blob: 6f9905d668253526479d22d5fa105506a130d42c [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng98c073b2009-02-17 00:13:06 +000069#include "llvm/Analysis/Dominators.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000072#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073#include "llvm/Transforms/Scalar.h"
74#include "llvm/Support/CFG.h"
75#include "llvm/Support/CommandLine.h"
76#include "llvm/Support/Compiler.h"
77#include "llvm/Support/ConstantRange.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000078#include "llvm/Support/GetElementPtrTypeIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000079#include "llvm/Support/InstIterator.h"
80#include "llvm/Support/ManagedStatic.h"
81#include "llvm/Support/MathExtras.h"
82#include "llvm/Support/Streams.h"
83#include "llvm/ADT/Statistic.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000084#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085#include <ostream>
86#include <algorithm>
87#include <cmath>
88using namespace llvm;
89
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman089efff2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
102 "symbolically execute a constant derived loop"),
103 cl::init(100));
104
Dan Gohman089efff2008-05-13 00:00:25 +0000105static RegisterPass<ScalarEvolution>
106R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107char ScalarEvolution::ID = 0;
108
109//===----------------------------------------------------------------------===//
110// SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
116SCEV::~SCEV() {}
117void SCEV::dump() const {
118 print(cerr);
Nick Lewycky41153462009-01-16 17:07:22 +0000119 cerr << '\n';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120}
121
Dan Gohman7b560c42008-06-18 16:23:07 +0000122bool SCEV::isZero() const {
123 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
124 return SC->getValue()->isZero();
125 return false;
126}
127
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000128
129SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
130
131bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
132 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
133 return false;
134}
135
136const Type *SCEVCouldNotCompute::getType() const {
137 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
138 return 0;
139}
140
141bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
142 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
143 return false;
144}
145
146SCEVHandle SCEVCouldNotCompute::
147replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000148 const SCEVHandle &Conc,
149 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000150 return this;
151}
152
153void SCEVCouldNotCompute::print(std::ostream &OS) const {
154 OS << "***COULDNOTCOMPUTE***";
155}
156
157bool SCEVCouldNotCompute::classof(const SCEV *S) {
158 return S->getSCEVType() == scCouldNotCompute;
159}
160
161
162// SCEVConstants - Only allow the creation of one SCEVConstant for any
163// particular value. Don't use a SCEVHandle here, or else the object will
164// never be deleted!
165static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
166
167
168SCEVConstant::~SCEVConstant() {
169 SCEVConstants->erase(V);
170}
171
Dan Gohman89f85052007-10-22 18:31:58 +0000172SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000173 SCEVConstant *&R = (*SCEVConstants)[V];
174 if (R == 0) R = new SCEVConstant(V);
175 return R;
176}
177
Dan Gohman89f85052007-10-22 18:31:58 +0000178SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
179 return getConstant(ConstantInt::get(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000180}
181
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000182const Type *SCEVConstant::getType() const { return V->getType(); }
183
184void SCEVConstant::print(std::ostream &OS) const {
185 WriteAsOperand(OS, V, false);
186}
187
188// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
189// particular input. Don't use a SCEVHandle here, or else the object will
190// never be deleted!
191static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
192 SCEVTruncateExpr*> > SCEVTruncates;
193
194SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
195 : SCEV(scTruncate), Op(op), Ty(ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000196 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
197 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198 "Cannot truncate non-integer value!");
Dan Gohman01c2ee72009-04-16 03:18:22 +0000199 assert((!Op->getType()->isInteger() || !Ty->isInteger() ||
200 Op->getType()->getPrimitiveSizeInBits() >
201 Ty->getPrimitiveSizeInBits()) &&
202 "This is not a truncating conversion!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203}
204
205SCEVTruncateExpr::~SCEVTruncateExpr() {
206 SCEVTruncates->erase(std::make_pair(Op, Ty));
207}
208
Evan Cheng98c073b2009-02-17 00:13:06 +0000209bool SCEVTruncateExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->dominates(BB, DT);
211}
212
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213void SCEVTruncateExpr::print(std::ostream &OS) const {
214 OS << "(truncate " << *Op << " to " << *Ty << ")";
215}
216
217// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
218// particular input. Don't use a SCEVHandle here, or else the object will never
219// be deleted!
220static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
221 SCEVZeroExtendExpr*> > SCEVZeroExtends;
222
223SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
224 : SCEV(scZeroExtend), Op(op), Ty(ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000225 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
226 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000227 "Cannot zero extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228}
229
230SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
231 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
232}
233
Evan Cheng98c073b2009-02-17 00:13:06 +0000234bool SCEVZeroExtendExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
235 return Op->dominates(BB, DT);
236}
237
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238void SCEVZeroExtendExpr::print(std::ostream &OS) const {
239 OS << "(zeroextend " << *Op << " to " << *Ty << ")";
240}
241
242// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
243// particular input. Don't use a SCEVHandle here, or else the object will never
244// be deleted!
245static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
246 SCEVSignExtendExpr*> > SCEVSignExtends;
247
248SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
249 : SCEV(scSignExtend), Op(op), Ty(ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000250 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
251 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000252 "Cannot sign extend non-integer value!");
253 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
254 && "This is not an extending conversion!");
255}
256
257SCEVSignExtendExpr::~SCEVSignExtendExpr() {
258 SCEVSignExtends->erase(std::make_pair(Op, Ty));
259}
260
Evan Cheng98c073b2009-02-17 00:13:06 +0000261bool SCEVSignExtendExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
262 return Op->dominates(BB, DT);
263}
264
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000265void SCEVSignExtendExpr::print(std::ostream &OS) const {
266 OS << "(signextend " << *Op << " to " << *Ty << ")";
267}
268
269// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
270// particular input. Don't use a SCEVHandle here, or else the object will never
271// be deleted!
272static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
273 SCEVCommutativeExpr*> > SCEVCommExprs;
274
275SCEVCommutativeExpr::~SCEVCommutativeExpr() {
276 SCEVCommExprs->erase(std::make_pair(getSCEVType(),
277 std::vector<SCEV*>(Operands.begin(),
278 Operands.end())));
279}
280
281void SCEVCommutativeExpr::print(std::ostream &OS) const {
282 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
283 const char *OpStr = getOperationStr();
284 OS << "(" << *Operands[0];
285 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
286 OS << OpStr << *Operands[i];
287 OS << ")";
288}
289
290SCEVHandle SCEVCommutativeExpr::
291replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000292 const SCEVHandle &Conc,
293 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000294 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000295 SCEVHandle H =
296 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000297 if (H != getOperand(i)) {
298 std::vector<SCEVHandle> NewOps;
299 NewOps.reserve(getNumOperands());
300 for (unsigned j = 0; j != i; ++j)
301 NewOps.push_back(getOperand(j));
302 NewOps.push_back(H);
303 for (++i; i != e; ++i)
304 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000305 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000306
307 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000308 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000309 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000310 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000311 else if (isa<SCEVSMaxExpr>(this))
312 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000313 else if (isa<SCEVUMaxExpr>(this))
314 return SE.getUMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000315 else
316 assert(0 && "Unknown commutative expr!");
317 }
318 }
319 return this;
320}
321
Evan Cheng98c073b2009-02-17 00:13:06 +0000322bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
323 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
324 if (!getOperand(i)->dominates(BB, DT))
325 return false;
326 }
327 return true;
328}
329
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000331// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000332// input. Don't use a SCEVHandle here, or else the object will never be
333// deleted!
