blob: 6bbe9ab46324a8fb46ea58c56c28bfad1808a7d9 [file] [log] [blame]
Zhou Shengfd43dcf2007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengfd43dcf2007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencer5d0d05c2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengfd43dcf2007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
Reid Spencer9d6c9192007-02-24 03:58:46 +000015#define DEBUG_TYPE "apint"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000016#include "llvm/ADT/APInt.h"
Daniel Dunbar689ad6e2009-08-13 02:33:34 +000017#include "llvm/ADT/StringRef.h"
Ted Kremeneke420deb2008-01-19 04:23:33 +000018#include "llvm/ADT/FoldingSet.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Reid Spencer9d6c9192007-02-24 03:58:46 +000020#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000021#include "llvm/Support/ErrorHandling.h"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000022#include "llvm/Support/MathExtras.h"
Chris Lattner944fac72008-08-23 22:23:09 +000023#include "llvm/Support/raw_ostream.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000024#include <cmath>
Jeff Cohen09dfd8e2007-03-20 20:42:36 +000025#include <limits>
Zhou Shenga3832fd2007-02-07 06:14:53 +000026#include <cstring>
Zhou Shengfd43dcf2007-02-06 03:00:16 +000027#include <cstdlib>
28using namespace llvm;
29
Reid Spencer5d0d05c2007-02-25 19:32:03 +000030/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000032inline static uint64_t* getClearedMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000033 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
Zhou Sheng353815d2007-02-06 06:04:53 +000037}
38
Eric Christopherd37eda82009-08-21 04:06:45 +000039/// A utility function for allocating memory and checking for allocation
Reid Spencer5d0d05c2007-02-25 19:32:03 +000040/// failure. The content is not zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000041inline static uint64_t* getMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000042 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
45}
46
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000047/// A utility function that converts a character to a digit.
48inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000049 unsigned r;
50
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000051 if (radix == 16) {
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000052 r = cdigit - '0';
53 if (r <= 9)
54 return r;
55
56 r = cdigit - 'A';
57 if (r <= 5)
58 return r + 10;
59
60 r = cdigit - 'a';
61 if (r <= 5)
62 return r + 10;
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000063 }
64
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000065 r = cdigit - '0';
66 if (r < radix)
67 return r;
68
69 return -1U;
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000070}
71
72
Chris Lattner455e9ab2009-01-21 18:09:24 +000073void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000074 pVal = getClearedMemory(getNumWords());
75 pVal[0] = val;
Eric Christopherd37eda82009-08-21 04:06:45 +000076 if (isSigned && int64_t(val) < 0)
Chris Lattner98f8ccf2008-08-20 17:02:31 +000077 for (unsigned i = 1; i < getNumWords(); ++i)
78 pVal[i] = -1ULL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +000079}
80
Chris Lattner119c30b2008-10-11 22:07:19 +000081void APInt::initSlowCase(const APInt& that) {
82 pVal = getMemory(getNumWords());
83 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
84}
85
86
Chris Lattner455e9ab2009-01-21 18:09:24 +000087APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner944fac72008-08-23 22:23:09 +000088 : BitWidth(numBits), VAL(0) {
Erick Tryzelaarbb975312009-08-21 03:15:14 +000089 assert(BitWidth && "Bitwidth too small");
Zhou Shengfd43dcf2007-02-06 03:00:16 +000090 assert(bigVal && "Null pointer detected!");
91 if (isSingleWord())
Reid Spencer610fad82007-02-24 10:01:42 +000092 VAL = bigVal[0];
Zhou Shengfd43dcf2007-02-06 03:00:16 +000093 else {
Reid Spencer610fad82007-02-24 10:01:42 +000094 // Get memory, cleared to 0
95 pVal = getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
Chris Lattner455e9ab2009-01-21 18:09:24 +000097 unsigned words = std::min<unsigned>(numWords, getNumWords());
Reid Spencer610fad82007-02-24 10:01:42 +000098 // Copy the words from bigVal to pVal
99 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000100 }
Reid Spencer610fad82007-02-24 10:01:42 +0000101 // Make sure unused high bits are cleared
102 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000103}
104
Benjamin Kramer38e59892010-07-14 22:38:02 +0000105APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
Reid Spencer385f7542007-02-21 03:55:44 +0000106 : BitWidth(numbits), VAL(0) {
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000107 assert(BitWidth && "Bitwidth too small");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000108 fromString(numbits, Str, radix);
Zhou Shenga3832fd2007-02-07 06:14:53 +0000109}
110
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000111APInt& APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer9ac44112007-02-26 23:38:21 +0000112 // Don't do anything for X = X
113 if (this == &RHS)
114 return *this;
115
Reid Spencer9ac44112007-02-26 23:38:21 +0000116 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000117 // assume same bit-width single-word case is already handled
118 assert(!isSingleWord());
119 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Reid Spencer9ac44112007-02-26 23:38:21 +0000120 return *this;
121 }
122
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000123 if (isSingleWord()) {
124 // assume case where both are single words is already handled
125 assert(!RHS.isSingleWord());
126 VAL = 0;
127 pVal = getMemory(RHS.getNumWords());
128 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Eric Christopherd37eda82009-08-21 04:06:45 +0000129 } else if (getNumWords() == RHS.getNumWords())
Reid Spencer9ac44112007-02-26 23:38:21 +0000130 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
131 else if (RHS.isSingleWord()) {
132 delete [] pVal;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000133 VAL = RHS.VAL;
Reid Spencer9ac44112007-02-26 23:38:21 +0000134 } else {
135 delete [] pVal;
136 pVal = getMemory(RHS.getNumWords());
137 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
138 }
139 BitWidth = RHS.BitWidth;
140 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000141}
142
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000143APInt& APInt::operator=(uint64_t RHS) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000144 if (isSingleWord())
Reid Spencere81d2da2007-02-16 22:36:51 +0000145 VAL = RHS;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000146 else {
147 pVal[0] = RHS;
Reid Spencera58f0582007-02-18 20:09:41 +0000148 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000149 }
Reid Spencer9ac44112007-02-26 23:38:21 +0000150 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000151}
152
Ted Kremeneke420deb2008-01-19 04:23:33 +0000153/// Profile - This method 'profiles' an APInt for use with FoldingSet.
154void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremeneka795aca2008-02-19 20:50:41 +0000155 ID.AddInteger(BitWidth);
Eric Christopherd37eda82009-08-21 04:06:45 +0000156
Ted Kremeneke420deb2008-01-19 04:23:33 +0000157 if (isSingleWord()) {
158 ID.AddInteger(VAL);
159 return;
160 }
161
Chris Lattner455e9ab2009-01-21 18:09:24 +0000162 unsigned NumWords = getNumWords();
Ted Kremeneke420deb2008-01-19 04:23:33 +0000163 for (unsigned i = 0; i < NumWords; ++i)
164 ID.AddInteger(pVal[i]);
165}
166
Eric Christopherd37eda82009-08-21 04:06:45 +0000167/// add_1 - This function adds a single "digit" integer, y, to the multiple
Reid Spenceraf0e9562007-02-18 18:38:44 +0000168/// "digit" integer array, x[]. x[] is modified to reflect the addition and
169/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000170/// @returns the carry of the addition.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000171static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
172 for (unsigned i = 0; i < len; ++i) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000173 dest[i] = y + x[i];
174 if (dest[i] < y)
Reid Spencer610fad82007-02-24 10:01:42 +0000175 y = 1; // Carry one to next digit.
Reid Spencerf2c521c2007-02-18 06:39:42 +0000176 else {
Reid Spencer610fad82007-02-24 10:01:42 +0000177 y = 0; // No need to carry so exit early
Reid Spencerf2c521c2007-02-18 06:39:42 +0000178 break;
179 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000180 }
Reid Spencerf2c521c2007-02-18 06:39:42 +0000181 return y;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000182}
183
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000184/// @brief Prefix increment operator. Increments the APInt by one.
185APInt& APInt::operator++() {
Eric Christopherd37eda82009-08-21 04:06:45 +0000186 if (isSingleWord())
Reid Spencere81d2da2007-02-16 22:36:51 +0000187 ++VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000188 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000189 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000190 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000191}
192
Eric Christopherd37eda82009-08-21 04:06:45 +0000193/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
194/// the multi-digit integer array, x[], propagating the borrowed 1 value until
Reid Spenceraf0e9562007-02-18 18:38:44 +0000195/// no further borrowing is neeeded or it runs out of "digits" in x. The result
196/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
197/// In other words, if y > x then this function returns 1, otherwise 0.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000198/// @returns the borrow out of the subtraction
Chris Lattner455e9ab2009-01-21 18:09:24 +0000199static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
200 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000201 uint64_t X = x[i];
Reid Spencerf2c521c2007-02-18 06:39:42 +0000202 x[i] -= y;
Eric Christopherd37eda82009-08-21 04:06:45 +0000203 if (y > X)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000204 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer5e0a8512007-02-17 03:16:00 +0000205 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000206 y = 0; // No need to borrow
207 break; // Remaining digits are unchanged so exit early
Reid Spencer5e0a8512007-02-17 03:16:00 +0000208 }
209 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000210 return bool(y);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000211}
212
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000213/// @brief Prefix decrement operator. Decrements the APInt by one.
214APInt& APInt::operator--() {
Eric Christopherd37eda82009-08-21 04:06:45 +0000215 if (isSingleWord())
Reid Spenceraf0e9562007-02-18 18:38:44 +0000216 --VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000217 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000218 sub_1(pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000219 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000220}
221
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000222/// add - This function adds the integer array x to the integer array Y and
Eric Christopherd37eda82009-08-21 04:06:45 +0000223/// places the result in dest.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000224/// @returns the carry out from the addition
225/// @brief General addition of 64-bit integer arrays
Eric Christopherd37eda82009-08-21 04:06:45 +0000226static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000227 unsigned len) {
Reid Spencer9d6c9192007-02-24 03:58:46 +0000228 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000229 for (unsigned i = 0; i< len; ++i) {
Reid Spencer92904632007-02-23 01:57:13 +0000230 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
Reid Spencer54362ca2007-02-20 23:40:25 +0000231 dest[i] = x[i] + y[i] + carry;
Reid Spencer60c0a6a2007-02-21 05:44:56 +0000232 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000233 }
234 return carry;
235}
236
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000237/// Adds the RHS APint to this APInt.
238/// @returns this, after addition of RHS.
Eric Christopherd37eda82009-08-21 04:06:45 +0000239/// @brief Addition assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000240APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopherd37eda82009-08-21 04:06:45 +0000242 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000243 VAL += RHS.VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000244 else {
Reid Spencer54362ca2007-02-20 23:40:25 +0000245 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000246 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000247 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000248}
249
Eric Christopherd37eda82009-08-21 04:06:45 +0000250/// Subtracts the integer array y from the integer array x
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000251/// @returns returns the borrow out.
252/// @brief Generalized subtraction of 64-bit integer arrays.
Eric Christopherd37eda82009-08-21 04:06:45 +0000253static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000254 unsigned len) {
Reid Spencer385f7542007-02-21 03:55:44 +0000255 bool borrow = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000256 for (unsigned i = 0; i < len; ++i) {
Reid Spencer385f7542007-02-21 03:55:44 +0000257 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
258 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
259 dest[i] = x_tmp - y[i];
Reid Spencer5e0a8512007-02-17 03:16:00 +0000260 }
Reid Spencer54362ca2007-02-20 23:40:25 +0000261 return borrow;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000262}
263
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000264/// Subtracts the RHS APInt from this APInt
265/// @returns this, after subtraction
Eric Christopherd37eda82009-08-21 04:06:45 +0000266/// @brief Subtraction assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000267APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000268 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopherd37eda82009-08-21 04:06:45 +0000269 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000270 VAL -= RHS.VAL;
271 else
272 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000273 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000274}
275
Dan Gohmanf451cb82010-02-10 16:03:48 +0000276/// Multiplies an integer array, x, by a uint64_t integer and places the result
Eric Christopherd37eda82009-08-21 04:06:45 +0000277/// into dest.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000278/// @returns the carry out of the multiplication.
279/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000280static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Reid Spencer610fad82007-02-24 10:01:42 +0000281 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
Reid Spencer5e0a8512007-02-17 03:16:00 +0000282 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000283 uint64_t carry = 0;
284
285 // For each digit of x.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000286 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000287 // Split x into high and low words
288 uint64_t lx = x[i] & 0xffffffffULL;
289 uint64_t hx = x[i] >> 32;
290 // hasCarry - A flag to indicate if there is a carry to the next digit.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000291 // hasCarry == 0, no carry
292 // hasCarry == 1, has carry
293 // hasCarry == 2, no carry and the calculation result == 0.
294 uint8_t hasCarry = 0;
295 dest[i] = carry + lx * ly;
296 // Determine if the add above introduces carry.
297 hasCarry = (dest[i] < carry) ? 1 : 0;
298 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
Eric Christopherd37eda82009-08-21 04:06:45 +0000299 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
Reid Spencer5e0a8512007-02-17 03:16:00 +0000300 // (2^32 - 1) + 2^32 = 2^64.
301 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
302
303 carry += (lx * hy) & 0xffffffffULL;
304 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
Eric Christopherd37eda82009-08-21 04:06:45 +0000305 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
Reid Spencer5e0a8512007-02-17 03:16:00 +0000306 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
307 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000308 return carry;
309}
310
Eric Christopherd37eda82009-08-21 04:06:45 +0000311/// Multiplies integer array x by integer array y and stores the result into
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000312/// the integer array dest. Note that dest's size must be >= xlen + ylen.
313/// @brief Generalized multiplicate of integer arrays.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000314static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
315 unsigned ylen) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000316 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000317 for (unsigned i = 1; i < ylen; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000318 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencere0cdd332007-02-21 08:21:52 +0000319 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000320 for (unsigned j = 0; j < xlen; ++j) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000321 lx = x[j] & 0xffffffffULL;
322 hx = x[j] >> 32;
323 // hasCarry - A flag to indicate if has carry.
324 // hasCarry == 0, no carry
325 // hasCarry == 1, has carry
326 // hasCarry == 2, no carry and the calculation result == 0.
