blob: 50025d214bcbe23c45a2baf2746c126fae8ae677 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +000017#include "llvm/ADT/StringRef.h"
Ted Kremenek109de0d2008-01-19 04:23:33 +000018#include "llvm/ADT/FoldingSet.h"
Chris Lattner89b36582008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/Support/Debug.h"
Edwin Török675d5622009-07-11 20:10:48 +000021#include "llvm/Support/ErrorHandling.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Support/MathExtras.h"
Chris Lattner1fefaac2008-08-23 22:23:09 +000023#include "llvm/Support/raw_ostream.h"
Chris Lattner89b36582008-08-17 07:19:36 +000024#include <cmath>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include <limits>
26#include <cstring>
27#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028using namespace llvm;
29
30/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000032inline static uint64_t* getClearedMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
37}
38
Eric Christopher017fc252009-08-21 04:06:45 +000039/// A utility function for allocating memory and checking for allocation
Dan Gohmanf17a25c2007-07-18 16:29:46 +000040/// failure. The content is not zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000041inline static uint64_t* getMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000042 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
45}
46
Erick Tryzelaar15a448f2009-08-21 03:15:28 +000047/// A utility function that converts a character to a digit.
48inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar5c4ea882009-08-21 06:48:37 +000049 unsigned r;
50
Erick Tryzelaar15a448f2009-08-21 03:15:28 +000051 if (radix == 16) {
Erick Tryzelaar5c4ea882009-08-21 06:48:37 +000052 r = cdigit - '0';
53 if (r <= 9)
54 return r;
55
56 r = cdigit - 'A';
57 if (r <= 5)
58 return r + 10;
59
60 r = cdigit - 'a';
61 if (r <= 5)
62 return r + 10;
Erick Tryzelaar15a448f2009-08-21 03:15:28 +000063 }
64
Erick Tryzelaar5c4ea882009-08-21 06:48:37 +000065 r = cdigit - '0';
66 if (r < radix)
67 return r;
68
69 return -1U;
Erick Tryzelaar15a448f2009-08-21 03:15:28 +000070}
71
72
Chris Lattneree5417c2009-01-21 18:09:24 +000073void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner84886852008-08-20 17:02:31 +000074 pVal = getClearedMemory(getNumWords());
75 pVal[0] = val;
Eric Christopher017fc252009-08-21 04:06:45 +000076 if (isSigned && int64_t(val) < 0)
Chris Lattner84886852008-08-20 17:02:31 +000077 for (unsigned i = 1; i < getNumWords(); ++i)
78 pVal[i] = -1ULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000079}
80
Chris Lattnera1f63bb2008-10-11 22:07:19 +000081void APInt::initSlowCase(const APInt& that) {
82 pVal = getMemory(getNumWords());
83 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
84}
85
86
Chris Lattneree5417c2009-01-21 18:09:24 +000087APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner1fefaac2008-08-23 22:23:09 +000088 : BitWidth(numBits), VAL(0) {
Erick Tryzelaara3c44c92009-08-21 03:15:14 +000089 assert(BitWidth && "Bitwidth too small");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090 assert(bigVal && "Null pointer detected!");
91 if (isSingleWord())
92 VAL = bigVal[0];
93 else {
94 // Get memory, cleared to 0
95 pVal = getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
Chris Lattneree5417c2009-01-21 18:09:24 +000097 unsigned words = std::min<unsigned>(numWords, getNumWords());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000098 // Copy the words from bigVal to pVal
99 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
100 }
101 // Make sure unused high bits are cleared
102 clearUnusedBits();
103}
104
Eric Christopher017fc252009-08-21 04:06:45 +0000105APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000106 : BitWidth(numbits), VAL(0) {
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000107 assert(BitWidth && "Bitwidth too small");
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000108 fromString(numbits, Str, radix);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109}
110
Chris Lattner84886852008-08-20 17:02:31 +0000111APInt& APInt::AssignSlowCase(const APInt& RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000112 // Don't do anything for X = X
113 if (this == &RHS)
114 return *this;
115
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner84886852008-08-20 17:02:31 +0000117 // assume same bit-width single-word case is already handled
118 assert(!isSingleWord());
119 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120 return *this;
121 }
122
Chris Lattner84886852008-08-20 17:02:31 +0000123 if (isSingleWord()) {
124 // assume case where both are single words is already handled
125 assert(!RHS.isSingleWord());
126 VAL = 0;
127 pVal = getMemory(RHS.getNumWords());
128 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Eric Christopher017fc252009-08-21 04:06:45 +0000129 } else if (getNumWords() == RHS.getNumWords())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000130 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
131 else if (RHS.isSingleWord()) {
132 delete [] pVal;
133 VAL = RHS.VAL;
134 } else {
135 delete [] pVal;
136 pVal = getMemory(RHS.getNumWords());
137 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
138 }
139 BitWidth = RHS.BitWidth;
140 return clearUnusedBits();
141}
142
143APInt& APInt::operator=(uint64_t RHS) {
Eric Christopher017fc252009-08-21 04:06:45 +0000144 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145 VAL = RHS;
146 else {
147 pVal[0] = RHS;
148 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
149 }
150 return clearUnusedBits();
151}
152
Ted Kremenek109de0d2008-01-19 04:23:33 +0000153/// Profile - This method 'profiles' an APInt for use with FoldingSet.
154void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek79f65912008-02-19 20:50:41 +0000155 ID.AddInteger(BitWidth);
Eric Christopher017fc252009-08-21 04:06:45 +0000156
Ted Kremenek109de0d2008-01-19 04:23:33 +0000157 if (isSingleWord()) {
158 ID.AddInteger(VAL);
159 return;
160 }
161
Chris Lattneree5417c2009-01-21 18:09:24 +0000162 unsigned NumWords = getNumWords();
Ted Kremenek109de0d2008-01-19 04:23:33 +0000163 for (unsigned i = 0; i < NumWords; ++i)
164 ID.AddInteger(pVal[i]);
165}
166
Eric Christopher017fc252009-08-21 04:06:45 +0000167/// add_1 - This function adds a single "digit" integer, y, to the multiple
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000168/// "digit" integer array, x[]. x[] is modified to reflect the addition and
169/// 1 is returned if there is a carry out, otherwise 0 is returned.
170/// @returns the carry of the addition.
Chris Lattneree5417c2009-01-21 18:09:24 +0000171static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
172 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000173 dest[i] = y + x[i];
174 if (dest[i] < y)
175 y = 1; // Carry one to next digit.
176 else {
177 y = 0; // No need to carry so exit early
178 break;
179 }
180 }
181 return y;
182}
183
184/// @brief Prefix increment operator. Increments the APInt by one.
185APInt& APInt::operator++() {
Eric Christopher017fc252009-08-21 04:06:45 +0000186 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187 ++VAL;
188 else
189 add_1(pVal, pVal, getNumWords(), 1);
190 return clearUnusedBits();
191}
192
Eric Christopher017fc252009-08-21 04:06:45 +0000193/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
194/// the multi-digit integer array, x[], propagating the borrowed 1 value until
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000195/// no further borrowing is neeeded or it runs out of "digits" in x. The result
196/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
197/// In other words, if y > x then this function returns 1, otherwise 0.
198/// @returns the borrow out of the subtraction
Chris Lattneree5417c2009-01-21 18:09:24 +0000199static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
200 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201 uint64_t X = x[i];
202 x[i] -= y;
Eric Christopher017fc252009-08-21 04:06:45 +0000203 if (y > X)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000204 y = 1; // We have to "borrow 1" from next "digit"
205 else {
206 y = 0; // No need to borrow
207 break; // Remaining digits are unchanged so exit early
208 }
209 }
210 return bool(y);
211}
212
213/// @brief Prefix decrement operator. Decrements the APInt by one.
214APInt& APInt::operator--() {
Eric Christopher017fc252009-08-21 04:06:45 +0000215 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 --VAL;
217 else
218 sub_1(pVal, getNumWords(), 1);
219 return clearUnusedBits();
220}
221
222/// add - This function adds the integer array x to the integer array Y and
Eric Christopher017fc252009-08-21 04:06:45 +0000223/// places the result in dest.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224/// @returns the carry out from the addition
225/// @brief General addition of 64-bit integer arrays
Eric Christopher017fc252009-08-21 04:06:45 +0000226static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000227 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000229 for (unsigned i = 0; i< len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000230 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
231 dest[i] = x[i] + y[i] + carry;
232 carry = dest[i] < limit || (carry && dest[i] == limit);
233 }
234 return carry;
235}
236
237/// Adds the RHS APint to this APInt.
238/// @returns this, after addition of RHS.
Eric Christopher017fc252009-08-21 04:06:45 +0000239/// @brief Addition assignment operator.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240APInt& APInt::operator+=(const APInt& RHS) {
241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher017fc252009-08-21 04:06:45 +0000242 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 VAL += RHS.VAL;
244 else {
245 add(pVal, pVal, RHS.pVal, getNumWords());
246 }
247 return clearUnusedBits();
248}
249
Eric Christopher017fc252009-08-21 04:06:45 +0000250/// Subtracts the integer array y from the integer array x
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000251/// @returns returns the borrow out.
252/// @brief Generalized subtraction of 64-bit integer arrays.
Eric Christopher017fc252009-08-21 04:06:45 +0000253static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000254 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000255 bool borrow = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000256 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000257 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
258 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
259 dest[i] = x_tmp - y[i];
260 }
261 return borrow;
262}
263
264/// Subtracts the RHS APInt from this APInt
265/// @returns this, after subtraction
Eric Christopher017fc252009-08-21 04:06:45 +0000266/// @brief Subtraction assignment operator.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267APInt& APInt::operator-=(const APInt& RHS) {
268 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher017fc252009-08-21 04:06:45 +0000269 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000270 VAL -= RHS.VAL;
271 else
272 sub(pVal, pVal, RHS.pVal, getNumWords());
273 return clearUnusedBits();
274}
275
Dan Gohmandf1a7ff2010-02-10 16:03:48 +0000276/// Multiplies an integer array, x, by a uint64_t integer and places the result
Eric Christopher017fc252009-08-21 04:06:45 +0000277/// into dest.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278/// @returns the carry out of the multiplication.
279/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattneree5417c2009-01-21 18:09:24 +0000280static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000281 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
282 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
283 uint64_t carry = 0;
284
285 // For each digit of x.
Chris Lattneree5417c2009-01-21 18:09:24 +0000286 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000287 // Split x into high and low words
288 uint64_t lx = x[i] & 0xffffffffULL;
289 uint64_t hx = x[i] >> 32;
290 // hasCarry - A flag to indicate if there is a carry to the next digit.
291 // hasCarry == 0, no carry
292 // hasCarry == 1, has carry
293 // hasCarry == 2, no carry and the calculation result == 0.
294 uint8_t hasCarry = 0;
295 dest[i] = carry + lx * ly;
296 // Determine if the add above introduces carry.
297 hasCarry = (dest[i] < carry) ? 1 : 0;
298 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
Eric Christopher017fc252009-08-21 04:06:45 +0000299 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000300 // (2^32 - 1) + 2^32 = 2^64.
301 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
302
303 carry += (lx * hy) & 0xffffffffULL;
304 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
Eric Christopher017fc252009-08-21 04:06:45 +0000305 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000306 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
307 }
308 return carry;
309}
310
Eric Christopher017fc252009-08-21 04:06:45 +0000311/// Multiplies integer array x by integer array y and stores the result into
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000312/// the integer array dest. Note that dest's size must be >= xlen + ylen.
313/// @brief Generalized multiplicate of integer arrays.
Chris Lattneree5417c2009-01-21 18:09:24 +0000314static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
315 unsigned ylen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000316 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattneree5417c2009-01-21 18:09:24 +0000317 for (unsigned i = 1; i < ylen; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000318 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
319 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +0000320 for (unsigned j = 0; j < xlen; ++j) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321 lx = x[j] & 0xffffffffULL;
322 hx = x[j] >> 32;
323 // hasCarry - A flag to indicate if has carry.
324 // hasCarry == 0, no carry
325 // hasCarry == 1, has carry
326 // hasCarry == 2, no carry and the calculation result == 0.
