Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 1 | //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 2 | // |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 7 | // |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements the TargetLowering class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Target/TargetLowering.h" |
| 15 | #include "llvm/Target/TargetMachine.h" |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 16 | #include "llvm/Target/MRegisterInfo.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 17 | #include "llvm/CodeGen/SelectionDAG.h" |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 18 | #include "llvm/ADT/StringExtras.h" |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 19 | #include "llvm/Support/MathExtras.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 20 | using namespace llvm; |
| 21 | |
| 22 | TargetLowering::TargetLowering(TargetMachine &tm) |
Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 23 | : TM(tm), TD(TM.getTargetData()) { |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 24 | assert(ISD::BUILTIN_OP_END <= 128 && |
| 25 | "Fixed size array in TargetLowering is not large enough!"); |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 26 | // All operations default to being supported. |
| 27 | memset(OpActions, 0, sizeof(OpActions)); |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 28 | |
| 29 | IsLittleEndian = TD.isLittleEndian(); |
Chris Lattner | 714b69d | 2005-01-16 23:59:48 +0000 | [diff] [blame] | 30 | ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD.getIntPtrType()); |
Chris Lattner | d6e4967 | 2005-01-19 03:36:14 +0000 | [diff] [blame] | 31 | ShiftAmtHandling = Undefined; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 32 | memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); |
Chris Lattner | 00ffed0 | 2006-03-01 04:52:55 +0000 | [diff] [blame^] | 33 | memset(TargetDAGCombineArray, 0, |
| 34 | sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0])); |
Evan Cheng | a03a5dc | 2006-02-14 08:38:30 +0000 | [diff] [blame] | 35 | maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; |
Reid Spencer | 0f9beca | 2005-08-27 19:09:02 +0000 | [diff] [blame] | 36 | allowUnalignedMemoryAccesses = false; |
Chris Lattner | 8e6be8b | 2005-09-27 22:13:56 +0000 | [diff] [blame] | 37 | UseUnderscoreSetJmpLongJmp = false; |
Nate Begeman | 405e3ec | 2005-10-21 00:02:42 +0000 | [diff] [blame] | 38 | IntDivIsCheap = false; |
| 39 | Pow2DivIsCheap = false; |
Chris Lattner | ee4a765 | 2006-01-25 18:57:15 +0000 | [diff] [blame] | 40 | StackPointerRegisterToSaveRestore = 0; |
Evan Cheng | 0577a22 | 2006-01-25 18:52:42 +0000 | [diff] [blame] | 41 | SchedPreferenceInfo = SchedulingForLatency; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 42 | } |
| 43 | |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 44 | TargetLowering::~TargetLowering() {} |
| 45 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 46 | /// setValueTypeAction - Set the action for a particular value type. This |
| 47 | /// assumes an action has not already been set for this value type. |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 48 | static void SetValueTypeAction(MVT::ValueType VT, |
| 49 | TargetLowering::LegalizeAction Action, |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 50 | TargetLowering &TLI, |
| 51 | MVT::ValueType *TransformToType, |
Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 52 | TargetLowering::ValueTypeActionImpl &ValueTypeActions) { |
| 53 | ValueTypeActions.setTypeAction(VT, Action); |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 54 | if (Action == TargetLowering::Promote) { |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 55 | MVT::ValueType PromoteTo; |
| 56 | if (VT == MVT::f32) |
| 57 | PromoteTo = MVT::f64; |
| 58 | else { |
| 59 | unsigned LargerReg = VT+1; |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 60 | while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) { |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 61 | ++LargerReg; |
| 62 | assert(MVT::isInteger((MVT::ValueType)LargerReg) && |
| 63 | "Nothing to promote to??"); |
| 64 | } |
| 65 | PromoteTo = (MVT::ValueType)LargerReg; |
| 66 | } |
| 67 | |
| 68 | assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) && |
| 69 | MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) && |
| 70 | "Can only promote from int->int or fp->fp!"); |
| 71 | assert(VT < PromoteTo && "Must promote to a larger type!"); |
| 72 | TransformToType[VT] = PromoteTo; |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 73 | } else if (Action == TargetLowering::Expand) { |
Nate Begeman | 4ef3b81 | 2005-11-22 01:29:36 +0000 | [diff] [blame] | 74 | assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 && |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 75 | "Cannot expand this type: target must support SOME integer reg!"); |
| 76 | // Expand to the next smaller integer type! |
| 77 | TransformToType[VT] = (MVT::ValueType)(VT-1); |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 82 | /// computeRegisterProperties - Once all of the register classes are added, |
| 83 | /// this allows us to compute derived properties we expose. |
| 84 | void TargetLowering::computeRegisterProperties() { |
Nate Begeman | 6a64861 | 2005-11-29 05:45:29 +0000 | [diff] [blame] | 85 | assert(MVT::LAST_VALUETYPE <= 32 && |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 86 | "Too many value types for ValueTypeActions to hold!"); |
| 87 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 88 | // Everything defaults to one. |
| 89 | for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) |
| 90 | NumElementsForVT[i] = 1; |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 91 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 92 | // Find the largest integer register class. |
| 93 | unsigned LargestIntReg = MVT::i128; |
| 94 | for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) |
| 95 | assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); |
| 96 | |
| 97 | // Every integer value type larger than this largest register takes twice as |
| 98 | // many registers to represent as the previous ValueType. |
| 99 | unsigned ExpandedReg = LargestIntReg; ++LargestIntReg; |
| 100 | for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg) |
| 101 | NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1]; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 102 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 103 | // Inspect all of the ValueType's possible, deciding how to process them. |