334static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000335 SCEVUDivExpr*> > SCEVUDivs;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000337SCEVUDivExpr::~SCEVUDivExpr() {
338 SCEVUDivs->erase(std::make_pair(LHS, RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000339}
340
Evan Cheng98c073b2009-02-17 00:13:06 +0000341bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
342 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
343}
344
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000345void SCEVUDivExpr::print(std::ostream &OS) const {
346 OS << "(" << *LHS << " /u " << *RHS << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000347}
348
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000349const Type *SCEVUDivExpr::getType() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000350 return LHS->getType();
351}
352
353// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
354// particular input. Don't use a SCEVHandle here, or else the object will never
355// be deleted!
356static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
357 SCEVAddRecExpr*> > SCEVAddRecExprs;
358
359SCEVAddRecExpr::~SCEVAddRecExpr() {
360 SCEVAddRecExprs->erase(std::make_pair(L,
361 std::vector<SCEV*>(Operands.begin(),
362 Operands.end())));
363}
364
Evan Cheng98c073b2009-02-17 00:13:06 +0000365bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
366 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
367 if (!getOperand(i)->dominates(BB, DT))
368 return false;
369 }
370 return true;
371}
372
373
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000374SCEVHandle SCEVAddRecExpr::
375replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000376 const SCEVHandle &Conc,
377 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000378 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000379 SCEVHandle H =
380 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000381 if (H != getOperand(i)) {
382 std::vector<SCEVHandle> NewOps;
383 NewOps.reserve(getNumOperands());
384 for (unsigned j = 0; j != i; ++j)
385 NewOps.push_back(getOperand(j));
386 NewOps.push_back(H);
387 for (++i; i != e; ++i)
388 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000389 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000390
Dan Gohman89f85052007-10-22 18:31:58 +0000391 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000392 }
393 }
394 return this;
395}
396
397
398bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
399 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
400 // contain L and if the start is invariant.
401 return !QueryLoop->contains(L->getHeader()) &&
402 getOperand(0)->isLoopInvariant(QueryLoop);
403}
404
405
406void SCEVAddRecExpr::print(std::ostream &OS) const {
407 OS << "{" << *Operands[0];
408 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
409 OS << ",+," << *Operands[i];
410 OS << "}<" << L->getHeader()->getName() + ">";
411}
412
413// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
414// value. Don't use a SCEVHandle here, or else the object will never be
415// deleted!
416static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
417
418SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
419
420bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
421 // All non-instruction values are loop invariant. All instructions are loop
422 // invariant if they are not contained in the specified loop.
423 if (Instruction *I = dyn_cast<Instruction>(V))
424 return !L->contains(I->getParent());
425 return true;
426}
427
Evan Cheng98c073b2009-02-17 00:13:06 +0000428bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
429 if (Instruction *I = dyn_cast<Instruction>(getValue()))
430 return DT->dominates(I->getParent(), BB);
431 return true;
432}
433
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434const Type *SCEVUnknown::getType() const {
435 return V->getType();
436}
437
438void SCEVUnknown::print(std::ostream &OS) const {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000439 if (isa<PointerType>(V->getType()))
440 OS << "(ptrtoint " << *V->getType() << " ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000441 WriteAsOperand(OS, V, false);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000442 if (isa<PointerType>(V->getType()))
443 OS << " to iPTR)";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000444}
445
446//===----------------------------------------------------------------------===//
447// SCEV Utilities
448//===----------------------------------------------------------------------===//
449
450namespace {
451 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
452 /// than the complexity of the RHS. This comparator is used to canonicalize
453 /// expressions.
454 struct VISIBILITY_HIDDEN SCEVComplexityCompare {
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000455 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456 return LHS->getSCEVType() < RHS->getSCEVType();
457 }
458 };
459}
460
461/// GroupByComplexity - Given a list of SCEV objects, order them by their
462/// complexity, and group objects of the same complexity together by value.
463/// When this routine is finished, we know that any duplicates in the vector are
464/// consecutive and that complexity is monotonically increasing.
465///
466/// Note that we go take special precautions to ensure that we get determinstic
467/// results from this routine. In other words, we don't want the results of
468/// this to depend on where the addresses of various SCEV objects happened to
469/// land in memory.
470///
471static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
472 if (Ops.size() < 2) return; // Noop
473 if (Ops.size() == 2) {
474 // This is the common case, which also happens to be trivially simple.
475 // Special case it.
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000476 if (SCEVComplexityCompare()(Ops[1], Ops[0]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000477 std::swap(Ops[0], Ops[1]);
478 return;
479 }
480
481 // Do the rough sort by complexity.
482 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
483
484 // Now that we are sorted by complexity, group elements of the same
485 // complexity. Note that this is, at worst, N^2, but the vector is likely to
486 // be extremely short in practice. Note that we take this approach because we
487 // do not want to depend on the addresses of the objects we are grouping.
488 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
489 SCEV *S = Ops[i];
490 unsigned Complexity = S->getSCEVType();
491
492 // If there are any objects of the same complexity and same value as this
493 // one, group them.
494 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
495 if (Ops[j] == S) { // Found a duplicate.
496 // Move it to immediately after i'th element.
497 std::swap(Ops[i+1], Ops[j]);
498 ++i; // no need to rescan it.
499 if (i == e-2) return; // Done!
500 }
501 }
502 }
503}
504
505
506
507//===----------------------------------------------------------------------===//
508// Simple SCEV method implementations
509//===----------------------------------------------------------------------===//
510
Eli Friedman7489ec92008-08-04 23:49:06 +0000511/// BinomialCoefficient - Compute BC(It, K). The result has width W.
512// Assume, K > 0.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000513static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
Eli Friedman7489ec92008-08-04 23:49:06 +0000514 ScalarEvolution &SE,
Dan Gohman01c2ee72009-04-16 03:18:22 +0000515 const Type* ResultTy) {
Eli Friedman7489ec92008-08-04 23:49:06 +0000516 // Handle the simplest case efficiently.
517 if (K == 1)
518 return SE.getTruncateOrZeroExtend(It, ResultTy);
519
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000520 // We are using the following formula for BC(It, K):
521 //
522 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
523 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000524 // Suppose, W is the bitwidth of the return value. We must be prepared for
525 // overflow. Hence, we must assure that the result of our computation is
526 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
527 // safe in modular arithmetic.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000528 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000529 // However, this code doesn't use exactly that formula; the formula it uses
530 // is something like the following, where T is the number of factors of 2 in
531 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
532 // exponentiation:
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000533 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000534 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000535 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000536 // This formula is trivially equivalent to the previous formula. However,
537 // this formula can be implemented much more efficiently. The trick is that
538 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
539 // arithmetic. To do exact division in modular arithmetic, all we have
540 // to do is multiply by the inverse. Therefore, this step can be done at
541 // width W.
542 //
543 // The next issue is how to safely do the division by 2^T. The way this
544 // is done is by doing the multiplication step at a width of at least W + T
545 // bits. This way, the bottom W+T bits of the product are accurate. Then,
546 // when we perform the division by 2^T (which is equivalent to a right shift
547 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
548 // truncated out after the division by 2^T.
549 //
550 // In comparison to just directly using the first formula, this technique
551 // is much more efficient; using the first formula requires W * K bits,
552 // but this formula less than W + K bits. Also, the first formula requires
553 // a division step, whereas this formula only requires multiplies and shifts.
554 //
555 // It doesn't matter whether the subtraction step is done in the calculation
556 // width or the input iteration count's width; if the subtraction overflows,
557 // the result must be zero anyway. We prefer here to do it in the width of
558 // the induction variable because it helps a lot for certain cases; CodeGen
559 // isn't smart enough to ignore the overflow, which leads to much less
560 // efficient code if the width of the subtraction is wider than the native
561 // register width.
562 //
563 // (It's possible to not widen at all by pulling out factors of 2 before
564 // the multiplication; for example, K=2 can be calculated as
565 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
566 // extra arithmetic, so it's not an obvious win, and it gets
567 // much more complicated for K > 3.)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000568
Eli Friedman7489ec92008-08-04 23:49:06 +0000569 // Protection from insane SCEVs; this bound is conservative,
570 // but it probably doesn't matter.
