A::* to C::*, and
1464
Douglas Gregor225c41e2008-11-03 19:09:14 +00001465 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1466 SCS1.Second == ICK_Derived_To_Base) {
1467 // -- conversion of C to B is better than conversion of C to A,
1468 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1469 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1470 if (IsDerivedFrom(ToType1, ToType2))
1471 return ImplicitConversionSequence::Better;
1472 else if (IsDerivedFrom(ToType2, ToType1))
1473 return ImplicitConversionSequence::Worse;
1474 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001475
Douglas Gregor225c41e2008-11-03 19:09:14 +00001476 // -- conversion of B to A is better than conversion of C to A.
1477 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1478 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1479 if (IsDerivedFrom(FromType2, FromType1))
1480 return ImplicitConversionSequence::Better;
1481 else if (IsDerivedFrom(FromType1, FromType2))
1482 return ImplicitConversionSequence::Worse;
1483 }
1484 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001485
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001486 return ImplicitConversionSequence::Indistinguishable;
1487}
1488
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001489/// TryCopyInitialization - Try to copy-initialize a value of type
1490/// ToType from the expression From. Return the implicit conversion
1491/// sequence required to pass this argument, which may be a bad
1492/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001493/// a parameter of this type). If @p SuppressUserConversions, then we
1494/// do not permit any user-defined conversion sequences.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001495ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001496Sema::TryCopyInitialization(Expr *From, QualType ToType,
1497 bool SuppressUserConversions) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001498 if (!getLangOptions().CPlusPlus) {
Douglas Gregor60d62c22008-10-31 16:23:19 +00001499 // In C, copy initialization is the same as performing an assignment.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001500 AssignConvertType ConvTy =
1501 CheckSingleAssignmentConstraints(ToType, From);
1502 ImplicitConversionSequence ICS;
1503 if (getLangOptions().NoExtensions? ConvTy != Compatible
1504 : ConvTy == Incompatible)
1505 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1506 else
1507 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1508 return ICS;
1509 } else if (ToType->isReferenceType()) {
1510 ImplicitConversionSequence ICS;
Douglas Gregor225c41e2008-11-03 19:09:14 +00001511 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001512 return ICS;
1513 } else {
Douglas Gregor225c41e2008-11-03 19:09:14 +00001514 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001515 }
1516}
1517
1518/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1519/// type ToType. Returns true (and emits a diagnostic) if there was
1520/// an error, returns false if the initialization succeeded.
1521bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1522 const char* Flavor) {
1523 if (!getLangOptions().CPlusPlus) {
1524 // In C, argument passing is the same as performing an assignment.
1525 QualType FromType = From->getType();
1526 AssignConvertType ConvTy =
1527 CheckSingleAssignmentConstraints(ToType, From);
1528
1529 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1530 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001531 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001532
1533 if (ToType->isReferenceType())
1534 return CheckReferenceInit(From, ToType);
1535
1536 if (!PerformImplicitConversion(From, ToType))
1537 return false;
1538
1539 return Diag(From->getSourceRange().getBegin(),
1540 diag::err_typecheck_convert_incompatible)
1541 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001542}
1543
Douglas Gregor96176b32008-11-18 23:14:02 +00001544/// TryObjectArgumentInitialization - Try to initialize the object
1545/// parameter of the given member function (@c Method) from the
1546/// expression @p From.
1547ImplicitConversionSequence
1548Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1549 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1550 unsigned MethodQuals = Method->getTypeQualifiers();
1551 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1552
1553 // Set up the conversion sequence as a "bad" conversion, to allow us
1554 // to exit early.
1555 ImplicitConversionSequence ICS;
1556 ICS.Standard.setAsIdentityConversion();
1557 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1558
1559 // We need to have an object of class type.
1560 QualType FromType = From->getType();
1561 if (!FromType->isRecordType())
1562 return ICS;
1563
1564 // The implicit object parmeter is has the type "reference to cv X",
1565 // where X is the class of which the function is a member
1566 // (C++ [over.match.funcs]p4). However, when finding an implicit
1567 // conversion sequence for the argument, we are not allowed to
1568 // create temporaries or perform user-defined conversions
1569 // (C++ [over.match.funcs]p5). We perform a simplified version of
1570 // reference binding here, that allows class rvalues to bind to
1571 // non-constant references.
1572
1573 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1574 // with the implicit object parameter (C++ [over.match.funcs]p5).
1575 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1576 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1577 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1578 return ICS;
1579
1580 // Check that we have either the same type or a derived type. It
1581 // affects the conversion rank.
1582 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1583 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1584 ICS.Standard.Second = ICK_Identity;
1585 else if (IsDerivedFrom(FromType, ClassType))
1586 ICS.Standard.Second = ICK_Derived_To_Base;
1587 else
1588 return ICS;
1589
1590 // Success. Mark this as a reference binding.
1591 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1592 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1593 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1594 ICS.Standard.ReferenceBinding = true;
1595 ICS.Standard.DirectBinding = true;
1596 return ICS;
1597}
1598
1599/// PerformObjectArgumentInitialization - Perform initialization of
1600/// the implicit object parameter for the given Method with the given
1601/// expression.
1602bool
1603Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1604 QualType ImplicitParamType
1605 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1606 ImplicitConversionSequence ICS
1607 = TryObjectArgumentInitialization(From, Method);
1608 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1609 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001610 diag::err_implicit_object_parameter_init)
Chris Lattnerd1625842008-11-24 06:25:27 +00001611 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001612
1613 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1614 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1615 From->getSourceRange().getBegin(),
1616 From->getSourceRange()))
1617 return true;
1618
1619 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1620 return false;
1621}
1622
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001623/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00001624/// candidate functions, using the given function call arguments. If
1625/// @p SuppressUserConversions, then don't allow user-defined
1626/// conversions via constructors or conversion operators.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001627void
1628Sema::AddOverloadCandidate(FunctionDecl *Function,
1629 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00001630 OverloadCandidateSet& CandidateSet,
1631 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001632{
1633 const FunctionTypeProto* Proto
1634 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1635 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001636 assert(!isa<CXXConversionDecl>(Function) &&
1637 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001638
1639 // Add this candidate
1640 CandidateSet.push_back(OverloadCandidate());
1641 OverloadCandidate& Candidate = CandidateSet.back();
1642 Candidate.Function = Function;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001643 Candidate.IsSurrogate = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001644
1645 unsigned NumArgsInProto = Proto->getNumArgs();
1646
1647 // (C++ 13.3.2p2): A candidate function having fewer than m
1648 // parameters is viable only if it has an ellipsis in its parameter
1649 // list (8.3.5).
1650 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1651 Candidate.Viable = false;
1652 return;
1653 }
1654
1655 // (C++ 13.3.2p2): A candidate function having more than m parameters
1656 // is viable only if the (m+1)st parameter has a default argument
1657 // (8.3.6). For the purposes of overload resolution, the
1658 // parameter list is truncated on the right, so that there are
1659 // exactly m parameters.
1660 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1661 if (NumArgs < MinRequiredArgs) {
1662 // Not enough arguments.
1663 Candidate.Viable = false;
1664 return;
1665 }
1666
1667 // Determine the implicit conversion sequences for each of the
1668 // arguments.
1669 Candidate.Viable = true;
1670 Candidate.Conversions.resize(NumArgs);
1671 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1672 if (ArgIdx < NumArgsInProto) {
1673 // (C++ 13.3.2p3): for F to be a viable function, there shall
1674 // exist for each argument an implicit conversion sequence
1675 // (13.3.3.1) that converts that argument to the corresponding
1676 // parameter of F.
1677 QualType ParamType = Proto->getArgType(ArgIdx);
1678 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00001679 = TryCopyInitialization(Args[ArgIdx], ParamType,
1680 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001681 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00001682 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001683 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001684 break;
1685 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001686 } else {
1687 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1688 // argument for which there is no corresponding parameter is
1689 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1690 Candidate.Conversions[ArgIdx].ConversionKind
1691 = ImplicitConversionSequence::EllipsisConversion;
1692 }
1693 }
1694}
1695
Douglas Gregor96176b32008-11-18 23:14:02 +00001696/// AddMethodCandidate - Adds the given C++ member function to the set
1697/// of candidate functions, using the given function call arguments
1698/// and the object argument (@c Object). For example, in a call
1699/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1700/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1701/// allow user-defined conversions via constructors or conversion
1702/// operators.