327 uint8_t hasCarry = 0;
328 uint64_t resul = carry + lx * ly;
329 hasCarry = (resul < carry) ? 1 : 0;
330 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
331 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
332
333 carry += (lx * hy) & 0xffffffffULL;
334 resul = (carry << 32) | (resul & 0xffffffffULL);
335 dest[i+j] += resul;
336 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
Eric Christopher017fc252009-08-21 04:06:45 +0000337 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338 ((lx * hy) >> 32) + hx * hy;
339 }
340 dest[i+xlen] = carry;
341 }
342}
343
344APInt& APInt::operator*=(const APInt& RHS) {
345 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
346 if (isSingleWord()) {
347 VAL *= RHS.VAL;
348 clearUnusedBits();
349 return *this;
350 }
351
352 // Get some bit facts about LHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000353 unsigned lhsBits = getActiveBits();
354 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Eric Christopher017fc252009-08-21 04:06:45 +0000355 if (!lhsWords)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000356 // 0 * X ===> 0
357 return *this;
358
359 // Get some bit facts about RHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000360 unsigned rhsBits = RHS.getActiveBits();
361 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362 if (!rhsWords) {
363 // X * 0 ===> 0
364 clear();
365 return *this;
366 }
367
368 // Allocate space for the result
Chris Lattneree5417c2009-01-21 18:09:24 +0000369 unsigned destWords = rhsWords + lhsWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000370 uint64_t *dest = getMemory(destWords);
371
372 // Perform the long multiply
373 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
374
375 // Copy result back into *this
376 clear();
Chris Lattneree5417c2009-01-21 18:09:24 +0000377 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000378 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
379
380 // delete dest array and return
381 delete[] dest;
382 return *this;
383}
384
385APInt& APInt::operator&=(const APInt& RHS) {
386 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
387 if (isSingleWord()) {
388 VAL &= RHS.VAL;
389 return *this;
390 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000391 unsigned numWords = getNumWords();
392 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393 pVal[i] &= RHS.pVal[i];
394 return *this;
395}
396
397APInt& APInt::operator|=(const APInt& RHS) {
398 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
399 if (isSingleWord()) {
400 VAL |= RHS.VAL;
401 return *this;
402 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000403 unsigned numWords = getNumWords();
404 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 pVal[i] |= RHS.pVal[i];
406 return *this;
407}
408
409APInt& APInt::operator^=(const APInt& RHS) {
410 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
411 if (isSingleWord()) {
412 VAL ^= RHS.VAL;
413 this->clearUnusedBits();
414 return *this;
Eric Christopher017fc252009-08-21 04:06:45 +0000415 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000416 unsigned numWords = getNumWords();
417 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 pVal[i] ^= RHS.pVal[i];
419 return clearUnusedBits();
420}
421
Chris Lattner84886852008-08-20 17:02:31 +0000422APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000423 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000424 uint64_t* val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000425 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 val[i] = pVal[i] & RHS.pVal[i];
427 return APInt(val, getBitWidth());
428}
429
Chris Lattner84886852008-08-20 17:02:31 +0000430APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000431 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000433 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434 val[i] = pVal[i] | RHS.pVal[i];
435 return APInt(val, getBitWidth());
436}
437
Chris Lattner84886852008-08-20 17:02:31 +0000438APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000439 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000441 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442 val[i] = pVal[i] ^ RHS.pVal[i];
443
444 // 0^0==1 so clear the high bits in case they got set.
445 return APInt(val, getBitWidth()).clearUnusedBits();
446}
447
448bool APInt::operator !() const {
449 if (isSingleWord())
450 return !VAL;
451
Chris Lattneree5417c2009-01-21 18:09:24 +0000452 for (unsigned i = 0; i < getNumWords(); ++i)
Eric Christopher017fc252009-08-21 04:06:45 +0000453 if (pVal[i])
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000454 return false;
455 return true;
456}
457
458APInt APInt::operator*(const APInt& RHS) const {
459 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
460 if (isSingleWord())
461 return APInt(BitWidth, VAL * RHS.VAL);
462 APInt Result(*this);
463 Result *= RHS;
464 return Result.clearUnusedBits();
465}
466
467APInt APInt::operator+(const APInt& RHS) const {
468 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
469 if (isSingleWord())
470 return APInt(BitWidth, VAL + RHS.VAL);
471 APInt Result(BitWidth, 0);
472 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
473 return Result.clearUnusedBits();
474}
475
476APInt APInt::operator-(const APInt& RHS) const {
477 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
478 if (isSingleWord())
479 return APInt(BitWidth, VAL - RHS.VAL);
480 APInt Result(BitWidth, 0);
481 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
482 return Result.clearUnusedBits();
483}
484
Chris Lattneree5417c2009-01-21 18:09:24 +0000485bool APInt::operator[](unsigned bitPosition) const {
Eric Christopher017fc252009-08-21 04:06:45 +0000486 return (maskBit(bitPosition) &
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000487 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
488}
489
Chris Lattner84886852008-08-20 17:02:31 +0000490bool APInt::EqualSlowCase(const APInt& RHS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000491 // Get some facts about the number of bits used in the two operands.
Chris Lattneree5417c2009-01-21 18:09:24 +0000492 unsigned n1 = getActiveBits();
493 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000494
495 // If the number of bits isn't the same, they aren't equal
Eric Christopher017fc252009-08-21 04:06:45 +0000496 if (n1 != n2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000497 return false;
498
499 // If the number of bits fits in a word, we only need to compare the low word.
500 if (n1 <= APINT_BITS_PER_WORD)
501 return pVal[0] == RHS.pVal[0];
502
503 // Otherwise, compare everything
504 for (int i = whichWord(n1 - 1); i >= 0; --i)
Eric Christopher017fc252009-08-21 04:06:45 +0000505 if (pVal[i] != RHS.pVal[i])
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000506 return false;
507 return true;
508}
509
Chris Lattner84886852008-08-20 17:02:31 +0000510bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000511 unsigned n = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000512 if (n <= APINT_BITS_PER_WORD)
513 return pVal[0] == Val;
514 else
515 return false;
516}
517
518bool APInt::ult(const APInt& RHS) const {
519 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
520 if (isSingleWord())
521 return VAL < RHS.VAL;
522
523 // Get active bit length of both operands
Chris Lattneree5417c2009-01-21 18:09:24 +0000524 unsigned n1 = getActiveBits();
525 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000526
527 // If magnitude of LHS is less than RHS, return true.
528 if (n1 < n2)
529 return true;
530
531 // If magnitude of RHS is greather than LHS, return false.
532 if (n2 < n1)
533 return false;
534
535 // If they bot fit in a word, just compare the low order word
536 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
537 return pVal[0] < RHS.pVal[0];
538
539 // Otherwise, compare all words
Chris Lattneree5417c2009-01-21 18:09:24 +0000540 unsigned topWord = whichWord(std::max(n1,n2)-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000541 for (int i = topWord; i >= 0; --i) {
Eric Christopher017fc252009-08-21 04:06:45 +0000542 if (pVal[i] > RHS.pVal[i])
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543 return false;
Eric Christopher017fc252009-08-21 04:06:45 +0000544 if (pVal[i] < RHS.pVal[i])
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000545 return true;
546 }
547 return false;
548}
549
550bool APInt::slt(const APInt& RHS) const {
551 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
552 if (isSingleWord()) {
553 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
554 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
555 return lhsSext < rhsSext;
556 }
557
558 APInt lhs(*this);
559 APInt rhs(RHS);
560 bool lhsNeg = isNegative();
561 bool rhsNeg = rhs.isNegative();
562 if (lhsNeg) {
563 // Sign bit is set so perform two's complement to make it positive
564 lhs.flip();
565 lhs++;
566 }
567 if (rhsNeg) {
568 // Sign bit is set so perform two's complement to make it positive
569 rhs.flip();
570 rhs++;
571 }
572
573 // Now we have unsigned values to compare so do the comparison if necessary
574 // based on the negativeness of the values.
575 if (lhsNeg)
576 if (rhsNeg)
577 return lhs.ugt(rhs);
578 else
579 return true;
580 else if (rhsNeg)
581 return false;
Eric Christopher017fc252009-08-21 04:06:45 +0000582 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000583 return lhs.ult(rhs);
584}
585
Chris Lattneree5417c2009-01-21 18:09:24 +0000586APInt& APInt::set(unsigned bitPosition) {
Eric Christopher017fc252009-08-21 04:06:45 +0000587 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000588 VAL |= maskBit(bitPosition);
Eric Christopher017fc252009-08-21 04:06:45 +0000589 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000590 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
591 return *this;
592}
593
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000594/// Set the given bit to 0 whose position is given as "bitPosition".
595/// @brief Set a given bit to 0.
Chris Lattneree5417c2009-01-21 18:09:24 +0000596APInt& APInt::clear(unsigned bitPosition) {
Eric Christopher017fc252009-08-21 04:06:45 +0000597 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000598 VAL &= ~maskBit(bitPosition);
Eric Christopher017fc252009-08-21 04:06:45 +0000599 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000600 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
601 return *this;
602}
603
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000604/// @brief Toggle every bit to its opposite value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000605
Eric Christopher017fc252009-08-21 04:06:45 +0000606/// Toggle a given bit to its opposite value whose position is given
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000607/// as "bitPosition".
608/// @brief Toggles a given bit to its opposite value.
Chris Lattneree5417c2009-01-21 18:09:24 +0000609APInt& APInt::flip(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000610 assert(bitPosition < BitWidth && "Out of the bit-width range!");
611 if ((*this)[bitPosition]) clear(bitPosition);
612 else set(bitPosition);
613 return *this;
614}
615
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000616unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) {
617 assert(!str.empty() && "Invalid string length");
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000618 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
619 "Radix should be 2, 8, 10, or 16!");
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000620
621 size_t slen = str.size();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000622
Eric Christopher9a7fc4f2009-08-21 04:10:31 +0000623 // Each computation below needs to know if it's negative.
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000624 StringRef::iterator p = str.begin();
Eric Christopher9a7fc4f2009-08-21 04:10:31 +0000625 unsigned isNegative = *p == '-';
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000626 if (*p == '-' || *p == '+') {
627 p++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000628 slen--;
Eric Christopher9a7fc4f2009-08-21 04:10:31 +0000629 assert(slen && "String is only a sign, needs a value.");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000630 }
Eric Christopher9a7fc4f2009-08-21 04:10:31 +0000631
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000632 // For radixes of power-of-two values, the bits required is accurately and
633 // easily computed
634 if (radix == 2)
635 return slen + isNegative;
636 if (radix == 8)
637 return slen * 3 + isNegative;
638 if (radix == 16)
639 return slen * 4 + isNegative;
640
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000641 // This is grossly inefficient but accurate. We could probably do something
642 // with a computation of roughly slen*64/20 and then adjust by the value of
643 // the first few digits. But, I'm not sure how accurate that could be.
644
645 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaar15a448f2009-08-21 03:15:28 +0000646 // be too large. This avoids the assertion in the constructor. This
647 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
648 // bits in that case.
649 unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000650
651 // Convert to the actual binary value.
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000652 APInt tmp(sufficient, StringRef(p, slen), radix);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000653
Erick Tryzelaar15a448f2009-08-21 03:15:28 +0000654 // Compute how many bits are required. If the log is infinite, assume we need
655 // just bit.
656 unsigned log = tmp.logBase2();
657 if (log == (unsigned)-1) {
658 return isNegative + 1;
659 } else {
660 return isNegative + log + 1;
661 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000662}
663
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000664// From http://www.burtleburtle.net, byBob Jenkins.
665// When targeting x86, both GCC and LLVM seem to recognize this as a
666// rotate instruction.
667#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000668
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000669// From http://www.burtleburtle.net, by Bob Jenkins.
670#define mix(a,b,c) \
671 { \
672 a -= c; a ^= rot(c, 4); c += b; \
673 b -= a; b ^= rot(a, 6); a += c; \
674 c -= b; c ^= rot(b, 8); b += a; \
675 a -= c; a ^= rot(c,16); c += b; \
676 b -= a; b ^= rot(a,19); a += c; \
677 c -= b; c ^= rot(b, 4); b += a; \
678 }
679
680// From http://www.burtleburtle.net, by Bob Jenkins.
681#define final(a,b,c) \
682 { \
683 c ^= b; c -= rot(b,14); \
684 a ^= c; a -= rot(c,11); \
685 b ^= a; b -= rot(a,25); \
686 c ^= b; c -= rot(b,16); \
687 a ^= c; a -= rot(c,4); \
688 b ^= a; b -= rot(a,14); \
689 c ^= b; c -= rot(b,24); \
690 }
691
692// hashword() was adapted from http://www.burtleburtle.net, by Bob
693// Jenkins. k is a pointer to an array of uint32_t values; length is
694// the length of the key, in 32-bit chunks. This version only handles
695// keys that are a multiple of 32 bits in size.
696static inline uint32_t hashword(const uint64_t *k64, size_t length)
697{
698 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
699 uint32_t a,b,c;
700
701 /* Set up the internal state */
702 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
703
704 /*------------------------------------------------- handle most of the key */
Dan Gohman6c316922010-03-24 19:38:02 +0000705 while (length > 3) {
706 a += k[0];
707 b += k[1];
708 c += k[2];
709 mix(a,b,c);
710 length -= 3;
711 k += 3;
712 }
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000713
714 /*------------------------------------------- handle the last 3 uint32_t's */
Mike Stump7134bb52009-05-13 23:23:20 +0000715 switch (length) { /* all the case statements fall through */
716 case 3 : c+=k[2];
717 case 2 : b+=k[1];
718 case 1 : a+=k[0];
719 final(a,b,c);
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000720 case 0: /* case 0: nothing left to add */
721 break;
722 }
723 /*------------------------------------------------------ report the result */
724 return c;
725}
726
727// hashword8() was adapted from http://www.burtleburtle.net, by Bob
728// Jenkins. This computes a 32-bit hash from one 64-bit word. When
729// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
730// function into about 35 instructions when inlined.