327 uint8_t hasCarry = 0;
328 uint64_t resul = carry + lx * ly;
329 hasCarry = (resul < carry) ? 1 : 0;
330 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
331 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
332
333 carry += (lx * hy) & 0xffffffffULL;
334 resul = (carry << 32) | (resul & 0xffffffffULL);
335 dest[i+j] += resul;
336 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
Eric Christopherd37eda82009-08-21 04:06:45 +0000337 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
Reid Spencer5e0a8512007-02-17 03:16:00 +0000338 ((lx * hy) >> 32) + hx * hy;
339 }
340 dest[i+xlen] = carry;
341 }
342}
343
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000344APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000345 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencere0cdd332007-02-21 08:21:52 +0000346 if (isSingleWord()) {
Reid Spencer61eb1802007-02-20 20:42:10 +0000347 VAL *= RHS.VAL;
Reid Spencere0cdd332007-02-21 08:21:52 +0000348 clearUnusedBits();
349 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000350 }
Reid Spencere0cdd332007-02-21 08:21:52 +0000351
352 // Get some bit facts about LHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000353 unsigned lhsBits = getActiveBits();
354 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Eric Christopherd37eda82009-08-21 04:06:45 +0000355 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +0000356 // 0 * X ===> 0
357 return *this;
358
359 // Get some bit facts about RHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000360 unsigned rhsBits = RHS.getActiveBits();
361 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Reid Spencere0cdd332007-02-21 08:21:52 +0000362 if (!rhsWords) {
363 // X * 0 ===> 0
364 clear();
365 return *this;
366 }
367
368 // Allocate space for the result
Chris Lattner455e9ab2009-01-21 18:09:24 +0000369 unsigned destWords = rhsWords + lhsWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000370 uint64_t *dest = getMemory(destWords);
371
372 // Perform the long multiply
373 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
374
375 // Copy result back into *this
376 clear();
Chris Lattner455e9ab2009-01-21 18:09:24 +0000377 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000378 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
379
380 // delete dest array and return
381 delete[] dest;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000382 return *this;
383}
384
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000385APInt& APInt::operator&=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000386 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000387 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000388 VAL &= RHS.VAL;
389 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000390 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000391 unsigned numWords = getNumWords();
392 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000393 pVal[i] &= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000394 return *this;
395}
396
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000397APInt& APInt::operator|=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000398 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000399 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000400 VAL |= RHS.VAL;
401 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000402 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000403 unsigned numWords = getNumWords();
404 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000405 pVal[i] |= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000406 return *this;
407}
408
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000409APInt& APInt::operator^=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000410 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000411 if (isSingleWord()) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000412 VAL ^= RHS.VAL;
Reid Spencer54362ca2007-02-20 23:40:25 +0000413 this->clearUnusedBits();
Reid Spencerf2c521c2007-02-18 06:39:42 +0000414 return *this;
Eric Christopherd37eda82009-08-21 04:06:45 +0000415 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000416 unsigned numWords = getNumWords();
417 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000418 pVal[i] ^= RHS.pVal[i];
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000419 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000420}
421
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000422APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000423 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000424 uint64_t* val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000425 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000426 val[i] = pVal[i] & RHS.pVal[i];
427 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000428}
429
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000430APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000431 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000432 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000433 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000434 val[i] = pVal[i] | RHS.pVal[i];
435 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000436}
437
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000438APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000439 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000440 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000441 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000442 val[i] = pVal[i] ^ RHS.pVal[i];
443
444 // 0^0==1 so clear the high bits in case they got set.
445 return APInt(val, getBitWidth()).clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000446}
447
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000448bool APInt::operator !() const {
449 if (isSingleWord())
450 return !VAL;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000451
Chris Lattner455e9ab2009-01-21 18:09:24 +0000452 for (unsigned i = 0; i < getNumWords(); ++i)
Eric Christopherd37eda82009-08-21 04:06:45 +0000453 if (pVal[i])
Reid Spenceraf0e9562007-02-18 18:38:44 +0000454 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000455 return true;
456}
457
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000458APInt APInt::operator*(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000459 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000460 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000461 return APInt(BitWidth, VAL * RHS.VAL);
Reid Spencer61eb1802007-02-20 20:42:10 +0000462 APInt Result(*this);
463 Result *= RHS;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000464 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000465}
466
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000467APInt APInt::operator+(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000468 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000469 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000470 return APInt(BitWidth, VAL + RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000471 APInt Result(BitWidth, 0);
472 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000473 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000474}
475
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000476APInt APInt::operator-(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000477 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000478 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000479 return APInt(BitWidth, VAL - RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000480 APInt Result(BitWidth, 0);
481 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000482 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000483}
484
Chris Lattner455e9ab2009-01-21 18:09:24 +0000485bool APInt::operator[](unsigned bitPosition) const {
Dan Gohman078d9672010-11-18 17:14:56 +0000486 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
Eric Christopherd37eda82009-08-21 04:06:45 +0000487 return (maskBit(bitPosition) &
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000488 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000489}
490
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000491bool APInt::EqualSlowCase(const APInt& RHS) const {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000492 // Get some facts about the number of bits used in the two operands.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000493 unsigned n1 = getActiveBits();
494 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000495
496 // If the number of bits isn't the same, they aren't equal
Eric Christopherd37eda82009-08-21 04:06:45 +0000497 if (n1 != n2)
Reid Spencer54362ca2007-02-20 23:40:25 +0000498 return false;
499
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000500 // If the number of bits fits in a word, we only need to compare the low word.
Reid Spencer54362ca2007-02-20 23:40:25 +0000501 if (n1 <= APINT_BITS_PER_WORD)
502 return pVal[0] == RHS.pVal[0];
503
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000504 // Otherwise, compare everything
Reid Spencer54362ca2007-02-20 23:40:25 +0000505 for (int i = whichWord(n1 - 1); i >= 0; --i)
Eric Christopherd37eda82009-08-21 04:06:45 +0000506 if (pVal[i] != RHS.pVal[i])
Reid Spencer54362ca2007-02-20 23:40:25 +0000507 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000508 return true;
509}
510
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000511bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000512 unsigned n = getActiveBits();
Reid Spencer54362ca2007-02-20 23:40:25 +0000513 if (n <= APINT_BITS_PER_WORD)
514 return pVal[0] == Val;
515 else
516 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000517}
518
Reid Spencere81d2da2007-02-16 22:36:51 +0000519bool APInt::ult(const APInt& RHS) const {
520 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
521 if (isSingleWord())
522 return VAL < RHS.VAL;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000523
524 // Get active bit length of both operands
Chris Lattner455e9ab2009-01-21 18:09:24 +0000525 unsigned n1 = getActiveBits();
526 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000527
528 // If magnitude of LHS is less than RHS, return true.
529 if (n1 < n2)
530 return true;
531
532 // If magnitude of RHS is greather than LHS, return false.
533 if (n2 < n1)
534 return false;
535
536 // If they bot fit in a word, just compare the low order word
537 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
538 return pVal[0] < RHS.pVal[0];
539
540 // Otherwise, compare all words
Chris Lattner455e9ab2009-01-21 18:09:24 +0000541 unsigned topWord = whichWord(std::max(n1,n2)-1);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000542 for (int i = topWord; i >= 0; --i) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000543 if (pVal[i] > RHS.pVal[i])
Reid Spencere81d2da2007-02-16 22:36:51 +0000544 return false;
Eric Christopherd37eda82009-08-21 04:06:45 +0000545 if (pVal[i] < RHS.pVal[i])
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000546 return true;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000547 }
548 return false;
549}
550
Reid Spencere81d2da2007-02-16 22:36:51 +0000551bool APInt::slt(const APInt& RHS) const {
552 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencera58f0582007-02-18 20:09:41 +0000553 if (isSingleWord()) {
554 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
555 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
556 return lhsSext < rhsSext;
Reid Spencere81d2da2007-02-16 22:36:51 +0000557 }
Reid Spencera58f0582007-02-18 20:09:41 +0000558
559 APInt lhs(*this);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000560 APInt rhs(RHS);
561 bool lhsNeg = isNegative();
562 bool rhsNeg = rhs.isNegative();
563 if (lhsNeg) {
564 // Sign bit is set so perform two's complement to make it positive
Reid Spencera58f0582007-02-18 20:09:41 +0000565 lhs.flip();
566 lhs++;
567 }
Reid Spencer1fa111e2007-02-27 18:23:40 +0000568 if (rhsNeg) {
569 // Sign bit is set so perform two's complement to make it positive
Reid Spencera58f0582007-02-18 20:09:41 +0000570 rhs.flip();
571 rhs++;
572 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000573
574 // Now we have unsigned values to compare so do the comparison if necessary
575 // based on the negativeness of the values.
Reid Spencer1fa111e2007-02-27 18:23:40 +0000576 if (lhsNeg)
577 if (rhsNeg)
578 return lhs.ugt(rhs);
Reid Spencera58f0582007-02-18 20:09:41 +0000579 else
580 return true;
Reid Spencer1fa111e2007-02-27 18:23:40 +0000581 else if (rhsNeg)
Reid Spencera58f0582007-02-18 20:09:41 +0000582 return false;
Eric Christopherd37eda82009-08-21 04:06:45 +0000583 else
Reid Spencera58f0582007-02-18 20:09:41 +0000584 return lhs.ult(rhs);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000585}
586
Chris Lattner455e9ab2009-01-21 18:09:24 +0000587APInt& APInt::set(unsigned bitPosition) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000588 if (isSingleWord())
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000589 VAL |= maskBit(bitPosition);
Eric Christopherd37eda82009-08-21 04:06:45 +0000590 else
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000591 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000592 return *this;
593}
594
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000595/// Set the given bit to 0 whose position is given as "bitPosition".
596/// @brief Set a given bit to 0.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000597APInt& APInt::clear(unsigned bitPosition) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000598 if (isSingleWord())
Reid Spenceraf0e9562007-02-18 18:38:44 +0000599 VAL &= ~maskBit(bitPosition);
Eric Christopherd37eda82009-08-21 04:06:45 +0000600 else
Reid Spenceraf0e9562007-02-18 18:38:44 +0000601 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000602 return *this;
603}
604
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000605/// @brief Toggle every bit to its opposite value.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000606
Eric Christopherd37eda82009-08-21 04:06:45 +0000607/// Toggle a given bit to its opposite value whose position is given
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000608/// as "bitPosition".
609/// @brief Toggles a given bit to its opposite value.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000610APInt& APInt::flip(unsigned bitPosition) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000611 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000612 if ((*this)[bitPosition]) clear(bitPosition);
613 else set(bitPosition);
614 return *this;
615}
616
Benjamin Kramer38e59892010-07-14 22:38:02 +0000617unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000618 assert(!str.empty() && "Invalid string length");
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000619 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
620 "Radix should be 2, 8, 10, or 16!");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000621
622 size_t slen = str.size();
Reid Spencer57ae4f52007-04-13 19:19:07 +0000623
Eric Christophere250f2a2009-08-21 04:10:31 +0000624 // Each computation below needs to know if it's negative.
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000625 StringRef::iterator p = str.begin();
Eric Christophere250f2a2009-08-21 04:10:31 +0000626 unsigned isNegative = *p == '-';
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000627 if (*p == '-' || *p == '+') {
628 p++;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000629 slen--;
Eric Christophere250f2a2009-08-21 04:10:31 +0000630 assert(slen && "String is only a sign, needs a value.");
Reid Spencer57ae4f52007-04-13 19:19:07 +0000631 }
Eric Christophere250f2a2009-08-21 04:10:31 +0000632
Reid Spencer57ae4f52007-04-13 19:19:07 +0000633 // For radixes of power-of-two values, the bits required is accurately and
634 // easily computed
635 if (radix == 2)
636 return slen + isNegative;
637 if (radix == 8)
638 return slen * 3 + isNegative;
639 if (radix == 16)
640 return slen * 4 + isNegative;
641
Reid Spencer57ae4f52007-04-13 19:19:07 +0000642 // This is grossly inefficient but accurate. We could probably do something
643 // with a computation of roughly slen*64/20 and then adjust by the value of
644 // the first few digits. But, I'm not sure how accurate that could be.
645
646 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +0000647 // be too large. This avoids the assertion in the constructor. This
648 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
649 // bits in that case.
650 unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000651
652 // Convert to the actual binary value.
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000653 APInt tmp(sufficient, StringRef(p, slen), radix);
Reid Spencer57ae4f52007-04-13 19:19:07 +0000654
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +0000655 // Compute how many bits are required. If the log is infinite, assume we need
656 // just bit.
657 unsigned log = tmp.logBase2();
658 if (log == (unsigned)-1) {
659 return isNegative + 1;
660 } else {
661 return isNegative + log + 1;
662 }
Reid Spencer57ae4f52007-04-13 19:19:07 +0000663}
664
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000665// From http://www.burtleburtle.net, byBob Jenkins.
666// When targeting x86, both GCC and LLVM seem to recognize this as a
667// rotate instruction.
668#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Reid Spencer794f4722007-02-26 21:02:27 +0000669
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000670// From http://www.burtleburtle.net, by Bob Jenkins.
671#define mix(a,b,c) \
672 { \
673 a -= c; a ^= rot(c, 4); c += b; \
674 b -= a; b ^= rot(a, 6); a += c; \
675 c -= b; c ^= rot(b, 8); b += a; \
676 a -= c; a ^= rot(c,16); c += b; \
677 b -= a; b ^= rot(a,19); a += c; \
678 c -= b; c ^= rot(b, 4); b += a; \
679 }
680
681// From http://www.burtleburtle.net, by Bob Jenkins.
682#define final(a,b,c) \
683 { \
684 c ^= b; c -= rot(b,14); \
685 a ^= c; a -= rot(c,11); \
686 b ^= a; b -= rot(a,25); \
687 c ^= b; c -= rot(b,16); \
688 a ^= c; a -= rot(c,4); \
689 b ^= a; b -= rot(a,14); \
690 c ^= b; c -= rot(b,24); \
691 }
692
693// hashword() was adapted from http://www.burtleburtle.net, by Bob
694// Jenkins. k is a pointer to an array of uint32_t values; length is
695// the length of the key, in 32-bit chunks. This version only handles
696// keys that are a multiple of 32 bits in size.
697static inline uint32_t hashword(const uint64_t *k64, size_t length)
698{
699 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
700 uint32_t a,b,c;
701
702 /* Set up the internal state */
703 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
704
705 /*------------------------------------------------- handle most of the key */
Dan Gohman16e02092010-03-24 19:38:02 +0000706 while (length > 3) {
707 a += k[0];
708 b += k[1];
709 c += k[2];
710 mix(a,b,c);
711 length -= 3;
712 k += 3;
713 }
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000714
715 /*------------------------------------------- handle the last 3 uint32_t's */
Mike Stumpf3dc0c02009-05-13 23:23:20 +0000716 switch (length) { /* all the case statements fall through */
717 case 3 : c+=k[2];
718 case 2 : b+=k[1];
719 case 1 : a+=k[0];
720 final(a,b,c);
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000721 case 0: /* case 0: nothing left to add */
722 break;
723 }
724 /*------------------------------------------------------ report the result */
725 return c;
726}
727
728// hashword8() was adapted from http://www.burtleburtle.net, by Bob
729// Jenkins. This computes a 32-bit hash from one 64-bit word. When
730// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
731// function into about 35 instructions when inlined.