| 104 | for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg) |
| 105 | // If we are expanding this type, expand it! |
| 106 | if (getNumElements((MVT::ValueType)IntReg) != 1) |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 107 | SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType, |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 108 | ValueTypeActions); |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 109 | else if (!isTypeLegal((MVT::ValueType)IntReg)) |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 110 | // Otherwise, if we don't have native support, we must promote to a |
| 111 | // larger type. |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 112 | SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this, |
| 113 | TransformToType, ValueTypeActions); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 114 | else |
| 115 | TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg; |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 116 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 117 | // If the target does not have native support for F32, promote it to F64. |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 118 | if (!isTypeLegal(MVT::f32)) |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 119 | SetValueTypeAction(MVT::f32, Promote, *this, |
| 120 | TransformToType, ValueTypeActions); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 121 | else |
| 122 | TransformToType[MVT::f32] = MVT::f32; |
Nate Begeman | 4ef3b81 | 2005-11-22 01:29:36 +0000 | [diff] [blame] | 123 | |
| 124 | // Set MVT::Vector to always be Expanded |
| 125 | SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, |
| 126 | ValueTypeActions); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 127 | |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 128 | assert(isTypeLegal(MVT::f64) && "Target does not support FP?"); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 129 | TransformToType[MVT::f64] = MVT::f64; |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 130 | } |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 131 | |
Evan Cheng | 7226158 | 2005-12-20 06:22:03 +0000 | [diff] [blame] | 132 | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 133 | return NULL; |
| 134 | } |
Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 135 | |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 136 | //===----------------------------------------------------------------------===// |
| 137 | // Optimization Methods |
| 138 | //===----------------------------------------------------------------------===// |
| 139 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 140 | /// ShrinkDemandedConstant - Check to see if the specified operand of the |
| 141 | /// specified instruction is a constant integer. If so, check to see if there |
| 142 | /// are any bits set in the constant that are not demanded. If so, shrink the |
| 143 | /// constant and return true. |
| 144 | bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, |
| 145 | uint64_t Demanded) { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 146 | // FIXME: ISD::SELECT, ISD::SELECT_CC |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 147 | switch(Op.getOpcode()) { |
| 148 | default: break; |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 149 | case ISD::AND: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 150 | case ISD::OR: |
| 151 | case ISD::XOR: |
| 152 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| 153 | if ((~Demanded & C->getValue()) != 0) { |
| 154 | MVT::ValueType VT = Op.getValueType(); |
| 155 | SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0), |
| 156 | DAG.getConstant(Demanded & C->getValue(), |
| 157 | VT)); |
| 158 | return CombineTo(Op, New); |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 159 | } |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 160 | break; |
| 161 | } |
| 162 | return false; |
| 163 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 164 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 165 | /// SimplifyDemandedBits - Look at Op. At this point, we know that only the |
| 166 | /// DemandedMask bits of the result of Op are ever used downstream. If we can |
| 167 | /// use this information to simplify Op, create a new simplified DAG node and |
| 168 | /// return true, returning the original and new nodes in Old and New. Otherwise, |
| 169 | /// analyze the expression and return a mask of KnownOne and KnownZero bits for |
| 170 | /// the expression (used to simplify the caller). The KnownZero/One bits may |
| 171 | /// only be accurate for those bits in the DemandedMask. |
| 172 | bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, |
| 173 | uint64_t &KnownZero, |
| 174 | uint64_t &KnownOne, |
| 175 | TargetLoweringOpt &TLO, |
| 176 | unsigned Depth) const { |
| 177 | KnownZero = KnownOne = 0; // Don't know anything. |
| 178 | // Other users may use these bits. |
| 179 | if (!Op.Val->hasOneUse()) { |
| 180 | if (Depth != 0) { |
| 181 | // If not at the root, Just compute the KnownZero/KnownOne bits to |
| 182 | // simplify things downstream. |
| 183 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); |
| 184 | return false; |
| 185 | } |
| 186 | // If this is the root being simplified, allow it to have multiple uses, |
| 187 | // just set the DemandedMask to all bits. |
| 188 | DemandedMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 189 | } else if (DemandedMask == 0) { |
| 190 | // Not demanding any bits from Op. |
| 191 | if (Op.getOpcode() != ISD::UNDEF) |
| 192 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType())); |
| 193 | return false; |
| 194 | } else if (Depth == 6) { // Limit search depth. |
| 195 | return false; |
| 196 | } |
| 197 | |
| 198 | uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 199 | switch (Op.getOpcode()) { |
| 200 | case ISD::Constant: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 201 | // We know all of the bits for a constant! |
| 202 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask; |
| 203 | KnownZero = ~KnownOne & DemandedMask; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 204 | return false; // Don't fall through, will infinitely loop. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 205 | case ISD::AND: |