731static inline uint32_t hashword8(const uint64_t k64)
732{
733 uint32_t a,b,c;
734 a = b = c = 0xdeadbeef + 4;
735 b += k64 >> 32;
736 a += k64 & 0xffffffff;
737 final(a,b,c);
738 return c;
739}
740#undef final
741#undef mix
742#undef rot
743
744uint64_t APInt::getHashValue() const {
745 uint64_t hash;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746 if (isSingleWord())
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000747 hash = hashword8(VAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000748 else
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000749 hash = hashword(pVal, getNumWords()*2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000750 return hash;
751}
752
753/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000754APInt APInt::getHiBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000755 return APIntOps::lshr(*this, BitWidth - numBits);
756}
757
758/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000759APInt APInt::getLoBits(unsigned numBits) const {
Eric Christopher017fc252009-08-21 04:06:45 +0000760 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000761 BitWidth - numBits);
762}
763
764bool APInt::isPowerOf2() const {
765 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
766}
767
Chris Lattneree5417c2009-01-21 18:09:24 +0000768unsigned APInt::countLeadingZerosSlowCase() const {
John McCall68bf2242010-02-03 03:42:44 +0000769 // Treat the most significand word differently because it might have
770 // meaningless bits set beyond the precision.
771 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
772 integerPart MSWMask;
773 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
774 else {
775 MSWMask = ~integerPart(0);
776 BitsInMSW = APINT_BITS_PER_WORD;
777 }
778
779 unsigned i = getNumWords();
780 integerPart MSW = pVal[i-1] & MSWMask;
781 if (MSW)
782 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
783
784 unsigned Count = BitsInMSW;
785 for (--i; i > 0u; --i) {
Chris Lattner84886852008-08-20 17:02:31 +0000786 if (pVal[i-1] == 0)
787 Count += APINT_BITS_PER_WORD;
788 else {
789 Count += CountLeadingZeros_64(pVal[i-1]);
790 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000791 }
792 }
John McCall68bf2242010-02-03 03:42:44 +0000793 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000794}
795
Chris Lattneree5417c2009-01-21 18:09:24 +0000796static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
797 unsigned Count = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000798 if (skip)
799 V <<= skip;
800 while (V && (V & (1ULL << 63))) {
801 Count++;
802 V <<= 1;
803 }
804 return Count;
805}
806
Chris Lattneree5417c2009-01-21 18:09:24 +0000807unsigned APInt::countLeadingOnes() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000808 if (isSingleWord())
809 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
810
Chris Lattneree5417c2009-01-21 18:09:24 +0000811 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
edwinb95462a2009-01-27 18:06:03 +0000812 unsigned shift;
813 if (!highWordBits) {
814 highWordBits = APINT_BITS_PER_WORD;
815 shift = 0;
816 } else {
817 shift = APINT_BITS_PER_WORD - highWordBits;
818 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000819 int i = getNumWords() - 1;
Chris Lattneree5417c2009-01-21 18:09:24 +0000820 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000821 if (Count == highWordBits) {
822 for (i--; i >= 0; --i) {
823 if (pVal[i] == -1ULL)
824 Count += APINT_BITS_PER_WORD;
825 else {
826 Count += countLeadingOnes_64(pVal[i], 0);
827 break;
828 }
829 }
830 }
831 return Count;
832}
833
Chris Lattneree5417c2009-01-21 18:09:24 +0000834unsigned APInt::countTrailingZeros() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000835 if (isSingleWord())
Chris Lattneree5417c2009-01-21 18:09:24 +0000836 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
837 unsigned Count = 0;
838 unsigned i = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000839 for (; i < getNumWords() && pVal[i] == 0; ++i)
840 Count += APINT_BITS_PER_WORD;
841 if (i < getNumWords())
842 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000843 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000844}
845
Chris Lattneree5417c2009-01-21 18:09:24 +0000846unsigned APInt::countTrailingOnesSlowCase() const {
847 unsigned Count = 0;
848 unsigned i = 0;
Dan Gohmane4428412008-02-14 22:38:45 +0000849 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohmanf550d412008-02-13 21:11:05 +0000850 Count += APINT_BITS_PER_WORD;
851 if (i < getNumWords())
852 Count += CountTrailingOnes_64(pVal[i]);
853 return std::min(Count, BitWidth);
854}
855
Chris Lattneree5417c2009-01-21 18:09:24 +0000856unsigned APInt::countPopulationSlowCase() const {
857 unsigned Count = 0;
858 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000859 Count += CountPopulation_64(pVal[i]);
860 return Count;
861}
862
863APInt APInt::byteSwap() const {
864 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
865 if (BitWidth == 16)
866 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
867 else if (BitWidth == 32)
Chris Lattneree5417c2009-01-21 18:09:24 +0000868 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000869 else if (BitWidth == 48) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000870 unsigned Tmp1 = unsigned(VAL >> 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000871 Tmp1 = ByteSwap_32(Tmp1);
872 uint16_t Tmp2 = uint16_t(VAL);
873 Tmp2 = ByteSwap_16(Tmp2);
874 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
875 } else if (BitWidth == 64)
876 return APInt(BitWidth, ByteSwap_64(VAL));
877 else {
878 APInt Result(BitWidth, 0);
879 char *pByte = (char*)Result.pVal;
Chris Lattneree5417c2009-01-21 18:09:24 +0000880 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000881 char Tmp = pByte[i];
882 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
883 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
884 }
885 return Result;
886 }
887}
888
Eric Christopher017fc252009-08-21 04:06:45 +0000889APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000890 const APInt& API2) {
891 APInt A = API1, B = API2;
892 while (!!B) {
893 APInt T = B;
894 B = APIntOps::urem(A, B);
895 A = T;
896 }
897 return A;
898}
899
Chris Lattneree5417c2009-01-21 18:09:24 +0000900APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000901 union {
902 double D;
903 uint64_t I;
904 } T;
905 T.D = Double;
906
907 // Get the sign bit from the highest order bit
908 bool isNeg = T.I >> 63;
909
910 // Get the 11-bit exponent and adjust for the 1023 bit bias
911 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
912
913 // If the exponent is negative, the value is < 0 so just return 0.
914 if (exp < 0)
915 return APInt(width, 0u);
916
917 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
918 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
919
920 // If the exponent doesn't shift all bits out of the mantissa
921 if (exp < 52)
Eric Christopher017fc252009-08-21 04:06:45 +0000922 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000923 APInt(width, mantissa >> (52 - exp));
924
925 // If the client didn't provide enough bits for us to shift the mantissa into
926 // then the result is undefined, just return 0
927 if (width <= exp - 52)
928 return APInt(width, 0);
929
930 // Otherwise, we have to shift the mantissa bits up to the right location
931 APInt Tmp(width, mantissa);
Chris Lattneree5417c2009-01-21 18:09:24 +0000932 Tmp = Tmp.shl((unsigned)exp - 52);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000933 return isNeg ? -Tmp : Tmp;
934}
935
Dale Johannesene326f252009-08-12 18:04:11 +0000936/// RoundToDouble - This function converts this APInt to a double.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000937/// The layout for double is as following (IEEE Standard 754):
938/// --------------------------------------
939/// | Sign Exponent Fraction Bias |
940/// |-------------------------------------- |
941/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopher017fc252009-08-21 04:06:45 +0000942/// --------------------------------------
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943double APInt::roundToDouble(bool isSigned) const {
944
945 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesene326f252009-08-12 18:04:11 +0000946 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000947 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
948 if (isSigned) {
Dale Johannesen25210cd2009-08-12 17:42:34 +0000949 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000950 return double(sext);
951 } else
Dale Johannesen25210cd2009-08-12 17:42:34 +0000952 return double(getWord(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953 }
954
955 // Determine if the value is negative.
956 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
957
958 // Construct the absolute value if we're negative.
959 APInt Tmp(isNeg ? -(*this) : (*this));
960
961 // Figure out how many bits we're using.
Chris Lattneree5417c2009-01-21 18:09:24 +0000962 unsigned n = Tmp.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000963
964 // The exponent (without bias normalization) is just the number of bits
965 // we are using. Note that the sign bit is gone since we constructed the
966 // absolute value.
967 uint64_t exp = n;
968
969 // Return infinity for exponent overflow
970 if (exp > 1023) {
971 if (!isSigned || !isNeg)
972 return std::numeric_limits<double>::infinity();
Eric Christopher017fc252009-08-21 04:06:45 +0000973 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000974 return -std::numeric_limits<double>::infinity();
975 }
976 exp += 1023; // Increment for 1023 bias
977
978 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
979 // extract the high 52 bits from the correct words in pVal.
980 uint64_t mantissa;
981 unsigned hiWord = whichWord(n-1);
982 if (hiWord == 0) {
983 mantissa = Tmp.pVal[0];
984 if (n > 52)
985 mantissa >>= n - 52; // shift down, we want the top 52 bits.
986 } else {
987 assert(hiWord > 0 && "huh?");
988 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
989 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
990 mantissa = hibits | lobits;
991 }
992
993 // The leading bit of mantissa is implicit, so get rid of it.
994 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
995 union {
996 double D;
997 uint64_t I;
998 } T;
999 T.I = sign | (exp << 52) | mantissa;
1000 return T.D;
1001}
1002
1003// Truncate to new width.
Chris Lattneree5417c2009-01-21 18:09:24 +00001004APInt &APInt::trunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner84886852008-08-20 17:02:31 +00001006 assert(width && "Can't truncate to 0 bits");
Chris Lattneree5417c2009-01-21 18:09:24 +00001007 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +00001009 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001010 if (wordsBefore != wordsAfter) {
1011 if (wordsAfter == 1) {
1012 uint64_t *tmp = pVal;
1013 VAL = pVal[0];
1014 delete [] tmp;
1015 } else {
1016 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattneree5417c2009-01-21 18:09:24 +00001017 for (unsigned i = 0; i < wordsAfter; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 newVal[i] = pVal[i];
1019 delete [] pVal;
1020 pVal = newVal;
1021 }
1022 }
1023 return clearUnusedBits();
1024}
1025
1026// Sign extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +00001027APInt &APInt::sext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028 assert(width > BitWidth && "Invalid APInt SignExtend request");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 // If the sign bit isn't set, this is the same as zext.
1030 if (!isNegative()) {
1031 zext(width);
1032 return *this;
1033 }
1034
1035 // The sign bit is set. First, get some facts
Chris Lattneree5417c2009-01-21 18:09:24 +00001036 unsigned wordsBefore = getNumWords();
1037 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001038 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +00001039 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001040
1041 // Mask the high order word appropriately
1042 if (wordsBefore == wordsAfter) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001043 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001044 // The extension is contained to the wordsBefore-1th word.
1045 uint64_t mask = ~0ULL;
1046 if (newWordBits)
1047 mask >>= APINT_BITS_PER_WORD - newWordBits;
1048 mask <<= wordBits;
1049 if (wordsBefore == 1)
1050 VAL |= mask;
1051 else
1052 pVal[wordsBefore-1] |= mask;
1053 return clearUnusedBits();
1054 }
1055
1056 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1057 uint64_t *newVal = getMemory(wordsAfter);
1058 if (wordsBefore == 1)
1059 newVal[0] = VAL | mask;
1060 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001061 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001062 newVal[i] = pVal[i];
1063 newVal[wordsBefore-1] |= mask;
1064 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001065 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001066 newVal[i] = -1ULL;
1067 if (wordsBefore != 1)
1068 delete [] pVal;
1069 pVal = newVal;
1070 return clearUnusedBits();
1071}
1072
1073// Zero extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +00001074APInt &APInt::zext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001075 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattneree5417c2009-01-21 18:09:24 +00001076 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001077 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +00001078 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001079 if (wordsBefore != wordsAfter) {
1080 uint64_t *newVal = getClearedMemory(wordsAfter);
1081 if (wordsBefore == 1)
1082 newVal[0] = VAL;
Eric Christopher017fc252009-08-21 04:06:45 +00001083 else
Chris Lattneree5417c2009-01-21 18:09:24 +00001084 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001085 newVal[i] = pVal[i];
1086 if (wordsBefore != 1)
1087 delete [] pVal;
1088 pVal = newVal;
1089 }
1090 return *this;
1091}
1092
Chris Lattneree5417c2009-01-21 18:09:24 +00001093APInt &APInt::zextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001094 if (BitWidth < width)
1095 return zext(width);
1096 if (BitWidth > width)
1097 return trunc(width);
1098 return *this;
1099}
1100
Chris Lattneree5417c2009-01-21 18:09:24 +00001101APInt &APInt::sextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001102 if (BitWidth < width)
1103 return sext(width);
1104 if (BitWidth > width)
1105 return trunc(width);
1106 return *this;
1107}
1108
1109/// Arithmetic right-shift this APInt by shiftAmt.
1110/// @brief Arithmetic right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001111APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001112 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001113}
1114
1115/// Arithmetic right-shift this APInt by shiftAmt.