732static inline uint32_t hashword8(const uint64_t k64)
733{
734 uint32_t a,b,c;
735 a = b = c = 0xdeadbeef + 4;
736 b += k64 >> 32;
737 a += k64 & 0xffffffff;
738 final(a,b,c);
739 return c;
740}
741#undef final
742#undef mix
743#undef rot
744
745uint64_t APInt::getHashValue() const {
746 uint64_t hash;
Reid Spencer794f4722007-02-26 21:02:27 +0000747 if (isSingleWord())
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000748 hash = hashword8(VAL);
Reid Spencer794f4722007-02-26 21:02:27 +0000749 else
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000750 hash = hashword(pVal, getNumWords()*2);
Reid Spencer794f4722007-02-26 21:02:27 +0000751 return hash;
752}
753
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000754/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000755APInt APInt::getHiBits(unsigned numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000756 return APIntOps::lshr(*this, BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000757}
758
759/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000760APInt APInt::getLoBits(unsigned numBits) const {
Eric Christopherd37eda82009-08-21 04:06:45 +0000761 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
Reid Spencere81d2da2007-02-16 22:36:51 +0000762 BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000763}
764
Reid Spencere81d2da2007-02-16 22:36:51 +0000765bool APInt::isPowerOf2() const {
766 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
767}
768
Chris Lattner455e9ab2009-01-21 18:09:24 +0000769unsigned APInt::countLeadingZerosSlowCase() const {
John McCall281d0512010-02-03 03:42:44 +0000770 // Treat the most significand word differently because it might have
771 // meaningless bits set beyond the precision.
772 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
773 integerPart MSWMask;
774 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
775 else {
776 MSWMask = ~integerPart(0);
777 BitsInMSW = APINT_BITS_PER_WORD;
778 }
779
780 unsigned i = getNumWords();
781 integerPart MSW = pVal[i-1] & MSWMask;
782 if (MSW)
783 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
784
785 unsigned Count = BitsInMSW;
786 for (--i; i > 0u; --i) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000787 if (pVal[i-1] == 0)
788 Count += APINT_BITS_PER_WORD;
789 else {
790 Count += CountLeadingZeros_64(pVal[i-1]);
791 break;
Reid Spencere549c492007-02-21 00:29:48 +0000792 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000793 }
John McCall281d0512010-02-03 03:42:44 +0000794 return Count;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000795}
796
Chris Lattner455e9ab2009-01-21 18:09:24 +0000797static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
798 unsigned Count = 0;
Reid Spencer681dcd12007-02-27 21:59:26 +0000799 if (skip)
800 V <<= skip;
801 while (V && (V & (1ULL << 63))) {
802 Count++;
803 V <<= 1;
804 }
805 return Count;
806}
807
Chris Lattner455e9ab2009-01-21 18:09:24 +0000808unsigned APInt::countLeadingOnes() const {
Reid Spencer681dcd12007-02-27 21:59:26 +0000809 if (isSingleWord())
810 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
811
Chris Lattner455e9ab2009-01-21 18:09:24 +0000812 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwin2d0f1c52009-01-27 18:06:03 +0000813 unsigned shift;
814 if (!highWordBits) {
815 highWordBits = APINT_BITS_PER_WORD;
816 shift = 0;
817 } else {
818 shift = APINT_BITS_PER_WORD - highWordBits;
819 }
Reid Spencer681dcd12007-02-27 21:59:26 +0000820 int i = getNumWords() - 1;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000821 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Reid Spencer681dcd12007-02-27 21:59:26 +0000822 if (Count == highWordBits) {
823 for (i--; i >= 0; --i) {
824 if (pVal[i] == -1ULL)
825 Count += APINT_BITS_PER_WORD;
826 else {
827 Count += countLeadingOnes_64(pVal[i], 0);
828 break;
829 }
830 }
831 }
832 return Count;
833}
834
Chris Lattner455e9ab2009-01-21 18:09:24 +0000835unsigned APInt::countTrailingZeros() const {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000836 if (isSingleWord())
Chris Lattner455e9ab2009-01-21 18:09:24 +0000837 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
838 unsigned Count = 0;
839 unsigned i = 0;
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000840 for (; i < getNumWords() && pVal[i] == 0; ++i)
841 Count += APINT_BITS_PER_WORD;
842 if (i < getNumWords())
843 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner5e557122007-11-23 22:36:25 +0000844 return std::min(Count, BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000845}
846
Chris Lattner455e9ab2009-01-21 18:09:24 +0000847unsigned APInt::countTrailingOnesSlowCase() const {
848 unsigned Count = 0;
849 unsigned i = 0;
Dan Gohman5a0e7b42008-02-14 22:38:45 +0000850 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohman42dd77f2008-02-13 21:11:05 +0000851 Count += APINT_BITS_PER_WORD;
852 if (i < getNumWords())
853 Count += CountTrailingOnes_64(pVal[i]);
854 return std::min(Count, BitWidth);
855}
856
Chris Lattner455e9ab2009-01-21 18:09:24 +0000857unsigned APInt::countPopulationSlowCase() const {
858 unsigned Count = 0;
859 for (unsigned i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000860 Count += CountPopulation_64(pVal[i]);
861 return Count;
862}
863
Reid Spencere81d2da2007-02-16 22:36:51 +0000864APInt APInt::byteSwap() const {
865 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
866 if (BitWidth == 16)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000867 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
Reid Spencere81d2da2007-02-16 22:36:51 +0000868 else if (BitWidth == 32)
Chris Lattner455e9ab2009-01-21 18:09:24 +0000869 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Reid Spencere81d2da2007-02-16 22:36:51 +0000870 else if (BitWidth == 48) {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000871 unsigned Tmp1 = unsigned(VAL >> 16);
Zhou Shengb04973e2007-02-15 06:36:31 +0000872 Tmp1 = ByteSwap_32(Tmp1);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000873 uint16_t Tmp2 = uint16_t(VAL);
Zhou Shengb04973e2007-02-15 06:36:31 +0000874 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000875 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Reid Spencere81d2da2007-02-16 22:36:51 +0000876 } else if (BitWidth == 64)
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000877 return APInt(BitWidth, ByteSwap_64(VAL));
Zhou Shengb04973e2007-02-15 06:36:31 +0000878 else {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000879 APInt Result(BitWidth, 0);
Zhou Shengb04973e2007-02-15 06:36:31 +0000880 char *pByte = (char*)Result.pVal;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000881 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Zhou Shengb04973e2007-02-15 06:36:31 +0000882 char Tmp = pByte[i];
Reid Spencera58f0582007-02-18 20:09:41 +0000883 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
884 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
Zhou Shengb04973e2007-02-15 06:36:31 +0000885 }
886 return Result;
887 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000888}
889
Eric Christopherd37eda82009-08-21 04:06:45 +0000890APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
Zhou Sheng0b706b12007-02-08 14:35:19 +0000891 const APInt& API2) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000892 APInt A = API1, B = API2;
893 while (!!B) {
894 APInt T = B;
Reid Spencere81d2da2007-02-16 22:36:51 +0000895 B = APIntOps::urem(A, B);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000896 A = T;
897 }
898 return A;
899}
Chris Lattner6ad4c142007-02-06 05:38:37 +0000900
Chris Lattner455e9ab2009-01-21 18:09:24 +0000901APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd93f00c2007-02-12 20:02:55 +0000902 union {
903 double D;
904 uint64_t I;
905 } T;
906 T.D = Double;
Reid Spencer30f44f32007-02-27 01:28:10 +0000907
908 // Get the sign bit from the highest order bit
Zhou Shengd93f00c2007-02-12 20:02:55 +0000909 bool isNeg = T.I >> 63;
Reid Spencer30f44f32007-02-27 01:28:10 +0000910
911 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd93f00c2007-02-12 20:02:55 +0000912 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer30f44f32007-02-27 01:28:10 +0000913
914 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000915 if (exp < 0)
Reid Spencerff605762007-02-28 01:30:08 +0000916 return APInt(width, 0u);
Reid Spencer30f44f32007-02-27 01:28:10 +0000917
918 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
919 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
920
921 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd93f00c2007-02-12 20:02:55 +0000922 if (exp < 52)
Eric Christopherd37eda82009-08-21 04:06:45 +0000923 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Reid Spencer1fa111e2007-02-27 18:23:40 +0000924 APInt(width, mantissa >> (52 - exp));
925
926 // If the client didn't provide enough bits for us to shift the mantissa into
927 // then the result is undefined, just return 0
928 if (width <= exp - 52)
929 return APInt(width, 0);
Reid Spencer30f44f32007-02-27 01:28:10 +0000930
931 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer1fa111e2007-02-27 18:23:40 +0000932 APInt Tmp(width, mantissa);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000933 Tmp = Tmp.shl((unsigned)exp - 52);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000934 return isNeg ? -Tmp : Tmp;
935}
936
Dale Johannesen4e97a0f2009-08-12 18:04:11 +0000937/// RoundToDouble - This function converts this APInt to a double.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000938/// The layout for double is as following (IEEE Standard 754):
939/// --------------------------------------
940/// | Sign Exponent Fraction Bias |
941/// |-------------------------------------- |
942/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopherd37eda82009-08-21 04:06:45 +0000943/// --------------------------------------
Reid Spencere81d2da2007-02-16 22:36:51 +0000944double APInt::roundToDouble(bool isSigned) const {
Reid Spencer9c0696f2007-02-20 08:51:03 +0000945
946 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen4e97a0f2009-08-12 18:04:11 +0000947 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencera58f0582007-02-18 20:09:41 +0000948 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
949 if (isSigned) {
Dale Johannesen39c177d2009-08-12 17:42:34 +0000950 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
Reid Spencera58f0582007-02-18 20:09:41 +0000951 return double(sext);
952 } else
Dale Johannesen39c177d2009-08-12 17:42:34 +0000953 return double(getWord(0));
Reid Spencera58f0582007-02-18 20:09:41 +0000954 }
955
Reid Spencer9c0696f2007-02-20 08:51:03 +0000956 // Determine if the value is negative.
Reid Spencere81d2da2007-02-16 22:36:51 +0000957 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000958
959 // Construct the absolute value if we're negative.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000960 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencer9c0696f2007-02-20 08:51:03 +0000961
962 // Figure out how many bits we're using.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000963 unsigned n = Tmp.getActiveBits();
Zhou Shengd93f00c2007-02-12 20:02:55 +0000964
Reid Spencer9c0696f2007-02-20 08:51:03 +0000965 // The exponent (without bias normalization) is just the number of bits
966 // we are using. Note that the sign bit is gone since we constructed the
967 // absolute value.
968 uint64_t exp = n;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000969
Reid Spencer9c0696f2007-02-20 08:51:03 +0000970 // Return infinity for exponent overflow
971 if (exp > 1023) {
972 if (!isSigned || !isNeg)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000973 return std::numeric_limits<double>::infinity();
Eric Christopherd37eda82009-08-21 04:06:45 +0000974 else
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000975 return -std::numeric_limits<double>::infinity();
Reid Spencer9c0696f2007-02-20 08:51:03 +0000976 }
977 exp += 1023; // Increment for 1023 bias
978
979 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
980 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000981 uint64_t mantissa;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000982 unsigned hiWord = whichWord(n-1);
983 if (hiWord == 0) {
984 mantissa = Tmp.pVal[0];
985 if (n > 52)
986 mantissa >>= n - 52; // shift down, we want the top 52 bits.
987 } else {
988 assert(hiWord > 0 && "huh?");
989 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
990 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
991 mantissa = hibits | lobits;
992 }
993
Zhou Shengd93f00c2007-02-12 20:02:55 +0000994 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencer443b5702007-02-18 00:44:22 +0000995 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000996 union {
997 double D;
998 uint64_t I;
999 } T;
1000 T.I = sign | (exp << 52) | mantissa;
1001 return T.D;
1002}
1003
Reid Spencere81d2da2007-02-16 22:36:51 +00001004// Truncate to new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001005APInt &APInt::trunc(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +00001006 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner98f8ccf2008-08-20 17:02:31 +00001007 assert(width && "Can't truncate to 0 bits");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001008 unsigned wordsBefore = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001009 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001010 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001011 if (wordsBefore != wordsAfter) {
1012 if (wordsAfter == 1) {
1013 uint64_t *tmp = pVal;
1014 VAL = pVal[0];
Reid Spencer9ac44112007-02-26 23:38:21 +00001015 delete [] tmp;
Reid Spencer9eec2412007-02-25 23:44:53 +00001016 } else {
1017 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001018 for (unsigned i = 0; i < wordsAfter; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +00001019 newVal[i] = pVal[i];
Reid Spencer9ac44112007-02-26 23:38:21 +00001020 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001021 pVal = newVal;
1022 }
1023 }
Reid Spencer94900772007-02-28 17:34:32 +00001024 return clearUnusedBits();
Reid Spencere81d2da2007-02-16 22:36:51 +00001025}
1026
1027// Sign extend to a new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001028APInt &APInt::sext(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +00001029 assert(width > BitWidth && "Invalid APInt SignExtend request");
Reid Spencer9eec2412007-02-25 23:44:53 +00001030 // If the sign bit isn't set, this is the same as zext.
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001031 if (!isNegative()) {
Reid Spencer9eec2412007-02-25 23:44:53 +00001032 zext(width);
Reid Spencer94900772007-02-28 17:34:32 +00001033 return *this;
Reid Spencer9eec2412007-02-25 23:44:53 +00001034 }
1035
1036 // The sign bit is set. First, get some facts
Chris Lattner455e9ab2009-01-21 18:09:24 +00001037 unsigned wordsBefore = getNumWords();
1038 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Reid Spencer9eec2412007-02-25 23:44:53 +00001039 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001040 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001041
1042 // Mask the high order word appropriately
1043 if (wordsBefore == wordsAfter) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001044 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Reid Spencer9eec2412007-02-25 23:44:53 +00001045 // The extension is contained to the wordsBefore-1th word.