Chris Lattner | 81cd355 | 2006-02-27 00:36:27 +0000 | [diff] [blame] | 206 | // If the RHS is a constant, check to see if the LHS would be zero without |
| 207 | // using the bits from the RHS. Below, we use knowledge about the RHS to |
| 208 | // simplify the LHS, here we're using information from the LHS to simplify |
| 209 | // the RHS. |
| 210 | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 211 | uint64_t LHSZero, LHSOne; |
| 212 | ComputeMaskedBits(Op.getOperand(0), DemandedMask, |
| 213 | LHSZero, LHSOne, Depth+1); |
| 214 | // If the LHS already has zeros where RHSC does, this and is dead. |
| 215 | if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask)) |
| 216 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 217 | // If any of the set bits in the RHS are known zero on the LHS, shrink |
| 218 | // the constant. |
| 219 | if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask)) |
| 220 | return true; |
| 221 | } |
| 222 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 223 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 224 | KnownOne, TLO, Depth+1)) |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 225 | return true; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 226 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 227 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero, |
| 228 | KnownZero2, KnownOne2, TLO, Depth+1)) |
| 229 | return true; |
| 230 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 231 | |
| 232 | // If all of the demanded bits are known one on one side, return the other. |
| 233 | // These bits cannot contribute to the result of the 'and'. |
| 234 | if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2)) |
| 235 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 236 | if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero)) |
| 237 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 238 | // If all of the demanded bits in the inputs are known zeros, return zero. |
| 239 | if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask) |
| 240 | return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); |
| 241 | // If the RHS is a constant, see if we can simplify it. |
| 242 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2)) |
| 243 | return true; |
Chris Lattner | 5f0c658 | 2006-02-27 00:22:28 +0000 | [diff] [blame] | 244 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 245 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 246 | KnownOne &= KnownOne2; |
| 247 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 248 | KnownZero |= KnownZero2; |
| 249 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 250 | case ISD::OR: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 251 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 252 | KnownOne, TLO, Depth+1)) |
| 253 | return true; |
| 254 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 255 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne, |
| 256 | KnownZero2, KnownOne2, TLO, Depth+1)) |
| 257 | return true; |
| 258 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 259 | |
| 260 | // If all of the demanded bits are known zero on one side, return the other. |
| 261 | // These bits cannot contribute to the result of the 'or'. |
Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 262 | if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2)) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 263 | return TLO.CombineTo(Op, Op.getOperand(0)); |
Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 264 | if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne)) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 265 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 266 | // If all of the potentially set bits on one side are known to be set on |
| 267 | // the other side, just use the 'other' side. |
| 268 | if ((DemandedMask & (~KnownZero) & KnownOne2) == |
| 269 | (DemandedMask & (~KnownZero))) |
| 270 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 271 | if ((DemandedMask & (~KnownZero2) & KnownOne) == |
| 272 | (DemandedMask & (~KnownZero2))) |
| 273 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 274 | // If the RHS is a constant, see if we can simplify it. |
| 275 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 276 | return true; |
| 277 | |
| 278 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 279 | KnownZero &= KnownZero2; |
| 280 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 281 | KnownOne |= KnownOne2; |
| 282 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 283 | case ISD::XOR: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 284 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 285 | KnownOne, TLO, Depth+1)) |
| 286 | return true; |
| 287 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 288 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2, |
| 289 | KnownOne2, TLO, Depth+1)) |
| 290 | return true; |
| 291 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 292 | |
| 293 | // If all of the demanded bits are known zero on one side, return the other. |
| 294 | // These bits cannot contribute to the result of the 'xor'. |
| 295 | if ((DemandedMask & KnownZero) == DemandedMask) |
| 296 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 297 | if ((DemandedMask & KnownZero2) == DemandedMask) |
| 298 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 299 | |
| 300 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 301 | KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 302 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 303 | KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 304 | |
| 305 | // If all of the unknown bits are known to be zero on one side or the other |
| 306 | // (but not both) turn this into an *inclusive* or. |
| 307 | // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| 308 | if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut)) |
| 309 | if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits) |
| 310 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(), |
| 311 | Op.getOperand(0), |
| 312 | Op.getOperand(1))); |
| 313 | // If all of the demanded bits on one side are known, and all of the set |
| 314 | // bits on that side are also known to be set on the other side, turn this |
| 315 | // into an AND, as we know the bits will be cleared. |
| 316 | // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
| 317 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known |
| 318 | if ((KnownOne & KnownOne2) == KnownOne) { |