1703void
1704Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1705 Expr **Args, unsigned NumArgs,
1706 OverloadCandidateSet& CandidateSet,
1707 bool SuppressUserConversions)
1708{
1709 const FunctionTypeProto* Proto
1710 = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1711 assert(Proto && "Methods without a prototype cannot be overloaded");
1712 assert(!isa<CXXConversionDecl>(Method) &&
1713 "Use AddConversionCandidate for conversion functions");
1714
1715 // Add this candidate
1716 CandidateSet.push_back(OverloadCandidate());
1717 OverloadCandidate& Candidate = CandidateSet.back();
1718 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001719 Candidate.IsSurrogate = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001720
1721 unsigned NumArgsInProto = Proto->getNumArgs();
1722
1723 // (C++ 13.3.2p2): A candidate function having fewer than m
1724 // parameters is viable only if it has an ellipsis in its parameter
1725 // list (8.3.5).
1726 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1727 Candidate.Viable = false;
1728 return;
1729 }
1730
1731 // (C++ 13.3.2p2): A candidate function having more than m parameters
1732 // is viable only if the (m+1)st parameter has a default argument
1733 // (8.3.6). For the purposes of overload resolution, the
1734 // parameter list is truncated on the right, so that there are
1735 // exactly m parameters.
1736 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
1737 if (NumArgs < MinRequiredArgs) {
1738 // Not enough arguments.
1739 Candidate.Viable = false;
1740 return;
1741 }
1742
1743 Candidate.Viable = true;
1744 Candidate.Conversions.resize(NumArgs + 1);
1745
1746 // Determine the implicit conversion sequence for the object
1747 // parameter.
1748 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
1749 if (Candidate.Conversions[0].ConversionKind
1750 == ImplicitConversionSequence::BadConversion) {
1751 Candidate.Viable = false;
1752 return;
1753 }
1754
1755 // Determine the implicit conversion sequences for each of the
1756 // arguments.
1757 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1758 if (ArgIdx < NumArgsInProto) {
1759 // (C++ 13.3.2p3): for F to be a viable function, there shall
1760 // exist for each argument an implicit conversion sequence
1761 // (13.3.3.1) that converts that argument to the corresponding
1762 // parameter of F.
1763 QualType ParamType = Proto->getArgType(ArgIdx);
1764 Candidate.Conversions[ArgIdx + 1]
1765 = TryCopyInitialization(Args[ArgIdx], ParamType,
1766 SuppressUserConversions);
1767 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1768 == ImplicitConversionSequence::BadConversion) {
1769 Candidate.Viable = false;
1770 break;
1771 }
1772 } else {
1773 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1774 // argument for which there is no corresponding parameter is
1775 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1776 Candidate.Conversions[ArgIdx + 1].ConversionKind
1777 = ImplicitConversionSequence::EllipsisConversion;
1778 }
1779 }
1780}
1781
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001782/// AddConversionCandidate - Add a C++ conversion function as a
1783/// candidate in the candidate set (C++ [over.match.conv],
1784/// C++ [over.match.copy]). From is the expression we're converting from,
1785/// and ToType is the type that we're eventually trying to convert to
1786/// (which may or may not be the same type as the type that the
1787/// conversion function produces).
1788void
1789Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1790 Expr *From, QualType ToType,
1791 OverloadCandidateSet& CandidateSet) {
1792 // Add this candidate
1793 CandidateSet.push_back(OverloadCandidate());
1794 OverloadCandidate& Candidate = CandidateSet.back();
1795 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001796 Candidate.IsSurrogate = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001797 Candidate.FinalConversion.setAsIdentityConversion();
1798 Candidate.FinalConversion.FromTypePtr
1799 = Conversion->getConversionType().getAsOpaquePtr();
1800 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1801
Douglas Gregor96176b32008-11-18 23:14:02 +00001802 // Determine the implicit conversion sequence for the implicit
1803 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001804 Candidate.Viable = true;
1805 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00001806 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001807
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001808 if (Candidate.Conversions[0].ConversionKind
1809 == ImplicitConversionSequence::BadConversion) {
1810 Candidate.Viable = false;
1811 return;
1812 }
1813
1814 // To determine what the conversion from the result of calling the
1815 // conversion function to the type we're eventually trying to
1816 // convert to (ToType), we need to synthesize a call to the
1817 // conversion function and attempt copy initialization from it. This
1818 // makes sure that we get the right semantics with respect to
1819 // lvalues/rvalues and the type. Fortunately, we can allocate this
1820 // call on the stack and we don't need its arguments to be
1821 // well-formed.
1822 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1823 SourceLocation());
1824 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00001825 &ConversionRef, false);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001826 CallExpr Call(&ConversionFn, 0, 0,
1827 Conversion->getConversionType().getNonReferenceType(),
1828 SourceLocation());
1829 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1830 switch (ICS.ConversionKind) {
1831 case ImplicitConversionSequence::StandardConversion:
1832 Candidate.FinalConversion = ICS.Standard;
1833 break;
1834
1835 case ImplicitConversionSequence::BadConversion:
1836 Candidate.Viable = false;
1837 break;
1838
1839 default:
1840 assert(false &&
1841 "Can only end up with a standard conversion sequence or failure");
1842 }
1843}
1844
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001845/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
1846/// converts the given @c Object to a function pointer via the
1847/// conversion function @c Conversion, and then attempts to call it
1848/// with the given arguments (C++ [over.call.object]p2-4). Proto is
1849/// the type of function that we'll eventually be calling.
1850void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
1851 const FunctionTypeProto *Proto,
1852 Expr *Object, Expr **Args, unsigned NumArgs,
1853 OverloadCandidateSet& CandidateSet) {
1854 CandidateSet.push_back(OverloadCandidate());
1855 OverloadCandidate& Candidate = CandidateSet.back();
1856 Candidate.Function = 0;
1857 Candidate.Surrogate = Conversion;
1858 Candidate.Viable = true;
1859 Candidate.IsSurrogate = true;
1860 Candidate.Conversions.resize(NumArgs + 1);
1861
1862 // Determine the implicit conversion sequence for the implicit
1863 // object parameter.
1864 ImplicitConversionSequence ObjectInit
1865 = TryObjectArgumentInitialization(Object, Conversion);
1866 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
1867 Candidate.Viable = false;
1868 return;
1869 }
1870
1871 // The first conversion is actually a user-defined conversion whose
1872 // first conversion is ObjectInit's standard conversion (which is
1873 // effectively a reference binding). Record it as such.
1874 Candidate.Conversions[0].ConversionKind
1875 = ImplicitConversionSequence::UserDefinedConversion;
1876 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
1877 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
1878 Candidate.Conversions[0].UserDefined.After
1879 = Candidate.Conversions[0].UserDefined.Before;
1880 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
1881
1882 // Find the
1883 unsigned NumArgsInProto = Proto->getNumArgs();
1884
1885 // (C++ 13.3.2p2): A candidate function having fewer than m
1886 // parameters is viable only if it has an ellipsis in its parameter
1887 // list (8.3.5).
1888 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1889 Candidate.Viable = false;
1890 return;
1891 }
1892
1893 // Function types don't have any default arguments, so just check if
1894 // we have enough arguments.
1895 if (NumArgs < NumArgsInProto) {
1896 // Not enough arguments.
1897 Candidate.Viable = false;
1898 return;
1899 }
1900
1901 // Determine the implicit conversion sequences for each of the
1902 // arguments.
1903 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1904 if (ArgIdx < NumArgsInProto) {
1905 // (C++ 13.3.2p3): for F to be a viable function, there shall
1906 // exist for each argument an implicit conversion sequence
1907 // (13.3.3.1) that converts that argument to the corresponding
1908 // parameter of F.
1909 QualType ParamType = Proto->getArgType(ArgIdx);
1910 Candidate.Conversions[ArgIdx + 1]
1911 = TryCopyInitialization(Args[ArgIdx], ParamType,
1912 /*SuppressUserConversions=*/false);
1913 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1914 == ImplicitConversionSequence::BadConversion) {
1915 Candidate.Viable = false;
1916 break;
1917 }
1918 } else {
1919 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1920 // argument for which there is no corresponding parameter is
1921 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1922 Candidate.Conversions[ArgIdx + 1].ConversionKind
1923 = ImplicitConversionSequence::EllipsisConversion;
1924 }
1925 }
1926}
1927
Douglas Gregor447b69e2008-11-19 03:25:36 +00001928/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1929/// an acceptable non-member overloaded operator for a call whose
1930/// arguments have types T1 (and, if non-empty, T2). This routine
1931/// implements the check in C++ [over.match.oper]p3b2 concerning
1932/// enumeration types.