Reid Spencer36184ed2007-03-02 01:19:42 +00001046 uint64_t mask = ~0ULL;
1047 if (newWordBits)
1048 mask >>= APINT_BITS_PER_WORD - newWordBits;
1049 mask <<= wordBits;
Reid Spencer9eec2412007-02-25 23:44:53 +00001050 if (wordsBefore == 1)
1051 VAL |= mask;
1052 else
1053 pVal[wordsBefore-1] |= mask;
Reid Spencer295e40a2007-03-01 23:30:25 +00001054 return clearUnusedBits();
Reid Spencer9eec2412007-02-25 23:44:53 +00001055 }
1056
Reid Spencerf30b1882007-02-25 23:54:00 +00001057 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
Reid Spencer9eec2412007-02-25 23:44:53 +00001058 uint64_t *newVal = getMemory(wordsAfter);
1059 if (wordsBefore == 1)
1060 newVal[0] = VAL | mask;
1061 else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001062 for (unsigned i = 0; i < wordsBefore; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +00001063 newVal[i] = pVal[i];
1064 newVal[wordsBefore-1] |= mask;
1065 }
Chris Lattner455e9ab2009-01-21 18:09:24 +00001066 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Reid Spencer9eec2412007-02-25 23:44:53 +00001067 newVal[i] = -1ULL;
1068 if (wordsBefore != 1)
Reid Spencer9ac44112007-02-26 23:38:21 +00001069 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001070 pVal = newVal;
Reid Spencer94900772007-02-28 17:34:32 +00001071 return clearUnusedBits();
Reid Spencere81d2da2007-02-16 22:36:51 +00001072}
1073
1074// Zero extend to a new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001075APInt &APInt::zext(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +00001076 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001077 unsigned wordsBefore = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001078 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001079 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001080 if (wordsBefore != wordsAfter) {
1081 uint64_t *newVal = getClearedMemory(wordsAfter);
1082 if (wordsBefore == 1)
1083 newVal[0] = VAL;
Eric Christopherd37eda82009-08-21 04:06:45 +00001084 else
Chris Lattner455e9ab2009-01-21 18:09:24 +00001085 for (unsigned i = 0; i < wordsBefore; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +00001086 newVal[i] = pVal[i];
1087 if (wordsBefore != 1)
Reid Spencer9ac44112007-02-26 23:38:21 +00001088 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001089 pVal = newVal;
1090 }
Reid Spencer94900772007-02-28 17:34:32 +00001091 return *this;
Reid Spencere81d2da2007-02-16 22:36:51 +00001092}
1093
Chris Lattner455e9ab2009-01-21 18:09:24 +00001094APInt &APInt::zextOrTrunc(unsigned width) {
Reid Spencer68e23002007-03-01 17:15:32 +00001095 if (BitWidth < width)
1096 return zext(width);
1097 if (BitWidth > width)
1098 return trunc(width);
1099 return *this;
1100}
1101
Chris Lattner455e9ab2009-01-21 18:09:24 +00001102APInt &APInt::sextOrTrunc(unsigned width) {
Reid Spencer68e23002007-03-01 17:15:32 +00001103 if (BitWidth < width)
1104 return sext(width);
1105 if (BitWidth > width)
1106 return trunc(width);
1107 return *this;
1108}
1109
Zhou Shengff4304f2007-02-09 07:48:24 +00001110/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001111/// @brief Arithmetic right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001112APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001113 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001114}
1115
1116/// Arithmetic right-shift this APInt by shiftAmt.
1117/// @brief Arithmetic right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001118APInt APInt::ashr(unsigned shiftAmt) const {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001119 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer46f9c942007-03-02 22:39:11 +00001120 // Handle a degenerate case
1121 if (shiftAmt == 0)
1122 return *this;
1123
1124 // Handle single word shifts with built-in ashr
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001125 if (isSingleWord()) {
1126 if (shiftAmt == BitWidth)
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001127 return APInt(BitWidth, 0); // undefined
1128 else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001129 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Eric Christopherd37eda82009-08-21 04:06:45 +00001130 return APInt(BitWidth,
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001131 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1132 }
Zhou Sheng0b706b12007-02-08 14:35:19 +00001133 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001134
Reid Spencer46f9c942007-03-02 22:39:11 +00001135 // If all the bits were shifted out, the result is, technically, undefined.
1136 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1137 // issues in the algorithm below.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001138 if (shiftAmt == BitWidth) {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001139 if (isNegative())
Zhou Shengbfde7d62008-06-05 13:27:38 +00001140 return APInt(BitWidth, -1ULL, true);
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001141 else
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001142 return APInt(BitWidth, 0);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001143 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001144
1145 // Create some space for the result.
1146 uint64_t * val = new uint64_t[getNumWords()];
1147
Reid Spencer46f9c942007-03-02 22:39:11 +00001148 // Compute some values needed by the following shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001149 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1150 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1151 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1152 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Reid Spencer46f9c942007-03-02 22:39:11 +00001153 if (bitsInWord == 0)
1154 bitsInWord = APINT_BITS_PER_WORD;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001155
1156 // If we are shifting whole words, just move whole words
1157 if (wordShift == 0) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001158 // Move the words containing significant bits
Chris Lattner455e9ab2009-01-21 18:09:24 +00001159 for (unsigned i = 0; i <= breakWord; ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001160 val[i] = pVal[i+offset]; // move whole word
1161
1162 // Adjust the top significant word for sign bit fill, if negative
1163 if (isNegative())
1164 if (bitsInWord < APINT_BITS_PER_WORD)
1165 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1166 } else {
Eric Christopherd37eda82009-08-21 04:06:45 +00001167 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001168 for (unsigned i = 0; i < breakWord; ++i) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001169 // This combines the shifted corresponding word with the low bits from
1170 // the next word (shifted into this word's high bits).
Eric Christopherd37eda82009-08-21 04:06:45 +00001171 val[i] = (pVal[i+offset] >> wordShift) |
Reid Spencer46f9c942007-03-02 22:39:11 +00001172 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1173 }
1174
1175 // Shift the break word. In this case there are no bits from the next word
1176 // to include in this word.
1177 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1178
1179 // Deal with sign extenstion in the break word, and possibly the word before
1180 // it.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001181 if (isNegative()) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001182 if (wordShift > bitsInWord) {
1183 if (breakWord > 0)
Eric Christopherd37eda82009-08-21 04:06:45 +00001184 val[breakWord-1] |=
Reid Spencer46f9c942007-03-02 22:39:11 +00001185 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1186 val[breakWord] |= ~0ULL;
Eric Christopherd37eda82009-08-21 04:06:45 +00001187 } else
Reid Spencer46f9c942007-03-02 22:39:11 +00001188 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001189 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001190 }
1191
Reid Spencer46f9c942007-03-02 22:39:11 +00001192 // Remaining words are 0 or -1, just assign them.
1193 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001194 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001195 val[i] = fillValue;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001196 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001197}
1198
Zhou Shengff4304f2007-02-09 07:48:24 +00001199/// Logical right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001200/// @brief Logical right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001201APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001202 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001203}
1204
1205/// Logical right-shift this APInt by shiftAmt.
1206/// @brief Logical right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001207APInt APInt::lshr(unsigned shiftAmt) const {
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001208 if (isSingleWord()) {
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001209 if (shiftAmt == BitWidth)
1210 return APInt(BitWidth, 0);
Eric Christopherd37eda82009-08-21 04:06:45 +00001211 else
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001212 return APInt(BitWidth, this->VAL >> shiftAmt);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001213 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001214
Reid Spencerba81c2b2007-02-26 01:19:48 +00001215 // If all the bits were shifted out, the result is 0. This avoids issues
1216 // with shifting by the size of the integer type, which produces undefined
1217 // results. We define these "undefined results" to always be 0.
1218 if (shiftAmt == BitWidth)
1219 return APInt(BitWidth, 0);
1220
Reid Spencer02ae8b72007-05-17 06:26:29 +00001221 // If none of the bits are shifted out, the result is *this. This avoids
Eric Christopherd37eda82009-08-21 04:06:45 +00001222 // issues with shifting by the size of the integer type, which produces
Reid Spencer02ae8b72007-05-17 06:26:29 +00001223 // undefined results in the code below. This is also an optimization.
1224 if (shiftAmt == 0)
1225 return *this;
1226
Reid Spencerba81c2b2007-02-26 01:19:48 +00001227 // Create some space for the result.
1228 uint64_t * val = new uint64_t[getNumWords()];
1229
1230 // If we are shifting less than a word, compute the shift with a simple carry
1231 if (shiftAmt < APINT_BITS_PER_WORD) {
1232 uint64_t carry = 0;
1233 for (int i = getNumWords()-1; i >= 0; --i) {
Reid Spenceraf8fb192007-03-01 05:39:56 +00001234 val[i] = (pVal[i] >> shiftAmt) | carry;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001235 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1236 }
1237 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001238 }
1239
Reid Spencerba81c2b2007-02-26 01:19:48 +00001240 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001241 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1242 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001243
1244 // If we are shifting whole words, just move whole words
1245 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001246 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001247 val[i] = pVal[i+offset];
Chris Lattner455e9ab2009-01-21 18:09:24 +00001248 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001249 val[i] = 0;
1250 return APInt(val,BitWidth).clearUnusedBits();
1251 }
1252
Eric Christopherd37eda82009-08-21 04:06:45 +00001253 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001254 unsigned breakWord = getNumWords() - offset -1;
1255 for (unsigned i = 0; i < breakWord; ++i)
Reid Spenceraf8fb192007-03-01 05:39:56 +00001256 val[i] = (pVal[i+offset] >> wordShift) |
1257 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
Reid Spencerba81c2b2007-02-26 01:19:48 +00001258 // Shift the break word.
1259 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1260
1261 // Remaining words are 0
Chris Lattner455e9ab2009-01-21 18:09:24 +00001262 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001263 val[i] = 0;
1264 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001265}
1266
Zhou Shengff4304f2007-02-09 07:48:24 +00001267/// Left-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001268/// @brief Left-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001269APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky4bd47872009-01-19 17:42:33 +00001270 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001271 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001272}
1273
Chris Lattner455e9ab2009-01-21 18:09:24 +00001274APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Reid Spencer87553802007-02-25 00:56:44 +00001275 // If all the bits were shifted out, the result is 0. This avoids issues
1276 // with shifting by the size of the integer type, which produces undefined
1277 // results. We define these "undefined results" to always be 0.
1278 if (shiftAmt == BitWidth)
1279 return APInt(BitWidth, 0);
1280
Reid Spencer92c72832007-05-12 18:01:57 +00001281 // If none of the bits are shifted out, the result is *this. This avoids a
1282 // lshr by the words size in the loop below which can produce incorrect
1283 // results. It also avoids the expensive computation below for a common case.
1284 if (shiftAmt == 0)
1285 return *this;
1286
Reid Spencer87553802007-02-25 00:56:44 +00001287 // Create some space for the result.
1288 uint64_t * val = new uint64_t[getNumWords()];
1289
1290 // If we are shifting less than a word, do it the easy way
1291 if (shiftAmt < APINT_BITS_PER_WORD) {
1292 uint64_t carry = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001293 for (unsigned i = 0; i < getNumWords(); i++) {
Reid Spencer87553802007-02-25 00:56:44 +00001294 val[i] = pVal[i] << shiftAmt | carry;
1295 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1296 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001297 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001298 }
1299
Reid Spencer87553802007-02-25 00:56:44 +00001300 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001301 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1302 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencer87553802007-02-25 00:56:44 +00001303
1304 // If we are shifting whole words, just move whole words
1305 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001306 for (unsigned i = 0; i < offset; i++)
Reid Spencer87553802007-02-25 00:56:44 +00001307 val[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001308 for (unsigned i = offset; i < getNumWords(); i++)
Reid Spencer87553802007-02-25 00:56:44 +00001309 val[i] = pVal[i-offset];
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001310 return APInt(val,BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001311 }
Reid Spencer87553802007-02-25 00:56:44 +00001312
1313 // Copy whole words from this to Result.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001314 unsigned i = getNumWords() - 1;
Reid Spencer87553802007-02-25 00:56:44 +00001315 for (; i > offset; --i)
1316 val[i] = pVal[i-offset] << wordShift |
1317 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
Reid Spencer438d71e2007-02-25 01:08:58 +00001318 val[offset] = pVal[0] << wordShift;
Reid Spencer87553802007-02-25 00:56:44 +00001319 for (i = 0; i < offset; ++i)
1320 val[i] = 0;
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001321 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001322}
1323
Dan Gohmancf609572008-02-29 01:40:47 +00001324APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001325 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001326}
1327
Chris Lattner455e9ab2009-01-21 18:09:24 +00001328APInt APInt::rotl(unsigned rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001329 if (rotateAmt == 0)
1330 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001331 // Don't get too fancy, just use existing shift/or facilities
1332 APInt hi(*this);
1333 APInt lo(*this);
1334 hi.shl(rotateAmt);
1335 lo.lshr(BitWidth - rotateAmt);
1336 return hi | lo;
1337}
1338
Dan Gohmancf609572008-02-29 01:40:47 +00001339APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001340 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001341}
1342
Chris Lattner455e9ab2009-01-21 18:09:24 +00001343APInt APInt::rotr(unsigned rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001344 if (rotateAmt == 0)
1345 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001346 // Don't get too fancy, just use existing shift/or facilities
1347 APInt hi(*this);
1348 APInt lo(*this);
1349 lo.lshr(rotateAmt);
1350 hi.shl(BitWidth - rotateAmt);
1351 return hi | lo;
1352}
Reid Spenceraf8fb192007-03-01 05:39:56 +00001353
1354// Square Root - this method computes and returns the square root of "this".
1355// Three mechanisms are used for computation. For small values (<= 5 bits),
1356// a table lookup is done. This gets some performance for common cases. For
1357// values using less than 52 bits, the value is converted to double and then
1358// the libc sqrt function is called. The result is rounded and then converted
1359// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopherd37eda82009-08-21 04:06:45 +00001360// the Babylonian method for computing square roots is used.
Reid Spenceraf8fb192007-03-01 05:39:56 +00001361APInt APInt::sqrt() const {
1362
1363 // Determine the magnitude of the value.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001364 unsigned magnitude = getActiveBits();
Reid Spenceraf8fb192007-03-01 05:39:56 +00001365
1366 // Use a fast table for some small values. This also gets rid of some
1367 // rounding errors in libc sqrt for small values.
1368 if (magnitude <= 5) {
Reid Spencer4e1e87f2007-03-01 17:47:31 +00001369 static const uint8_t results[32] = {
Reid Spencerb5ca2cd2007-03-01 06:23:32 +00001370 /* 0 */ 0,
1371 /* 1- 2 */ 1, 1,
Eric Christopherd37eda82009-08-21 04:06:45 +00001372 /* 3- 6 */ 2, 2, 2, 2,
Reid Spencerb5ca2cd2007-03-01 06:23:32 +00001373 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1374 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1375 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1376 /* 31 */ 6
1377 };
1378 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
Reid Spenceraf8fb192007-03-01 05:39:56 +00001379 }
1380
1381 // If the magnitude of the value fits in less than 52 bits (the precision of
1382 // an IEEE double precision floating point value), then we can use the
1383 // libc sqrt function which will probably use a hardware sqrt computation.
1384 // This should be faster than the algorithm below.
Jeff Cohenca5183d2007-03-05 00:00:42 +00001385 if (magnitude < 52) {
Chris Lattner4c297c92010-05-15 17:11:55 +00001386#if HAVE_ROUND
Eric Christopherd37eda82009-08-21 04:06:45 +00001387 return APInt(BitWidth,
Reid Spenceraf8fb192007-03-01 05:39:56 +00001388 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
Chris Lattner4c297c92010-05-15 17:11:55 +00001389#else
1390 return APInt(BitWidth,
1391 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
Jeff Cohenca5183d2007-03-05 00:00:42 +00001392#endif
1393 }
Reid Spenceraf8fb192007-03-01 05:39:56 +00001394
1395 // Okay, all the short cuts are exhausted. We must compute it. The following
1396 // is a classical Babylonian method for computing the square root. This code
1397 // was adapted to APINt from a wikipedia article on such computations.