1116/// @brief Arithmetic right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001117APInt APInt::ashr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001118 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1119 // Handle a degenerate case
1120 if (shiftAmt == 0)
1121 return *this;
1122
1123 // Handle single word shifts with built-in ashr
1124 if (isSingleWord()) {
1125 if (shiftAmt == BitWidth)
1126 return APInt(BitWidth, 0); // undefined
1127 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001128 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Eric Christopher017fc252009-08-21 04:06:45 +00001129 return APInt(BitWidth,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001130 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1131 }
1132 }
1133
1134 // If all the bits were shifted out, the result is, technically, undefined.
1135 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1136 // issues in the algorithm below.
1137 if (shiftAmt == BitWidth) {
1138 if (isNegative())
Zhou Sheng3f7ab5c2008-06-05 13:27:38 +00001139 return APInt(BitWidth, -1ULL, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001140 else
1141 return APInt(BitWidth, 0);
1142 }
1143
1144 // Create some space for the result.
1145 uint64_t * val = new uint64_t[getNumWords()];
1146
1147 // Compute some values needed by the following shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001148 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1149 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1150 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1151 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001152 if (bitsInWord == 0)
1153 bitsInWord = APINT_BITS_PER_WORD;
1154
1155 // If we are shifting whole words, just move whole words
1156 if (wordShift == 0) {
1157 // Move the words containing significant bits
Chris Lattneree5417c2009-01-21 18:09:24 +00001158 for (unsigned i = 0; i <= breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001159 val[i] = pVal[i+offset]; // move whole word
1160
1161 // Adjust the top significant word for sign bit fill, if negative
1162 if (isNegative())
1163 if (bitsInWord < APINT_BITS_PER_WORD)
1164 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1165 } else {
Eric Christopher017fc252009-08-21 04:06:45 +00001166 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001167 for (unsigned i = 0; i < breakWord; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001168 // This combines the shifted corresponding word with the low bits from
1169 // the next word (shifted into this word's high bits).
Eric Christopher017fc252009-08-21 04:06:45 +00001170 val[i] = (pVal[i+offset] >> wordShift) |
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001171 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1172 }
1173
1174 // Shift the break word. In this case there are no bits from the next word
1175 // to include in this word.
1176 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1177
1178 // Deal with sign extenstion in the break word, and possibly the word before
1179 // it.
1180 if (isNegative()) {
1181 if (wordShift > bitsInWord) {
1182 if (breakWord > 0)
Eric Christopher017fc252009-08-21 04:06:45 +00001183 val[breakWord-1] |=
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001184 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1185 val[breakWord] |= ~0ULL;
Eric Christopher017fc252009-08-21 04:06:45 +00001186 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001187 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1188 }
1189 }
1190
1191 // Remaining words are 0 or -1, just assign them.
1192 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattneree5417c2009-01-21 18:09:24 +00001193 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001194 val[i] = fillValue;
1195 return APInt(val, BitWidth).clearUnusedBits();
1196}
1197
1198/// Logical right-shift this APInt by shiftAmt.
1199/// @brief Logical right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001200APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001201 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001202}
1203
1204/// Logical right-shift this APInt by shiftAmt.
1205/// @brief Logical right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001206APInt APInt::lshr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001207 if (isSingleWord()) {
1208 if (shiftAmt == BitWidth)
1209 return APInt(BitWidth, 0);
Eric Christopher017fc252009-08-21 04:06:45 +00001210 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001211 return APInt(BitWidth, this->VAL >> shiftAmt);
1212 }
1213
1214 // If all the bits were shifted out, the result is 0. This avoids issues
1215 // with shifting by the size of the integer type, which produces undefined
1216 // results. We define these "undefined results" to always be 0.
1217 if (shiftAmt == BitWidth)
1218 return APInt(BitWidth, 0);
1219
1220 // If none of the bits are shifted out, the result is *this. This avoids
Eric Christopher017fc252009-08-21 04:06:45 +00001221 // issues with shifting by the size of the integer type, which produces
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001222 // undefined results in the code below. This is also an optimization.
1223 if (shiftAmt == 0)
1224 return *this;
1225
1226 // Create some space for the result.
1227 uint64_t * val = new uint64_t[getNumWords()];
1228
1229 // If we are shifting less than a word, compute the shift with a simple carry
1230 if (shiftAmt < APINT_BITS_PER_WORD) {
1231 uint64_t carry = 0;
1232 for (int i = getNumWords()-1; i >= 0; --i) {
1233 val[i] = (pVal[i] >> shiftAmt) | carry;
1234 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1235 }
1236 return APInt(val, BitWidth).clearUnusedBits();
1237 }
1238
1239 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001240 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1241 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242
1243 // If we are shifting whole words, just move whole words
1244 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001245 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001246 val[i] = pVal[i+offset];
Chris Lattneree5417c2009-01-21 18:09:24 +00001247 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 val[i] = 0;
1249 return APInt(val,BitWidth).clearUnusedBits();
1250 }
1251
Eric Christopher017fc252009-08-21 04:06:45 +00001252 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001253 unsigned breakWord = getNumWords() - offset -1;
1254 for (unsigned i = 0; i < breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001255 val[i] = (pVal[i+offset] >> wordShift) |
1256 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1257 // Shift the break word.
1258 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1259
1260 // Remaining words are 0
Chris Lattneree5417c2009-01-21 18:09:24 +00001261 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001262 val[i] = 0;
1263 return APInt(val, BitWidth).clearUnusedBits();
1264}
1265
1266/// Left-shift this APInt by shiftAmt.
1267/// @brief Left-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001268APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001269 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattneree5417c2009-01-21 18:09:24 +00001270 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001271}
1272
Chris Lattneree5417c2009-01-21 18:09:24 +00001273APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001274 // If all the bits were shifted out, the result is 0. This avoids issues
1275 // with shifting by the size of the integer type, which produces undefined
1276 // results. We define these "undefined results" to always be 0.
1277 if (shiftAmt == BitWidth)
1278 return APInt(BitWidth, 0);
1279
1280 // If none of the bits are shifted out, the result is *this. This avoids a
1281 // lshr by the words size in the loop below which can produce incorrect
1282 // results. It also avoids the expensive computation below for a common case.
1283 if (shiftAmt == 0)
1284 return *this;
1285
1286 // Create some space for the result.
1287 uint64_t * val = new uint64_t[getNumWords()];
1288
1289 // If we are shifting less than a word, do it the easy way
1290 if (shiftAmt < APINT_BITS_PER_WORD) {
1291 uint64_t carry = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001292 for (unsigned i = 0; i < getNumWords(); i++) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001293 val[i] = pVal[i] << shiftAmt | carry;
1294 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1295 }
1296 return APInt(val, BitWidth).clearUnusedBits();
1297 }
1298
1299 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001300 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1301 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001302
1303 // If we are shifting whole words, just move whole words
1304 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001305 for (unsigned i = 0; i < offset; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001306 val[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001307 for (unsigned i = offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001308 val[i] = pVal[i-offset];
1309 return APInt(val,BitWidth).clearUnusedBits();
1310 }
1311
1312 // Copy whole words from this to Result.
Chris Lattneree5417c2009-01-21 18:09:24 +00001313 unsigned i = getNumWords() - 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001314 for (; i > offset; --i)
1315 val[i] = pVal[i-offset] << wordShift |
1316 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1317 val[offset] = pVal[0] << wordShift;
1318 for (i = 0; i < offset; ++i)
1319 val[i] = 0;
1320 return APInt(val, BitWidth).clearUnusedBits();
1321}
1322
Dan Gohman625ff8d2008-02-29 01:40:47 +00001323APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001324 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001325}
1326
Chris Lattneree5417c2009-01-21 18:09:24 +00001327APInt APInt::rotl(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001328 if (rotateAmt == 0)
1329 return *this;
1330 // Don't get too fancy, just use existing shift/or facilities
1331 APInt hi(*this);
1332 APInt lo(*this);
1333 hi.shl(rotateAmt);
1334 lo.lshr(BitWidth - rotateAmt);
1335 return hi | lo;
1336}
1337
Dan Gohman625ff8d2008-02-29 01:40:47 +00001338APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001339 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001340}
1341
Chris Lattneree5417c2009-01-21 18:09:24 +00001342APInt APInt::rotr(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001343 if (rotateAmt == 0)
1344 return *this;
1345 // Don't get too fancy, just use existing shift/or facilities
1346 APInt hi(*this);
1347 APInt lo(*this);
1348 lo.lshr(rotateAmt);
1349 hi.shl(BitWidth - rotateAmt);
1350 return hi | lo;
1351}
1352
1353// Square Root - this method computes and returns the square root of "this".
1354// Three mechanisms are used for computation. For small values (<= 5 bits),
1355// a table lookup is done. This gets some performance for common cases. For
1356// values using less than 52 bits, the value is converted to double and then
1357// the libc sqrt function is called. The result is rounded and then converted
1358// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopher017fc252009-08-21 04:06:45 +00001359// the Babylonian method for computing square roots is used.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001360APInt APInt::sqrt() const {
1361
1362 // Determine the magnitude of the value.
Chris Lattneree5417c2009-01-21 18:09:24 +00001363 unsigned magnitude = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001364
1365 // Use a fast table for some small values. This also gets rid of some
1366 // rounding errors in libc sqrt for small values.
1367 if (magnitude <= 5) {
1368 static const uint8_t results[32] = {
1369 /* 0 */ 0,
1370 /* 1- 2 */ 1, 1,
Eric Christopher017fc252009-08-21 04:06:45 +00001371 /* 3- 6 */ 2, 2, 2, 2,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001372 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1373 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1374 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1375 /* 31 */ 6
1376 };
1377 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1378 }
1379
1380 // If the magnitude of the value fits in less than 52 bits (the precision of
1381 // an IEEE double precision floating point value), then we can use the
1382 // libc sqrt function which will probably use a hardware sqrt computation.
1383 // This should be faster than the algorithm below.
1384 if (magnitude < 52) {
Chris Lattnere7403c42010-03-26 23:54:15 +00001385#if defined( _MSC_VER ) || defined(_MINIX)
1386 // Amazingly, VC++ and Minix don't have round().
Eric Christopher017fc252009-08-21 04:06:45 +00001387 return APInt(BitWidth,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001388 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1389#else
Eric Christopher017fc252009-08-21 04:06:45 +00001390 return APInt(BitWidth,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001391 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1392#endif
1393 }
1394
1395 // Okay, all the short cuts are exhausted. We must compute it. The following
1396 // is a classical Babylonian method for computing the square root. This code
1397 // was adapted to APINt from a wikipedia article on such computations.
1398 // See http://www.wikipedia.org/ and go to the page named
Eric Christopher017fc252009-08-21 04:06:45 +00001399 // Calculate_an_integer_square_root.
Chris Lattneree5417c2009-01-21 18:09:24 +00001400 unsigned nbits = BitWidth, i = 4;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001401 APInt testy(BitWidth, 16);
1402 APInt x_old(BitWidth, 1);
1403 APInt x_new(BitWidth, 0);
1404 APInt two(BitWidth, 2);
1405
1406 // Select a good starting value using binary logarithms.
Eric Christopher017fc252009-08-21 04:06:45 +00001407 for (;; i += 2, testy = testy.shl(2))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001408 if (i >= nbits || this->ule(testy)) {
1409 x_old = x_old.shl(i / 2);
1410 break;
1411 }
1412
Eric Christopher017fc252009-08-21 04:06:45 +00001413 // Use the Babylonian method to arrive at the integer square root:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001414 for (;;) {
1415 x_new = (this->udiv(x_old) + x_old).udiv(two);
1416 if (x_old.ule(x_new))
1417 break;
1418 x_old = x_new;
1419 }
1420
1421 // Make sure we return the closest approximation
Eric Christopher017fc252009-08-21 04:06:45 +00001422 // NOTE: The rounding calculation below is correct. It will produce an
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001423 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopher017fc252009-08-21 04:06:45 +00001424 // determined to be a rounding issue with pari/gp as it begins to use a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001425 // floating point representation after 192 bits. There are no discrepancies
1426 // between this algorithm and pari/gp for bit widths < 192 bits.
1427 APInt square(x_old * x_old);
1428 APInt nextSquare((x_old + 1) * (x_old +1));
1429 if (this->ult(square))
1430 return x_old;
1431 else if (this->ule(nextSquare)) {
1432 APInt midpoint((nextSquare - square).udiv(two));
1433 APInt offset(*this - square);
1434 if (offset.ult(midpoint))
1435 return x_old;
1436 else
1437 return x_old + 1;
1438 } else
Edwin Törökbd448e32009-07-14 16:55:14 +00001439 llvm_unreachable("Error in APInt::sqrt computation");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001440 return x_old + 1;
1441}
1442
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001443/// Computes the multiplicative inverse of this APInt for a given modulo. The
1444/// iterative extended Euclidean algorithm is used to solve for this value,
1445/// however we simplify it to speed up calculating only the inverse, and take
1446/// advantage of div+rem calculations. We also use some tricks to avoid copying
1447/// (potentially large) APInts around.
1448APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1449 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1450
1451 // Using the properties listed at the following web page (accessed 06/21/08):
1452 // http://www.numbertheory.org/php/euclid.html
1453 // (especially the properties numbered 3, 4 and 9) it can be proved that
1454 // BitWidth bits suffice for all the computations in the algorithm implemented
1455 // below. More precisely, this number of bits suffice if the multiplicative
1456 // inverse exists, but may not suffice for the general extended Euclidean
1457 // algorithm.