1933static bool
1934IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1935 QualType T1, QualType T2,
1936 ASTContext &Context) {
1937 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1938 return true;
1939
1940 const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
1941 if (Proto->getNumArgs() < 1)
1942 return false;
1943
1944 if (T1->isEnumeralType()) {
1945 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1946 if (Context.getCanonicalType(T1).getUnqualifiedType()
1947 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1948 return true;
1949 }
1950
1951 if (Proto->getNumArgs() < 2)
1952 return false;
1953
1954 if (!T2.isNull() && T2->isEnumeralType()) {
1955 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1956 if (Context.getCanonicalType(T2).getUnqualifiedType()
1957 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1958 return true;
1959 }
1960
1961 return false;
1962}
1963
Douglas Gregor96176b32008-11-18 23:14:02 +00001964/// AddOperatorCandidates - Add the overloaded operator candidates for
1965/// the operator Op that was used in an operator expression such as "x
1966/// Op y". S is the scope in which the expression occurred (used for
1967/// name lookup of the operator), Args/NumArgs provides the operator
1968/// arguments, and CandidateSet will store the added overload
1969/// candidates. (C++ [over.match.oper]).
1970void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
1971 Expr **Args, unsigned NumArgs,
1972 OverloadCandidateSet& CandidateSet) {
1973 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1974
1975 // C++ [over.match.oper]p3:
1976 // For a unary operator @ with an operand of a type whose
1977 // cv-unqualified version is T1, and for a binary operator @ with
1978 // a left operand of a type whose cv-unqualified version is T1 and
1979 // a right operand of a type whose cv-unqualified version is T2,
1980 // three sets of candidate functions, designated member
1981 // candidates, non-member candidates and built-in candidates, are
1982 // constructed as follows:
1983 QualType T1 = Args[0]->getType();
1984 QualType T2;
1985 if (NumArgs > 1)
1986 T2 = Args[1]->getType();
1987
1988 // -- If T1 is a class type, the set of member candidates is the
1989 // result of the qualified lookup of T1::operator@
1990 // (13.3.1.1.1); otherwise, the set of member candidates is
1991 // empty.
1992 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregor44b43212008-12-11 16:49:14 +00001993 DeclContext::lookup_const_result Lookup
Douglas Gregore267ff32008-12-11 20:41:00 +00001994 = T1Rec->getDecl()->lookup(Context, OpName);
Douglas Gregor44b43212008-12-11 16:49:14 +00001995 NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
Douglas Gregor96176b32008-11-18 23:14:02 +00001996 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
1997 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1998 /*SuppressUserConversions=*/false);
1999 else if (OverloadedFunctionDecl *Ovl
2000 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
2001 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2002 FEnd = Ovl->function_end();
2003 F != FEnd; ++F) {
2004 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
2005 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2006 /*SuppressUserConversions=*/false);
2007 }
2008 }
2009 }
2010
2011 // -- The set of non-member candidates is the result of the
2012 // unqualified lookup of operator@ in the context of the
2013 // expression according to the usual rules for name lookup in
2014 // unqualified function calls (3.4.2) except that all member
2015 // functions are ignored. However, if no operand has a class
2016 // type, only those non-member functions in the lookup set
2017 // that have a first parameter of type T1 or “reference to
2018 // (possibly cv-qualified) T1”, when T1 is an enumeration
2019 // type, or (if there is a right operand) a second parameter
2020 // of type T2 or “reference to (possibly cv-qualified) T2”,
2021 // when T2 is an enumeration type, are candidate functions.
2022 {
2023 NamedDecl *NonMemberOps = 0;
2024 for (IdentifierResolver::iterator I
2025 = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/);
2026 I != IdResolver.end(); ++I) {
2027 // We don't need to check the identifier namespace, because
2028 // operator names can only be ordinary identifiers.
2029
2030 // Ignore member functions.
2031 if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
2032 if (SD->getDeclContext()->isCXXRecord())
2033 continue;
2034 }
2035
2036 // We found something with this name. We're done.
2037 NonMemberOps = *I;
2038 break;
2039 }
2040
Douglas Gregor447b69e2008-11-19 03:25:36 +00002041 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NonMemberOps)) {
2042 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2043 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2044 /*SuppressUserConversions=*/false);
2045 } else if (OverloadedFunctionDecl *Ovl
2046 = dyn_cast_or_null<OverloadedFunctionDecl>(NonMemberOps)) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002047 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2048 FEnd = Ovl->function_end();
Douglas Gregor447b69e2008-11-19 03:25:36 +00002049 F != FEnd; ++F) {
2050 if (IsAcceptableNonMemberOperatorCandidate(*F, T1, T2, Context))
2051 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2052 /*SuppressUserConversions=*/false);
2053 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002054 }
2055 }
2056
2057 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor74253732008-11-19 15:42:04 +00002058 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregor96176b32008-11-18 23:14:02 +00002059}
2060
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002061/// AddBuiltinCandidate - Add a candidate for a built-in
2062/// operator. ResultTy and ParamTys are the result and parameter types
2063/// of the built-in candidate, respectively. Args and NumArgs are the
2064/// arguments being passed to the candidate.
2065void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2066 Expr **Args, unsigned NumArgs,
2067 OverloadCandidateSet& CandidateSet) {
2068 // Add this candidate
2069 CandidateSet.push_back(OverloadCandidate());
2070 OverloadCandidate& Candidate = CandidateSet.back();
2071 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002072 Candidate.IsSurrogate = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002073 Candidate.BuiltinTypes.ResultTy = ResultTy;
2074 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2075 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2076
2077 // Determine the implicit conversion sequences for each of the
2078 // arguments.
2079 Candidate.Viable = true;
2080 Candidate.Conversions.resize(NumArgs);
2081 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2082 Candidate.Conversions[ArgIdx]
2083 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
2084 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002085 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002086 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002087 break;
2088 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002089 }
2090}
2091
2092/// BuiltinCandidateTypeSet - A set of types that will be used for the
2093/// candidate operator functions for built-in operators (C++
2094/// [over.built]). The types are separated into pointer types and
2095/// enumeration types.
2096class BuiltinCandidateTypeSet {
2097 /// TypeSet - A set of types.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002098 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002099
2100 /// PointerTypes - The set of pointer types that will be used in the
2101 /// built-in candidates.
2102 TypeSet PointerTypes;
2103
2104 /// EnumerationTypes - The set of enumeration types that will be
2105 /// used in the built-in candidates.
2106 TypeSet EnumerationTypes;
2107
2108 /// Context - The AST context in which we will build the type sets.
2109 ASTContext &Context;
2110
2111 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2112
2113public:
2114 /// iterator - Iterates through the types that are part of the set.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002115 class iterator {
2116 TypeSet::iterator Base;
2117
2118 public:
2119 typedef QualType value_type;
2120 typedef QualType reference;
2121 typedef QualType pointer;
2122 typedef std::ptrdiff_t difference_type;
2123 typedef std::input_iterator_tag iterator_category;
2124
2125 iterator(TypeSet::iterator B) : Base(B) { }
2126
2127 iterator& operator++() {
2128 ++Base;
2129 return *this;
2130 }
2131
2132 iterator operator++(int) {
2133 iterator tmp(*this);
2134 ++(*this);
2135 return tmp;
2136 }
2137
2138 reference operator*() const {
2139 return QualType::getFromOpaquePtr(*Base);
2140 }
2141
2142 pointer operator->() const {
2143 return **this;
2144 }
2145
2146 friend bool operator==(iterator LHS, iterator RHS) {
2147 return LHS.Base == RHS.Base;
2148 }
2149
2150 friend bool operator!=(iterator LHS, iterator RHS) {
2151 return LHS.Base != RHS.Base;
2152 }
2153 };
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002154
2155 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2156
2157 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);
2158
2159 /// pointer_begin - First pointer type found;
2160 iterator pointer_begin() { return PointerTypes.begin(); }
2161
2162 /// pointer_end - Last pointer type found;
2163 iterator pointer_end() { return PointerTypes.end(); }
2164
2165 /// enumeration_begin - First enumeration type found;
2166 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2167
2168 /// enumeration_end - Last enumeration type found;
2169 iterator enumeration_end() { return EnumerationTypes.end(); }
2170};
2171
2172/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2173/// the set of pointer types along with any more-qualified variants of
2174/// that type. For example, if @p Ty is "int const *", this routine
2175/// will add "int const *", "int const volatile *", "int const
2176/// restrict *", and "int const volatile restrict *" to the set of
2177/// pointer types. Returns true if the add of @p Ty itself succeeded,
2178/// false otherwise.