1398 // See http://www.wikipedia.org/ and go to the page named
Eric Christopherd37eda82009-08-21 04:06:45 +00001399 // Calculate_an_integer_square_root.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001400 unsigned nbits = BitWidth, i = 4;
Reid Spenceraf8fb192007-03-01 05:39:56 +00001401 APInt testy(BitWidth, 16);
1402 APInt x_old(BitWidth, 1);
1403 APInt x_new(BitWidth, 0);
1404 APInt two(BitWidth, 2);
1405
1406 // Select a good starting value using binary logarithms.
Eric Christopherd37eda82009-08-21 04:06:45 +00001407 for (;; i += 2, testy = testy.shl(2))
Reid Spenceraf8fb192007-03-01 05:39:56 +00001408 if (i >= nbits || this->ule(testy)) {
1409 x_old = x_old.shl(i / 2);
1410 break;
1411 }
1412
Eric Christopherd37eda82009-08-21 04:06:45 +00001413 // Use the Babylonian method to arrive at the integer square root:
Reid Spenceraf8fb192007-03-01 05:39:56 +00001414 for (;;) {
1415 x_new = (this->udiv(x_old) + x_old).udiv(two);
1416 if (x_old.ule(x_new))
1417 break;
1418 x_old = x_new;
1419 }
1420
1421 // Make sure we return the closest approximation
Eric Christopherd37eda82009-08-21 04:06:45 +00001422 // NOTE: The rounding calculation below is correct. It will produce an
Reid Spencerf09aef72007-03-02 04:21:55 +00001423 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopherd37eda82009-08-21 04:06:45 +00001424 // determined to be a rounding issue with pari/gp as it begins to use a
Reid Spencerf09aef72007-03-02 04:21:55 +00001425 // floating point representation after 192 bits. There are no discrepancies
1426 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spenceraf8fb192007-03-01 05:39:56 +00001427 APInt square(x_old * x_old);
1428 APInt nextSquare((x_old + 1) * (x_old +1));
1429 if (this->ult(square))
1430 return x_old;
Reid Spencerf09aef72007-03-02 04:21:55 +00001431 else if (this->ule(nextSquare)) {
1432 APInt midpoint((nextSquare - square).udiv(two));
1433 APInt offset(*this - square);
1434 if (offset.ult(midpoint))
Reid Spenceraf8fb192007-03-01 05:39:56 +00001435 return x_old;
Reid Spencerf09aef72007-03-02 04:21:55 +00001436 else
1437 return x_old + 1;
1438 } else
Torok Edwinc23197a2009-07-14 16:55:14 +00001439 llvm_unreachable("Error in APInt::sqrt computation");
Reid Spenceraf8fb192007-03-01 05:39:56 +00001440 return x_old + 1;
1441}
1442
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001443/// Computes the multiplicative inverse of this APInt for a given modulo. The
1444/// iterative extended Euclidean algorithm is used to solve for this value,
1445/// however we simplify it to speed up calculating only the inverse, and take
1446/// advantage of div+rem calculations. We also use some tricks to avoid copying
1447/// (potentially large) APInts around.
1448APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1449 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1450
1451 // Using the properties listed at the following web page (accessed 06/21/08):
1452 // http://www.numbertheory.org/php/euclid.html
1453 // (especially the properties numbered 3, 4 and 9) it can be proved that
1454 // BitWidth bits suffice for all the computations in the algorithm implemented
1455 // below. More precisely, this number of bits suffice if the multiplicative
1456 // inverse exists, but may not suffice for the general extended Euclidean
1457 // algorithm.
1458
1459 APInt r[2] = { modulo, *this };
1460 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1461 APInt q(BitWidth, 0);
Eric Christopherd37eda82009-08-21 04:06:45 +00001462
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001463 unsigned i;
1464 for (i = 0; r[i^1] != 0; i ^= 1) {
1465 // An overview of the math without the confusing bit-flipping:
1466 // q = r[i-2] / r[i-1]
1467 // r[i] = r[i-2] % r[i-1]
1468 // t[i] = t[i-2] - t[i-1] * q
1469 udivrem(r[i], r[i^1], q, r[i]);
1470 t[i] -= t[i^1] * q;
1471 }
1472
1473 // If this APInt and the modulo are not coprime, there is no multiplicative
1474 // inverse, so return 0. We check this by looking at the next-to-last
1475 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1476 // algorithm.
1477 if (r[i] != 1)
1478 return APInt(BitWidth, 0);
1479
1480 // The next-to-last t is the multiplicative inverse. However, we are
1481 // interested in a positive inverse. Calcuate a positive one from a negative
1482 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00001483 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001484 return t[i].isNegative() ? t[i] + modulo : t[i];
1485}
1486
Jay Foad4e5ea552009-04-30 10:15:35 +00001487/// Calculate the magic numbers required to implement a signed integer division
1488/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1489/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1490/// Warren, Jr., chapter 10.
1491APInt::ms APInt::magic() const {
1492 const APInt& d = *this;
1493 unsigned p;
1494 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foad4e5ea552009-04-30 10:15:35 +00001495 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foad4e5ea552009-04-30 10:15:35 +00001496 struct ms mag;
Eric Christopherd37eda82009-08-21 04:06:45 +00001497
Jay Foad4e5ea552009-04-30 10:15:35 +00001498 ad = d.abs();
1499 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1500 anc = t - 1 - t.urem(ad); // absolute value of nc
1501 p = d.getBitWidth() - 1; // initialize p
1502 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1503 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1504 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1505 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1506 do {
1507 p = p + 1;
1508 q1 = q1<<1; // update q1 = 2p/abs(nc)
1509 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1510 if (r1.uge(anc)) { // must be unsigned comparison
1511 q1 = q1 + 1;
1512 r1 = r1 - anc;
1513 }
1514 q2 = q2<<1; // update q2 = 2p/abs(d)
1515 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1516 if (r2.uge(ad)) { // must be unsigned comparison
1517 q2 = q2 + 1;
1518 r2 = r2 - ad;
1519 }
1520 delta = ad - r2;
1521 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
Eric Christopherd37eda82009-08-21 04:06:45 +00001522
Jay Foad4e5ea552009-04-30 10:15:35 +00001523 mag.m = q2 + 1;
1524 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1525 mag.s = p - d.getBitWidth(); // resulting shift
1526 return mag;
1527}
1528
1529/// Calculate the magic numbers required to implement an unsigned integer
1530/// division by a constant as a sequence of multiplies, adds and shifts.
1531/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1532/// S. Warren, Jr., chapter 10.
1533APInt::mu APInt::magicu() const {
1534 const APInt& d = *this;
1535 unsigned p;
1536 APInt nc, delta, q1, r1, q2, r2;
1537 struct mu magu;
1538 magu.a = 0; // initialize "add" indicator
1539 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1540 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1541 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1542
1543 nc = allOnes - (-d).urem(d);
1544 p = d.getBitWidth() - 1; // initialize p
1545 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1546 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1547 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1548 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1549 do {
1550 p = p + 1;
1551 if (r1.uge(nc - r1)) {
1552 q1 = q1 + q1 + 1; // update q1
1553 r1 = r1 + r1 - nc; // update r1
1554 }
1555 else {
1556 q1 = q1+q1; // update q1
1557 r1 = r1+r1; // update r1
1558 }
1559 if ((r2 + 1).uge(d - r2)) {
1560 if (q2.uge(signedMax)) magu.a = 1;
1561 q2 = q2+q2 + 1; // update q2
1562 r2 = r2+r2 + 1 - d; // update r2
1563 }
1564 else {
1565 if (q2.uge(signedMin)) magu.a = 1;
1566 q2 = q2+q2; // update q2
1567 r2 = r2+r2 + 1; // update r2
1568 }
1569 delta = d - 1 - r2;
1570 } while (p < d.getBitWidth()*2 &&
1571 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1572 magu.m = q2 + 1; // resulting magic number
1573 magu.s = p - d.getBitWidth(); // resulting shift
1574 return magu;
1575}
1576
Reid Spencer9c0696f2007-02-20 08:51:03 +00001577/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1578/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1579/// variables here have the same names as in the algorithm. Comments explain
1580/// the algorithm and any deviation from it.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001581static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1582 unsigned m, unsigned n) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00001583 assert(u && "Must provide dividend");
1584 assert(v && "Must provide divisor");
1585 assert(q && "Must provide quotient");
Reid Spencer9d6c9192007-02-24 03:58:46 +00001586 assert(u != v && u != q && v != q && "Must us different memory");
Reid Spencer9c0696f2007-02-20 08:51:03 +00001587 assert(n>1 && "n must be > 1");
1588
1589 // Knuth uses the value b as the base of the number system. In our case b
1590 // is 2^31 so we just set it to -1u.
1591 uint64_t b = uint64_t(1) << 32;
1592
Chris Lattnerfad86b02008-08-17 07:19:36 +00001593#if 0
David Greene465abed2010-01-05 01:28:52 +00001594 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1595 DEBUG(dbgs() << "KnuthDiv: original:");
1596 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1597 DEBUG(dbgs() << " by");
1598 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1599 DEBUG(dbgs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001600#endif
Eric Christopherd37eda82009-08-21 04:06:45 +00001601 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1602 // u and v by d. Note that we have taken Knuth's advice here to use a power
1603 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1604 // 2 allows us to shift instead of multiply and it is easy to determine the
Reid Spencer9c0696f2007-02-20 08:51:03 +00001605 // shift amount from the leading zeros. We are basically normalizing the u
1606 // and v so that its high bits are shifted to the top of v's range without
1607 // overflow. Note that this can require an extra word in u so that u must
1608 // be of length m+n+1.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001609 unsigned shift = CountLeadingZeros_32(v[n-1]);
1610 unsigned v_carry = 0;
1611 unsigned u_carry = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001612 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001613 for (unsigned i = 0; i < m+n; ++i) {
1614 unsigned u_tmp = u[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001615 u[i] = (u[i] << shift) | u_carry;
1616 u_carry = u_tmp;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001617 }
Chris Lattner455e9ab2009-01-21 18:09:24 +00001618 for (unsigned i = 0; i < n; ++i) {
1619 unsigned v_tmp = v[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001620 v[i] = (v[i] << shift) | v_carry;
1621 v_carry = v_tmp;
1622 }
1623 }
1624 u[m+n] = u_carry;
Chris Lattnerfad86b02008-08-17 07:19:36 +00001625#if 0
David Greene465abed2010-01-05 01:28:52 +00001626 DEBUG(dbgs() << "KnuthDiv: normal:");
1627 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1628 DEBUG(dbgs() << " by");
1629 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1630 DEBUG(dbgs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001631#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001632
1633 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1634 int j = m;
1635 do {
David Greene465abed2010-01-05 01:28:52 +00001636 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopherd37eda82009-08-21 04:06:45 +00001637 // D3. [Calculate q'.].
Reid Spencer9c0696f2007-02-20 08:51:03 +00001638 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1639 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1640 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1641 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1642 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopherd37eda82009-08-21 04:06:45 +00001643 // value qp is one too large, and it eliminates all cases where qp is two
1644 // too large.
Reid Spencer92904632007-02-23 01:57:13 +00001645 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
David Greene465abed2010-01-05 01:28:52 +00001646 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencer92904632007-02-23 01:57:13 +00001647 uint64_t qp = dividend / v[n-1];
1648 uint64_t rp = dividend % v[n-1];
Reid Spencer9c0696f2007-02-20 08:51:03 +00001649 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1650 qp--;
1651 rp += v[n-1];
Reid Spencer610fad82007-02-24 10:01:42 +00001652 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencer9d6c9192007-02-24 03:58:46 +00001653 qp--;
Reid Spencer92904632007-02-23 01:57:13 +00001654 }
David Greene465abed2010-01-05 01:28:52 +00001655 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001656
Reid Spencer92904632007-02-23 01:57:13 +00001657 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1658 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1659 // consists of a simple multiplication by a one-place number, combined with
Eric Christopherd37eda82009-08-21 04:06:45 +00001660 // a subtraction.
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001661 bool isNeg = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001662 for (unsigned i = 0; i < n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001663 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
Reid Spencer9d6c9192007-02-24 03:58:46 +00001664 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
Reid Spencer610fad82007-02-24 10:01:42 +00001665 bool borrow = subtrahend > u_tmp;
David Greene465abed2010-01-05 01:28:52 +00001666 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
Daniel Dunbara53902b2009-07-13 05:27:30 +00001667 << ", subtrahend == " << subtrahend
1668 << ", borrow = " << borrow << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001669
Reid Spencer610fad82007-02-24 10:01:42 +00001670 uint64_t result = u_tmp - subtrahend;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001671 unsigned k = j + i;
1672 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1673 u[k++] = (unsigned)(result >> 32); // subtract high word
Reid Spencer610fad82007-02-24 10:01:42 +00001674 while (borrow && k <= m+n) { // deal with borrow to the left
1675 borrow = u[k] == 0;
1676 u[k]--;
1677 k++;
1678 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001679 isNeg |= borrow;
David Greene465abed2010-01-05 01:28:52 +00001680 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
Eric Christopherd37eda82009-08-21 04:06:45 +00001681 u[j+i+1] << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001682 }
David Greene465abed2010-01-05 01:28:52 +00001683 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1684 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1685 DEBUG(dbgs() << '\n');
Eric Christopherd37eda82009-08-21 04:06:45 +00001686 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1687 // this step is actually negative, (u[j+n]...u[j]) should be left as the
Reid Spencer610fad82007-02-24 10:01:42 +00001688 // true value plus b**(n+1), namely as the b's complement of
Reid Spencer92904632007-02-23 01:57:13 +00001689 // the true value, and a "borrow" to the left should be remembered.
1690 //
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001691 if (isNeg) {
Reid Spencer610fad82007-02-24 10:01:42 +00001692 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattner455e9ab2009-01-21 18:09:24 +00001693 for (unsigned i = 0; i <= m+n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001694 u[i] = ~u[i] + carry; // b's complement
1695 carry = carry && u[i] == 0;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001696 }
Reid Spencer92904632007-02-23 01:57:13 +00001697 }
David Greene465abed2010-01-05 01:28:52 +00001698 DEBUG(dbgs() << "KnuthDiv: after complement:");
1699 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1700 DEBUG(dbgs() << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001701
Eric Christopherd37eda82009-08-21 04:06:45 +00001702 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Reid Spencer9c0696f2007-02-20 08:51:03 +00001703 // negative, go to step D6; otherwise go on to step D7.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001704 q[j] = (unsigned)qp;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001705 if (isNeg) {
Eric Christopherd37eda82009-08-21 04:06:45 +00001706 // D6. [Add back]. The probability that this step is necessary is very
Reid Spencer9c0696f2007-02-20 08:51:03 +00001707 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopherd37eda82009-08-21 04:06:45 +00001708 // this possibility. Decrease q[j] by 1
Reid Spencer92904632007-02-23 01:57:13 +00001709 q[j]--;
Eric Christopherd37eda82009-08-21 04:06:45 +00001710 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1711 // A carry will occur to the left of u[j+n], and it should be ignored
Reid Spencer92904632007-02-23 01:57:13 +00001712 // since it cancels with the borrow that occurred in D4.