1458
1459 APInt r[2] = { modulo, *this };
1460 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1461 APInt q(BitWidth, 0);
Eric Christopher017fc252009-08-21 04:06:45 +00001462
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001463 unsigned i;
1464 for (i = 0; r[i^1] != 0; i ^= 1) {
1465 // An overview of the math without the confusing bit-flipping:
1466 // q = r[i-2] / r[i-1]
1467 // r[i] = r[i-2] % r[i-1]
1468 // t[i] = t[i-2] - t[i-1] * q
1469 udivrem(r[i], r[i^1], q, r[i]);
1470 t[i] -= t[i^1] * q;
1471 }
1472
1473 // If this APInt and the modulo are not coprime, there is no multiplicative
1474 // inverse, so return 0. We check this by looking at the next-to-last
1475 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1476 // algorithm.
1477 if (r[i] != 1)
1478 return APInt(BitWidth, 0);
1479
1480 // The next-to-last t is the multiplicative inverse. However, we are
1481 // interested in a positive inverse. Calcuate a positive one from a negative
1482 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00001483 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001484 return t[i].isNegative() ? t[i] + modulo : t[i];
1485}
1486
Jay Foad56b11f92009-04-30 10:15:35 +00001487/// Calculate the magic numbers required to implement a signed integer division
1488/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1489/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1490/// Warren, Jr., chapter 10.
1491APInt::ms APInt::magic() const {
1492 const APInt& d = *this;
1493 unsigned p;
1494 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foad56b11f92009-04-30 10:15:35 +00001495 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foad56b11f92009-04-30 10:15:35 +00001496 struct ms mag;
Eric Christopher017fc252009-08-21 04:06:45 +00001497
Jay Foad56b11f92009-04-30 10:15:35 +00001498 ad = d.abs();
1499 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1500 anc = t - 1 - t.urem(ad); // absolute value of nc
1501 p = d.getBitWidth() - 1; // initialize p
1502 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1503 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1504 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1505 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1506 do {
1507 p = p + 1;
1508 q1 = q1<<1; // update q1 = 2p/abs(nc)
1509 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1510 if (r1.uge(anc)) { // must be unsigned comparison
1511 q1 = q1 + 1;
1512 r1 = r1 - anc;
1513 }
1514 q2 = q2<<1; // update q2 = 2p/abs(d)
1515 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1516 if (r2.uge(ad)) { // must be unsigned comparison
1517 q2 = q2 + 1;
1518 r2 = r2 - ad;
1519 }
1520 delta = ad - r2;
1521 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
Eric Christopher017fc252009-08-21 04:06:45 +00001522
Jay Foad56b11f92009-04-30 10:15:35 +00001523 mag.m = q2 + 1;
1524 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1525 mag.s = p - d.getBitWidth(); // resulting shift
1526 return mag;
1527}
1528
1529/// Calculate the magic numbers required to implement an unsigned integer
1530/// division by a constant as a sequence of multiplies, adds and shifts.
1531/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1532/// S. Warren, Jr., chapter 10.
1533APInt::mu APInt::magicu() const {
1534 const APInt& d = *this;
1535 unsigned p;
1536 APInt nc, delta, q1, r1, q2, r2;
1537 struct mu magu;
1538 magu.a = 0; // initialize "add" indicator
1539 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1540 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1541 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1542
1543 nc = allOnes - (-d).urem(d);
1544 p = d.getBitWidth() - 1; // initialize p
1545 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1546 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1547 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1548 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1549 do {
1550 p = p + 1;
1551 if (r1.uge(nc - r1)) {
1552 q1 = q1 + q1 + 1; // update q1
1553 r1 = r1 + r1 - nc; // update r1
1554 }
1555 else {
1556 q1 = q1+q1; // update q1
1557 r1 = r1+r1; // update r1
1558 }
1559 if ((r2 + 1).uge(d - r2)) {
1560 if (q2.uge(signedMax)) magu.a = 1;
1561 q2 = q2+q2 + 1; // update q2
1562 r2 = r2+r2 + 1 - d; // update r2
1563 }
1564 else {
1565 if (q2.uge(signedMin)) magu.a = 1;
1566 q2 = q2+q2; // update q2
1567 r2 = r2+r2 + 1; // update r2
1568 }
1569 delta = d - 1 - r2;
1570 } while (p < d.getBitWidth()*2 &&
1571 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1572 magu.m = q2 + 1; // resulting magic number
1573 magu.s = p - d.getBitWidth(); // resulting shift
1574 return magu;
1575}
1576
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001577/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1578/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1579/// variables here have the same names as in the algorithm. Comments explain
1580/// the algorithm and any deviation from it.
Chris Lattneree5417c2009-01-21 18:09:24 +00001581static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1582 unsigned m, unsigned n) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001583 assert(u && "Must provide dividend");
1584 assert(v && "Must provide divisor");
1585 assert(q && "Must provide quotient");
1586 assert(u != v && u != q && v != q && "Must us different memory");
1587 assert(n>1 && "n must be > 1");
1588
1589 // Knuth uses the value b as the base of the number system. In our case b
1590 // is 2^31 so we just set it to -1u.
1591 uint64_t b = uint64_t(1) << 32;
1592
Chris Lattner89b36582008-08-17 07:19:36 +00001593#if 0
David Greene1604d172010-01-05 01:28:52 +00001594 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1595 DEBUG(dbgs() << "KnuthDiv: original:");
1596 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1597 DEBUG(dbgs() << " by");
1598 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1599 DEBUG(dbgs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001600#endif
Eric Christopher017fc252009-08-21 04:06:45 +00001601 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1602 // u and v by d. Note that we have taken Knuth's advice here to use a power
1603 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1604 // 2 allows us to shift instead of multiply and it is easy to determine the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001605 // shift amount from the leading zeros. We are basically normalizing the u
1606 // and v so that its high bits are shifted to the top of v's range without
1607 // overflow. Note that this can require an extra word in u so that u must
1608 // be of length m+n+1.
Chris Lattneree5417c2009-01-21 18:09:24 +00001609 unsigned shift = CountLeadingZeros_32(v[n-1]);
1610 unsigned v_carry = 0;
1611 unsigned u_carry = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001612 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001613 for (unsigned i = 0; i < m+n; ++i) {
1614 unsigned u_tmp = u[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001615 u[i] = (u[i] << shift) | u_carry;
1616 u_carry = u_tmp;
1617 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001618 for (unsigned i = 0; i < n; ++i) {
1619 unsigned v_tmp = v[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001620 v[i] = (v[i] << shift) | v_carry;
1621 v_carry = v_tmp;
1622 }
1623 }
1624 u[m+n] = u_carry;
Chris Lattner89b36582008-08-17 07:19:36 +00001625#if 0
David Greene1604d172010-01-05 01:28:52 +00001626 DEBUG(dbgs() << "KnuthDiv: normal:");
1627 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1628 DEBUG(dbgs() << " by");
1629 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1630 DEBUG(dbgs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001631#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001632
1633 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1634 int j = m;
1635 do {
David Greene1604d172010-01-05 01:28:52 +00001636 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopher017fc252009-08-21 04:06:45 +00001637 // D3. [Calculate q'.].
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001638 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1639 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1640 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1641 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1642 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopher017fc252009-08-21 04:06:45 +00001643 // value qp is one too large, and it eliminates all cases where qp is two
1644 // too large.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001645 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
David Greene1604d172010-01-05 01:28:52 +00001646 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001647 uint64_t qp = dividend / v[n-1];
1648 uint64_t rp = dividend % v[n-1];
1649 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1650 qp--;
1651 rp += v[n-1];
1652 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1653 qp--;
1654 }
David Greene1604d172010-01-05 01:28:52 +00001655 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001656
1657 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1658 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1659 // consists of a simple multiplication by a one-place number, combined with
Eric Christopher017fc252009-08-21 04:06:45 +00001660 // a subtraction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001661 bool isNeg = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001662 for (unsigned i = 0; i < n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001663 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1664 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1665 bool borrow = subtrahend > u_tmp;
David Greene1604d172010-01-05 01:28:52 +00001666 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001667 << ", subtrahend == " << subtrahend
1668 << ", borrow = " << borrow << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001669
1670 uint64_t result = u_tmp - subtrahend;
Chris Lattneree5417c2009-01-21 18:09:24 +00001671 unsigned k = j + i;
1672 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1673 u[k++] = (unsigned)(result >> 32); // subtract high word
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001674 while (borrow && k <= m+n) { // deal with borrow to the left
1675 borrow = u[k] == 0;
1676 u[k]--;
1677 k++;
1678 }
1679 isNeg |= borrow;
David Greene1604d172010-01-05 01:28:52 +00001680 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
Eric Christopher017fc252009-08-21 04:06:45 +00001681 u[j+i+1] << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001682 }
David Greene1604d172010-01-05 01:28:52 +00001683 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1684 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1685 DEBUG(dbgs() << '\n');
Eric Christopher017fc252009-08-21 04:06:45 +00001686 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1687 // this step is actually negative, (u[j+n]...u[j]) should be left as the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001688 // true value plus b**(n+1), namely as the b's complement of
1689 // the true value, and a "borrow" to the left should be remembered.
1690 //
1691 if (isNeg) {
1692 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattneree5417c2009-01-21 18:09:24 +00001693 for (unsigned i = 0; i <= m+n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001694 u[i] = ~u[i] + carry; // b's complement
1695 carry = carry && u[i] == 0;
1696 }
1697 }
David Greene1604d172010-01-05 01:28:52 +00001698 DEBUG(dbgs() << "KnuthDiv: after complement:");
1699 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1700 DEBUG(dbgs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001701
Eric Christopher017fc252009-08-21 04:06:45 +00001702 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001703 // negative, go to step D6; otherwise go on to step D7.
Chris Lattneree5417c2009-01-21 18:09:24 +00001704 q[j] = (unsigned)qp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001705 if (isNeg) {
Eric Christopher017fc252009-08-21 04:06:45 +00001706 // D6. [Add back]. The probability that this step is necessary is very
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopher017fc252009-08-21 04:06:45 +00001708 // this possibility. Decrease q[j] by 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001709 q[j]--;
Eric Christopher017fc252009-08-21 04:06:45 +00001710 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1711 // A carry will occur to the left of u[j+n], and it should be ignored
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001712 // since it cancels with the borrow that occurred in D4.
1713 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001714 for (unsigned i = 0; i < n; i++) {
1715 unsigned limit = std::min(u[j+i],v[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001716 u[j+i] += v[i] + carry;
1717 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1718 }
1719 u[j+n] += carry;
1720 }
David Greene1604d172010-01-05 01:28:52 +00001721 DEBUG(dbgs() << "KnuthDiv: after correction:");
1722 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
1723 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001724
1725 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1726 } while (--j >= 0);
1727
David Greene1604d172010-01-05 01:28:52 +00001728 DEBUG(dbgs() << "KnuthDiv: quotient:");
1729 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1730 DEBUG(dbgs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001731
1732 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1733 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1734 // compute the remainder (urem uses this).
1735 if (r) {
1736 // The value d is expressed by the "shift" value above since we avoided
1737 // multiplication by d by using a shift left. So, all we have to do is
1738 // shift right here. In order to mak
1739 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001740 unsigned carry = 0;
David Greene1604d172010-01-05 01:28:52 +00001741 DEBUG(dbgs() << "KnuthDiv: remainder:");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001742 for (int i = n-1; i >= 0; i--) {
1743 r[i] = (u[i] >> shift) | carry;
1744 carry = u[i] << (32 - shift);
David Greene1604d172010-01-05 01:28:52 +00001745 DEBUG(dbgs() << " " << r[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001746 }
1747 } else {
1748 for (int i = n-1; i >= 0; i--) {
1749 r[i] = u[i];
David Greene1604d172010-01-05 01:28:52 +00001750 DEBUG(dbgs() << " " << r[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001751 }
1752 }
David Greene1604d172010-01-05 01:28:52 +00001753 DEBUG(dbgs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001754 }
Chris Lattner89b36582008-08-17 07:19:36 +00001755#if 0
David Greene1604d172010-01-05 01:28:52 +00001756 DEBUG(dbgs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001757#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001758}
1759
Chris Lattneree5417c2009-01-21 18:09:24 +00001760void APInt::divide(const APInt LHS, unsigned lhsWords,
1761 const APInt &RHS, unsigned rhsWords,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001762 APInt *Quotient, APInt *Remainder)
1763{
1764 assert(lhsWords >= rhsWords && "Fractional result");
1765
Eric Christopher017fc252009-08-21 04:06:45 +00001766 // First, compose the values into an array of 32-bit words instead of
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001767 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohmandf1a7ff2010-02-10 16:03:48 +00001768 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopher017fc252009-08-21 04:06:45 +00001769 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1770 // can't use 64-bit operands here because we don't have native results of
1771 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001772 // work on large-endian machines.