2179bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2180 // Insert this type.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002181 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002182 return false;
2183
2184 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2185 QualType PointeeTy = PointerTy->getPointeeType();
2186 // FIXME: Optimize this so that we don't keep trying to add the same types.
2187
2188 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2189 // with all pointer conversions that don't cast away constness?
2190 if (!PointeeTy.isConstQualified())
2191 AddWithMoreQualifiedTypeVariants
2192 (Context.getPointerType(PointeeTy.withConst()));
2193 if (!PointeeTy.isVolatileQualified())
2194 AddWithMoreQualifiedTypeVariants
2195 (Context.getPointerType(PointeeTy.withVolatile()));
2196 if (!PointeeTy.isRestrictQualified())
2197 AddWithMoreQualifiedTypeVariants
2198 (Context.getPointerType(PointeeTy.withRestrict()));
2199 }
2200
2201 return true;
2202}
2203
2204/// AddTypesConvertedFrom - Add each of the types to which the type @p
2205/// Ty can be implicit converted to the given set of @p Types. We're
2206/// primarily interested in pointer types, enumeration types,
2207void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2208 bool AllowUserConversions) {
2209 // Only deal with canonical types.
2210 Ty = Context.getCanonicalType(Ty);
2211
2212 // Look through reference types; they aren't part of the type of an
2213 // expression for the purposes of conversions.
2214 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2215 Ty = RefTy->getPointeeType();
2216
2217 // We don't care about qualifiers on the type.
2218 Ty = Ty.getUnqualifiedType();
2219
2220 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2221 QualType PointeeTy = PointerTy->getPointeeType();
2222
2223 // Insert our type, and its more-qualified variants, into the set
2224 // of types.
2225 if (!AddWithMoreQualifiedTypeVariants(Ty))
2226 return;
2227
2228 // Add 'cv void*' to our set of types.
2229 if (!Ty->isVoidType()) {
2230 QualType QualVoid
2231 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2232 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2233 }
2234
2235 // If this is a pointer to a class type, add pointers to its bases
2236 // (with the same level of cv-qualification as the original
2237 // derived class, of course).
2238 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2239 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2240 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2241 Base != ClassDecl->bases_end(); ++Base) {
2242 QualType BaseTy = Context.getCanonicalType(Base->getType());
2243 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2244
2245 // Add the pointer type, recursively, so that we get all of
2246 // the indirect base classes, too.
2247 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
2248 }
2249 }
2250 } else if (Ty->isEnumeralType()) {
Douglas Gregorbf3af052008-11-13 20:12:29 +00002251 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002252 } else if (AllowUserConversions) {
2253 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2254 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2255 // FIXME: Visit conversion functions in the base classes, too.
2256 OverloadedFunctionDecl *Conversions
2257 = ClassDecl->getConversionFunctions();
2258 for (OverloadedFunctionDecl::function_iterator Func
2259 = Conversions->function_begin();
2260 Func != Conversions->function_end(); ++Func) {
2261 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2262 AddTypesConvertedFrom(Conv->getConversionType(), false);
2263 }
2264 }
2265 }
2266}
2267
Douglas Gregor74253732008-11-19 15:42:04 +00002268/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2269/// operator overloads to the candidate set (C++ [over.built]), based
2270/// on the operator @p Op and the arguments given. For example, if the
2271/// operator is a binary '+', this routine might add "int
2272/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002273void
Douglas Gregor74253732008-11-19 15:42:04 +00002274Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2275 Expr **Args, unsigned NumArgs,
2276 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002277 // The set of "promoted arithmetic types", which are the arithmetic
2278 // types are that preserved by promotion (C++ [over.built]p2). Note
2279 // that the first few of these types are the promoted integral
2280 // types; these types need to be first.
2281 // FIXME: What about complex?
2282 const unsigned FirstIntegralType = 0;
2283 const unsigned LastIntegralType = 13;
2284 const unsigned FirstPromotedIntegralType = 7,
2285 LastPromotedIntegralType = 13;
2286 const unsigned FirstPromotedArithmeticType = 7,
2287 LastPromotedArithmeticType = 16;
2288 const unsigned NumArithmeticTypes = 16;
2289 QualType ArithmeticTypes[NumArithmeticTypes] = {
2290 Context.BoolTy, Context.CharTy, Context.WCharTy,
2291 Context.SignedCharTy, Context.ShortTy,
2292 Context.UnsignedCharTy, Context.UnsignedShortTy,
2293 Context.IntTy, Context.LongTy, Context.LongLongTy,
2294 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2295 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2296 };
2297
2298 // Find all of the types that the arguments can convert to, but only
2299 // if the operator we're looking at has built-in operator candidates
2300 // that make use of these types.
2301 BuiltinCandidateTypeSet CandidateTypes(Context);
2302 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2303 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002304 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002305 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002306 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2307 (Op == OO_Star && NumArgs == 1)) {
2308 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002309 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
2310 }
2311
2312 bool isComparison = false;
2313 switch (Op) {
2314 case OO_None:
2315 case NUM_OVERLOADED_OPERATORS:
2316 assert(false && "Expected an overloaded operator");
2317 break;
2318
Douglas Gregor74253732008-11-19 15:42:04 +00002319 case OO_Star: // '*' is either unary or binary
2320 if (NumArgs == 1)
2321 goto UnaryStar;
2322 else
2323 goto BinaryStar;
2324 break;
2325
2326 case OO_Plus: // '+' is either unary or binary
2327 if (NumArgs == 1)
2328 goto UnaryPlus;
2329 else
2330 goto BinaryPlus;
2331 break;
2332
2333 case OO_Minus: // '-' is either unary or binary
2334 if (NumArgs == 1)
2335 goto UnaryMinus;
2336 else
2337 goto BinaryMinus;
2338 break;
2339
2340 case OO_Amp: // '&' is either unary or binary
2341 if (NumArgs == 1)
2342 goto UnaryAmp;
2343 else
2344 goto BinaryAmp;
2345
2346 case OO_PlusPlus:
2347 case OO_MinusMinus:
2348 // C++ [over.built]p3:
2349 //
2350 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2351 // is either volatile or empty, there exist candidate operator
2352 // functions of the form
2353 //
2354 // VQ T& operator++(VQ T&);
2355 // T operator++(VQ T&, int);
2356 //
2357 // C++ [over.built]p4:
2358 //
2359 // For every pair (T, VQ), where T is an arithmetic type other
2360 // than bool, and VQ is either volatile or empty, there exist
2361 // candidate operator functions of the form
2362 //
2363 // VQ T& operator--(VQ T&);
2364 // T operator--(VQ T&, int);
2365 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2366 Arith < NumArithmeticTypes; ++Arith) {
2367 QualType ArithTy = ArithmeticTypes[Arith];
2368 QualType ParamTypes[2]
2369 = { Context.getReferenceType(ArithTy), Context.IntTy };
2370
2371 // Non-volatile version.
2372 if (NumArgs == 1)
2373 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2374 else
2375 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2376
2377 // Volatile version
2378 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2379 if (NumArgs == 1)
2380 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2381 else
2382 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2383 }
2384
2385 // C++ [over.built]p5:
2386 //
2387 // For every pair (T, VQ), where T is a cv-qualified or
2388 // cv-unqualified object type, and VQ is either volatile or
2389 // empty, there exist candidate operator functions of the form
2390 //
2391 // T*VQ& operator++(T*VQ&);
2392 // T*VQ& operator--(T*VQ&);
2393 // T* operator++(T*VQ&, int);
2394 // T* operator--(T*VQ&, int);
2395 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2396 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2397 // Skip pointer types that aren't pointers to object types.