571 if (K > 1000)
Dan Gohman0ad08b02009-04-18 17:58:19 +0000572 return SE.getCouldNotCompute();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000573
Dan Gohman01c2ee72009-04-16 03:18:22 +0000574 unsigned W = SE.getTargetData().getTypeSizeInBits(ResultTy);
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000575
Eli Friedman7489ec92008-08-04 23:49:06 +0000576 // Calculate K! / 2^T and T; we divide out the factors of two before
577 // multiplying for calculating K! / 2^T to avoid overflow.
578 // Other overflow doesn't matter because we only care about the bottom
579 // W bits of the result.
580 APInt OddFactorial(W, 1);
581 unsigned T = 1;
582 for (unsigned i = 3; i <= K; ++i) {
583 APInt Mult(W, i);
584 unsigned TwoFactors = Mult.countTrailingZeros();
585 T += TwoFactors;
586 Mult = Mult.lshr(TwoFactors);
587 OddFactorial *= Mult;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000588 }
Nick Lewyckydbaa60a2008-06-13 04:38:55 +0000589
Eli Friedman7489ec92008-08-04 23:49:06 +0000590 // We need at least W + T bits for the multiplication step
nicholas9e3e5fd2009-01-25 08:16:27 +0000591 unsigned CalculationBits = W + T;
Eli Friedman7489ec92008-08-04 23:49:06 +0000592
593 // Calcuate 2^T, at width T+W.
594 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
595
596 // Calculate the multiplicative inverse of K! / 2^T;
597 // this multiplication factor will perform the exact division by
598 // K! / 2^T.
599 APInt Mod = APInt::getSignedMinValue(W+1);
600 APInt MultiplyFactor = OddFactorial.zext(W+1);
601 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
602 MultiplyFactor = MultiplyFactor.trunc(W);
603
604 // Calculate the product, at width T+W
605 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
606 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
607 for (unsigned i = 1; i != K; ++i) {
608 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
609 Dividend = SE.getMulExpr(Dividend,
610 SE.getTruncateOrZeroExtend(S, CalculationTy));
611 }
612
613 // Divide by 2^T
614 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
615
616 // Truncate the result, and divide by K! / 2^T.
617
618 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
619 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000620}
621
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000622/// evaluateAtIteration - Return the value of this chain of recurrences at
623/// the specified iteration number. We can evaluate this recurrence by
624/// multiplying each element in the chain by the binomial coefficient
625/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
626///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000627/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000628///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000629/// where BC(It, k) stands for binomial coefficient.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000630///
Dan Gohman89f85052007-10-22 18:31:58 +0000631SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
632 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000633 SCEVHandle Result = getStart();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000634 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000635 // The computation is correct in the face of overflow provided that the
636 // multiplication is performed _after_ the evaluation of the binomial
637 // coefficient.
Dan Gohman01c2ee72009-04-16 03:18:22 +0000638 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckyb6218e02008-10-13 03:58:02 +0000639 if (isa<SCEVCouldNotCompute>(Coeff))
640 return Coeff;
641
642 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000643 }
644 return Result;
645}
646
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000647//===----------------------------------------------------------------------===//
648// SCEV Expression folder implementations
649//===----------------------------------------------------------------------===//
650
Dan Gohman89f85052007-10-22 18:31:58 +0000651SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000652 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000653 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000654 ConstantExpr::getTrunc(SC->getValue(), Ty));
655
656 // If the input value is a chrec scev made out of constants, truncate
657 // all of the constants.
658 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
659 std::vector<SCEVHandle> Operands;
660 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
661 // FIXME: This should allow truncation of other expression types!
662 if (isa<SCEVConstant>(AddRec->getOperand(i)))
Dan Gohman89f85052007-10-22 18:31:58 +0000663 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000664 else
665 break;
666 if (Operands.size() == AddRec->getNumOperands())
Dan Gohman89f85052007-10-22 18:31:58 +0000667 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000668 }
669
670 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
671 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
672 return Result;
673}
674
Dan Gohman36d40922009-04-16 19:25:55 +0000675SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
676 const Type *Ty) {
677 assert(getTargetData().getTypeSizeInBits(Op->getType()) <
678 getTargetData().getTypeSizeInBits(Ty) &&
679 "This is not an extending conversion!");
680
Dan Gohman01c2ee72009-04-16 03:18:22 +0000681 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
682 const Type *IntTy = Ty;
683 if (isa<PointerType>(IntTy)) IntTy = getTargetData().getIntPtrType();
684 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
685 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
686 return getUnknown(C);
687 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000688
689 // FIXME: If the input value is a chrec scev, and we can prove that the value
690 // did not overflow the old, smaller, value, we can zero extend all of the
691 // operands (often constants). This would allow analysis of something like
692 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
693
694 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
695 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
696 return Result;
697}
698
Dan Gohman89f85052007-10-22 18:31:58 +0000699SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000700 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
701 const Type *IntTy = Ty;
702 if (isa<PointerType>(IntTy)) IntTy = getTargetData().getIntPtrType();
703 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
704 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
705 return getUnknown(C);
706 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707
708 // FIXME: If the input value is a chrec scev, and we can prove that the value
709 // did not overflow the old, smaller, value, we can sign extend all of the
710 // operands (often constants). This would allow analysis of something like
711 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
712
713 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
714 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
715 return Result;
716}
717
718// get - Get a canonical add expression, or something simpler if possible.
Dan Gohman89f85052007-10-22 18:31:58 +0000719SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000720 assert(!Ops.empty() && "Cannot get empty add!");
721 if (Ops.size() == 1) return Ops[0];
722
723 // Sort by complexity, this groups all similar expression types together.
724 GroupByComplexity(Ops);
725
726 // If there are any constants, fold them together.
727 unsigned Idx = 0;
728 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
729 ++Idx;
730 assert(Idx < Ops.size());
731 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
732 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000733 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
734 RHSC->getValue()->getValue());
735 Ops[0] = getConstant(Fold);
736 Ops.erase(Ops.begin()+1); // Erase the folded element
737 if (Ops.size() == 1) return Ops[0];
738 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000739 }
740
741 // If we are left with a constant zero being added, strip it off.
742 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
743 Ops.erase(Ops.begin());
744 --Idx;
745 }
746 }
747
748 if (Ops.size() == 1) return Ops[0];
749
750 // Okay, check to see if the same value occurs in the operand list twice. If
751 // so, merge them together into an multiply expression. Since we sorted the
752 // list, these values are required to be adjacent.
753 const Type *Ty = Ops[0]->getType();
754 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
755 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
756 // Found a match, merge the two values into a multiply, and add any
757 // remaining values to the result.
Dan Gohman89f85052007-10-22 18:31:58 +0000758 SCEVHandle Two = getIntegerSCEV(2, Ty);
759 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000760 if (Ops.size() == 2)
761 return Mul;
762 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
763 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +0000764 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000765 }
766
767 // Now we know the first non-constant operand. Skip past any cast SCEVs.
768 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
769 ++Idx;
770
771 // If there are add operands they would be next.
772 if (Idx < Ops.size()) {
773 bool DeletedAdd = false;
774 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
775 // If we have an add, expand the add operands onto the end of the operands
776 // list.
777 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
778 Ops.erase(Ops.begin()+Idx);
779 DeletedAdd = true;
780 }
781
782 // If we deleted at least one add, we added operands to the end of the list,
783 // and they are not necessarily sorted. Recurse to resort and resimplify
784 // any operands we just aquired.
785 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +0000786 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 }
788
789 // Skip over the add expression until we get to a multiply.