Dan Gohmand06cad62009-04-01 18:45:54 +00001773 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattneree5417c2009-01-21 18:09:24 +00001774 unsigned n = rhsWords * 2;
1775 unsigned m = (lhsWords * 2) - n;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001776
1777 // Allocate space for the temporary values we need either on the stack, if
1778 // it will fit, or on the heap if it won't.
Chris Lattneree5417c2009-01-21 18:09:24 +00001779 unsigned SPACE[128];
1780 unsigned *U = 0;
1781 unsigned *V = 0;
1782 unsigned *Q = 0;
1783 unsigned *R = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001784 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1785 U = &SPACE[0];
1786 V = &SPACE[m+n+1];
1787 Q = &SPACE[(m+n+1) + n];
1788 if (Remainder)
1789 R = &SPACE[(m+n+1) + n + (m+n)];
1790 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001791 U = new unsigned[m + n + 1];
1792 V = new unsigned[n];
1793 Q = new unsigned[m+n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001794 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001795 R = new unsigned[n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001796 }
1797
1798 // Initialize the dividend
Chris Lattneree5417c2009-01-21 18:09:24 +00001799 memset(U, 0, (m+n+1)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001800 for (unsigned i = 0; i < lhsWords; ++i) {
1801 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001802 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmand06cad62009-04-01 18:45:54 +00001803 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001804 }
1805 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1806
1807 // Initialize the divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001808 memset(V, 0, (n)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001809 for (unsigned i = 0; i < rhsWords; ++i) {
1810 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001811 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmand06cad62009-04-01 18:45:54 +00001812 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001813 }
1814
1815 // initialize the quotient and remainder
Chris Lattneree5417c2009-01-21 18:09:24 +00001816 memset(Q, 0, (m+n) * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001817 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001818 memset(R, 0, n * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001819
Eric Christopher017fc252009-08-21 04:06:45 +00001820 // Now, adjust m and n for the Knuth division. n is the number of words in
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001821 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopher017fc252009-08-21 04:06:45 +00001822 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001823 // contain any zero words or the Knuth algorithm fails.
1824 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1825 n--;
1826 m++;
1827 }
1828 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1829 m--;
1830
1831 // If we're left with only a single word for the divisor, Knuth doesn't work
1832 // so we implement the short division algorithm here. This is much simpler
1833 // and faster because we are certain that we can divide a 64-bit quantity
1834 // by a 32-bit quantity at hardware speed and short division is simply a
1835 // series of such operations. This is just like doing short division but we
1836 // are using base 2^32 instead of base 10.
1837 assert(n != 0 && "Divide by zero?");
1838 if (n == 1) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001839 unsigned divisor = V[0];
1840 unsigned remainder = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001841 for (int i = m+n-1; i >= 0; i--) {
1842 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1843 if (partial_dividend == 0) {
1844 Q[i] = 0;
1845 remainder = 0;
1846 } else if (partial_dividend < divisor) {
1847 Q[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001848 remainder = (unsigned)partial_dividend;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001849 } else if (partial_dividend == divisor) {
1850 Q[i] = 1;
1851 remainder = 0;
1852 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001853 Q[i] = (unsigned)(partial_dividend / divisor);
1854 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001855 }
1856 }
1857 if (R)
1858 R[0] = remainder;
1859 } else {
1860 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1861 // case n > 1.
1862 KnuthDiv(U, V, Q, R, m, n);
1863 }
1864
1865 // If the caller wants the quotient
1866 if (Quotient) {
1867 // Set up the Quotient value's memory.
1868 if (Quotient->BitWidth != LHS.BitWidth) {
1869 if (Quotient->isSingleWord())
1870 Quotient->VAL = 0;
1871 else
1872 delete [] Quotient->pVal;
1873 Quotient->BitWidth = LHS.BitWidth;
1874 if (!Quotient->isSingleWord())
1875 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1876 } else
1877 Quotient->clear();
1878
Eric Christopher017fc252009-08-21 04:06:45 +00001879 // The quotient is in Q. Reconstitute the quotient into Quotient's low
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001880 // order words.
1881 if (lhsWords == 1) {
Eric Christopher017fc252009-08-21 04:06:45 +00001882 uint64_t tmp =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001883 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1884 if (Quotient->isSingleWord())
1885 Quotient->VAL = tmp;
1886 else
1887 Quotient->pVal[0] = tmp;
1888 } else {
1889 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1890 for (unsigned i = 0; i < lhsWords; ++i)
Eric Christopher017fc252009-08-21 04:06:45 +00001891 Quotient->pVal[i] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001892 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1893 }
1894 }
1895
1896 // If the caller wants the remainder
1897 if (Remainder) {
1898 // Set up the Remainder value's memory.
1899 if (Remainder->BitWidth != RHS.BitWidth) {
1900 if (Remainder->isSingleWord())
1901 Remainder->VAL = 0;
1902 else
1903 delete [] Remainder->pVal;
1904 Remainder->BitWidth = RHS.BitWidth;
1905 if (!Remainder->isSingleWord())
1906 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1907 } else
1908 Remainder->clear();
1909
1910 // The remainder is in R. Reconstitute the remainder into Remainder's low
1911 // order words.
1912 if (rhsWords == 1) {
Eric Christopher017fc252009-08-21 04:06:45 +00001913 uint64_t tmp =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001914 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1915 if (Remainder->isSingleWord())
1916 Remainder->VAL = tmp;
1917 else
1918 Remainder->pVal[0] = tmp;
1919 } else {
1920 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1921 for (unsigned i = 0; i < rhsWords; ++i)
Eric Christopher017fc252009-08-21 04:06:45 +00001922 Remainder->pVal[i] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001923 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1924 }
1925 }
1926
1927 // Clean up the memory we allocated.
1928 if (U != &SPACE[0]) {
1929 delete [] U;
1930 delete [] V;
1931 delete [] Q;
1932 delete [] R;
1933 }
1934}
1935
1936APInt APInt::udiv(const APInt& RHS) const {
1937 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1938
1939 // First, deal with the easy case
1940 if (isSingleWord()) {
1941 assert(RHS.VAL != 0 && "Divide by zero?");
1942 return APInt(BitWidth, VAL / RHS.VAL);
1943 }
1944
1945 // Get some facts about the LHS and RHS number of bits and words
Chris Lattneree5417c2009-01-21 18:09:24 +00001946 unsigned rhsBits = RHS.getActiveBits();
1947 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001948 assert(rhsWords && "Divided by zero???");
Chris Lattneree5417c2009-01-21 18:09:24 +00001949 unsigned lhsBits = this->getActiveBits();
1950 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001951
1952 // Deal with some degenerate cases
Eric Christopher017fc252009-08-21 04:06:45 +00001953 if (!lhsWords)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001954 // 0 / X ===> 0
Eric Christopher017fc252009-08-21 04:06:45 +00001955 return APInt(BitWidth, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001956 else if (lhsWords < rhsWords || this->ult(RHS)) {
1957 // X / Y ===> 0, iff X < Y
1958 return APInt(BitWidth, 0);
1959 } else if (*this == RHS) {
1960 // X / X ===> 1
1961 return APInt(BitWidth, 1);
1962 } else if (lhsWords == 1 && rhsWords == 1) {
1963 // All high words are zero, just use native divide
1964 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1965 }
1966
1967 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1968 APInt Quotient(1,0); // to hold result.
1969 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1970 return Quotient;
1971}
1972
1973APInt APInt::urem(const APInt& RHS) const {
1974 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1975 if (isSingleWord()) {
1976 assert(RHS.VAL != 0 && "Remainder by zero?");
1977 return APInt(BitWidth, VAL % RHS.VAL);
1978 }
1979
1980 // Get some facts about the LHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001981 unsigned lhsBits = getActiveBits();
1982 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001983
1984 // Get some facts about the RHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001985 unsigned rhsBits = RHS.getActiveBits();
1986 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001987 assert(rhsWords && "Performing remainder operation by zero ???");
1988
1989 // Check the degenerate cases
1990 if (lhsWords == 0) {
1991 // 0 % Y ===> 0
1992 return APInt(BitWidth, 0);
1993 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1994 // X % Y ===> X, iff X < Y
1995 return *this;
1996 } else if (*this == RHS) {
1997 // X % X == 0;
1998 return APInt(BitWidth, 0);
1999 } else if (lhsWords == 1) {
2000 // All high words are zero, just use native remainder
2001 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
2002 }
2003
2004 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
2005 APInt Remainder(1,0);
2006 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
2007 return Remainder;
2008}
2009
Eric Christopher017fc252009-08-21 04:06:45 +00002010void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002011 APInt &Quotient, APInt &Remainder) {
2012 // Get some size facts about the dividend and divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00002013 unsigned lhsBits = LHS.getActiveBits();
2014 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2015 unsigned rhsBits = RHS.getActiveBits();
2016 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002017
2018 // Check the degenerate cases
Eric Christopher017fc252009-08-21 04:06:45 +00002019 if (lhsWords == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002020 Quotient = 0; // 0 / Y ===> 0
2021 Remainder = 0; // 0 % Y ===> 0
2022 return;
Eric Christopher017fc252009-08-21 04:06:45 +00002023 }
2024
2025 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002026 Remainder = LHS; // X % Y ===> X, iff X < Y
John McCall38768292009-12-24 08:52:06 +00002027 Quotient = 0; // X / Y ===> 0, iff X < Y
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002028 return;
Eric Christopher017fc252009-08-21 04:06:45 +00002029 }
2030
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002031 if (LHS == RHS) {
2032 Quotient = 1; // X / X ===> 1
2033 Remainder = 0; // X % X ===> 0;
2034 return;
Eric Christopher017fc252009-08-21 04:06:45 +00002035 }
2036
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002037 if (lhsWords == 1 && rhsWords == 1) {
2038 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00002039 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2040 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2041 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2042 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002043 return;
2044 }
2045
2046 // Okay, lets do it the long way
2047 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2048}
2049
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002050void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002051 // Check our assumptions here
Erick Tryzelaara3c44c92009-08-21 03:15:14 +00002052 assert(!str.empty() && "Invalid string length");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002053 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2054 "Radix should be 2, 8, 10, or 16!");
Erick Tryzelaara3c44c92009-08-21 03:15:14 +00002055
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002056 StringRef::iterator p = str.begin();
2057 size_t slen = str.size();
2058 bool isNeg = *p == '-';
Erick Tryzelaara3c44c92009-08-21 03:15:14 +00002059 if (*p == '-' || *p == '+') {
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002060 p++;
2061 slen--;
Eric Christopher9a7fc4f2009-08-21 04:10:31 +00002062 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002063 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002064 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner981440e2009-04-25 18:34:04 +00002065 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2066 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Dan Gohman6c316922010-03-24 19:38:02 +00002067 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2068 "Insufficient bit width");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002069
2070 // Allocate memory
2071 if (!isSingleWord())
2072 pVal = getClearedMemory(getNumWords());
2073
2074 // Figure out if we can shift instead of multiply
Chris Lattneree5417c2009-01-21 18:09:24 +00002075 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002076
2077 // Set up an APInt for the digit to add outside the loop so we don't
2078 // constantly construct/destruct it.
2079 APInt apdigit(getBitWidth(), 0);
2080 APInt apradix(getBitWidth(), radix);
2081
2082 // Enter digit traversal loop
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002083 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaar15a448f2009-08-21 03:15:28 +00002084 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar5c4ea882009-08-21 06:48:37 +00002085 assert(digit < radix && "Invalid character in digit string");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002086
2087 // Shift or multiply the value by the radix
Chris Lattner981440e2009-04-25 18:34:04 +00002088 if (slen > 1) {
2089 if (shift)
2090 *this <<= shift;
2091 else
2092 *this *= apradix;
2093 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002094
2095 // Add in the digit we just interpreted
2096 if (apdigit.isSingleWord())
2097 apdigit.VAL = digit;
2098 else
2099 apdigit.pVal[0] = digit;
2100 *this += apdigit;
2101 }
2102 // If its negative, put it in two's complement form
2103 if (isNeg) {
2104 (*this)--;
2105 this->flip();
2106 }
2107}
2108
Chris Lattner89b36582008-08-17 07:19:36 +00002109void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2110 bool Signed) const {
2111 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002112 "Radix should be 2, 8, 10, or 16!");
Eric Christopher017fc252009-08-21 04:06:45 +00002113
Chris Lattner89b36582008-08-17 07:19:36 +00002114 // First, check for a zero value and just short circuit the logic below.