Douglas Gregorcb7de522008-11-26 23:31:11 +00002398 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002399 continue;
2400
2401 QualType ParamTypes[2] = {
2402 Context.getReferenceType(*Ptr), Context.IntTy
2403 };
2404
2405 // Without volatile
2406 if (NumArgs == 1)
2407 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2408 else
2409 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2410
2411 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2412 // With volatile
2413 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2414 if (NumArgs == 1)
2415 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2416 else
2417 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2418 }
2419 }
2420 break;
2421
2422 UnaryStar:
2423 // C++ [over.built]p6:
2424 // For every cv-qualified or cv-unqualified object type T, there
2425 // exist candidate operator functions of the form
2426 //
2427 // T& operator*(T*);
2428 //
2429 // C++ [over.built]p7:
2430 // For every function type T, there exist candidate operator
2431 // functions of the form
2432 // T& operator*(T*);
2433 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2434 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2435 QualType ParamTy = *Ptr;
2436 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2437 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2438 &ParamTy, Args, 1, CandidateSet);
2439 }
2440 break;
2441
2442 UnaryPlus:
2443 // C++ [over.built]p8:
2444 // For every type T, there exist candidate operator functions of
2445 // the form
2446 //
2447 // T* operator+(T*);
2448 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2449 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2450 QualType ParamTy = *Ptr;
2451 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2452 }
2453
2454 // Fall through
2455
2456 UnaryMinus:
2457 // C++ [over.built]p9:
2458 // For every promoted arithmetic type T, there exist candidate
2459 // operator functions of the form
2460 //
2461 // T operator+(T);
2462 // T operator-(T);
2463 for (unsigned Arith = FirstPromotedArithmeticType;
2464 Arith < LastPromotedArithmeticType; ++Arith) {
2465 QualType ArithTy = ArithmeticTypes[Arith];
2466 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2467 }
2468 break;
2469
2470 case OO_Tilde:
2471 // C++ [over.built]p10:
2472 // For every promoted integral type T, there exist candidate
2473 // operator functions of the form
2474 //
2475 // T operator~(T);
2476 for (unsigned Int = FirstPromotedIntegralType;
2477 Int < LastPromotedIntegralType; ++Int) {
2478 QualType IntTy = ArithmeticTypes[Int];
2479 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2480 }
2481 break;
2482
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002483 case OO_New:
2484 case OO_Delete:
2485 case OO_Array_New:
2486 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002487 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002488 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002489 break;
2490
2491 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002492 UnaryAmp:
2493 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002494 // C++ [over.match.oper]p3:
2495 // -- For the operator ',', the unary operator '&', or the
2496 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002497 break;
2498
2499 case OO_Less:
2500 case OO_Greater:
2501 case OO_LessEqual:
2502 case OO_GreaterEqual:
2503 case OO_EqualEqual:
2504 case OO_ExclaimEqual:
2505 // C++ [over.built]p15:
2506 //
2507 // For every pointer or enumeration type T, there exist
2508 // candidate operator functions of the form
2509 //
2510 // bool operator<(T, T);
2511 // bool operator>(T, T);
2512 // bool operator<=(T, T);
2513 // bool operator>=(T, T);
2514 // bool operator==(T, T);
2515 // bool operator!=(T, T);
2516 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2517 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2518 QualType ParamTypes[2] = { *Ptr, *Ptr };
2519 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2520 }
2521 for (BuiltinCandidateTypeSet::iterator Enum
2522 = CandidateTypes.enumeration_begin();
2523 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2524 QualType ParamTypes[2] = { *Enum, *Enum };
2525 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2526 }
2527
2528 // Fall through.
2529 isComparison = true;
2530
Douglas Gregor74253732008-11-19 15:42:04 +00002531 BinaryPlus:
2532 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002533 if (!isComparison) {
2534 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2535
2536 // C++ [over.built]p13:
2537 //
2538 // For every cv-qualified or cv-unqualified object type T
2539 // there exist candidate operator functions of the form
2540 //
2541 // T* operator+(T*, ptrdiff_t);
2542 // T& operator[](T*, ptrdiff_t); [BELOW]
2543 // T* operator-(T*, ptrdiff_t);
2544 // T* operator+(ptrdiff_t, T*);
2545 // T& operator[](ptrdiff_t, T*); [BELOW]
2546 //
2547 // C++ [over.built]p14:
2548 //
2549 // For every T, where T is a pointer to object type, there
2550 // exist candidate operator functions of the form
2551 //
2552 // ptrdiff_t operator-(T, T);
2553 for (BuiltinCandidateTypeSet::iterator Ptr
2554 = CandidateTypes.pointer_begin();
2555 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2556 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2557
2558 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2559 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2560
2561 if (Op == OO_Plus) {
2562 // T* operator+(ptrdiff_t, T*);
2563 ParamTypes[0] = ParamTypes[1];
2564 ParamTypes[1] = *Ptr;
2565 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2566 } else {
2567 // ptrdiff_t operator-(T, T);
2568 ParamTypes[1] = *Ptr;
2569 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2570 Args, 2, CandidateSet);
2571 }
2572 }
2573 }
2574 // Fall through
2575
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002576 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002577 BinaryStar:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002578 // C++ [over.built]p12:
2579 //
2580 // For every pair of promoted arithmetic types L and R, there
2581 // exist candidate operator functions of the form
2582 //
2583 // LR operator*(L, R);
2584 // LR operator/(L, R);
2585 // LR operator+(L, R);
2586 // LR operator-(L, R);
2587 // bool operator<(L, R);
2588 // bool operator>(L, R);
2589 // bool operator<=(L, R);
2590 // bool operator>=(L, R);
2591 // bool operator==(L, R);
2592 // bool operator!=(L, R);
2593 //
2594 // where LR is the result of the usual arithmetic conversions
2595 // between types L and R.
2596 for (unsigned Left = FirstPromotedArithmeticType;
2597 Left < LastPromotedArithmeticType; ++Left) {
2598 for (unsigned Right = FirstPromotedArithmeticType;
2599 Right < LastPromotedArithmeticType; ++Right) {
2600 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2601 QualType Result
2602 = isComparison? Context.BoolTy
2603 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2604 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2605 }
2606 }
2607 break;
2608
2609 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00002610 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002611 case OO_Caret:
2612 case OO_Pipe:
2613 case OO_LessLess:
2614 case OO_GreaterGreater:
2615 // C++ [over.built]p17:
2616 //
2617 // For every pair of promoted integral types L and R, there
2618 // exist candidate operator functions of the form
2619 //
2620 // LR operator%(L, R);
2621 // LR operator&(L, R);
2622 // LR operator^(L, R);
2623 // LR operator|(L, R);
2624 // L operator<<(L, R);
2625 // L operator>>(L, R);
2626 //
2627 // where LR is the result of the usual arithmetic conversions
2628 // between types L and R.
2629 for (unsigned Left = FirstPromotedIntegralType;
2630 Left < LastPromotedIntegralType; ++Left) {
2631 for (unsigned Right = FirstPromotedIntegralType;
2632 Right < LastPromotedIntegralType; ++Right) {
2633 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2634 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2635 ? LandR[0]
2636 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2637 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2638 }
2639 }
2640 break;
2641
2642 case OO_Equal:
2643 // C++ [over.built]p20:
2644 //
2645 // For every pair (T, VQ), where T is an enumeration or
2646 // (FIXME:) pointer to member type and VQ is either volatile or
2647 // empty, there exist candidate operator functions of the form
2648 //
2649 // VQ T& operator=(VQ T&, T);
2650 for (BuiltinCandidateTypeSet::iterator Enum
2651 = CandidateTypes.enumeration_begin();
2652 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2653 QualType ParamTypes[2];
2654
2655 // T& operator=(T&, T)
2656 ParamTypes[0] = Context.getReferenceType(*Enum);
2657 ParamTypes[1] = *Enum;
2658 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2659
Douglas Gregor74253732008-11-19 15:42:04 +00002660 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2661 // volatile T& operator=(volatile T&, T)
2662 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2663 ParamTypes[1] = *Enum;
2664 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2665 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002666 }
2667 // Fall through.
2668
2669 case OO_PlusEqual:
2670 case OO_MinusEqual:
2671 // C++ [over.built]p19:
2672 //
2673 // For every pair (T, VQ), where T is any type and VQ is either
2674 // volatile or empty, there exist candidate operator functions
2675 // of the form
2676 //
2677 // T*VQ& operator=(T*VQ&, T*);
2678 //
2679 // C++ [over.built]p21:
2680 //
2681 // For every pair (T, VQ), where T is a cv-qualified or
2682 // cv-unqualified object type and VQ is either volatile or
2683 // empty, there exist candidate operator functions of the form
2684 //
2685 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
2686 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
2687 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2688 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2689 QualType ParamTypes[2];
2690 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2691
2692 // non-volatile version
2693 ParamTypes[0] = Context.getReferenceType(*Ptr);
2694 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2695
Douglas Gregor74253732008-11-19 15:42:04 +00002696 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2697 // volatile version
2698 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2699 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2700 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002701 }
2702 // Fall through.