| 319 | MVT::ValueType VT = Op.getValueType(); |
| 320 | SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT); |
| 321 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0), |
| 322 | ANDC)); |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | // If the RHS is a constant, see if we can simplify it. |
| 327 | // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. |
| 328 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 329 | return true; |
| 330 | |
| 331 | KnownZero = KnownZeroOut; |
| 332 | KnownOne = KnownOneOut; |
| 333 | break; |
| 334 | case ISD::SETCC: |
| 335 | // If we know the result of a setcc has the top bits zero, use this info. |
| 336 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| 337 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 338 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 339 | case ISD::SELECT: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 340 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero, |
| 341 | KnownOne, TLO, Depth+1)) |
| 342 | return true; |
| 343 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2, |
| 344 | KnownOne2, TLO, Depth+1)) |
| 345 | return true; |
| 346 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 347 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 348 | |
| 349 | // If the operands are constants, see if we can simplify them. |
| 350 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 351 | return true; |
| 352 | |
| 353 | // Only known if known in both the LHS and RHS. |
| 354 | KnownOne &= KnownOne2; |
| 355 | KnownZero &= KnownZero2; |
| 356 | break; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 357 | case ISD::SELECT_CC: |
| 358 | if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero, |
| 359 | KnownOne, TLO, Depth+1)) |
| 360 | return true; |
| 361 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2, |
| 362 | KnownOne2, TLO, Depth+1)) |
| 363 | return true; |
| 364 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 365 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 366 | |
| 367 | // If the operands are constants, see if we can simplify them. |
| 368 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 369 | return true; |
| 370 | |
| 371 | // Only known if known in both the LHS and RHS. |
| 372 | KnownOne &= KnownOne2; |
| 373 | KnownZero &= KnownZero2; |
| 374 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 375 | case ISD::SHL: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 376 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 377 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(), |
| 378 | KnownZero, KnownOne, TLO, Depth+1)) |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 379 | return true; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 380 | KnownZero <<= SA->getValue(); |
| 381 | KnownOne <<= SA->getValue(); |
| 382 | KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 383 | } |
| 384 | break; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 385 | case ISD::SRL: |
| 386 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 387 | MVT::ValueType VT = Op.getValueType(); |
| 388 | unsigned ShAmt = SA->getValue(); |
| 389 | |
| 390 | // Compute the new bits that are at the top now. |
| 391 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 392 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| 393 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 394 | |
| 395 | if (SimplifyDemandedBits(Op.getOperand(0), |
| 396 | (DemandedMask << ShAmt) & TypeMask, |
| 397 | KnownZero, KnownOne, TLO, Depth+1)) |
| 398 | return true; |
| 399 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 400 | KnownZero &= TypeMask; |
| 401 | KnownOne &= TypeMask; |
| 402 | KnownZero >>= ShAmt; |
| 403 | KnownOne >>= ShAmt; |
| 404 | KnownZero |= HighBits; // high bits known zero. |
| 405 | } |
| 406 | break; |
| 407 | case ISD::SRA: |
| 408 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 409 | MVT::ValueType VT = Op.getValueType(); |
| 410 | unsigned ShAmt = SA->getValue(); |
| 411 | |
| 412 | // Compute the new bits that are at the top now. |
| 413 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 414 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| 415 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 416 | |
| 417 | if (SimplifyDemandedBits(Op.getOperand(0), |
| 418 | (DemandedMask << ShAmt) & TypeMask, |
| 419 | KnownZero, KnownOne, TLO, Depth+1)) |
| 420 | return true; |
| 421 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 422 | KnownZero &= TypeMask; |
| 423 | KnownOne &= TypeMask; |
| 424 | KnownZero >>= SA->getValue(); |
| 425 | KnownOne >>= SA->getValue(); |
| 426 | |
| 427 | // Handle the sign bits. |
| 428 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| 429 | SignBit >>= SA->getValue(); // Adjust to where it is now in the mask. |
| 430 | |
| 431 | // If the input sign bit is known to be zero, or if none of the top bits |
| 432 | // are demanded, turn this into an unsigned shift right. |
| 433 | if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) { |
| 434 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0), |
| 435 | Op.getOperand(1))); |
| 436 | } else if (KnownOne & SignBit) { // New bits are known one. |
| 437 | KnownOne |= HighBits; |
| 438 | } |
| 439 | } |
| 440 | break; |
| 441 | case ISD::SIGN_EXTEND_INREG: { |
| 442 | MVT::ValueType VT = Op.getValueType(); |
| 443 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 444 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 445 | // Sign extension. Compute the demanded bits in the result that are not |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 446 | // present in the input. |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 447 | uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 448 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 449 | // If none of the extended bits are demanded, eliminate the sextinreg. |
| 450 | if (NewBits == 0) |
| 451 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 452 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 453 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); |
| 454 | int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT); |
| 455 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 456 | // Since the sign extended bits are demanded, we know that the sign |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 457 | // bit is demanded. |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 458 | InputDemandedBits |= InSignBit; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 459 | |