1713 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001714 for (unsigned i = 0; i < n; i++) {
1715 unsigned limit = std::min(u[j+i],v[i]);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001716 u[j+i] += v[i] + carry;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001717 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001718 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001719 u[j+n] += carry;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001720 }
David Greene465abed2010-01-05 01:28:52 +00001721 DEBUG(dbgs() << "KnuthDiv: after correction:");
1722 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
1723 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001724
Reid Spencer92904632007-02-23 01:57:13 +00001725 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1726 } while (--j >= 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001727
David Greene465abed2010-01-05 01:28:52 +00001728 DEBUG(dbgs() << "KnuthDiv: quotient:");
1729 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1730 DEBUG(dbgs() << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001731
Reid Spencer9c0696f2007-02-20 08:51:03 +00001732 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1733 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1734 // compute the remainder (urem uses this).
1735 if (r) {
1736 // The value d is expressed by the "shift" value above since we avoided
1737 // multiplication by d by using a shift left. So, all we have to do is
1738 // shift right here. In order to mak
Reid Spencer1050ec52007-02-24 20:38:01 +00001739 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001740 unsigned carry = 0;
David Greene465abed2010-01-05 01:28:52 +00001741 DEBUG(dbgs() << "KnuthDiv: remainder:");
Reid Spencer1050ec52007-02-24 20:38:01 +00001742 for (int i = n-1; i >= 0; i--) {
1743 r[i] = (u[i] >> shift) | carry;
1744 carry = u[i] << (32 - shift);
David Greene465abed2010-01-05 01:28:52 +00001745 DEBUG(dbgs() << " " << r[i]);
Reid Spencer1050ec52007-02-24 20:38:01 +00001746 }
1747 } else {
1748 for (int i = n-1; i >= 0; i--) {
1749 r[i] = u[i];
David Greene465abed2010-01-05 01:28:52 +00001750 DEBUG(dbgs() << " " << r[i]);
Reid Spencer1050ec52007-02-24 20:38:01 +00001751 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001752 }
David Greene465abed2010-01-05 01:28:52 +00001753 DEBUG(dbgs() << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001754 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00001755#if 0
David Greene465abed2010-01-05 01:28:52 +00001756 DEBUG(dbgs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001757#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001758}
1759
Chris Lattner455e9ab2009-01-21 18:09:24 +00001760void APInt::divide(const APInt LHS, unsigned lhsWords,
1761 const APInt &RHS, unsigned rhsWords,
Reid Spencer9c0696f2007-02-20 08:51:03 +00001762 APInt *Quotient, APInt *Remainder)
1763{
1764 assert(lhsWords >= rhsWords && "Fractional result");
1765
Eric Christopherd37eda82009-08-21 04:06:45 +00001766 // First, compose the values into an array of 32-bit words instead of
Reid Spencer9c0696f2007-02-20 08:51:03 +00001767 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohmanf451cb82010-02-10 16:03:48 +00001768 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopherd37eda82009-08-21 04:06:45 +00001769 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1770 // can't use 64-bit operands here because we don't have native results of
1771 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencer9c0696f2007-02-20 08:51:03 +00001772 // work on large-endian machines.
Dan Gohmande551f92009-04-01 18:45:54 +00001773 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001774 unsigned n = rhsWords * 2;
1775 unsigned m = (lhsWords * 2) - n;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001776
1777 // Allocate space for the temporary values we need either on the stack, if
1778 // it will fit, or on the heap if it won't.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001779 unsigned SPACE[128];
1780 unsigned *U = 0;
1781 unsigned *V = 0;
1782 unsigned *Q = 0;
1783 unsigned *R = 0;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001784 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1785 U = &SPACE[0];
1786 V = &SPACE[m+n+1];
1787 Q = &SPACE[(m+n+1) + n];
1788 if (Remainder)
1789 R = &SPACE[(m+n+1) + n + (m+n)];
1790 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001791 U = new unsigned[m + n + 1];
1792 V = new unsigned[n];
1793 Q = new unsigned[m+n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001794 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001795 R = new unsigned[n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001796 }
1797
1798 // Initialize the dividend
Chris Lattner455e9ab2009-01-21 18:09:24 +00001799 memset(U, 0, (m+n+1)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001800 for (unsigned i = 0; i < lhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001801 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001802 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001803 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001804 }
1805 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1806
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001807 // Initialize the divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00001808 memset(V, 0, (n)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001809 for (unsigned i = 0; i < rhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001810 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001811 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001812 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001813 }
1814
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001815 // initialize the quotient and remainder
Chris Lattner455e9ab2009-01-21 18:09:24 +00001816 memset(Q, 0, (m+n) * sizeof(unsigned));
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001817 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001818 memset(R, 0, n * sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001819
Eric Christopherd37eda82009-08-21 04:06:45 +00001820 // Now, adjust m and n for the Knuth division. n is the number of words in
Reid Spencer9c0696f2007-02-20 08:51:03 +00001821 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopherd37eda82009-08-21 04:06:45 +00001822 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Reid Spencer9c0696f2007-02-20 08:51:03 +00001823 // contain any zero words or the Knuth algorithm fails.
1824 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1825 n--;
1826 m++;
1827 }
1828 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1829 m--;
1830
1831 // If we're left with only a single word for the divisor, Knuth doesn't work
1832 // so we implement the short division algorithm here. This is much simpler
1833 // and faster because we are certain that we can divide a 64-bit quantity
1834 // by a 32-bit quantity at hardware speed and short division is simply a
1835 // series of such operations. This is just like doing short division but we
1836 // are using base 2^32 instead of base 10.
1837 assert(n != 0 && "Divide by zero?");
1838 if (n == 1) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001839 unsigned divisor = V[0];
1840 unsigned remainder = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001841 for (int i = m+n-1; i >= 0; i--) {
1842 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1843 if (partial_dividend == 0) {
1844 Q[i] = 0;
1845 remainder = 0;
1846 } else if (partial_dividend < divisor) {
1847 Q[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001848 remainder = (unsigned)partial_dividend;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001849 } else if (partial_dividend == divisor) {
1850 Q[i] = 1;
1851 remainder = 0;
1852 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001853 Q[i] = (unsigned)(partial_dividend / divisor);
1854 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001855 }
1856 }
1857 if (R)
1858 R[0] = remainder;
1859 } else {
1860 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1861 // case n > 1.
1862 KnuthDiv(U, V, Q, R, m, n);
1863 }
1864
1865 // If the caller wants the quotient
1866 if (Quotient) {
1867 // Set up the Quotient value's memory.
1868 if (Quotient->BitWidth != LHS.BitWidth) {
1869 if (Quotient->isSingleWord())
1870 Quotient->VAL = 0;
1871 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001872 delete [] Quotient->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001873 Quotient->BitWidth = LHS.BitWidth;
1874 if (!Quotient->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001875 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001876 } else
1877 Quotient->clear();
1878
Eric Christopherd37eda82009-08-21 04:06:45 +00001879 // The quotient is in Q. Reconstitute the quotient into Quotient's low
Reid Spencer9c0696f2007-02-20 08:51:03 +00001880 // order words.
1881 if (lhsWords == 1) {
Eric Christopherd37eda82009-08-21 04:06:45 +00001882 uint64_t tmp =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001883 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1884 if (Quotient->isSingleWord())
1885 Quotient->VAL = tmp;
1886 else
1887 Quotient->pVal[0] = tmp;
1888 } else {
1889 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1890 for (unsigned i = 0; i < lhsWords; ++i)
Eric Christopherd37eda82009-08-21 04:06:45 +00001891 Quotient->pVal[i] =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001892 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1893 }
1894 }
1895
1896 // If the caller wants the remainder
1897 if (Remainder) {
1898 // Set up the Remainder value's memory.
1899 if (Remainder->BitWidth != RHS.BitWidth) {
1900 if (Remainder->isSingleWord())
1901 Remainder->VAL = 0;
1902 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001903 delete [] Remainder->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001904 Remainder->BitWidth = RHS.BitWidth;
1905 if (!Remainder->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001906 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001907 } else
1908 Remainder->clear();
1909
1910 // The remainder is in R. Reconstitute the remainder into Remainder's low
1911 // order words.
1912 if (rhsWords == 1) {
Eric Christopherd37eda82009-08-21 04:06:45 +00001913 uint64_t tmp =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001914 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1915 if (Remainder->isSingleWord())
1916 Remainder->VAL = tmp;
1917 else
1918 Remainder->pVal[0] = tmp;
1919 } else {
1920 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1921 for (unsigned i = 0; i < rhsWords; ++i)
Eric Christopherd37eda82009-08-21 04:06:45 +00001922 Remainder->pVal[i] =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001923 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1924 }
1925 }
1926
1927 // Clean up the memory we allocated.
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001928 if (U != &SPACE[0]) {
1929 delete [] U;
1930 delete [] V;
1931 delete [] Q;
1932 delete [] R;
1933 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00001934}
1935
Reid Spencere81d2da2007-02-16 22:36:51 +00001936APInt APInt::udiv(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001937 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001938
1939 // First, deal with the easy case
1940 if (isSingleWord()) {
1941 assert(RHS.VAL != 0 && "Divide by zero?");
1942 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001943 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001944
Reid Spencer71bd08f2007-02-17 02:07:07 +00001945 // Get some facts about the LHS and RHS number of bits and words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001946 unsigned rhsBits = RHS.getActiveBits();
1947 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001948 assert(rhsWords && "Divided by zero???");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001949 unsigned lhsBits = this->getActiveBits();
1950 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001951
1952 // Deal with some degenerate cases
Eric Christopherd37eda82009-08-21 04:06:45 +00001953 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +00001954 // 0 / X ===> 0
Eric Christopherd37eda82009-08-21 04:06:45 +00001955 return APInt(BitWidth, 0);
Reid Spencere0cdd332007-02-21 08:21:52 +00001956 else if (lhsWords < rhsWords || this->ult(RHS)) {
1957 // X / Y ===> 0, iff X < Y
1958 return APInt(BitWidth, 0);
1959 } else if (*this == RHS) {
1960 // X / X ===> 1
1961 return APInt(BitWidth, 1);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001962 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001963 // All high words are zero, just use native divide
Reid Spencere0cdd332007-02-21 08:21:52 +00001964 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001965 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001966
1967 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1968 APInt Quotient(1,0); // to hold result.
1969 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1970 return Quotient;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001971}
1972
Reid Spencere81d2da2007-02-16 22:36:51 +00001973APInt APInt::urem(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001974 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001975 if (isSingleWord()) {
1976 assert(RHS.VAL != 0 && "Remainder by zero?");
1977 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001978 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001979
Reid Spencere0cdd332007-02-21 08:21:52 +00001980 // Get some facts about the LHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001981 unsigned lhsBits = getActiveBits();
1982 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001983
1984 // Get some facts about the RHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001985 unsigned rhsBits = RHS.getActiveBits();
1986 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001987 assert(rhsWords && "Performing remainder operation by zero ???");
1988
Reid Spencer71bd08f2007-02-17 02:07:07 +00001989 // Check the degenerate cases
Reid Spencer9c0696f2007-02-20 08:51:03 +00001990 if (lhsWords == 0) {
Reid Spencere0cdd332007-02-21 08:21:52 +00001991 // 0 % Y ===> 0
1992 return APInt(BitWidth, 0);
1993 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1994 // X % Y ===> X, iff X < Y
1995 return *this;
1996 } else if (*this == RHS) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001997 // X % X == 0;
Reid Spencere0cdd332007-02-21 08:21:52 +00001998 return APInt(BitWidth, 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001999 } else if (lhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00002000 // All high words are zero, just use native remainder
Reid Spencere0cdd332007-02-21 08:21:52 +00002001 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00002002 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002003
Reid Spencer19dc32a2007-05-13 23:44:59 +00002004 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Reid Spencer9c0696f2007-02-20 08:51:03 +00002005 APInt Remainder(1,0);
2006 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
2007 return Remainder;
Zhou Sheng0b706b12007-02-08 14:35:19 +00002008}
Reid Spencer5e0a8512007-02-17 03:16:00 +00002009
Eric Christopherd37eda82009-08-21 04:06:45 +00002010void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Reid Spencer19dc32a2007-05-13 23:44:59 +00002011 APInt &Quotient, APInt &Remainder) {
2012 // Get some size facts about the dividend and divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00002013 unsigned lhsBits = LHS.getActiveBits();
2014 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2015 unsigned rhsBits = RHS.getActiveBits();
2016 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer19dc32a2007-05-13 23:44:59 +00002017
2018 // Check the degenerate cases
Eric Christopherd37eda82009-08-21 04:06:45 +00002019 if (lhsWords == 0) {
Reid Spencer19dc32a2007-05-13 23:44:59 +00002020 Quotient = 0; // 0 / Y ===> 0
2021 Remainder = 0; // 0 % Y ===> 0
2022 return;
Eric Christopherd37eda82009-08-21 04:06:45 +00002023 }
2024
2025 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Reid Spencer19dc32a2007-05-13 23:44:59 +00002026 Remainder = LHS; // X % Y ===> X, iff X < Y
John McCalld73bf592009-12-24 08:52:06 +00002027 Quotient = 0; // X / Y ===> 0, iff X < Y
Reid Spencer19dc32a2007-05-13 23:44:59 +00002028 return;
Eric Christopherd37eda82009-08-21 04:06:45 +00002029 }
2030
Reid Spencer19dc32a2007-05-13 23:44:59 +00002031 if (LHS == RHS) {
2032 Quotient = 1; // X / X ===> 1
2033 Remainder = 0; // X % X ===> 0;
2034 return;
Eric Christopherd37eda82009-08-21 04:06:45 +00002035 }
2036
Reid Spencer19dc32a2007-05-13 23:44:59 +00002037 if (lhsWords == 1 && rhsWords == 1) {
2038 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00002039 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2040 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2041 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2042 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Reid Spencer19dc32a2007-05-13 23:44:59 +00002043 return;
2044 }
2045
2046 // Okay, lets do it the long way
2047 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2048}
2049
Chris Lattner0a0a5852010-10-13 23:54:10 +00002050APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002051 APInt Res = *this+RHS;
2052 Overflow = isNonNegative() == RHS.isNonNegative() &&
2053 Res.isNonNegative() != isNonNegative();
2054 return Res;
2055}
2056
Chris Lattnereafc5cb2010-10-14 00:05:07 +00002057APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
2058 APInt Res = *this+RHS;
2059 Overflow = Res.ult(RHS);
2060 return Res;
2061}
2062
Chris Lattner0a0a5852010-10-13 23:54:10 +00002063APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002064 APInt Res = *this - RHS;
2065 Overflow = isNonNegative() != RHS.isNonNegative() &&
2066 Res.isNonNegative() != isNonNegative();
2067 return Res;
2068}
2069
Chris Lattnereafc5cb2010-10-14 00:05:07 +00002070APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnera5bbde82010-10-14 00:30:00 +00002071 APInt Res = *this-RHS;
2072 Overflow = Res.ugt(*this);
Chris Lattnereafc5cb2010-10-14 00:05:07 +00002073 return Res;
2074}
2075
Chris Lattner0a0a5852010-10-13 23:54:10 +00002076APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002077 // MININT/-1 --> overflow.