2703
2704 case OO_StarEqual:
2705 case OO_SlashEqual:
2706 // C++ [over.built]p18:
2707 //
2708 // For every triple (L, VQ, R), where L is an arithmetic type,
2709 // VQ is either volatile or empty, and R is a promoted
2710 // arithmetic type, there exist candidate operator functions of
2711 // the form
2712 //
2713 // VQ L& operator=(VQ L&, R);
2714 // VQ L& operator*=(VQ L&, R);
2715 // VQ L& operator/=(VQ L&, R);
2716 // VQ L& operator+=(VQ L&, R);
2717 // VQ L& operator-=(VQ L&, R);
2718 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
2719 for (unsigned Right = FirstPromotedArithmeticType;
2720 Right < LastPromotedArithmeticType; ++Right) {
2721 QualType ParamTypes[2];
2722 ParamTypes[1] = ArithmeticTypes[Right];
2723
2724 // Add this built-in operator as a candidate (VQ is empty).
2725 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2726 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2727
2728 // Add this built-in operator as a candidate (VQ is 'volatile').
2729 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
2730 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2731 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2732 }
2733 }
2734 break;
2735
2736 case OO_PercentEqual:
2737 case OO_LessLessEqual:
2738 case OO_GreaterGreaterEqual:
2739 case OO_AmpEqual:
2740 case OO_CaretEqual:
2741 case OO_PipeEqual:
2742 // C++ [over.built]p22:
2743 //
2744 // For every triple (L, VQ, R), where L is an integral type, VQ
2745 // is either volatile or empty, and R is a promoted integral
2746 // type, there exist candidate operator functions of the form
2747 //
2748 // VQ L& operator%=(VQ L&, R);
2749 // VQ L& operator<<=(VQ L&, R);
2750 // VQ L& operator>>=(VQ L&, R);
2751 // VQ L& operator&=(VQ L&, R);
2752 // VQ L& operator^=(VQ L&, R);
2753 // VQ L& operator|=(VQ L&, R);
2754 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
2755 for (unsigned Right = FirstPromotedIntegralType;
2756 Right < LastPromotedIntegralType; ++Right) {
2757 QualType ParamTypes[2];
2758 ParamTypes[1] = ArithmeticTypes[Right];
2759
2760 // Add this built-in operator as a candidate (VQ is empty).
2761 // FIXME: We should be caching these declarations somewhere,
2762 // rather than re-building them every time.
2763 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2764 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2765
2766 // Add this built-in operator as a candidate (VQ is 'volatile').
2767 ParamTypes[0] = ArithmeticTypes[Left];
2768 ParamTypes[0].addVolatile();
2769 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2770 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2771 }
2772 }
2773 break;
2774
Douglas Gregor74253732008-11-19 15:42:04 +00002775 case OO_Exclaim: {
2776 // C++ [over.operator]p23:
2777 //
2778 // There also exist candidate operator functions of the form
2779 //
2780 // bool operator!(bool);
2781 // bool operator&&(bool, bool); [BELOW]
2782 // bool operator||(bool, bool); [BELOW]
2783 QualType ParamTy = Context.BoolTy;
2784 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2785 break;
2786 }
2787
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002788 case OO_AmpAmp:
2789 case OO_PipePipe: {
2790 // C++ [over.operator]p23:
2791 //
2792 // There also exist candidate operator functions of the form
2793 //
Douglas Gregor74253732008-11-19 15:42:04 +00002794 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002795 // bool operator&&(bool, bool);
2796 // bool operator||(bool, bool);
2797 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
2798 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2799 break;
2800 }
2801
2802 case OO_Subscript:
2803 // C++ [over.built]p13:
2804 //
2805 // For every cv-qualified or cv-unqualified object type T there
2806 // exist candidate operator functions of the form
2807 //
2808 // T* operator+(T*, ptrdiff_t); [ABOVE]
2809 // T& operator[](T*, ptrdiff_t);
2810 // T* operator-(T*, ptrdiff_t); [ABOVE]
2811 // T* operator+(ptrdiff_t, T*); [ABOVE]
2812 // T& operator[](ptrdiff_t, T*);
2813 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2814 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2815 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2816 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
2817 QualType ResultTy = Context.getReferenceType(PointeeType);
2818
2819 // T& operator[](T*, ptrdiff_t)
2820 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2821
2822 // T& operator[](ptrdiff_t, T*);
2823 ParamTypes[0] = ParamTypes[1];
2824 ParamTypes[1] = *Ptr;
2825 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2826 }
2827 break;
2828
2829 case OO_ArrowStar:
2830 // FIXME: No support for pointer-to-members yet.
2831 break;
2832 }
2833}
2834
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002835/// AddOverloadCandidates - Add all of the function overloads in Ovl
2836/// to the candidate set.
2837void
Douglas Gregor18fe5682008-11-03 20:45:27 +00002838Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002839 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00002840 OverloadCandidateSet& CandidateSet,
2841 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002842{
Douglas Gregor18fe5682008-11-03 20:45:27 +00002843 for (OverloadedFunctionDecl::function_const_iterator Func
2844 = Ovl->function_begin();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002845 Func != Ovl->function_end(); ++Func)
Douglas Gregor225c41e2008-11-03 19:09:14 +00002846 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
2847 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002848}
2849
2850/// isBetterOverloadCandidate - Determines whether the first overload
2851/// candidate is a better candidate than the second (C++ 13.3.3p1).
2852bool
2853Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
2854 const OverloadCandidate& Cand2)
2855{
2856 // Define viable functions to be better candidates than non-viable
2857 // functions.
2858 if (!Cand2.Viable)
2859 return Cand1.Viable;
2860 else if (!Cand1.Viable)
2861 return false;
2862
2863 // FIXME: Deal with the implicit object parameter for static member
2864 // functions. (C++ 13.3.3p1).
2865
2866 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
2867 // function than another viable function F2 if for all arguments i,
2868 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
2869 // then...
2870 unsigned NumArgs = Cand1.Conversions.size();
2871 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
2872 bool HasBetterConversion = false;
2873 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2874 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
2875 Cand2.Conversions[ArgIdx])) {
2876 case ImplicitConversionSequence::Better:
2877 // Cand1 has a better conversion sequence.
2878 HasBetterConversion = true;
2879 break;
2880
2881 case ImplicitConversionSequence::Worse:
2882 // Cand1 can't be better than Cand2.
2883 return false;
2884
2885 case ImplicitConversionSequence::Indistinguishable:
2886 // Do nothing.
2887 break;
2888 }
2889 }
2890
2891 if (HasBetterConversion)
2892 return true;
2893
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002894 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
2895 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002896
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002897 // C++ [over.match.best]p1b4:
2898 //
2899 // -- the context is an initialization by user-defined conversion
2900 // (see 8.5, 13.3.1.5) and the standard conversion sequence
2901 // from the return type of F1 to the destination type (i.e.,
2902 // the type of the entity being initialized) is a better
2903 // conversion sequence than the standard conversion sequence
2904 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00002905 if (Cand1.Function && Cand2.Function &&
2906 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002907 isa<CXXConversionDecl>(Cand2.Function)) {
2908 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
2909 Cand2.FinalConversion)) {
2910 case ImplicitConversionSequence::Better:
2911 // Cand1 has a better conversion sequence.
2912 return true;
2913
2914 case ImplicitConversionSequence::Worse:
2915 // Cand1 can't be better than Cand2.
2916 return false;
2917
2918 case ImplicitConversionSequence::Indistinguishable:
2919 // Do nothing
2920 break;
2921 }
2922 }
2923
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002924 return false;
2925}
2926
2927/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
2928/// within an overload candidate set. If overloading is successful,
2929/// the result will be OR_Success and Best will be set to point to the
2930/// best viable function within the candidate set. Otherwise, one of
2931/// several kinds of errors will be returned; see
2932/// Sema::OverloadingResult.
2933Sema::OverloadingResult
2934Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
2935 OverloadCandidateSet::iterator& Best)
2936{
2937 // Find the best viable function.
2938 Best = CandidateSet.end();
2939 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2940 Cand != CandidateSet.end(); ++Cand) {
2941 if (Cand->Viable) {
2942 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
2943 Best = Cand;
2944 }
2945 }
2946
2947 // If we didn't find any viable functions, abort.