790 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
791 ++Idx;
792
793 // If we are adding something to a multiply expression, make sure the
794 // something is not already an operand of the multiply. If so, merge it into
795 // the multiply.
796 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
797 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
798 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
799 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
800 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
801 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
802 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
803 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
804 if (Mul->getNumOperands() != 2) {
805 // If the multiply has more than two operands, we must get the
806 // Y*Z term.
807 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
808 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000809 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000810 }
Dan Gohman89f85052007-10-22 18:31:58 +0000811 SCEVHandle One = getIntegerSCEV(1, Ty);
812 SCEVHandle AddOne = getAddExpr(InnerMul, One);
813 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000814 if (Ops.size() == 2) return OuterMul;
815 if (AddOp < Idx) {
816 Ops.erase(Ops.begin()+AddOp);
817 Ops.erase(Ops.begin()+Idx-1);
818 } else {
819 Ops.erase(Ops.begin()+Idx);
820 Ops.erase(Ops.begin()+AddOp-1);
821 }
822 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +0000823 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000824 }
825
826 // Check this multiply against other multiplies being added together.
827 for (unsigned OtherMulIdx = Idx+1;
828 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
829 ++OtherMulIdx) {
830 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
831 // If MulOp occurs in OtherMul, we can fold the two multiplies
832 // together.
833 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
834 OMulOp != e; ++OMulOp)
835 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
836 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
837 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
838 if (Mul->getNumOperands() != 2) {
839 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
840 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000841 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000842 }
843 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
844 if (OtherMul->getNumOperands() != 2) {
845 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
846 OtherMul->op_end());
847 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000848 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000849 }
Dan Gohman89f85052007-10-22 18:31:58 +0000850 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
851 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000852 if (Ops.size() == 2) return OuterMul;
853 Ops.erase(Ops.begin()+Idx);
854 Ops.erase(Ops.begin()+OtherMulIdx-1);
855 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +0000856 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000857 }
858 }
859 }
860 }
861
862 // If there are any add recurrences in the operands list, see if any other
863 // added values are loop invariant. If so, we can fold them into the
864 // recurrence.
865 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
866 ++Idx;
867
868 // Scan over all recurrences, trying to fold loop invariants into them.
869 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
870 // Scan all of the other operands to this add and add them to the vector if
871 // they are loop invariant w.r.t. the recurrence.
872 std::vector<SCEVHandle> LIOps;
873 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
874 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
875 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
876 LIOps.push_back(Ops[i]);
877 Ops.erase(Ops.begin()+i);
878 --i; --e;
879 }
880
881 // If we found some loop invariants, fold them into the recurrence.
882 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +0000883 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000884 LIOps.push_back(AddRec->getStart());
885
886 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +0000887 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000888
Dan Gohman89f85052007-10-22 18:31:58 +0000889 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000890 // If all of the other operands were loop invariant, we are done.
891 if (Ops.size() == 1) return NewRec;
892
893 // Otherwise, add the folded AddRec by the non-liv parts.
894 for (unsigned i = 0;; ++i)
895 if (Ops[i] == AddRec) {
896 Ops[i] = NewRec;
897 break;
898 }
Dan Gohman89f85052007-10-22 18:31:58 +0000899 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000900 }
901
902 // Okay, if there weren't any loop invariants to be folded, check to see if
903 // there are multiple AddRec's with the same loop induction variable being
904 // added together. If so, we can fold them.
905 for (unsigned OtherIdx = Idx+1;
906 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
907 if (OtherIdx != Idx) {
908 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
909 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
910 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
911 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
912 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
913 if (i >= NewOps.size()) {
914 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
915 OtherAddRec->op_end());
916 break;
917 }
Dan Gohman89f85052007-10-22 18:31:58 +0000918 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000919 }
Dan Gohman89f85052007-10-22 18:31:58 +0000920 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000921
922 if (Ops.size() == 2) return NewAddRec;
923
924 Ops.erase(Ops.begin()+Idx);
925 Ops.erase(Ops.begin()+OtherIdx-1);
926 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +0000927 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000928 }
929 }
930
931 // Otherwise couldn't fold anything into this recurrence. Move onto the
932 // next one.
933 }
934
935 // Okay, it looks like we really DO need an add expr. Check to see if we
936 // already have one, otherwise create a new one.
937 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
938 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
939 SCEVOps)];
940 if (Result == 0) Result = new SCEVAddExpr(Ops);
941 return Result;
942}
943
944
Dan Gohman89f85052007-10-22 18:31:58 +0000945SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000946 assert(!Ops.empty() && "Cannot get empty mul!");
947
948 // Sort by complexity, this groups all similar expression types together.
949 GroupByComplexity(Ops);
950
951 // If there are any constants, fold them together.
952 unsigned Idx = 0;
953 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
954
955 // C1*(C2+V) -> C1*C2 + C1*V
956 if (Ops.size() == 2)
957 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
958 if (Add->getNumOperands() == 2 &&
959 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +0000960 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
961 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000962
963
964 ++Idx;
965 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
966 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000967 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
968 RHSC->getValue()->getValue());
969 Ops[0] = getConstant(Fold);
970 Ops.erase(Ops.begin()+1); // Erase the folded element
971 if (Ops.size() == 1) return Ops[0];
972 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000973 }
974
975 // If we are left with a constant one being multiplied, strip it off.
976 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
977 Ops.erase(Ops.begin());
978 --Idx;
979 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
980 // If we have a multiply of zero, it will always be zero.
981 return Ops[0];
982 }
983 }
984
985 // Skip over the add expression until we get to a multiply.
986 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
987 ++Idx;
988
989 if (Ops.size() == 1)
990 return Ops[0];
991
992 // If there are mul operands inline them all into this expression.
993 if (Idx < Ops.size()) {
994 bool DeletedMul = false;
995 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
996 // If we have an mul, expand the mul operands onto the end of the operands
997 // list.
998 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
999 Ops.erase(Ops.begin()+Idx);
1000 DeletedMul = true;
1001 }
1002
1003 // If we deleted at least one mul, we added operands to the end of the list,
1004 // and they are not necessarily sorted. Recurse to resort and resimplify
1005 // any operands we just aquired.
1006 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +00001007 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008 }
1009
1010 // If there are any add recurrences in the operands list, see if any other
1011 // added values are loop invariant. If so, we can fold them into the
1012 // recurrence.
1013 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1014 ++Idx;
1015
1016 // Scan over all recurrences, trying to fold loop invariants into them.
1017 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1018 // Scan all of the other operands to this mul and add them to the vector if
1019 // they are loop invariant w.r.t. the recurrence.
1020 std::vector<SCEVHandle> LIOps;
1021 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1022 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1023 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1024 LIOps.push_back(Ops[i]);
1025 Ops.erase(Ops.begin()+i);
1026 --i; --e;
1027 }
1028
1029 // If we found some loop invariants, fold them into the recurrence.
1030 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001031 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001032 std::vector<SCEVHandle> NewOps;
1033 NewOps.reserve(AddRec->getNumOperands());
1034 if (LIOps.size() == 1) {
1035 SCEV *Scale = LIOps[0];
1036 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +00001037 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001038 } else {
1039 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1040 std::vector<SCEVHandle> MulOps(LIOps);
1041 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001042 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001043 }
1044 }
1045
Dan Gohman89f85052007-10-22 18:31:58 +00001046 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047
1048 // If all of the other operands were loop invariant, we are done.
1049 if (Ops.size() == 1) return NewRec;
1050
1051 // Otherwise, multiply the folded AddRec by the non-liv parts.
1052 for (unsigned i = 0;; ++i)
1053 if (Ops[i] == AddRec) {
1054 Ops[i] = NewRec;
1055 break;
1056 }
Dan Gohman89f85052007-10-22 18:31:58 +00001057 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001058 }
1059
1060 // Okay, if there weren't any loop invariants to be folded, check to see if
1061 // there are multiple AddRec's with the same loop induction variable being
1062 // multiplied together. If so, we can fold them.