2078 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
2079 return sdiv(RHS);
2080}
2081
Chris Lattner0a0a5852010-10-13 23:54:10 +00002082APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002083 APInt Res = *this * RHS;
2084
2085 if (*this != 0 && RHS != 0)
2086 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
2087 else
2088 Overflow = false;
2089 return Res;
2090}
2091
Chris Lattner0a0a5852010-10-13 23:54:10 +00002092APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002093 Overflow = ShAmt >= getBitWidth();
2094 if (Overflow)
2095 ShAmt = getBitWidth()-1;
2096
2097 if (isNonNegative()) // Don't allow sign change.
2098 Overflow = ShAmt >= countLeadingZeros();
2099 else
2100 Overflow = ShAmt >= countLeadingOnes();
2101
2102 return *this << ShAmt;
2103}
2104
2105
2106
2107
Benjamin Kramer38e59892010-07-14 22:38:02 +00002108void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
Reid Spencer385f7542007-02-21 03:55:44 +00002109 // Check our assumptions here
Erick Tryzelaarbb975312009-08-21 03:15:14 +00002110 assert(!str.empty() && "Invalid string length");
Reid Spencer5e0a8512007-02-17 03:16:00 +00002111 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2112 "Radix should be 2, 8, 10, or 16!");
Erick Tryzelaarbb975312009-08-21 03:15:14 +00002113
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002114 StringRef::iterator p = str.begin();
2115 size_t slen = str.size();
2116 bool isNeg = *p == '-';
Erick Tryzelaarbb975312009-08-21 03:15:14 +00002117 if (*p == '-' || *p == '+') {
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002118 p++;
2119 slen--;
Eric Christophere250f2a2009-08-21 04:10:31 +00002120 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002121 }
Chris Lattnera5ae15e2007-05-03 18:15:36 +00002122 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner38300e92009-04-25 18:34:04 +00002123 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2124 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Dan Gohman16e02092010-03-24 19:38:02 +00002125 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2126 "Insufficient bit width");
Reid Spencer385f7542007-02-21 03:55:44 +00002127
2128 // Allocate memory
2129 if (!isSingleWord())
2130 pVal = getClearedMemory(getNumWords());
2131
2132 // Figure out if we can shift instead of multiply
Chris Lattner455e9ab2009-01-21 18:09:24 +00002133 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer385f7542007-02-21 03:55:44 +00002134
2135 // Set up an APInt for the digit to add outside the loop so we don't
2136 // constantly construct/destruct it.
2137 APInt apdigit(getBitWidth(), 0);
2138 APInt apradix(getBitWidth(), radix);
2139
2140 // Enter digit traversal loop
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002141 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +00002142 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +00002143 assert(digit < radix && "Invalid character in digit string");
Reid Spencer385f7542007-02-21 03:55:44 +00002144
Reid Spencer6551dcd2007-05-16 19:18:22 +00002145 // Shift or multiply the value by the radix
Chris Lattner38300e92009-04-25 18:34:04 +00002146 if (slen > 1) {
2147 if (shift)
2148 *this <<= shift;
2149 else
2150 *this *= apradix;
2151 }
Reid Spencer385f7542007-02-21 03:55:44 +00002152
2153 // Add in the digit we just interpreted
Reid Spencer5bce8542007-02-24 20:19:37 +00002154 if (apdigit.isSingleWord())
2155 apdigit.VAL = digit;
2156 else
2157 apdigit.pVal[0] = digit;
Reid Spencer385f7542007-02-21 03:55:44 +00002158 *this += apdigit;
Reid Spencer5e0a8512007-02-17 03:16:00 +00002159 }
Reid Spencer9eec2412007-02-25 23:44:53 +00002160 // If its negative, put it in two's complement form
Reid Spencer47fbe9e2007-02-26 07:44:38 +00002161 if (isNeg) {
2162 (*this)--;
Reid Spencer9eec2412007-02-25 23:44:53 +00002163 this->flip();
Reid Spencer9eec2412007-02-25 23:44:53 +00002164 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00002165}
Reid Spencer9c0696f2007-02-20 08:51:03 +00002166
Chris Lattnerfad86b02008-08-17 07:19:36 +00002167void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2168 bool Signed) const {
2169 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Reid Spencer9c0696f2007-02-20 08:51:03 +00002170 "Radix should be 2, 8, 10, or 16!");
Eric Christopherd37eda82009-08-21 04:06:45 +00002171
Chris Lattnerfad86b02008-08-17 07:19:36 +00002172 // First, check for a zero value and just short circuit the logic below.
2173 if (*this == 0) {
2174 Str.push_back('0');
2175 return;
2176 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002177
Chris Lattnerfad86b02008-08-17 07:19:36 +00002178 static const char Digits[] = "0123456789ABCDEF";
Eric Christopherd37eda82009-08-21 04:06:45 +00002179
Reid Spencer9c0696f2007-02-20 08:51:03 +00002180 if (isSingleWord()) {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002181 char Buffer[65];
2182 char *BufPtr = Buffer+65;
Eric Christopherd37eda82009-08-21 04:06:45 +00002183
Chris Lattnerfad86b02008-08-17 07:19:36 +00002184 uint64_t N;
Chris Lattner50839122010-08-18 00:33:47 +00002185 if (!Signed) {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002186 N = getZExtValue();
Chris Lattner50839122010-08-18 00:33:47 +00002187 } else {
2188 int64_t I = getSExtValue();
2189 if (I >= 0) {
2190 N = I;
2191 } else {
2192 Str.push_back('-');
2193 N = -(uint64_t)I;
2194 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002195 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002196
Chris Lattnerfad86b02008-08-17 07:19:36 +00002197 while (N) {
2198 *--BufPtr = Digits[N % Radix];
2199 N /= Radix;
2200 }
2201 Str.append(BufPtr, Buffer+65);
2202 return;
Reid Spencer9c0696f2007-02-20 08:51:03 +00002203 }
2204
Chris Lattnerfad86b02008-08-17 07:19:36 +00002205 APInt Tmp(*this);
Eric Christopherd37eda82009-08-21 04:06:45 +00002206
Chris Lattnerfad86b02008-08-17 07:19:36 +00002207 if (Signed && isNegative()) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00002208 // They want to print the signed version and it is a negative value
2209 // Flip the bits and add one to turn it into the equivalent positive
2210 // value and put a '-' in the result.
Chris Lattnerfad86b02008-08-17 07:19:36 +00002211 Tmp.flip();
2212 Tmp++;
2213 Str.push_back('-');
Reid Spencer9c0696f2007-02-20 08:51:03 +00002214 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002215
Chris Lattnerfad86b02008-08-17 07:19:36 +00002216 // We insert the digits backward, then reverse them to get the right order.
2217 unsigned StartDig = Str.size();
Eric Christopherd37eda82009-08-21 04:06:45 +00002218
2219 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2220 // because the number of bits per digit (1, 3 and 4 respectively) divides
Chris Lattnerfad86b02008-08-17 07:19:36 +00002221 // equaly. We just shift until the value is zero.
2222 if (Radix != 10) {
2223 // Just shift tmp right for each digit width until it becomes zero
2224 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2225 unsigned MaskAmt = Radix - 1;
Eric Christopherd37eda82009-08-21 04:06:45 +00002226
Chris Lattnerfad86b02008-08-17 07:19:36 +00002227 while (Tmp != 0) {
2228 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2229 Str.push_back(Digits[Digit]);
2230 Tmp = Tmp.lshr(ShiftAmt);
2231 }
2232 } else {
2233 APInt divisor(4, 10);
2234 while (Tmp != 0) {
2235 APInt APdigit(1, 0);
2236 APInt tmp2(Tmp.getBitWidth(), 0);
Eric Christopherd37eda82009-08-21 04:06:45 +00002237 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
Chris Lattnerfad86b02008-08-17 07:19:36 +00002238 &APdigit);
Chris Lattner455e9ab2009-01-21 18:09:24 +00002239 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002240 assert(Digit < Radix && "divide failed");
2241 Str.push_back(Digits[Digit]);
2242 Tmp = tmp2;
2243 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002244 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002245
Chris Lattnerfad86b02008-08-17 07:19:36 +00002246 // Reverse the digits before returning.
2247 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencer9c0696f2007-02-20 08:51:03 +00002248}
2249
Chris Lattnerfad86b02008-08-17 07:19:36 +00002250/// toString - This returns the APInt as a std::string. Note that this is an
2251/// inefficient method. It is better to pass in a SmallVector/SmallString
2252/// to the methods above.
2253std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2254 SmallString<40> S;
2255 toString(S, Radix, Signed);
Daniel Dunbardddfd342009-08-19 20:07:03 +00002256 return S.str();
Reid Spencer385f7542007-02-21 03:55:44 +00002257}
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002258
Chris Lattnerfad86b02008-08-17 07:19:36 +00002259
2260void APInt::dump() const {
2261 SmallString<40> S, U;
2262 this->toStringUnsigned(U);
2263 this->toStringSigned(S);
David Greene465abed2010-01-05 01:28:52 +00002264 dbgs() << "APInt(" << BitWidth << "b, "
Daniel Dunbardddfd342009-08-19 20:07:03 +00002265 << U.str() << "u " << S.str() << "s)";
Chris Lattnerfad86b02008-08-17 07:19:36 +00002266}
2267
Chris Lattner944fac72008-08-23 22:23:09 +00002268void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002269 SmallString<40> S;
2270 this->toString(S, 10, isSigned);
Daniel Dunbardddfd342009-08-19 20:07:03 +00002271 OS << S.str();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002272}
2273
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002274// This implements a variety of operations on a representation of
2275// arbitrary precision, two's-complement, bignum integer values.
2276
Chris Lattner91021d32009-08-23 23:11:28 +00002277// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2278// and unrestricting assumption.
Chris Lattner9f17eb02008-08-17 04:58:58 +00002279#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002280COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002281
2282/* Some handy functions local to this file. */
2283namespace {
2284
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002285 /* Returns the integer part with the least significant BITS set.
2286 BITS cannot be zero. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002287 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002288 lowBitMask(unsigned int bits)
2289 {
Dan Gohman16e02092010-03-24 19:38:02 +00002290 assert(bits != 0 && bits <= integerPartWidth);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002291
2292 return ~(integerPart) 0 >> (integerPartWidth - bits);
2293 }
2294
Neil Booth055c0b32007-10-06 00:43:45 +00002295 /* Returns the value of the lower half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002296 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002297 lowHalf(integerPart part)
2298 {
2299 return part & lowBitMask(integerPartWidth / 2);
2300 }
2301
Neil Booth055c0b32007-10-06 00:43:45 +00002302 /* Returns the value of the upper half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002303 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002304 highHalf(integerPart part)
2305 {
2306 return part >> (integerPartWidth / 2);
2307 }
2308
Neil Booth055c0b32007-10-06 00:43:45 +00002309 /* Returns the bit number of the most significant set bit of a part.
2310 If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002311 static unsigned int
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002312 partMSB(integerPart value)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002313 {
2314 unsigned int n, msb;
2315
2316 if (value == 0)
2317 return -1U;
2318
2319 n = integerPartWidth / 2;
2320
2321 msb = 0;
2322 do {
2323 if (value >> n) {
2324 value >>= n;
2325 msb += n;
2326 }
2327
2328 n >>= 1;
2329 } while (n);
2330
2331 return msb;
2332 }
2333
Neil Booth055c0b32007-10-06 00:43:45 +00002334 /* Returns the bit number of the least significant set bit of a
2335 part. If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002336 static unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002337 partLSB(integerPart value)
2338 {
2339 unsigned int n, lsb;
2340
2341 if (value == 0)
2342 return -1U;
2343
2344 lsb = integerPartWidth - 1;
2345 n = integerPartWidth / 2;
2346
2347 do {
2348 if (value << n) {
2349 value <<= n;
2350 lsb -= n;
2351 }
2352
2353 n >>= 1;
2354 } while (n);
2355
2356 return lsb;
2357 }
2358}
2359
2360/* Sets the least significant part of a bignum to the input value, and
2361 zeroes out higher parts. */
2362void
2363APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2364{
2365 unsigned int i;
2366
Dan Gohman16e02092010-03-24 19:38:02 +00002367 assert(parts > 0);
Neil Booth68e53ad2007-10-08 13:47:12 +00002368
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002369 dst[0] = part;
Dan Gohman16e02092010-03-24 19:38:02 +00002370 for (i = 1; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002371 dst[i] = 0;
2372}
2373
2374/* Assign one bignum to another. */
2375void
2376APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2377{
2378 unsigned int i;
2379
Dan Gohman16e02092010-03-24 19:38:02 +00002380 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002381 dst[i] = src[i];
2382}
2383
2384/* Returns true if a bignum is zero, false otherwise. */
2385bool
2386APInt::tcIsZero(const integerPart *src, unsigned int parts)
2387{
2388 unsigned int i;
2389
Dan Gohman16e02092010-03-24 19:38:02 +00002390 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002391 if (src[i])
2392 return false;
2393
2394 return true;
2395}
2396
2397/* Extract the given bit of a bignum; returns 0 or 1. */
2398int
2399APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2400{
Dan Gohman16e02092010-03-24 19:38:02 +00002401 return (parts[bit / integerPartWidth] &
2402 ((integerPart) 1 << bit % integerPartWidth)) != 0;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002403}
2404
John McCalle12b7382010-02-28 02:51:25 +00002405/* Set the given bit of a bignum. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002406void
2407APInt::tcSetBit(integerPart *parts, unsigned int bit)
2408{
2409 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2410}
2411
John McCalle12b7382010-02-28 02:51:25 +00002412/* Clears the given bit of a bignum. */
2413void
2414APInt::tcClearBit(integerPart *parts, unsigned int bit)
2415{
2416 parts[bit / integerPartWidth] &=
2417 ~((integerPart) 1 << (bit % integerPartWidth));
2418}
2419
Neil Booth055c0b32007-10-06 00:43:45 +00002420/* Returns the bit number of the least significant set bit of a
2421 number. If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002422unsigned int
2423APInt::tcLSB(const integerPart *parts, unsigned int n)
2424{
2425 unsigned int i, lsb;
2426
Dan Gohman16e02092010-03-24 19:38:02 +00002427 for (i = 0; i < n; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002428 if (parts[i] != 0) {
2429 lsb = partLSB(parts[i]);
2430
2431 return lsb + i * integerPartWidth;
2432 }
2433 }
2434
2435 return -1U;
2436}
2437
Neil Booth055c0b32007-10-06 00:43:45 +00002438/* Returns the bit number of the most significant set bit of a number.