2115 if (*this == 0) {
2116 Str.push_back('0');
2117 return;
2118 }
Eric Christopher017fc252009-08-21 04:06:45 +00002119
Chris Lattner89b36582008-08-17 07:19:36 +00002120 static const char Digits[] = "0123456789ABCDEF";
Eric Christopher017fc252009-08-21 04:06:45 +00002121
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002122 if (isSingleWord()) {
Chris Lattner89b36582008-08-17 07:19:36 +00002123 char Buffer[65];
2124 char *BufPtr = Buffer+65;
Eric Christopher017fc252009-08-21 04:06:45 +00002125
Chris Lattner89b36582008-08-17 07:19:36 +00002126 uint64_t N;
2127 if (Signed) {
2128 int64_t I = getSExtValue();
2129 if (I < 0) {
2130 Str.push_back('-');
2131 I = -I;
2132 }
2133 N = I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002134 } else {
Chris Lattner89b36582008-08-17 07:19:36 +00002135 N = getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002136 }
Eric Christopher017fc252009-08-21 04:06:45 +00002137
Chris Lattner89b36582008-08-17 07:19:36 +00002138 while (N) {
2139 *--BufPtr = Digits[N % Radix];
2140 N /= Radix;
2141 }
2142 Str.append(BufPtr, Buffer+65);
2143 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002144 }
2145
Chris Lattner89b36582008-08-17 07:19:36 +00002146 APInt Tmp(*this);
Eric Christopher017fc252009-08-21 04:06:45 +00002147
Chris Lattner89b36582008-08-17 07:19:36 +00002148 if (Signed && isNegative()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002149 // They want to print the signed version and it is a negative value
2150 // Flip the bits and add one to turn it into the equivalent positive
2151 // value and put a '-' in the result.
Chris Lattner89b36582008-08-17 07:19:36 +00002152 Tmp.flip();
2153 Tmp++;
2154 Str.push_back('-');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002155 }
Eric Christopher017fc252009-08-21 04:06:45 +00002156
Chris Lattner89b36582008-08-17 07:19:36 +00002157 // We insert the digits backward, then reverse them to get the right order.
2158 unsigned StartDig = Str.size();
Eric Christopher017fc252009-08-21 04:06:45 +00002159
2160 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2161 // because the number of bits per digit (1, 3 and 4 respectively) divides
Chris Lattner89b36582008-08-17 07:19:36 +00002162 // equaly. We just shift until the value is zero.
2163 if (Radix != 10) {
2164 // Just shift tmp right for each digit width until it becomes zero
2165 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2166 unsigned MaskAmt = Radix - 1;
Eric Christopher017fc252009-08-21 04:06:45 +00002167
Chris Lattner89b36582008-08-17 07:19:36 +00002168 while (Tmp != 0) {
2169 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2170 Str.push_back(Digits[Digit]);
2171 Tmp = Tmp.lshr(ShiftAmt);
2172 }
2173 } else {
2174 APInt divisor(4, 10);
2175 while (Tmp != 0) {
2176 APInt APdigit(1, 0);
2177 APInt tmp2(Tmp.getBitWidth(), 0);
Eric Christopher017fc252009-08-21 04:06:45 +00002178 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
Chris Lattner89b36582008-08-17 07:19:36 +00002179 &APdigit);
Chris Lattneree5417c2009-01-21 18:09:24 +00002180 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner89b36582008-08-17 07:19:36 +00002181 assert(Digit < Radix && "divide failed");
2182 Str.push_back(Digits[Digit]);
2183 Tmp = tmp2;
2184 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002185 }
Eric Christopher017fc252009-08-21 04:06:45 +00002186
Chris Lattner89b36582008-08-17 07:19:36 +00002187 // Reverse the digits before returning.
2188 std::reverse(Str.begin()+StartDig, Str.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002189}
2190
Chris Lattner89b36582008-08-17 07:19:36 +00002191/// toString - This returns the APInt as a std::string. Note that this is an
2192/// inefficient method. It is better to pass in a SmallVector/SmallString
2193/// to the methods above.
2194std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2195 SmallString<40> S;
2196 toString(S, Radix, Signed);
Daniel Dunbar768e97d2009-08-19 20:07:03 +00002197 return S.str();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002198}
Chris Lattner73cde982007-08-16 15:56:55 +00002199
Chris Lattner89b36582008-08-17 07:19:36 +00002200
2201void APInt::dump() const {
2202 SmallString<40> S, U;
2203 this->toStringUnsigned(U);
2204 this->toStringSigned(S);
David Greene1604d172010-01-05 01:28:52 +00002205 dbgs() << "APInt(" << BitWidth << "b, "
Daniel Dunbar768e97d2009-08-19 20:07:03 +00002206 << U.str() << "u " << S.str() << "s)";
Chris Lattner89b36582008-08-17 07:19:36 +00002207}
2208
Chris Lattner1fefaac2008-08-23 22:23:09 +00002209void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner89b36582008-08-17 07:19:36 +00002210 SmallString<40> S;
2211 this->toString(S, 10, isSigned);
Daniel Dunbar768e97d2009-08-19 20:07:03 +00002212 OS << S.str();
Chris Lattner89b36582008-08-17 07:19:36 +00002213}
2214
Chris Lattner73cde982007-08-16 15:56:55 +00002215// This implements a variety of operations on a representation of
2216// arbitrary precision, two's-complement, bignum integer values.
2217
Chris Lattnera8f744b2009-08-23 23:11:28 +00002218// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2219// and unrestricting assumption.
Chris Lattner12e44312008-08-17 04:58:58 +00002220#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerdb80e212007-08-20 22:49:32 +00002221COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002222
2223/* Some handy functions local to this file. */
2224namespace {
2225
Chris Lattnerdb80e212007-08-20 22:49:32 +00002226 /* Returns the integer part with the least significant BITS set.
2227 BITS cannot be zero. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002228 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002229 lowBitMask(unsigned int bits)
2230 {
Dan Gohman6c316922010-03-24 19:38:02 +00002231 assert(bits != 0 && bits <= integerPartWidth);
Chris Lattnerdb80e212007-08-20 22:49:32 +00002232
2233 return ~(integerPart) 0 >> (integerPartWidth - bits);
2234 }
2235
Neil Booth58ffb232007-10-06 00:43:45 +00002236 /* Returns the value of the lower half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002237 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002238 lowHalf(integerPart part)
2239 {
2240 return part & lowBitMask(integerPartWidth / 2);
2241 }
2242
Neil Booth58ffb232007-10-06 00:43:45 +00002243 /* Returns the value of the upper half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002244 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002245 highHalf(integerPart part)
2246 {
2247 return part >> (integerPartWidth / 2);
2248 }
2249
Neil Booth58ffb232007-10-06 00:43:45 +00002250 /* Returns the bit number of the most significant set bit of a part.
2251 If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002252 static unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002253 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002254 {
2255 unsigned int n, msb;
2256
2257 if (value == 0)
2258 return -1U;
2259
2260 n = integerPartWidth / 2;
2261
2262 msb = 0;
2263 do {
2264 if (value >> n) {
2265 value >>= n;
2266 msb += n;
2267 }
2268
2269 n >>= 1;
2270 } while (n);
2271
2272 return msb;
2273 }
2274
Neil Booth58ffb232007-10-06 00:43:45 +00002275 /* Returns the bit number of the least significant set bit of a
2276 part. If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002277 static unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002278 partLSB(integerPart value)
2279 {
2280 unsigned int n, lsb;
2281
2282 if (value == 0)
2283 return -1U;
2284
2285 lsb = integerPartWidth - 1;
2286 n = integerPartWidth / 2;
2287
2288 do {
2289 if (value << n) {
2290 value <<= n;
2291 lsb -= n;
2292 }
2293
2294 n >>= 1;
2295 } while (n);
2296
2297 return lsb;
2298 }
2299}
2300
2301/* Sets the least significant part of a bignum to the input value, and
2302 zeroes out higher parts. */
2303void
2304APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2305{
2306 unsigned int i;
2307
Dan Gohman6c316922010-03-24 19:38:02 +00002308 assert(parts > 0);
Neil Bootha0f524a2007-10-08 13:47:12 +00002309
Chris Lattner73cde982007-08-16 15:56:55 +00002310 dst[0] = part;
Dan Gohman6c316922010-03-24 19:38:02 +00002311 for (i = 1; i < parts; i++)
Chris Lattner73cde982007-08-16 15:56:55 +00002312 dst[i] = 0;
2313}
2314
2315/* Assign one bignum to another. */
2316void
2317APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2318{
2319 unsigned int i;
2320
Dan Gohman6c316922010-03-24 19:38:02 +00002321 for (i = 0; i < parts; i++)
Chris Lattner73cde982007-08-16 15:56:55 +00002322 dst[i] = src[i];
2323}
2324
2325/* Returns true if a bignum is zero, false otherwise. */
2326bool
2327APInt::tcIsZero(const integerPart *src, unsigned int parts)
2328{
2329 unsigned int i;
2330
Dan Gohman6c316922010-03-24 19:38:02 +00002331 for (i = 0; i < parts; i++)
Chris Lattner73cde982007-08-16 15:56:55 +00002332 if (src[i])
2333 return false;
2334
2335 return true;
2336}
2337
2338/* Extract the given bit of a bignum; returns 0 or 1. */
2339int
2340APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2341{
Dan Gohman6c316922010-03-24 19:38:02 +00002342 return (parts[bit / integerPartWidth] &
2343 ((integerPart) 1 << bit % integerPartWidth)) != 0;
Chris Lattner73cde982007-08-16 15:56:55 +00002344}
2345
John McCalld24e0182010-02-28 02:51:25 +00002346/* Set the given bit of a bignum. */
Chris Lattner73cde982007-08-16 15:56:55 +00002347void
2348APInt::tcSetBit(integerPart *parts, unsigned int bit)
2349{
2350 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2351}
2352
John McCalld24e0182010-02-28 02:51:25 +00002353/* Clears the given bit of a bignum. */
2354void
2355APInt::tcClearBit(integerPart *parts, unsigned int bit)
2356{
2357 parts[bit / integerPartWidth] &=
2358 ~((integerPart) 1 << (bit % integerPartWidth));
2359}
2360
Neil Booth58ffb232007-10-06 00:43:45 +00002361/* Returns the bit number of the least significant set bit of a
2362 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002363unsigned int
2364APInt::tcLSB(const integerPart *parts, unsigned int n)
2365{
2366 unsigned int i, lsb;
2367
Dan Gohman6c316922010-03-24 19:38:02 +00002368 for (i = 0; i < n; i++) {
Chris Lattner73cde982007-08-16 15:56:55 +00002369 if (parts[i] != 0) {
2370 lsb = partLSB(parts[i]);
2371
2372 return lsb + i * integerPartWidth;
2373 }
2374 }
2375
2376 return -1U;
2377}
2378
Neil Booth58ffb232007-10-06 00:43:45 +00002379/* Returns the bit number of the most significant set bit of a number.
2380 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002381unsigned int
2382APInt::tcMSB(const integerPart *parts, unsigned int n)
2383{
2384 unsigned int msb;
2385
2386 do {
Dan Gohman6c316922010-03-24 19:38:02 +00002387 --n;
Chris Lattner73cde982007-08-16 15:56:55 +00002388
Dan Gohman6c316922010-03-24 19:38:02 +00002389 if (parts[n] != 0) {
2390 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002391
Dan Gohman6c316922010-03-24 19:38:02 +00002392 return msb + n * integerPartWidth;
2393 }
Chris Lattner73cde982007-08-16 15:56:55 +00002394 } while (n);
2395
2396 return -1U;
2397}
2398
Neil Bootha0f524a2007-10-08 13:47:12 +00002399/* Copy the bit vector of width srcBITS from SRC, starting at bit
2400 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2401 the least significant bit of DST. All high bits above srcBITS in
2402 DST are zero-filled. */
2403void
Evan Chengc257df32009-05-21 23:47:47 +00002404APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Bootha0f524a2007-10-08 13:47:12 +00002405 unsigned int srcBits, unsigned int srcLSB)
2406{
2407 unsigned int firstSrcPart, dstParts, shift, n;
2408
2409 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
Dan Gohman6c316922010-03-24 19:38:02 +00002410 assert(dstParts <= dstCount);
Neil Bootha0f524a2007-10-08 13:47:12 +00002411
2412 firstSrcPart = srcLSB / integerPartWidth;
2413 tcAssign (dst, src + firstSrcPart, dstParts);
2414
2415 shift = srcLSB % integerPartWidth;
2416 tcShiftRight (dst, dstParts, shift);
2417
2418 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2419 in DST. If this is less that srcBits, append the rest, else
2420 clear the high bits. */
2421 n = dstParts * integerPartWidth - shift;
2422 if (n < srcBits) {
2423 integerPart mask = lowBitMask (srcBits - n);
2424 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2425 << n % integerPartWidth);
2426 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002427 if (srcBits % integerPartWidth)
2428 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002429 }
2430
2431 /* Clear high parts. */
2432 while (dstParts < dstCount)
2433 dst[dstParts++] = 0;
2434}
2435
Chris Lattner73cde982007-08-16 15:56:55 +00002436/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2437integerPart
2438APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2439 integerPart c, unsigned int parts)
2440{
2441 unsigned int i;
2442
2443 assert(c <= 1);
2444
Dan Gohman6c316922010-03-24 19:38:02 +00002445 for (i = 0; i < parts; i++) {
Chris Lattner73cde982007-08-16 15:56:55 +00002446 integerPart l;
2447
2448 l = dst[i];
2449 if (c) {
2450 dst[i] += rhs[i] + 1;
2451 c = (dst[i] <= l);
2452 } else {
2453 dst[i] += rhs[i];
2454 c = (dst[i] < l);
2455 }
2456 }
2457
2458 return c;
2459}
2460
2461/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2462integerPart
2463APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2464 integerPart c, unsigned int parts)
2465{
2466 unsigned int i;
2467
2468 assert(c <= 1);
2469
Dan Gohman6c316922010-03-24 19:38:02 +00002470 for (i = 0; i < parts; i++) {
Chris Lattner73cde982007-08-16 15:56:55 +00002471 integerPart l;
2472
2473 l = dst[i];
2474 if (c) {
2475 dst[i] -= rhs[i] + 1;
2476 c = (dst[i] >= l);
2477 } else {
2478 dst[i] -= rhs[i];
2479 c = (dst[i] > l);
2480 }
2481 }
2482
2483 return c;
2484}
2485
2486/* Negate a bignum in-place. */
2487void
2488APInt::tcNegate(integerPart *dst, unsigned int parts)
2489{
2490 tcComplement(dst, parts);
2491 tcIncrement(dst, parts);
2492}
2493
Neil Booth58ffb232007-10-06 00:43:45 +00002494/* DST += SRC * MULTIPLIER + CARRY if add is true
2495 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002496
2497 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2498 they must start at the same point, i.e. DST == SRC.