2948 if (Best == CandidateSet.end())
2949 return OR_No_Viable_Function;
2950
2951 // Make sure that this function is better than every other viable
2952 // function. If not, we have an ambiguity.
2953 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2954 Cand != CandidateSet.end(); ++Cand) {
2955 if (Cand->Viable &&
2956 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002957 !isBetterOverloadCandidate(*Best, *Cand)) {
2958 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002959 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002960 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002961 }
2962
2963 // Best is the best viable function.
2964 return OR_Success;
2965}
2966
2967/// PrintOverloadCandidates - When overload resolution fails, prints
2968/// diagnostic messages containing the candidates in the candidate
2969/// set. If OnlyViable is true, only viable candidates will be printed.
2970void
2971Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
2972 bool OnlyViable)
2973{
2974 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
2975 LastCand = CandidateSet.end();
2976 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002977 if (Cand->Viable || !OnlyViable) {
2978 if (Cand->Function) {
2979 // Normal function
2980 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002981 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00002982 // Desugar the type of the surrogate down to a function type,
2983 // retaining as many typedefs as possible while still showing
2984 // the function type (and, therefore, its parameter types).
2985 QualType FnType = Cand->Surrogate->getConversionType();
2986 bool isReference = false;
2987 bool isPointer = false;
2988 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
2989 FnType = FnTypeRef->getPointeeType();
2990 isReference = true;
2991 }
2992 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
2993 FnType = FnTypePtr->getPointeeType();
2994 isPointer = true;
2995 }
2996 // Desugar down to a function type.
2997 FnType = QualType(FnType->getAsFunctionType(), 0);
2998 // Reconstruct the pointer/reference as appropriate.
2999 if (isPointer) FnType = Context.getPointerType(FnType);
3000 if (isReference) FnType = Context.getReferenceType(FnType);
3001
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003002 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00003003 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003004 } else {
3005 // FIXME: We need to get the identifier in here
3006 // FIXME: Do we want the error message to point at the
3007 // operator? (built-ins won't have a location)
3008 QualType FnType
3009 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3010 Cand->BuiltinTypes.ParamTypes,
3011 Cand->Conversions.size(),
3012 false, 0);
3013
Chris Lattnerd1625842008-11-24 06:25:27 +00003014 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003015 }
3016 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003017 }
3018}
3019
Douglas Gregor904eed32008-11-10 20:40:00 +00003020/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3021/// an overloaded function (C++ [over.over]), where @p From is an
3022/// expression with overloaded function type and @p ToType is the type
3023/// we're trying to resolve to. For example:
3024///
3025/// @code
3026/// int f(double);
3027/// int f(int);
3028///
3029/// int (*pfd)(double) = f; // selects f(double)
3030/// @endcode
3031///
3032/// This routine returns the resulting FunctionDecl if it could be
3033/// resolved, and NULL otherwise. When @p Complain is true, this
3034/// routine will emit diagnostics if there is an error.
3035FunctionDecl *
3036Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3037 bool Complain) {
3038 QualType FunctionType = ToType;
3039 if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3040 FunctionType = ToTypePtr->getPointeeType();
3041
3042 // We only look at pointers or references to functions.
3043 if (!FunctionType->isFunctionType())
3044 return 0;
3045
3046 // Find the actual overloaded function declaration.
3047 OverloadedFunctionDecl *Ovl = 0;
3048
3049 // C++ [over.over]p1:
3050 // [...] [Note: any redundant set of parentheses surrounding the
3051 // overloaded function name is ignored (5.1). ]
3052 Expr *OvlExpr = From->IgnoreParens();
3053
3054 // C++ [over.over]p1:
3055 // [...] The overloaded function name can be preceded by the &
3056 // operator.
3057 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3058 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3059 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3060 }
3061
3062 // Try to dig out the overloaded function.
3063 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3064 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3065
3066 // If there's no overloaded function declaration, we're done.
3067 if (!Ovl)
3068 return 0;
3069
3070 // Look through all of the overloaded functions, searching for one
3071 // whose type matches exactly.
3072 // FIXME: When templates or using declarations come along, we'll actually
3073 // have to deal with duplicates, partial ordering, etc. For now, we
3074 // can just do a simple search.
3075 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3076 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3077 Fun != Ovl->function_end(); ++Fun) {
3078 // C++ [over.over]p3:
3079 // Non-member functions and static member functions match
3080 // targets of type “pointer-to-function”or
3081 // “reference-to-function.”
3082 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3083 if (!Method->isStatic())
3084 continue;
3085
3086 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3087 return *Fun;
3088 }
3089
3090 return 0;
3091}
3092
Douglas Gregorf6b89692008-11-26 05:54:23 +00003093/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3094/// (which eventually refers to the set of overloaded functions in
3095/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3096/// function call down to a specific function. If overload resolution
Douglas Gregor0a396682008-11-26 06:01:48 +00003097/// succeeds, returns the function declaration produced by overload
3098/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003099/// arguments and Fn, and returns NULL.
Douglas Gregor0a396682008-11-26 06:01:48 +00003100FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3101 SourceLocation LParenLoc,
3102 Expr **Args, unsigned NumArgs,
3103 SourceLocation *CommaLocs,
3104 SourceLocation RParenLoc) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003105 OverloadCandidateSet CandidateSet;
3106 AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3107 OverloadCandidateSet::iterator Best;
3108 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003109 case OR_Success:
3110 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003111
3112 case OR_No_Viable_Function:
3113 Diag(Fn->getSourceRange().getBegin(),
3114 diag::err_ovl_no_viable_function_in_call)
3115 << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3116 << Fn->getSourceRange();
3117 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3118 break;
3119
3120 case OR_Ambiguous:
3121 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3122 << Ovl->getDeclName() << Fn->getSourceRange();
3123 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3124 break;
3125 }
3126
3127 // Overload resolution failed. Destroy all of the subexpressions and
3128 // return NULL.
3129 Fn->Destroy(Context);
3130 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3131 Args[Arg]->Destroy(Context);
3132 return 0;
3133}
3134
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003135/// BuildCallToObjectOfClassType - Build a call to an object of class
3136/// type (C++ [over.call.object]), which can end up invoking an
3137/// overloaded function call operator (@c operator()) or performing a
3138/// user-defined conversion on the object argument.
3139Action::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00003140Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3141 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003142 Expr **Args, unsigned NumArgs,
3143 SourceLocation *CommaLocs,
3144 SourceLocation RParenLoc) {
3145 assert(Object->getType()->isRecordType() && "Requires object type argument");
3146 const RecordType *Record = Object->getType()->getAsRecordType();
3147
3148 // C++ [over.call.object]p1:
3149 // If the primary-expression E in the function call syntax
3150 // evaluates to a class object of type “cv T”, then the set of
3151 // candidate functions includes at least the function call
3152 // operators of T. The function call operators of T are obtained by
3153 // ordinary lookup of the name operator() in the context of
3154 // (E).operator().
3155 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00003156 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
3157 DeclContext::lookup_const_result Lookup
Douglas Gregore267ff32008-12-11 20:41:00 +00003158 = Record->getDecl()->lookup(Context, OpName);
Douglas Gregor44b43212008-12-11 16:49:14 +00003159 NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003160 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3161 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3162 /*SuppressUserConversions=*/false);
3163 else if (OverloadedFunctionDecl *Ovl
3164 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3165 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3166 FEnd = Ovl->function_end();
3167 F != FEnd; ++F) {
3168 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3169 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3170 /*SuppressUserConversions=*/false);
3171 }
3172 }
3173
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003174 // C++ [over.call.object]p2:
3175 // In addition, for each conversion function declared in T of the
3176 // form
3177 //
3178 // operator conversion-type-id () cv-qualifier;
3179 //
3180 // where cv-qualifier is the same cv-qualification as, or a
3181 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00003182 // denotes the type "pointer to function of (P1,...,Pn) returning
3183 // R", or the type "reference to pointer to function of
3184 // (P1,...,Pn) returning R", or the type "reference to function
3185 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003186 // is also considered as a candidate function. Similarly,
3187 // surrogate call functions are added to the set of candidate
3188 // functions for each conversion function declared in an
3189 // accessible base class provided the function is not hidden
3190 // within T by another intervening declaration.
3191 //
3192 // FIXME: Look in base classes for more conversion operators!