| 460 | if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, |
| 461 | KnownZero, KnownOne, TLO, Depth+1)) |
| 462 | return true; |
| 463 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 464 | |
| 465 | // If the sign bit of the input is known set or clear, then we know the |
| 466 | // top bits of the result. |
| 467 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 468 | // If the input sign bit is known zero, convert this into a zero extension. |
| 469 | if (KnownZero & InSignBit) |
| 470 | return TLO.CombineTo(Op, |
| 471 | TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT)); |
| 472 | |
| 473 | if (KnownOne & InSignBit) { // Input sign bit known set |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 474 | KnownOne |= NewBits; |
| 475 | KnownZero &= ~NewBits; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 476 | } else { // Input sign bit unknown |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 477 | KnownZero &= ~NewBits; |
| 478 | KnownOne &= ~NewBits; |
| 479 | } |
| 480 | break; |
| 481 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 482 | case ISD::CTTZ: |
| 483 | case ISD::CTLZ: |
| 484 | case ISD::CTPOP: { |
| 485 | MVT::ValueType VT = Op.getValueType(); |
| 486 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| 487 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| 488 | KnownOne = 0; |
| 489 | break; |
| 490 | } |
| 491 | case ISD::ZEXTLOAD: { |
| 492 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT(); |
| 493 | KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask; |
| 494 | break; |
| 495 | } |
| 496 | case ISD::ZERO_EXTEND: { |
| 497 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 498 | |
| 499 | // If none of the top bits are demanded, convert this into an any_extend. |
| 500 | uint64_t NewBits = (~InMask) & DemandedMask; |
| 501 | if (NewBits == 0) |
| 502 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, |
| 503 | Op.getValueType(), |
| 504 | Op.getOperand(0))); |
| 505 | |
| 506 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 507 | KnownZero, KnownOne, TLO, Depth+1)) |
| 508 | return true; |
| 509 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 510 | KnownZero |= NewBits; |
| 511 | break; |
| 512 | } |
| 513 | case ISD::SIGN_EXTEND: { |
| 514 | MVT::ValueType InVT = Op.getOperand(0).getValueType(); |
| 515 | uint64_t InMask = MVT::getIntVTBitMask(InVT); |
| 516 | uint64_t InSignBit = MVT::getIntVTSignBit(InVT); |
| 517 | uint64_t NewBits = (~InMask) & DemandedMask; |
| 518 | |
| 519 | // If none of the top bits are demanded, convert this into an any_extend. |
| 520 | if (NewBits == 0) |
| 521 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(), |
| 522 | Op.getOperand(0))); |
| 523 | |
| 524 | // Since some of the sign extended bits are demanded, we know that the sign |
| 525 | // bit is demanded. |
| 526 | uint64_t InDemandedBits = DemandedMask & InMask; |
| 527 | InDemandedBits |= InSignBit; |
| 528 | |
| 529 | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, |
| 530 | KnownOne, TLO, Depth+1)) |
| 531 | return true; |
| 532 | |
| 533 | // If the sign bit is known zero, convert this to a zero extend. |
| 534 | if (KnownZero & InSignBit) |
| 535 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, |
| 536 | Op.getValueType(), |
| 537 | Op.getOperand(0))); |
| 538 | |
| 539 | // If the sign bit is known one, the top bits match. |
| 540 | if (KnownOne & InSignBit) { |
| 541 | KnownOne |= NewBits; |
| 542 | KnownZero &= ~NewBits; |
| 543 | } else { // Otherwise, top bits aren't known. |
| 544 | KnownOne &= ~NewBits; |
| 545 | KnownZero &= ~NewBits; |
| 546 | } |
| 547 | break; |
| 548 | } |
| 549 | case ISD::ANY_EXTEND: { |
| 550 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 551 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 552 | KnownZero, KnownOne, TLO, Depth+1)) |
| 553 | return true; |
| 554 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 555 | break; |
| 556 | } |
| 557 | case ISD::AssertZext: { |
| 558 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 559 | uint64_t InMask = MVT::getIntVTBitMask(VT); |
| 560 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 561 | KnownZero, KnownOne, TLO, Depth+1)) |
| 562 | return true; |
| 563 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 564 | KnownZero |= ~InMask & DemandedMask; |
| 565 | break; |
| 566 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 567 | case ISD::ADD: |
| 568 | if (ConstantSDNode *AA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 569 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero, |
| 570 | KnownOne, TLO, Depth+1)) |
| 571 | return true; |
| 572 | // Compute the KnownOne/KnownZero masks for the constant, so we can set |
| 573 | // KnownZero appropriately if we're adding a constant that has all low |
| 574 | // bits cleared. |
| 575 | ComputeMaskedBits(Op.getOperand(1), |
| 576 | MVT::getIntVTBitMask(Op.getValueType()), |
| 577 | KnownZero2, KnownOne2, Depth+1); |
| 578 | |
| 579 | uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), |
| 580 | CountTrailingZeros_64(~KnownZero2)); |
| 581 | KnownZero = (1ULL << KnownZeroOut) - 1; |
| 582 | KnownOne = 0; |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 583 | |
| 584 | SDOperand SH = Op.getOperand(0); |
| 585 | // fold (add (shl x, c1), (shl c2, c1)) -> (shl (add x, c2), c1) |
| 586 | if (KnownZero && SH.getOpcode() == ISD::SHL && SH.Val->hasOneUse() && |
| 587 | Op.Val->hasOneUse()) { |
| 588 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(SH.getOperand(1))) { |
| 589 | MVT::ValueType VT = Op.getValueType(); |
| 590 | unsigned ShiftAmt = SA->getValue(); |
| 591 | uint64_t AddAmt = AA->getValue(); |
| 592 | uint64_t AddShr = AddAmt >> ShiftAmt; |
| 593 | if (AddAmt == (AddShr << ShiftAmt)) { |
| 594 | SDOperand ADD = TLO.DAG.getNode(ISD::ADD, VT, SH.getOperand(0), |
| 595 | TLO.DAG.getConstant(AddShr, VT)); |
| 596 | SDOperand SHL = TLO.DAG.getNode(ISD::SHL, VT, ADD,SH.getOperand(1)); |
| 597 | return TLO.CombineTo(Op, SHL); |
| 598 | } |
| 599 | } |
| 600 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 601 | } |
| 602 | break; |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 603 | case ISD::SUB: |
| 604 | // Just use ComputeMaskedBits to compute output bits, there are no |
| 605 | // simplifications that can be done here, and sub always demands all input |
| 606 | // bits. |