1063 for (unsigned OtherIdx = Idx+1;
1064 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1065 if (OtherIdx != Idx) {
1066 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1067 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1068 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1069 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman89f85052007-10-22 18:31:58 +00001070 SCEVHandle NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001071 G->getStart());
Dan Gohman89f85052007-10-22 18:31:58 +00001072 SCEVHandle B = F->getStepRecurrence(*this);
1073 SCEVHandle D = G->getStepRecurrence(*this);
1074 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1075 getMulExpr(G, B),
1076 getMulExpr(B, D));
1077 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1078 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001079 if (Ops.size() == 2) return NewAddRec;
1080
1081 Ops.erase(Ops.begin()+Idx);
1082 Ops.erase(Ops.begin()+OtherIdx-1);
1083 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001084 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001085 }
1086 }
1087
1088 // Otherwise couldn't fold anything into this recurrence. Move onto the
1089 // next one.
1090 }
1091
1092 // Okay, it looks like we really DO need an mul expr. Check to see if we
1093 // already have one, otherwise create a new one.
1094 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1095 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1096 SCEVOps)];
1097 if (Result == 0)
1098 Result = new SCEVMulExpr(Ops);
1099 return Result;
1100}
1101
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001102SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1104 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky35b56022009-01-13 09:18:58 +00001105 return LHS; // X udiv 1 --> x
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001106
1107 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1108 Constant *LHSCV = LHSC->getValue();
1109 Constant *RHSCV = RHSC->getValue();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001110 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001111 }
1112 }
1113
Nick Lewycky35b56022009-01-13 09:18:58 +00001114 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1115
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001116 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1117 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001118 return Result;
1119}
1120
1121
1122/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1123/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001124SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001125 const SCEVHandle &Step, const Loop *L) {
1126 std::vector<SCEVHandle> Operands;
1127 Operands.push_back(Start);
1128 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1129 if (StepChrec->getLoop() == L) {
1130 Operands.insert(Operands.end(), StepChrec->op_begin(),
1131 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001132 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001133 }
1134
1135 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001136 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001137}
1138
1139/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1140/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001141SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001142 const Loop *L) {
1143 if (Operands.size() == 1) return Operands[0];
1144
Dan Gohman7b560c42008-06-18 16:23:07 +00001145 if (Operands.back()->isZero()) {
1146 Operands.pop_back();
Dan Gohmanabe991f2008-09-14 17:21:12 +00001147 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohman7b560c42008-06-18 16:23:07 +00001148 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001149
Dan Gohman42936882008-08-08 18:33:12 +00001150 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1151 if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1152 const Loop* NestedLoop = NestedAR->getLoop();
1153 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1154 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1155 NestedAR->op_end());
1156 SCEVHandle NestedARHandle(NestedAR);
1157 Operands[0] = NestedAR->getStart();
1158 NestedOperands[0] = getAddRecExpr(Operands, L);
1159 return getAddRecExpr(NestedOperands, NestedLoop);
1160 }
1161 }
1162
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001163 SCEVAddRecExpr *&Result =
1164 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1165 Operands.end()))];
1166 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1167 return Result;
1168}
1169
Nick Lewycky711640a2007-11-25 22:41:31 +00001170SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1171 const SCEVHandle &RHS) {
1172 std::vector<SCEVHandle> Ops;
1173 Ops.push_back(LHS);
1174 Ops.push_back(RHS);
1175 return getSMaxExpr(Ops);
1176}
1177
1178SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1179 assert(!Ops.empty() && "Cannot get empty smax!");
1180 if (Ops.size() == 1) return Ops[0];
1181
1182 // Sort by complexity, this groups all similar expression types together.
1183 GroupByComplexity(Ops);
1184
1185 // If there are any constants, fold them together.
1186 unsigned Idx = 0;
1187 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1188 ++Idx;
1189 assert(Idx < Ops.size());
1190 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1191 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001192 ConstantInt *Fold = ConstantInt::get(
Nick Lewycky711640a2007-11-25 22:41:31 +00001193 APIntOps::smax(LHSC->getValue()->getValue(),
1194 RHSC->getValue()->getValue()));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001195 Ops[0] = getConstant(Fold);
1196 Ops.erase(Ops.begin()+1); // Erase the folded element
1197 if (Ops.size() == 1) return Ops[0];
1198 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewycky711640a2007-11-25 22:41:31 +00001199 }
1200
1201 // If we are left with a constant -inf, strip it off.
1202 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1203 Ops.erase(Ops.begin());
1204 --Idx;
1205 }
1206 }
1207
1208 if (Ops.size() == 1) return Ops[0];
1209
1210 // Find the first SMax
1211 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1212 ++Idx;
1213
1214 // Check to see if one of the operands is an SMax. If so, expand its operands
1215 // onto our operand list, and recurse to simplify.
1216 if (Idx < Ops.size()) {
1217 bool DeletedSMax = false;
1218 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1219 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1220 Ops.erase(Ops.begin()+Idx);
1221 DeletedSMax = true;
1222 }
1223
1224 if (DeletedSMax)
1225 return getSMaxExpr(Ops);
1226 }
1227
1228 // Okay, check to see if the same value occurs in the operand list twice. If
1229 // so, delete one. Since we sorted the list, these values are required to
1230 // be adjacent.
1231 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1232 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1233 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1234 --i; --e;
1235 }
1236
1237 if (Ops.size() == 1) return Ops[0];
1238
1239 assert(!Ops.empty() && "Reduced smax down to nothing!");
1240
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001241 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewycky711640a2007-11-25 22:41:31 +00001242 // already have one, otherwise create a new one.
1243 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1244 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1245 SCEVOps)];
1246 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1247 return Result;
1248}
1249
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001250SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1251 const SCEVHandle &RHS) {
1252 std::vector<SCEVHandle> Ops;
1253 Ops.push_back(LHS);
1254 Ops.push_back(RHS);
1255 return getUMaxExpr(Ops);
1256}
1257
1258SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1259 assert(!Ops.empty() && "Cannot get empty umax!");
1260 if (Ops.size() == 1) return Ops[0];
1261
1262 // Sort by complexity, this groups all similar expression types together.
1263 GroupByComplexity(Ops);
1264
1265 // If there are any constants, fold them together.
1266 unsigned Idx = 0;
1267 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1268 ++Idx;
1269 assert(Idx < Ops.size());
1270 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1271 // We found two constants, fold them together!
1272 ConstantInt *Fold = ConstantInt::get(
1273 APIntOps::umax(LHSC->getValue()->getValue(),
1274 RHSC->getValue()->getValue()));
1275 Ops[0] = getConstant(Fold);
1276 Ops.erase(Ops.begin()+1); // Erase the folded element
1277 if (Ops.size() == 1) return Ops[0];
1278 LHSC = cast<SCEVConstant>(Ops[0]);
1279 }
1280
1281 // If we are left with a constant zero, strip it off.
1282 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1283 Ops.erase(Ops.begin());
1284 --Idx;
1285 }
1286 }
1287
1288 if (Ops.size() == 1) return Ops[0];
1289
1290 // Find the first UMax
1291 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1292 ++Idx;
1293
1294 // Check to see if one of the operands is a UMax. If so, expand its operands
1295 // onto our operand list, and recurse to simplify.
1296 if (Idx < Ops.size()) {
1297 bool DeletedUMax = false;
1298 while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1299 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1300 Ops.erase(Ops.begin()+Idx);
1301 DeletedUMax = true;
1302 }
1303
1304 if (DeletedUMax)
1305 return getUMaxExpr(Ops);
1306 }
1307
1308 // Okay, check to see if the same value occurs in the operand list twice. If
1309 // so, delete one. Since we sorted the list, these values are required to
1310 // be adjacent.