3193 OverloadedFunctionDecl *Conversions
3194 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00003195 for (OverloadedFunctionDecl::function_iterator
3196 Func = Conversions->function_begin(),
3197 FuncEnd = Conversions->function_end();
3198 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003199 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3200
3201 // Strip the reference type (if any) and then the pointer type (if
3202 // any) to get down to what might be a function type.
3203 QualType ConvType = Conv->getConversionType().getNonReferenceType();
3204 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3205 ConvType = ConvPtrType->getPointeeType();
3206
3207 if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3208 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3209 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003210
3211 // Perform overload resolution.
3212 OverloadCandidateSet::iterator Best;
3213 switch (BestViableFunction(CandidateSet, Best)) {
3214 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003215 // Overload resolution succeeded; we'll build the appropriate call
3216 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003217 break;
3218
3219 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00003220 Diag(Object->getSourceRange().getBegin(),
3221 diag::err_ovl_no_viable_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003222 << Object->getType() << (unsigned)CandidateSet.size()
Sebastian Redle4c452c2008-11-22 13:44:36 +00003223 << Object->getSourceRange();
3224 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003225 break;
3226
3227 case OR_Ambiguous:
3228 Diag(Object->getSourceRange().getBegin(),
3229 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003230 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003231 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3232 break;
3233 }
3234
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003235 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003236 // We had an error; delete all of the subexpressions and return
3237 // the error.
3238 delete Object;
3239 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3240 delete Args[ArgIdx];
3241 return true;
3242 }
3243
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003244 if (Best->Function == 0) {
3245 // Since there is no function declaration, this is one of the
3246 // surrogate candidates. Dig out the conversion function.
3247 CXXConversionDecl *Conv
3248 = cast<CXXConversionDecl>(
3249 Best->Conversions[0].UserDefined.ConversionFunction);
3250
3251 // We selected one of the surrogate functions that converts the
3252 // object parameter to a function pointer. Perform the conversion
3253 // on the object argument, then let ActOnCallExpr finish the job.
3254 // FIXME: Represent the user-defined conversion in the AST!
3255 ImpCastExprToType(Object,
3256 Conv->getConversionType().getNonReferenceType(),
3257 Conv->getConversionType()->isReferenceType());
Douglas Gregor5c37de72008-12-06 00:22:45 +00003258 return ActOnCallExpr(S, (ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003259 CommaLocs, RParenLoc);
3260 }
3261
3262 // We found an overloaded operator(). Build a CXXOperatorCallExpr
3263 // that calls this method, using Object for the implicit object
3264 // parameter and passing along the remaining arguments.
3265 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003266 const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3267
3268 unsigned NumArgsInProto = Proto->getNumArgs();
3269 unsigned NumArgsToCheck = NumArgs;
3270
3271 // Build the full argument list for the method call (the
3272 // implicit object parameter is placed at the beginning of the
3273 // list).
3274 Expr **MethodArgs;
3275 if (NumArgs < NumArgsInProto) {
3276 NumArgsToCheck = NumArgsInProto;
3277 MethodArgs = new Expr*[NumArgsInProto + 1];
3278 } else {
3279 MethodArgs = new Expr*[NumArgs + 1];
3280 }
3281 MethodArgs[0] = Object;
3282 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3283 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3284
3285 Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3286 SourceLocation());
3287 UsualUnaryConversions(NewFn);
3288
3289 // Once we've built TheCall, all of the expressions are properly
3290 // owned.
3291 QualType ResultTy = Method->getResultType().getNonReferenceType();
3292 llvm::OwningPtr<CXXOperatorCallExpr>
3293 TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3294 ResultTy, RParenLoc));
3295 delete [] MethodArgs;
3296
3297 // Initialize the implicit object parameter.
3298 if (!PerformObjectArgumentInitialization(Object, Method))
3299 return true;
3300 TheCall->setArg(0, Object);
3301
3302 // Check the argument types.
3303 for (unsigned i = 0; i != NumArgsToCheck; i++) {
3304 QualType ProtoArgType = Proto->getArgType(i);
3305
3306 Expr *Arg;
3307 if (i < NumArgs)
3308 Arg = Args[i];
3309 else
3310 Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
3311 QualType ArgType = Arg->getType();
3312
3313 // Pass the argument.
3314 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3315 return true;
3316
3317 TheCall->setArg(i + 1, Arg);
3318 }
3319
3320 // If this is a variadic call, handle args passed through "...".
3321 if (Proto->isVariadic()) {
3322 // Promote the arguments (C99 6.5.2.2p7).
3323 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3324 Expr *Arg = Args[i];
3325 DefaultArgumentPromotion(Arg);
3326 TheCall->setArg(i + 1, Arg);
3327 }
3328 }
3329
3330 return CheckFunctionCall(Method, TheCall.take());
3331}
3332
Douglas Gregor8ba10742008-11-20 16:27:02 +00003333/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3334/// (if one exists), where @c Base is an expression of class type and
3335/// @c Member is the name of the member we're trying to find.
3336Action::ExprResult
3337Sema::BuildOverloadedArrowExpr(Expr *Base, SourceLocation OpLoc,
3338 SourceLocation MemberLoc,
3339 IdentifierInfo &Member) {
3340 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3341
3342 // C++ [over.ref]p1:
3343 //
3344 // [...] An expression x->m is interpreted as (x.operator->())->m
3345 // for a class object x of type T if T::operator->() exists and if
3346 // the operator is selected as the best match function by the
3347 // overload resolution mechanism (13.3).
3348 // FIXME: look in base classes.
3349 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3350 OverloadCandidateSet CandidateSet;
3351 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregor44b43212008-12-11 16:49:14 +00003352 DeclContext::lookup_const_result Lookup
Douglas Gregore267ff32008-12-11 20:41:00 +00003353 = BaseRecord->getDecl()->lookup(Context, OpName);
Douglas Gregor44b43212008-12-11 16:49:14 +00003354 NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
Douglas Gregor8ba10742008-11-20 16:27:02 +00003355 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3356 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3357 /*SuppressUserConversions=*/false);
3358 else if (OverloadedFunctionDecl *Ovl
3359 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3360 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3361 FEnd = Ovl->function_end();
3362 F != FEnd; ++F) {
3363 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3364 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3365 /*SuppressUserConversions=*/false);
3366 }
3367 }
3368
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003369 llvm::OwningPtr<Expr> BasePtr(Base);
3370
Douglas Gregor8ba10742008-11-20 16:27:02 +00003371 // Perform overload resolution.
3372 OverloadCandidateSet::iterator Best;
3373 switch (BestViableFunction(CandidateSet, Best)) {
3374 case OR_Success:
3375 // Overload resolution succeeded; we'll build the call below.
3376 break;
3377
3378 case OR_No_Viable_Function:
3379 if (CandidateSet.empty())
3380 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00003381 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003382 else
3383 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Sebastian Redle4c452c2008-11-22 13:44:36 +00003384 << "operator->" << (unsigned)CandidateSet.size()
3385 << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003386 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003387 return true;
3388
3389 case OR_Ambiguous:
3390 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00003391 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003392 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003393 return true;
3394 }
3395
3396 // Convert the object parameter.
3397 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003398 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00003399 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003400
3401 // No concerns about early exits now.
3402 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003403
3404 // Build the operator call.
3405 Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3406 UsualUnaryConversions(FnExpr);
3407 Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3408 Method->getResultType().getNonReferenceType(),
3409 OpLoc);
3410 return ActOnMemberReferenceExpr(Base, OpLoc, tok::arrow, MemberLoc, Member);
3411}
3412
Douglas Gregor904eed32008-11-10 20:40:00 +00003413/// FixOverloadedFunctionReference - E is an expression that refers to
3414/// a C++ overloaded function (possibly with some parentheses and
3415/// perhaps a '&' around it). We have resolved the overloaded function
3416/// to the function declaration Fn, so patch up the expression E to
3417/// refer (possibly indirectly) to Fn.
3418void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3419 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3420 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3421 E->setType(PE->getSubExpr()->getType());
3422 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3423 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3424 "Can only take the address of an overloaded function");
3425 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3426 E->setType(Context.getPointerType(E->getType()));
3427 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3428 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3429 "Expected overloaded function");
3430 DR->setDecl(Fn);
3431 E->setType(Fn->getType());
3432 } else {
3433 assert(false && "Invalid reference to overloaded function");
3434 }
3435}
3436
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003437} // end namespace clang