| 607 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); |
| 608 | break; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 609 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 610 | |
| 611 | // If we know the value of all of the demanded bits, return this as a |
| 612 | // constant. |
| 613 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) |
| 614 | return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); |
| 615 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 616 | return false; |
| 617 | } |
| 618 | |
| 619 | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| 620 | /// this predicate to simplify operations downstream. Mask is known to be zero |
| 621 | /// for bits that V cannot have. |
| 622 | bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask, |
| 623 | unsigned Depth) const { |
| 624 | uint64_t KnownZero, KnownOne; |
| 625 | ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| 626 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 627 | return (KnownZero & Mask) == Mask; |
| 628 | } |
| 629 | |
| 630 | /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| 631 | /// known to be either zero or one and return them in the KnownZero/KnownOne |
| 632 | /// bitsets. This code only analyzes bits in Mask, in order to short-circuit |
| 633 | /// processing. |
| 634 | void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask, |
| 635 | uint64_t &KnownZero, uint64_t &KnownOne, |
| 636 | unsigned Depth) const { |
| 637 | KnownZero = KnownOne = 0; // Don't know anything. |
| 638 | if (Depth == 6 || Mask == 0) |
| 639 | return; // Limit search depth. |
| 640 | |
| 641 | uint64_t KnownZero2, KnownOne2; |
| 642 | |
| 643 | switch (Op.getOpcode()) { |
| 644 | case ISD::Constant: |
| 645 | // We know all of the bits for a constant! |
| 646 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask; |
| 647 | KnownZero = ~KnownOne & Mask; |
| 648 | return; |
| 649 | case ISD::AND: |
| 650 | // If either the LHS or the RHS are Zero, the result is zero. |
| 651 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 652 | Mask &= ~KnownZero; |
| 653 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 654 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 655 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 656 | |
| 657 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 658 | KnownOne &= KnownOne2; |
| 659 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 660 | KnownZero |= KnownZero2; |
| 661 | return; |
| 662 | case ISD::OR: |
| 663 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 664 | Mask &= ~KnownOne; |
| 665 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 666 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 667 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 668 | |
| 669 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 670 | KnownZero &= KnownZero2; |
| 671 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 672 | KnownOne |= KnownOne2; |
| 673 | return; |
| 674 | case ISD::XOR: { |
| 675 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 676 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 677 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 678 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 679 | |
| 680 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 681 | uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 682 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 683 | KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 684 | KnownZero = KnownZeroOut; |
| 685 | return; |
| 686 | } |
| 687 | case ISD::SELECT: |
| 688 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); |
| 689 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); |
| 690 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 691 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 692 | |
| 693 | // Only known if known in both the LHS and RHS. |
| 694 | KnownOne &= KnownOne2; |
| 695 | KnownZero &= KnownZero2; |
| 696 | return; |
| 697 | case ISD::SELECT_CC: |
| 698 | ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); |
| 699 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); |
| 700 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 701 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 702 | |
| 703 | // Only known if known in both the LHS and RHS. |
| 704 | KnownOne &= KnownOne2; |
| 705 | KnownZero &= KnownZero2; |
| 706 | return; |
| 707 | case ISD::SETCC: |
| 708 | // If we know the result of a setcc has the top bits zero, use this info. |
| 709 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| 710 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 711 | return; |
| 712 | case ISD::SHL: |
| 713 | // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| 714 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 715 | Mask >>= SA->getValue(); |
| 716 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 717 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 718 | KnownZero <<= SA->getValue(); |
| 719 | KnownOne <<= SA->getValue(); |
| 720 | KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
| 721 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 722 | return; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 723 | case ISD::SRL: |
| 724 | // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| 725 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 726 | uint64_t HighBits = (1ULL << SA->getValue())-1; |
| 727 | HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue(); |
| 728 | Mask <<= SA->getValue(); |
| 729 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 730 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 731 | KnownZero >>= SA->getValue(); |
| 732 | KnownOne >>= SA->getValue(); |
| 733 | KnownZero |= HighBits; // high bits known zero. |
| 734 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 735 | return; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 736 | case ISD::SRA: |
| 737 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 738 | uint64_t HighBits = (1ULL << SA->getValue())-1; |
| 739 | HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue(); |
| 740 | Mask <<= SA->getValue(); |
| 741 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 742 | assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); |
| 743 | KnownZero >>= SA->getValue(); |
| 744 | KnownOne >>= SA->getValue(); |
| 745 | |
| 746 | // Handle the sign bits. |
| 747 | uint64_t SignBit = 1ULL << (MVT::getSizeInBits(Op.getValueType())-1); |