1311 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1312 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1313 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1314 --i; --e;
1315 }
1316
1317 if (Ops.size() == 1) return Ops[0];
1318
1319 assert(!Ops.empty() && "Reduced umax down to nothing!");
1320
1321 // Okay, it looks like we really DO need a umax expr. Check to see if we
1322 // already have one, otherwise create a new one.
1323 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1324 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1325 SCEVOps)];
1326 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1327 return Result;
1328}
1329
Dan Gohman89f85052007-10-22 18:31:58 +00001330SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001331 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman89f85052007-10-22 18:31:58 +00001332 return getConstant(CI);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001333 if (isa<ConstantPointerNull>(V))
1334 return getIntegerSCEV(0, V->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001335 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1336 if (Result == 0) Result = new SCEVUnknown(V);
1337 return Result;
1338}
1339
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001340//===----------------------------------------------------------------------===//
1341// ScalarEvolutionsImpl Definition and Implementation
1342//===----------------------------------------------------------------------===//
1343//
1344/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1345/// evolution code.
1346///
1347namespace {
1348 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
Dan Gohman89f85052007-10-22 18:31:58 +00001349 /// SE - A reference to the public ScalarEvolution object.
1350 ScalarEvolution &SE;
1351
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001352 /// F - The function we are analyzing.
1353 ///
1354 Function &F;
1355
1356 /// LI - The loop information for the function we are currently analyzing.
1357 ///
1358 LoopInfo &LI;
1359
Dan Gohman01c2ee72009-04-16 03:18:22 +00001360 /// TD - The target data information for the target we are targetting.
1361 ///
1362 TargetData &TD;
1363
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001364 /// UnknownValue - This SCEV is used to represent unknown trip counts and
1365 /// things.
1366 SCEVHandle UnknownValue;
1367
1368 /// Scalars - This is a cache of the scalars we have analyzed so far.
1369 ///
1370 std::map<Value*, SCEVHandle> Scalars;
1371
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001372 /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
1373 /// this function as they are computed.
1374 std::map<const Loop*, SCEVHandle> BackedgeTakenCounts;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001375
1376 /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1377 /// the PHI instructions that we attempt to compute constant evolutions for.
1378 /// This allows us to avoid potentially expensive recomputation of these
1379 /// properties. An instruction maps to null if we are unable to compute its
1380 /// exit value.
1381 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1382
1383 public:
Dan Gohman01c2ee72009-04-16 03:18:22 +00001384 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li,
1385 TargetData &td)
1386 : SE(se), F(f), LI(li), TD(td), UnknownValue(new SCEVCouldNotCompute()) {}
1387
Dan Gohman0ad08b02009-04-18 17:58:19 +00001388 SCEVHandle getCouldNotCompute();
1389
Dan Gohman01c2ee72009-04-16 03:18:22 +00001390 /// getIntegerSCEV - Given an integer or FP type, create a constant for the
1391 /// specified signed integer value and return a SCEV for the constant.
1392 SCEVHandle getIntegerSCEV(int Val, const Type *Ty);
1393
1394 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1395 ///
1396 SCEVHandle getNegativeSCEV(const SCEVHandle &V);
1397
1398 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1399 ///
1400 SCEVHandle getNotSCEV(const SCEVHandle &V);
1401
1402 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1403 ///
1404 SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS);
1405
1406 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
1407 /// of the input value to the specified type. If the type must be extended,
1408 /// it is zero extended.
1409 SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty);
1410
1411 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
1412 /// of the input value to the specified type. If the type must be extended,
1413 /// it is sign extended.
1414 SCEVHandle getTruncateOrSignExtend(const SCEVHandle &V, const Type *Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001415
1416 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1417 /// expression and create a new one.
1418 SCEVHandle getSCEV(Value *V);
1419
1420 /// hasSCEV - Return true if the SCEV for this value has already been
1421 /// computed.
1422 bool hasSCEV(Value *V) const {
1423 return Scalars.count(V);
1424 }
1425
1426 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1427 /// the specified value.
1428 void setSCEV(Value *V, const SCEVHandle &H) {
1429 bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1430 assert(isNew && "This entry already existed!");
Devang Patelfc736502008-11-11 19:17:41 +00001431 isNew = false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001432 }
1433
1434
1435 /// getSCEVAtScope - Compute the value of the specified expression within
1436 /// the indicated loop (which may be null to indicate in no loop). If the
1437 /// expression cannot be evaluated, return UnknownValue itself.
1438 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1439
1440
Dan Gohmancacd2012009-02-12 22:19:27 +00001441 /// isLoopGuardedByCond - Test whether entry to the loop is protected by
1442 /// a conditional between LHS and RHS.
1443 bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
1444 SCEV *LHS, SCEV *RHS);
1445
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001446 /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
1447 /// has an analyzable loop-invariant backedge-taken count.
1448 bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001449
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001450 /// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00001451 /// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001452 /// ScalarEvolution's ability to compute a trip count, or if the loop
1453 /// is deleted.
1454 void forgetLoopBackedgeTakenCount(const Loop *L);
Dan Gohmanf3a060a2009-02-17 20:49:49 +00001455
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001456 /// getBackedgeTakenCount - If the specified loop has a predictable
1457 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
1458 /// object. The backedge-taken count is the number of times the loop header
1459 /// will be branched to from within the loop. This is one less than the
1460 /// trip count of the loop, since it doesn't count the first iteration,
1461 /// when the header is branched to from outside the loop.
1462 ///
1463 /// Note that it is not valid to call this method on a loop without a
1464 /// loop-invariant backedge-taken count (see
1465 /// hasLoopInvariantBackedgeTakenCount).
1466 ///
1467 SCEVHandle getBackedgeTakenCount(const Loop *L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001468
1469 /// deleteValueFromRecords - This method should be called by the
1470 /// client before it removes a value from the program, to make sure
1471 /// that no dangling references are left around.
1472 void deleteValueFromRecords(Value *V);
1473
Dan Gohman01c2ee72009-04-16 03:18:22 +00001474 /// getTargetData - Return the TargetData.
1475 const TargetData &getTargetData() const;
1476
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001477 private:
1478 /// createSCEV - We know that there is no SCEV for the specified value.
1479 /// Analyze the expression.
1480 SCEVHandle createSCEV(Value *V);
1481
1482 /// createNodeForPHI - Provide the special handling we need to analyze PHI
1483 /// SCEVs.
1484 SCEVHandle createNodeForPHI(PHINode *PN);
1485
1486 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1487 /// for the specified instruction and replaces any references to the
1488 /// symbolic value SymName with the specified value. This is used during
1489 /// PHI resolution.
1490 void ReplaceSymbolicValueWithConcrete(Instruction *I,
1491 const SCEVHandle &SymName,
1492 const SCEVHandle &NewVal);
1493
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001494 /// ComputeBackedgeTakenCount - Compute the number of times the specified
1495 /// loop will iterate.
1496 SCEVHandle ComputeBackedgeTakenCount(const Loop *L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001497
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001498 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
1499 /// of 'icmp op load X, cst', try to see if we can compute the trip count.
1500 SCEVHandle
1501 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
1502 Constant *RHS,
1503 const Loop *L,
1504 ICmpInst::Predicate p);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001505
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001506 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
1507 /// a constant number of times (the condition evolves only from constants),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001508 /// try to evaluate a few iterations of the loop until we get the exit
1509 /// condition gets a value of ExitWhen (true or false). If we cannot
1510 /// evaluate the trip count of the loop, return UnknownValue.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001511 SCEVHandle ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond,
1512 bool ExitWhen);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001513
1514 /// HowFarToZero - Return the number of times a backedge comparing the
1515 /// specified value to zero will execute. If not computable, return
1516 /// UnknownValue.