2439 If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002440unsigned int
2441APInt::tcMSB(const integerPart *parts, unsigned int n)
2442{
2443 unsigned int msb;
2444
2445 do {
Dan Gohman16e02092010-03-24 19:38:02 +00002446 --n;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002447
Dan Gohman16e02092010-03-24 19:38:02 +00002448 if (parts[n] != 0) {
2449 msb = partMSB(parts[n]);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002450
Dan Gohman16e02092010-03-24 19:38:02 +00002451 return msb + n * integerPartWidth;
2452 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002453 } while (n);
2454
2455 return -1U;
2456}
2457
Neil Booth68e53ad2007-10-08 13:47:12 +00002458/* Copy the bit vector of width srcBITS from SRC, starting at bit
2459 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2460 the least significant bit of DST. All high bits above srcBITS in
2461 DST are zero-filled. */
2462void
Evan Chengcf69a742009-05-21 23:47:47 +00002463APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Booth68e53ad2007-10-08 13:47:12 +00002464 unsigned int srcBits, unsigned int srcLSB)
2465{
2466 unsigned int firstSrcPart, dstParts, shift, n;
2467
2468 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
Dan Gohman16e02092010-03-24 19:38:02 +00002469 assert(dstParts <= dstCount);
Neil Booth68e53ad2007-10-08 13:47:12 +00002470
2471 firstSrcPart = srcLSB / integerPartWidth;
2472 tcAssign (dst, src + firstSrcPart, dstParts);
2473
2474 shift = srcLSB % integerPartWidth;
2475 tcShiftRight (dst, dstParts, shift);
2476
2477 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2478 in DST. If this is less that srcBits, append the rest, else
2479 clear the high bits. */
2480 n = dstParts * integerPartWidth - shift;
2481 if (n < srcBits) {
2482 integerPart mask = lowBitMask (srcBits - n);
2483 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2484 << n % integerPartWidth);
2485 } else if (n > srcBits) {
Neil Booth1e8390d2007-10-12 15:31:31 +00002486 if (srcBits % integerPartWidth)
2487 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Booth68e53ad2007-10-08 13:47:12 +00002488 }
2489
2490 /* Clear high parts. */
2491 while (dstParts < dstCount)
2492 dst[dstParts++] = 0;
2493}
2494
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002495/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2496integerPart
2497APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2498 integerPart c, unsigned int parts)
2499{
2500 unsigned int i;
2501
2502 assert(c <= 1);
2503
Dan Gohman16e02092010-03-24 19:38:02 +00002504 for (i = 0; i < parts; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002505 integerPart l;
2506
2507 l = dst[i];
2508 if (c) {
2509 dst[i] += rhs[i] + 1;
2510 c = (dst[i] <= l);
2511 } else {
2512 dst[i] += rhs[i];
2513 c = (dst[i] < l);
2514 }
2515 }
2516
2517 return c;
2518}
2519
2520/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2521integerPart
2522APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2523 integerPart c, unsigned int parts)
2524{
2525 unsigned int i;
2526
2527 assert(c <= 1);
2528
Dan Gohman16e02092010-03-24 19:38:02 +00002529 for (i = 0; i < parts; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002530 integerPart l;
2531
2532 l = dst[i];
2533 if (c) {
2534 dst[i] -= rhs[i] + 1;
2535 c = (dst[i] >= l);
2536 } else {
2537 dst[i] -= rhs[i];
2538 c = (dst[i] > l);
2539 }
2540 }
2541
2542 return c;
2543}
2544
2545/* Negate a bignum in-place. */
2546void
2547APInt::tcNegate(integerPart *dst, unsigned int parts)
2548{
2549 tcComplement(dst, parts);
2550 tcIncrement(dst, parts);
2551}
2552
Neil Booth055c0b32007-10-06 00:43:45 +00002553/* DST += SRC * MULTIPLIER + CARRY if add is true
2554 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002555
2556 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2557 they must start at the same point, i.e. DST == SRC.
2558
2559 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2560 returned. Otherwise DST is filled with the least significant
2561 DSTPARTS parts of the result, and if all of the omitted higher
2562 parts were zero return zero, otherwise overflow occurred and
2563 return one. */
2564int
2565APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2566 integerPart multiplier, integerPart carry,
2567 unsigned int srcParts, unsigned int dstParts,
2568 bool add)
2569{
2570 unsigned int i, n;
2571
2572 /* Otherwise our writes of DST kill our later reads of SRC. */
2573 assert(dst <= src || dst >= src + srcParts);
2574 assert(dstParts <= srcParts + 1);
2575
2576 /* N loops; minimum of dstParts and srcParts. */
2577 n = dstParts < srcParts ? dstParts: srcParts;
2578
Dan Gohman16e02092010-03-24 19:38:02 +00002579 for (i = 0; i < n; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002580 integerPart low, mid, high, srcPart;
2581
2582 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2583
2584 This cannot overflow, because
2585
2586 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2587
2588 which is less than n^2. */
2589
2590 srcPart = src[i];
2591
2592 if (multiplier == 0 || srcPart == 0) {
2593 low = carry;
2594 high = 0;
2595 } else {
2596 low = lowHalf(srcPart) * lowHalf(multiplier);
2597 high = highHalf(srcPart) * highHalf(multiplier);
2598
2599 mid = lowHalf(srcPart) * highHalf(multiplier);
2600 high += highHalf(mid);
2601 mid <<= integerPartWidth / 2;
2602 if (low + mid < low)
2603 high++;
2604 low += mid;
2605
2606 mid = highHalf(srcPart) * lowHalf(multiplier);
2607 high += highHalf(mid);
2608 mid <<= integerPartWidth / 2;
2609 if (low + mid < low)
2610 high++;
2611 low += mid;
2612
2613 /* Now add carry. */
2614 if (low + carry < low)
2615 high++;
2616 low += carry;
2617 }
2618
2619 if (add) {
2620 /* And now DST[i], and store the new low part there. */
2621 if (low + dst[i] < low)
2622 high++;
2623 dst[i] += low;
2624 } else
2625 dst[i] = low;
2626
2627 carry = high;
2628 }
2629
2630 if (i < dstParts) {
2631 /* Full multiplication, there is no overflow. */
2632 assert(i + 1 == dstParts);
2633 dst[i] = carry;
2634 return 0;
2635 } else {
2636 /* We overflowed if there is carry. */
2637 if (carry)
2638 return 1;
2639
2640 /* We would overflow if any significant unwritten parts would be
2641 non-zero. This is true if any remaining src parts are non-zero
2642 and the multiplier is non-zero. */
2643 if (multiplier)
Dan Gohman16e02092010-03-24 19:38:02 +00002644 for (; i < srcParts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002645 if (src[i])
2646 return 1;
2647
2648 /* We fitted in the narrow destination. */
2649 return 0;
2650 }
2651}
2652
2653/* DST = LHS * RHS, where DST has the same width as the operands and
2654 is filled with the least significant parts of the result. Returns
2655 one if overflow occurred, otherwise zero. DST must be disjoint
2656 from both operands. */
2657int
2658APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2659 const integerPart *rhs, unsigned int parts)
2660{
2661 unsigned int i;
2662 int overflow;
2663
2664 assert(dst != lhs && dst != rhs);
2665
2666 overflow = 0;
2667 tcSet(dst, 0, parts);
2668
Dan Gohman16e02092010-03-24 19:38:02 +00002669 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002670 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2671 parts - i, true);
2672
2673 return overflow;
2674}
2675
Neil Booth978661d2007-10-06 00:24:48 +00002676/* DST = LHS * RHS, where DST has width the sum of the widths of the
2677 operands. No overflow occurs. DST must be disjoint from both
2678 operands. Returns the number of parts required to hold the
2679 result. */
2680unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002681APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth978661d2007-10-06 00:24:48 +00002682 const integerPart *rhs, unsigned int lhsParts,
2683 unsigned int rhsParts)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002684{
Neil Booth978661d2007-10-06 00:24:48 +00002685 /* Put the narrower number on the LHS for less loops below. */
2686 if (lhsParts > rhsParts) {
2687 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2688 } else {
2689 unsigned int n;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002690
Neil Booth978661d2007-10-06 00:24:48 +00002691 assert(dst != lhs && dst != rhs);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002692
Neil Booth978661d2007-10-06 00:24:48 +00002693 tcSet(dst, 0, rhsParts);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002694
Dan Gohman16e02092010-03-24 19:38:02 +00002695 for (n = 0; n < lhsParts; n++)
Neil Booth978661d2007-10-06 00:24:48 +00002696 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002697
Neil Booth978661d2007-10-06 00:24:48 +00002698 n = lhsParts + rhsParts;
2699
2700 return n - (dst[n - 1] == 0);
2701 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002702}
2703
2704/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2705 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2706 set REMAINDER to the remainder, return zero. i.e.
2707
2708 OLD_LHS = RHS * LHS + REMAINDER
2709
2710 SCRATCH is a bignum of the same size as the operands and result for
2711 use by the routine; its contents need not be initialized and are
2712 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2713*/
2714int
2715APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2716 integerPart *remainder, integerPart *srhs,
2717 unsigned int parts)
2718{
2719 unsigned int n, shiftCount;
2720 integerPart mask;
2721
2722 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2723
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002724 shiftCount = tcMSB(rhs, parts) + 1;
2725 if (shiftCount == 0)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002726 return true;
2727
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002728 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002729 n = shiftCount / integerPartWidth;
2730 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2731
2732 tcAssign(srhs, rhs, parts);
2733 tcShiftLeft(srhs, parts, shiftCount);
2734 tcAssign(remainder, lhs, parts);
2735 tcSet(lhs, 0, parts);
2736
2737 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2738 the total. */
Dan Gohman16e02092010-03-24 19:38:02 +00002739 for (;;) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002740 int compare;
2741
2742 compare = tcCompare(remainder, srhs, parts);
2743 if (compare >= 0) {
2744 tcSubtract(remainder, srhs, 0, parts);
2745 lhs[n] |= mask;
2746 }
2747
2748 if (shiftCount == 0)
2749 break;
2750 shiftCount--;
2751 tcShiftRight(srhs, parts, 1);
2752 if ((mask >>= 1) == 0)
2753 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2754 }
2755
2756 return false;
2757}
2758
2759/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2760 There are no restrictions on COUNT. */
2761void
2762APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2763{
Neil Booth68e53ad2007-10-08 13:47:12 +00002764 if (count) {
2765 unsigned int jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002766
Neil Booth68e53ad2007-10-08 13:47:12 +00002767 /* Jump is the inter-part jump; shift is is intra-part shift. */
2768 jump = count / integerPartWidth;
2769 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002770
Neil Booth68e53ad2007-10-08 13:47:12 +00002771 while (parts > jump) {
2772 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002773
Neil Booth68e53ad2007-10-08 13:47:12 +00002774 parts--;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002775
Neil Booth68e53ad2007-10-08 13:47:12 +00002776 /* dst[i] comes from the two parts src[i - jump] and, if we have
2777 an intra-part shift, src[i - jump - 1]. */
2778 part = dst[parts - jump];
2779 if (shift) {
2780 part <<= shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002781 if (parts >= jump + 1)
2782 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2783 }
2784
Neil Booth68e53ad2007-10-08 13:47:12 +00002785 dst[parts] = part;
2786 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002787
Neil Booth68e53ad2007-10-08 13:47:12 +00002788 while (parts > 0)
2789 dst[--parts] = 0;
2790 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002791}
2792
2793/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2794 zero. There are no restrictions on COUNT. */
2795void
2796APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2797{
Neil Booth68e53ad2007-10-08 13:47:12 +00002798 if (count) {
2799 unsigned int i, jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002800
Neil Booth68e53ad2007-10-08 13:47:12 +00002801 /* Jump is the inter-part jump; shift is is intra-part shift. */
2802 jump = count / integerPartWidth;
2803 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002804
Neil Booth68e53ad2007-10-08 13:47:12 +00002805 /* Perform the shift. This leaves the most significant COUNT bits
2806 of the result at zero. */
Dan Gohman16e02092010-03-24 19:38:02 +00002807 for (i = 0; i < parts; i++) {
Neil Booth68e53ad2007-10-08 13:47:12 +00002808 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002809
Neil Booth68e53ad2007-10-08 13:47:12 +00002810 if (i + jump >= parts) {
2811 part = 0;
2812 } else {
2813 part = dst[i + jump];
2814 if (shift) {
2815 part >>= shift;
2816 if (i + jump + 1 < parts)
2817 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2818 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002819 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002820
Neil Booth68e53ad2007-10-08 13:47:12 +00002821 dst[i] = part;
2822 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002823 }
2824}
2825
2826/* Bitwise and of two bignums. */
2827void
2828APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2829{
2830 unsigned int i;
2831
Dan Gohman16e02092010-03-24 19:38:02 +00002832 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002833 dst[i] &= rhs[i];
2834}
2835
2836/* Bitwise inclusive or of two bignums. */
2837void
2838APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2839{
2840 unsigned int i;
2841
Dan Gohman16e02092010-03-24 19:38:02 +00002842 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002843 dst[i] |= rhs[i];
2844}
2845
2846/* Bitwise exclusive or of two bignums. */
2847void
2848APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2849{
2850 unsigned int i;
2851
Dan Gohman16e02092010-03-24 19:38:02 +00002852 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002853 dst[i] ^= rhs[i];
2854}
2855
2856/* Complement a bignum in-place. */
2857void
2858APInt::tcComplement(integerPart *dst, unsigned int parts)
2859{
2860 unsigned int i;
2861
Dan Gohman16e02092010-03-24 19:38:02 +00002862 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002863 dst[i] = ~dst[i];
2864}
2865
2866/* Comparison (unsigned) of two bignums. */
2867int
2868APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2869 unsigned int parts)
2870{
2871 while (parts) {
2872 parts--;
2873 if (lhs[parts] == rhs[parts])
2874 continue;
2875
2876 if (lhs[parts] > rhs[parts])
2877 return 1;
2878 else
2879 return -1;
2880 }
2881
2882 return 0;
2883}
2884
2885/* Increment a bignum in-place, return the carry flag. */
2886integerPart
2887APInt::tcIncrement(integerPart *dst, unsigned int parts)
2888{
2889 unsigned int i;
2890
Dan Gohman16e02092010-03-24 19:38:02 +00002891 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002892 if (++dst[i] != 0)
2893 break;
2894
2895 return i == parts;
2896}
2897
2898/* Set the least significant BITS bits of a bignum, clear the
2899 rest. */
2900void
2901APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2902 unsigned int bits)
2903{
2904 unsigned int i;
2905
2906 i = 0;
2907 while (bits > integerPartWidth) {
2908 dst[i++] = ~(integerPart) 0;
2909 bits -= integerPartWidth;
2910 }
2911
2912 if (bits)
2913 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2914
2915 while (i < parts)
2916 dst[i++] = 0;
2917}