| 748 | SignBit >>= SA->getValue(); // Adjust to where it is now in the mask. |
| 749 | |
| 750 | if (KnownZero & SignBit) { // New bits are known zero. |
| 751 | KnownZero |= HighBits; |
| 752 | } else if (KnownOne & SignBit) { // New bits are known one. |
| 753 | KnownOne |= HighBits; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 754 | } |
| 755 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 756 | return; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 757 | case ISD::SIGN_EXTEND_INREG: { |
| 758 | MVT::ValueType VT = Op.getValueType(); |
| 759 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 760 | |
| 761 | // Sign extension. Compute the demanded bits in the result that are not |
| 762 | // present in the input. |
| 763 | uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask; |
| 764 | |
| 765 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); |
| 766 | int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT); |
| 767 | |
| 768 | // If the sign extended bits are demanded, we know that the sign |
| 769 | // bit is demanded. |
| 770 | if (NewBits) |
| 771 | InputDemandedBits |= InSignBit; |
| 772 | |
| 773 | ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, |
| 774 | KnownZero, KnownOne, Depth+1); |
| 775 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 776 | |
| 777 | // If the sign bit of the input is known set or clear, then we know the |
| 778 | // top bits of the result. |
| 779 | if (KnownZero & InSignBit) { // Input sign bit known clear |
| 780 | KnownZero |= NewBits; |
| 781 | KnownOne &= ~NewBits; |
| 782 | } else if (KnownOne & InSignBit) { // Input sign bit known set |
| 783 | KnownOne |= NewBits; |
| 784 | KnownZero &= ~NewBits; |
| 785 | } else { // Input sign bit unknown |
| 786 | KnownZero &= ~NewBits; |
| 787 | KnownOne &= ~NewBits; |
| 788 | } |
| 789 | return; |
| 790 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 791 | case ISD::CTTZ: |
| 792 | case ISD::CTLZ: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 793 | case ISD::CTPOP: { |
| 794 | MVT::ValueType VT = Op.getValueType(); |
| 795 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| 796 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| 797 | KnownOne = 0; |
| 798 | return; |
| 799 | } |
| 800 | case ISD::ZEXTLOAD: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 801 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT(); |
| 802 | KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 803 | return; |
| 804 | } |
| 805 | case ISD::ZERO_EXTEND: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 806 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 807 | uint64_t NewBits = (~InMask) & Mask; |
| 808 | ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| 809 | KnownOne, Depth+1); |
| 810 | KnownZero |= NewBits & Mask; |
| 811 | KnownOne &= ~NewBits; |
| 812 | return; |
| 813 | } |
| 814 | case ISD::SIGN_EXTEND: { |
| 815 | MVT::ValueType InVT = Op.getOperand(0).getValueType(); |
| 816 | unsigned InBits = MVT::getSizeInBits(InVT); |
| 817 | uint64_t InMask = MVT::getIntVTBitMask(InVT); |
| 818 | uint64_t InSignBit = 1ULL << (InBits-1); |
| 819 | uint64_t NewBits = (~InMask) & Mask; |
| 820 | uint64_t InDemandedBits = Mask & InMask; |
| 821 | |
| 822 | // If any of the sign extended bits are demanded, we know that the sign |
| 823 | // bit is demanded. |
| 824 | if (NewBits & Mask) |
| 825 | InDemandedBits |= InSignBit; |
| 826 | |
| 827 | ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, |
| 828 | KnownOne, Depth+1); |
| 829 | // If the sign bit is known zero or one, the top bits match. |
| 830 | if (KnownZero & InSignBit) { |
| 831 | KnownZero |= NewBits; |
| 832 | KnownOne &= ~NewBits; |
| 833 | } else if (KnownOne & InSignBit) { |
| 834 | KnownOne |= NewBits; |
| 835 | KnownZero &= ~NewBits; |
| 836 | } else { // Otherwise, top bits aren't known. |
| 837 | KnownOne &= ~NewBits; |
| 838 | KnownZero &= ~NewBits; |
| 839 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 840 | return; |
| 841 | } |
| 842 | case ISD::ANY_EXTEND: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 843 | MVT::ValueType VT = Op.getOperand(0).getValueType(); |
| 844 | ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT), |
| 845 | KnownZero, KnownOne, Depth+1); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 846 | return; |
| 847 | } |
| 848 | case ISD::AssertZext: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 849 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 850 | uint64_t InMask = MVT::getIntVTBitMask(VT); |
| 851 | ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| 852 | KnownOne, Depth+1); |
| 853 | KnownZero |= (~InMask) & Mask; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 854 | return; |
| 855 | } |
| 856 | case ISD::ADD: { |
| 857 | // If either the LHS or the RHS are Zero, the result is zero. |
| 858 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 859 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 860 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 861 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 862 | |
| 863 | // Output known-0 bits are known if clear or set in both the low clear bits |
| 864 | // common to both LHS & RHS; |
| 865 | uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), |
| 866 | CountTrailingZeros_64(~KnownZero2)); |
| 867 | |
| 868 | KnownZero = (1ULL << KnownZeroOut) - 1; |
| 869 | KnownOne = 0; |
| 870 | return; |
| 871 | } |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 872 | case ISD::SUB: { |
| 873 | ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)); |
| 874 | if (!CLHS) return; |
| 875 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 876 | // We know that the top bits of C-X are clear if X contains less bits |
| 877 | // than C (i.e. no wrap-around can happen). For example, 20-X is |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 878 | // positive if we can prove that X is >= 0 and < 16. |
| 879 | MVT::ValueType VT = CLHS->getValueType(0); |
| 880 | if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear |
| 881 | unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1); |
| 882 | uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit |
| 883 | MaskV = ~MaskV & MVT::getIntVTBitMask(VT); |
| 884 | ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1); |
| 885 | |
| 886 | // If all of the MaskV bits are known to be zero, then we know the output |
| 887 | // top bits are zero, because we now know that the output is from [0-C]. |