1517 SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1518
1519 /// HowFarToNonZero - Return the number of times a backedge checking the
1520 /// specified value for nonzero will execute. If not computable, return
1521 /// UnknownValue.
1522 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1523
1524 /// HowManyLessThans - Return the number of times a backedge containing the
1525 /// specified less-than comparison will execute. If not computable, return
Nick Lewyckyb7c28942007-08-06 19:21:00 +00001526 /// UnknownValue. isSigned specifies whether the less-than is signed.
1527 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
Nick Lewycky35b56022009-01-13 09:18:58 +00001528 bool isSigned);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001529
Dan Gohman1cddf972008-09-15 22:18:04 +00001530 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
1531 /// (which may not be an immediate predecessor) which has exactly one
1532 /// successor from which BB is reachable, or null if no such block is
1533 /// found.
1534 BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
1535
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001536 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1537 /// in the header of its containing loop, we know the loop executes a
1538 /// constant number of times, and the PHI node is just a recurrence
1539 /// involving constants, fold it.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00001540 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001541 const Loop *L);
1542 };
1543}
1544
1545//===----------------------------------------------------------------------===//
1546// Basic SCEV Analysis and PHI Idiom Recognition Code
1547//
1548
1549/// deleteValueFromRecords - This method should be called by the
1550/// client before it removes an instruction from the program, to make sure
1551/// that no dangling references are left around.
1552void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
1553 SmallVector<Value *, 16> Worklist;
1554
1555 if (Scalars.erase(V)) {
1556 if (PHINode *PN = dyn_cast<PHINode>(V))
1557 ConstantEvolutionLoopExitValue.erase(PN);
1558 Worklist.push_back(V);
1559 }
1560
1561 while (!Worklist.empty()) {
1562 Value *VV = Worklist.back();
1563 Worklist.pop_back();
1564
1565 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1566 UI != UE; ++UI) {
1567 Instruction *Inst = cast<Instruction>(*UI);
1568 if (Scalars.erase(Inst)) {
1569 if (PHINode *PN = dyn_cast<PHINode>(VV))
1570 ConstantEvolutionLoopExitValue.erase(PN);
1571 Worklist.push_back(Inst);
1572 }
1573 }
1574 }
1575}
1576
Dan Gohman01c2ee72009-04-16 03:18:22 +00001577const TargetData &ScalarEvolutionsImpl::getTargetData() const {
1578 return TD;
1579}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001580
Dan Gohman0ad08b02009-04-18 17:58:19 +00001581SCEVHandle ScalarEvolutionsImpl::getCouldNotCompute() {
1582 return UnknownValue;
1583}
1584
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001585/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1586/// expression and create a new one.
1587SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1588 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1589
1590 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1591 if (I != Scalars.end()) return I->second;
1592 SCEVHandle S = createSCEV(V);
1593 Scalars.insert(std::make_pair(V, S));
1594 return S;
1595}
1596
Dan Gohman01c2ee72009-04-16 03:18:22 +00001597/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1598/// specified signed integer value and return a SCEV for the constant.
1599SCEVHandle ScalarEvolutionsImpl::getIntegerSCEV(int Val, const Type *Ty) {
1600 if (isa<PointerType>(Ty))
1601 Ty = TD.getIntPtrType();
1602 Constant *C;
1603 if (Val == 0)
1604 C = Constant::getNullValue(Ty);
1605 else if (Ty->isFloatingPoint())
1606 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1607 APFloat::IEEEdouble, Val));
1608 else
1609 C = ConstantInt::get(Ty, Val);
1610 return SE.getUnknown(C);
1611}
1612
1613/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1614///
1615SCEVHandle ScalarEvolutionsImpl::getNegativeSCEV(const SCEVHandle &V) {
1616 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1617 return SE.getUnknown(ConstantExpr::getNeg(VC->getValue()));
1618
1619 const Type *Ty = V->getType();
1620 if (isa<PointerType>(Ty))
1621 Ty = TD.getIntPtrType();
1622 return SE.getMulExpr(V, SE.getConstant(ConstantInt::getAllOnesValue(Ty)));
1623}
1624
1625/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1626SCEVHandle ScalarEvolutionsImpl::getNotSCEV(const SCEVHandle &V) {
1627 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1628 return SE.getUnknown(ConstantExpr::getNot(VC->getValue()));
1629
1630 const Type *Ty = V->getType();
1631 if (isa<PointerType>(Ty))
1632 Ty = TD.getIntPtrType();
1633 SCEVHandle AllOnes = SE.getConstant(ConstantInt::getAllOnesValue(Ty));
1634 return getMinusSCEV(AllOnes, V);
1635}
1636
1637/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1638///
1639SCEVHandle ScalarEvolutionsImpl::getMinusSCEV(const SCEVHandle &LHS,
1640 const SCEVHandle &RHS) {
1641 // X - Y --> X + -Y
1642 return SE.getAddExpr(LHS, SE.getNegativeSCEV(RHS));
1643}
1644
1645/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1646/// input value to the specified type. If the type must be extended, it is zero
1647/// extended.
1648SCEVHandle
1649ScalarEvolutionsImpl::getTruncateOrZeroExtend(const SCEVHandle &V,
1650 const Type *Ty) {
1651 const Type *SrcTy = V->getType();
1652 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
1653 (Ty->isInteger() || isa<PointerType>(Ty)) &&
1654 "Cannot truncate or zero extend with non-integer arguments!");
1655 if (TD.getTypeSizeInBits(SrcTy) == TD.getTypeSizeInBits(Ty))
1656 return V; // No conversion
1657 if (TD.getTypeSizeInBits(SrcTy) > TD.getTypeSizeInBits(Ty))
1658 return SE.getTruncateExpr(V, Ty);
1659 return SE.getZeroExtendExpr(V, Ty);
1660}
1661
1662/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1663/// input value to the specified type. If the type must be extended, it is sign
1664/// extended.
1665SCEVHandle
1666ScalarEvolutionsImpl::getTruncateOrSignExtend(const SCEVHandle &V,
1667 const Type *Ty) {
1668 const Type *SrcTy = V->getType();
1669 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
1670 (Ty->isInteger() || isa<PointerType>(Ty)) &&
1671 "Cannot truncate or zero extend with non-integer arguments!");
1672 if (TD.getTypeSizeInBits(SrcTy) == TD.getTypeSizeInBits(Ty))
1673 return V; // No conversion
1674 if (TD.getTypeSizeInBits(SrcTy) > TD.getTypeSizeInBits(Ty))
1675 return SE.getTruncateExpr(V, Ty);
1676 return SE.getSignExtendExpr(V, Ty);
1677}
1678
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001679/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1680/// the specified instruction and replaces any references to the symbolic value
1681/// SymName with the specified value. This is used during PHI resolution.
1682void ScalarEvolutionsImpl::
1683ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1684 const SCEVHandle &NewVal) {
1685 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1686 if (SI == Scalars.end()) return;
1687
1688 SCEVHandle NV =
Dan Gohman89f85052007-10-22 18:31:58 +00001689 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001690 if (NV == SI->second) return; // No change.
1691
1692 SI->second = NV; // Update the scalars map!
1693
1694 // Any instruction values that use this instruction might also need to be
1695 // updated!
1696 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1697 UI != E; ++UI)
1698 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1699}
1700
1701/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1702/// a loop header, making it a potential recurrence, or it doesn't.
1703///
1704SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1705 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1706 if (const Loop *L = LI.getLoopFor(PN->getParent()))
1707 if (L->getHeader() == PN->getParent()) {
1708 // If it lives in the loop header, it has two incoming values, one
1709 // from outside the loop, and one from inside.