2499
2500 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2501 returned. Otherwise DST is filled with the least significant
2502 DSTPARTS parts of the result, and if all of the omitted higher
2503 parts were zero return zero, otherwise overflow occurred and
2504 return one. */
2505int
2506APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2507 integerPart multiplier, integerPart carry,
2508 unsigned int srcParts, unsigned int dstParts,
2509 bool add)
2510{
2511 unsigned int i, n;
2512
2513 /* Otherwise our writes of DST kill our later reads of SRC. */
2514 assert(dst <= src || dst >= src + srcParts);
2515 assert(dstParts <= srcParts + 1);
2516
2517 /* N loops; minimum of dstParts and srcParts. */
2518 n = dstParts < srcParts ? dstParts: srcParts;
2519
Dan Gohman6c316922010-03-24 19:38:02 +00002520 for (i = 0; i < n; i++) {
Chris Lattner73cde982007-08-16 15:56:55 +00002521 integerPart low, mid, high, srcPart;
2522
2523 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2524
2525 This cannot overflow, because
2526
2527 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2528
2529 which is less than n^2. */
2530
2531 srcPart = src[i];
2532
2533 if (multiplier == 0 || srcPart == 0) {
2534 low = carry;
2535 high = 0;
2536 } else {
2537 low = lowHalf(srcPart) * lowHalf(multiplier);
2538 high = highHalf(srcPart) * highHalf(multiplier);
2539
2540 mid = lowHalf(srcPart) * highHalf(multiplier);
2541 high += highHalf(mid);
2542 mid <<= integerPartWidth / 2;
2543 if (low + mid < low)
2544 high++;
2545 low += mid;
2546
2547 mid = highHalf(srcPart) * lowHalf(multiplier);
2548 high += highHalf(mid);
2549 mid <<= integerPartWidth / 2;
2550 if (low + mid < low)
2551 high++;
2552 low += mid;
2553
2554 /* Now add carry. */
2555 if (low + carry < low)
2556 high++;
2557 low += carry;
2558 }
2559
2560 if (add) {
2561 /* And now DST[i], and store the new low part there. */
2562 if (low + dst[i] < low)
2563 high++;
2564 dst[i] += low;
2565 } else
2566 dst[i] = low;
2567
2568 carry = high;
2569 }
2570
2571 if (i < dstParts) {
2572 /* Full multiplication, there is no overflow. */
2573 assert(i + 1 == dstParts);
2574 dst[i] = carry;
2575 return 0;
2576 } else {
2577 /* We overflowed if there is carry. */
2578 if (carry)
2579 return 1;
2580
2581 /* We would overflow if any significant unwritten parts would be
2582 non-zero. This is true if any remaining src parts are non-zero
2583 and the multiplier is non-zero. */
2584 if (multiplier)
Dan Gohman6c316922010-03-24 19:38:02 +00002585 for (; i < srcParts; i++)
Chris Lattner73cde982007-08-16 15:56:55 +00002586 if (src[i])
2587 return 1;
2588
2589 /* We fitted in the narrow destination. */
2590 return 0;
2591 }
2592}
2593
2594/* DST = LHS * RHS, where DST has the same width as the operands and
2595 is filled with the least significant parts of the result. Returns
2596 one if overflow occurred, otherwise zero. DST must be disjoint
2597 from both operands. */
2598int
2599APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2600 const integerPart *rhs, unsigned int parts)
2601{
2602 unsigned int i;
2603 int overflow;
2604
2605 assert(dst != lhs && dst != rhs);
2606
2607 overflow = 0;
2608 tcSet(dst, 0, parts);
2609
Dan Gohman6c316922010-03-24 19:38:02 +00002610 for (i = 0; i < parts; i++)
Chris Lattner73cde982007-08-16 15:56:55 +00002611 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2612 parts - i, true);
2613
2614 return overflow;
2615}
2616
Neil Booth004e9f42007-10-06 00:24:48 +00002617/* DST = LHS * RHS, where DST has width the sum of the widths of the
2618 operands. No overflow occurs. DST must be disjoint from both
2619 operands. Returns the number of parts required to hold the
2620 result. */
2621unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002622APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002623 const integerPart *rhs, unsigned int lhsParts,
2624 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002625{
Neil Booth004e9f42007-10-06 00:24:48 +00002626 /* Put the narrower number on the LHS for less loops below. */
2627 if (lhsParts > rhsParts) {
2628 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2629 } else {
2630 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002631
Neil Booth004e9f42007-10-06 00:24:48 +00002632 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002633
Neil Booth004e9f42007-10-06 00:24:48 +00002634 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002635
Dan Gohman6c316922010-03-24 19:38:02 +00002636 for (n = 0; n < lhsParts; n++)
Neil Booth004e9f42007-10-06 00:24:48 +00002637 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002638
Neil Booth004e9f42007-10-06 00:24:48 +00002639 n = lhsParts + rhsParts;
2640
2641 return n - (dst[n - 1] == 0);
2642 }
Chris Lattner73cde982007-08-16 15:56:55 +00002643}
2644
2645/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2646 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2647 set REMAINDER to the remainder, return zero. i.e.
2648
2649 OLD_LHS = RHS * LHS + REMAINDER
2650
2651 SCRATCH is a bignum of the same size as the operands and result for
2652 use by the routine; its contents need not be initialized and are
2653 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2654*/
2655int
2656APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2657 integerPart *remainder, integerPart *srhs,
2658 unsigned int parts)
2659{
2660 unsigned int n, shiftCount;
2661 integerPart mask;
2662
2663 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2664
Chris Lattnerdb80e212007-08-20 22:49:32 +00002665 shiftCount = tcMSB(rhs, parts) + 1;
2666 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002667 return true;
2668
Chris Lattnerdb80e212007-08-20 22:49:32 +00002669 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002670 n = shiftCount / integerPartWidth;
2671 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2672
2673 tcAssign(srhs, rhs, parts);
2674 tcShiftLeft(srhs, parts, shiftCount);
2675 tcAssign(remainder, lhs, parts);
2676 tcSet(lhs, 0, parts);
2677
2678 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2679 the total. */
Dan Gohman6c316922010-03-24 19:38:02 +00002680 for (;;) {
Chris Lattner73cde982007-08-16 15:56:55 +00002681 int compare;
2682
2683 compare = tcCompare(remainder, srhs, parts);
2684 if (compare >= 0) {
2685 tcSubtract(remainder, srhs, 0, parts);
2686 lhs[n] |= mask;
2687 }
2688
2689 if (shiftCount == 0)
2690 break;
2691 shiftCount--;
2692 tcShiftRight(srhs, parts, 1);
2693 if ((mask >>= 1) == 0)
2694 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2695 }
2696
2697 return false;
2698}
2699
2700/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2701 There are no restrictions on COUNT. */
2702void
2703APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2704{
Neil Bootha0f524a2007-10-08 13:47:12 +00002705 if (count) {
2706 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002707
Neil Bootha0f524a2007-10-08 13:47:12 +00002708 /* Jump is the inter-part jump; shift is is intra-part shift. */
2709 jump = count / integerPartWidth;
2710 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002711
Neil Bootha0f524a2007-10-08 13:47:12 +00002712 while (parts > jump) {
2713 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002714
Neil Bootha0f524a2007-10-08 13:47:12 +00002715 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002716
Neil Bootha0f524a2007-10-08 13:47:12 +00002717 /* dst[i] comes from the two parts src[i - jump] and, if we have
2718 an intra-part shift, src[i - jump - 1]. */
2719 part = dst[parts - jump];
2720 if (shift) {
2721 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002722 if (parts >= jump + 1)
2723 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2724 }
2725
Neil Bootha0f524a2007-10-08 13:47:12 +00002726 dst[parts] = part;
2727 }
Chris Lattner73cde982007-08-16 15:56:55 +00002728
Neil Bootha0f524a2007-10-08 13:47:12 +00002729 while (parts > 0)
2730 dst[--parts] = 0;
2731 }
Chris Lattner73cde982007-08-16 15:56:55 +00002732}
2733
2734/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2735 zero. There are no restrictions on COUNT. */
2736void
2737APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2738{
Neil Bootha0f524a2007-10-08 13:47:12 +00002739 if (count) {
2740 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002741
Neil Bootha0f524a2007-10-08 13:47:12 +00002742 /* Jump is the inter-part jump; shift is is intra-part shift. */
2743 jump = count / integerPartWidth;
2744 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002745
Neil Bootha0f524a2007-10-08 13:47:12 +00002746 /* Perform the shift. This leaves the most significant COUNT bits
2747 of the result at zero. */
Dan Gohman6c316922010-03-24 19:38:02 +00002748 for (i = 0; i < parts; i++) {
Neil Bootha0f524a2007-10-08 13:47:12 +00002749 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002750
Neil Bootha0f524a2007-10-08 13:47:12 +00002751 if (i + jump >= parts) {
2752 part = 0;
2753 } else {
2754 part = dst[i + jump];
2755 if (shift) {
2756 part >>= shift;
2757 if (i + jump + 1 < parts)
2758 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2759 }
Chris Lattner73cde982007-08-16 15:56:55 +00002760 }
Chris Lattner73cde982007-08-16 15:56:55 +00002761
Neil Bootha0f524a2007-10-08 13:47:12 +00002762 dst[i] = part;
2763 }
Chris Lattner73cde982007-08-16 15:56:55 +00002764 }
2765}
2766
2767/* Bitwise and of two bignums. */
2768void
2769APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2770{
2771 unsigned int i;
2772
Dan Gohman6c316922010-03-24 19:38:02 +00002773 for (i = 0; i < parts; i++)
Chris Lattner73cde982007-08-16 15:56:55 +00002774 dst[i] &= rhs[i];
2775}
2776
2777/* Bitwise inclusive or of two bignums. */
2778void
2779APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2780{
2781 unsigned int i;
2782
Dan Gohman6c316922010-03-24 19:38:02 +00002783 for (i = 0; i < parts; i++)
Chris Lattner73cde982007-08-16 15:56:55 +00002784 dst[i] |= rhs[i];
2785}
2786
2787/* Bitwise exclusive or of two bignums. */
2788void
2789APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2790{
2791 unsigned int i;
2792
Dan Gohman6c316922010-03-24 19:38:02 +00002793 for (i = 0; i < parts; i++)
Chris Lattner73cde982007-08-16 15:56:55 +00002794 dst[i] ^= rhs[i];
2795}
2796
2797/* Complement a bignum in-place. */
2798void
2799APInt::tcComplement(integerPart *dst, unsigned int parts)
2800{
2801 unsigned int i;
2802
Dan Gohman6c316922010-03-24 19:38:02 +00002803 for (i = 0; i < parts; i++)
Chris Lattner73cde982007-08-16 15:56:55 +00002804 dst[i] = ~dst[i];
2805}
2806
2807/* Comparison (unsigned) of two bignums. */
2808int
2809APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2810 unsigned int parts)
2811{
2812 while (parts) {
2813 parts--;
2814 if (lhs[parts] == rhs[parts])
2815 continue;
2816
2817 if (lhs[parts] > rhs[parts])
2818 return 1;
2819 else
2820 return -1;
2821 }
2822
2823 return 0;
2824}
2825
2826/* Increment a bignum in-place, return the carry flag. */
2827integerPart
2828APInt::tcIncrement(integerPart *dst, unsigned int parts)
2829{
2830 unsigned int i;
2831
Dan Gohman6c316922010-03-24 19:38:02 +00002832 for (i = 0; i < parts; i++)
Chris Lattner73cde982007-08-16 15:56:55 +00002833 if (++dst[i] != 0)
2834 break;
2835
2836 return i == parts;
2837}
2838
2839/* Set the least significant BITS bits of a bignum, clear the
2840 rest. */
2841void
2842APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2843 unsigned int bits)
2844{
2845 unsigned int i;
2846
2847 i = 0;
2848 while (bits > integerPartWidth) {
2849 dst[i++] = ~(integerPart) 0;
2850 bits -= integerPartWidth;
2851 }
2852
2853 if (bits)
2854 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2855
2856 while (i < parts)
2857 dst[i++] = 0;
2858}