| 888 | if ((KnownZero & MaskV) == MaskV) { |
| 889 | unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue()); |
| 890 | KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero. |
| 891 | KnownOne = 0; // No one bits known. |
| 892 | } else { |
| 893 | KnownOne = KnownOne = 0; // Otherwise, nothing known. |
| 894 | } |
| 895 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 896 | return; |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 897 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 898 | default: |
| 899 | // Allow the target to implement this method for its nodes. |
| 900 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 901 | computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne); |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 902 | return; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 903 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 904 | } |
| 905 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 906 | /// computeMaskedBitsForTargetNode - Determine which of the bits specified |
| 907 | /// in Mask are known to be either zero or one and return them in the |
| 908 | /// KnownZero/KnownOne bitsets. |
| 909 | void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| 910 | uint64_t Mask, |
| 911 | uint64_t &KnownZero, |
| 912 | uint64_t &KnownOne, |
| 913 | unsigned Depth) const { |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 914 | assert(Op.getOpcode() >= ISD::BUILTIN_OP_END && |
| 915 | "Should use MaskedValueIsZero if you don't know whether Op" |
| 916 | " is a target node!"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 917 | KnownZero = 0; |
| 918 | KnownOne = 0; |
Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 919 | } |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 920 | |
Chris Lattner | 00ffed0 | 2006-03-01 04:52:55 +0000 | [diff] [blame^] | 921 | SDOperand TargetLowering:: |
| 922 | PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { |
| 923 | // Default implementation: no optimization. |
| 924 | return SDOperand(); |
| 925 | } |
| 926 | |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 927 | //===----------------------------------------------------------------------===// |
| 928 | // Inline Assembler Implementation Methods |
| 929 | //===----------------------------------------------------------------------===// |
| 930 | |
| 931 | TargetLowering::ConstraintType |
| 932 | TargetLowering::getConstraintType(char ConstraintLetter) const { |
| 933 | // FIXME: lots more standard ones to handle. |
| 934 | switch (ConstraintLetter) { |
| 935 | default: return C_Unknown; |
| 936 | case 'r': return C_RegisterClass; |
Chris Lattner | 2b7401e | 2006-02-24 01:10:46 +0000 | [diff] [blame] | 937 | case 'm': // memory |
| 938 | case 'o': // offsetable |
| 939 | case 'V': // not offsetable |
| 940 | return C_Memory; |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 941 | case 'i': // Simple Integer or Relocatable Constant |
| 942 | case 'n': // Simple Integer |
| 943 | case 's': // Relocatable Constant |
| 944 | case 'I': // Target registers. |
| 945 | case 'J': |
| 946 | case 'K': |
| 947 | case 'L': |
| 948 | case 'M': |
| 949 | case 'N': |
| 950 | case 'O': |
Chris Lattner | 2b7401e | 2006-02-24 01:10:46 +0000 | [diff] [blame] | 951 | case 'P': |
| 952 | return C_Other; |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 953 | } |
| 954 | } |
| 955 | |
| 956 | bool TargetLowering::isOperandValidForConstraint(SDOperand Op, |
| 957 | char ConstraintLetter) { |
| 958 | switch (ConstraintLetter) { |
| 959 | default: return false; |
| 960 | case 'i': // Simple Integer or Relocatable Constant |
| 961 | case 'n': // Simple Integer |
| 962 | case 's': // Relocatable Constant |
| 963 | return true; // FIXME: not right. |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 968 | std::vector<unsigned> TargetLowering:: |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 969 | getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| 970 | MVT::ValueType VT) const { |
| 971 | return std::vector<unsigned>(); |
| 972 | } |
| 973 | |
| 974 | |
| 975 | std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: |
Chris Lattner | 4217ca8dc | 2006-02-21 23:11:00 +0000 | [diff] [blame] | 976 | getRegForInlineAsmConstraint(const std::string &Constraint, |
| 977 | MVT::ValueType VT) const { |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 978 | if (Constraint[0] != '{') |
| 979 | return std::pair<unsigned, const TargetRegisterClass*>(0, 0); |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 980 | assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); |
| 981 | |
| 982 | // Remove the braces from around the name. |
| 983 | std::string RegName(Constraint.begin()+1, Constraint.end()-1); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 984 | |
| 985 | // Figure out which register class contains this reg. |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 986 | const MRegisterInfo *RI = TM.getRegisterInfo(); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 987 | for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), |
| 988 | E = RI->regclass_end(); RCI != E; ++RCI) { |
| 989 | const TargetRegisterClass *RC = *RCI; |
Chris Lattner | b3befd4 | 2006-02-22 23:00:51 +0000 | [diff] [blame] | 990 | |
| 991 | // If none of the the value types for this register class are valid, we |
| 992 | // can't use it. For example, 64-bit reg classes on 32-bit targets. |
| 993 | bool isLegal = false; |
| 994 | for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); |
| 995 | I != E; ++I) { |
| 996 | if (isTypeLegal(*I)) { |
| 997 | isLegal = true; |
| 998 | break; |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | if (!isLegal) continue; |
| 1003 | |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1004 | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); |
| 1005 | I != E; ++I) { |
Chris Lattner | b3befd4 | 2006-02-22 23:00:51 +0000 | [diff] [blame] | 1006 | if (StringsEqualNoCase(RegName, RI->get(*I).Name)) |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1007 | return std::make_pair(*I, RC); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1008 | } |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1009 | } |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 1010 | |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1011 | return std::pair<unsigned, const TargetRegisterClass*>(0, 0); |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1012 | } |