1710 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1711 unsigned BackEdge = IncomingEdge^1;
1712
1713 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman89f85052007-10-22 18:31:58 +00001714 SCEVHandle SymbolicName = SE.getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001715 assert(Scalars.find(PN) == Scalars.end() &&
1716 "PHI node already processed?");
1717 Scalars.insert(std::make_pair(PN, SymbolicName));
1718
1719 // Using this symbolic name for the PHI, analyze the value coming around
1720 // the back-edge.
1721 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1722
1723 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1724 // has a special value for the first iteration of the loop.
1725
1726 // If the value coming around the backedge is an add with the symbolic
1727 // value we just inserted, then we found a simple induction variable!
1728 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1729 // If there is a single occurrence of the symbolic value, replace it
1730 // with a recurrence.
1731 unsigned FoundIndex = Add->getNumOperands();
1732 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1733 if (Add->getOperand(i) == SymbolicName)
1734 if (FoundIndex == e) {
1735 FoundIndex = i;
1736 break;
1737 }
1738
1739 if (FoundIndex != Add->getNumOperands()) {
1740 // Create an add with everything but the specified operand.
1741 std::vector<SCEVHandle> Ops;
1742 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1743 if (i != FoundIndex)
1744 Ops.push_back(Add->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001745 SCEVHandle Accum = SE.getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001746
1747 // This is not a valid addrec if the step amount is varying each
1748 // loop iteration, but is not itself an addrec in this loop.
1749 if (Accum->isLoopInvariant(L) ||
1750 (isa<SCEVAddRecExpr>(Accum) &&
1751 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1752 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohman89f85052007-10-22 18:31:58 +00001753 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001754
1755 // Okay, for the entire analysis of this edge we assumed the PHI
1756 // to be symbolic. We now need to go back and update all of the
1757 // entries for the scalars that use the PHI (except for the PHI
1758 // itself) to use the new analyzed value instead of the "symbolic"
1759 // value.
1760 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1761 return PHISCEV;
1762 }
1763 }
1764 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1765 // Otherwise, this could be a loop like this:
1766 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1767 // In this case, j = {1,+,1} and BEValue is j.
1768 // Because the other in-value of i (0) fits the evolution of BEValue
1769 // i really is an addrec evolution.
1770 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1771 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1772
1773 // If StartVal = j.start - j.stride, we can use StartVal as the
1774 // initial step of the addrec evolution.
Dan Gohman89f85052007-10-22 18:31:58 +00001775 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0),
1776 AddRec->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001777 SCEVHandle PHISCEV =
Dan Gohman89f85052007-10-22 18:31:58 +00001778 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001779
1780 // Okay, for the entire analysis of this edge we assumed the PHI
1781 // to be symbolic. We now need to go back and update all of the
1782 // entries for the scalars that use the PHI (except for the PHI
1783 // itself) to use the new analyzed value instead of the "symbolic"
1784 // value.
1785 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1786 return PHISCEV;
1787 }
1788 }
1789 }
1790
1791 return SymbolicName;
1792 }
1793
1794 // If it's not a loop phi, we can't handle it yet.
Dan Gohman89f85052007-10-22 18:31:58 +00001795 return SE.getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001796}
1797
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001798/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1799/// guaranteed to end in (at every loop iteration). It is, at the same time,
1800/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
1801/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001802static uint32_t GetMinTrailingZeros(SCEVHandle S, const TargetData &TD) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001803 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00001804 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001805
Nick Lewycky3a8a41f2007-11-20 08:44:50 +00001806 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001807 return std::min(GetMinTrailingZeros(T->getOperand(), TD),
1808 (uint32_t)TD.getTypeSizeInBits(T->getType()));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001809
1810 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001811 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), TD);
1812 return OpRes == TD.getTypeSizeInBits(E->getOperand()->getType()) ?
1813 TD.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001814 }
1815
1816 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001817 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), TD);
1818 return OpRes == TD.getTypeSizeInBits(E->getOperand()->getType()) ?
1819 TD.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001820 }
1821
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001822 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001823 // The result is the min of all operands results.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001824 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), TD);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001825 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman01c2ee72009-04-16 03:18:22 +00001826 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), TD));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001827 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001828 }
1829
1830 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001831 // The result is the sum of all operands results.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001832 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), TD);
1833 uint32_t BitWidth = TD.getTypeSizeInBits(M->getType());
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001834 for (unsigned i = 1, e = M->getNumOperands();
1835 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman01c2ee72009-04-16 03:18:22 +00001836 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), TD),
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001837 BitWidth);
1838 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001839 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001840
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001841 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001842 // The result is the min of all operands results.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001843 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), TD);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001844 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman01c2ee72009-04-16 03:18:22 +00001845 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), TD));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001846 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001847 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001848
Nick Lewycky711640a2007-11-25 22:41:31 +00001849 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1850 // The result is the min of all operands results.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001851 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), TD);
Nick Lewycky711640a2007-11-25 22:41:31 +00001852 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman01c2ee72009-04-16 03:18:22 +00001853 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), TD));
Nick Lewycky711640a2007-11-25 22:41:31 +00001854 return MinOpRes;
1855 }
1856
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001857 if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1858 // The result is the min of all operands results.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001859 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), TD);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001860 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman01c2ee72009-04-16 03:18:22 +00001861 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), TD));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001862 return MinOpRes;
1863 }
1864
Nick Lewycky35b56022009-01-13 09:18:58 +00001865 // SCEVUDivExpr, SCEVUnknown
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001866 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001867}
1868
1869/// createSCEV - We know that there is no SCEV for the specified value.
1870/// Analyze the expression.
1871///
1872SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001873 if (!isa<IntegerType>(V->getType()) &&
1874 !isa<PointerType>(V->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00001875 return SE.getUnknown(V);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001876
Dan Gohman3996f472008-06-22 19:56:46 +00001877 unsigned Opcode = Instruction::UserOp1;
1878 if (Instruction *I = dyn_cast<Instruction>(V))
1879 Opcode = I->getOpcode();
1880 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1881 Opcode = CE->getOpcode();
1882 else
1883 return SE.getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001884
Dan Gohman3996f472008-06-22 19:56:46 +00001885 User *U = cast<User>(V);
1886 switch (Opcode) {
1887 case Instruction::Add:
1888 return SE.getAddExpr(getSCEV(U->getOperand(0)),
1889 getSCEV(U->getOperand(1)));
1890 case Instruction::Mul:
1891 return SE.getMulExpr(getSCEV(U->getOperand(0)),
1892 getSCEV(U->getOperand(1)));
1893 case Instruction::UDiv:
1894 return SE.getUDivExpr(getSCEV(U->getOperand(0)),
1895 getSCEV(U->getOperand(1)));
1896 case Instruction::Sub:
1897 return SE.getMinusSCEV(getSCEV(U->getOperand(0)),
1898 getSCEV(U->getOperand(1)));
1899 case Instruction::Or:
1900 // If the RHS of the Or is a constant, we may have something like:
1901 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
1902 // optimizations will transparently handle this case.
1903 //
1904 // In order for this transformation to be safe, the LHS must be of the
1905 // form X*(2^n) and the Or constant must be less than 2^n.
1906 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1907 SCEVHandle LHS = getSCEV(U->getOperand(0));
1908 const APInt &CIVal = CI->getValue();
Dan Gohman01c2ee72009-04-16 03:18:22 +00001909 if (GetMinTrailingZeros(LHS, TD) >=
Dan Gohman3996f472008-06-22 19:56:46 +00001910 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
1911 return SE.getAddExpr(LHS, getSCEV(U->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001912 }
Dan Gohman3996f472008-06-22 19:56:46 +00001913 break;
1914 case Instruction::Xor:
Dan Gohman3996f472008-06-22 19:56:46 +00001915 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky7fd27892008-07-07 06:15:49 +00001916 // If the RHS of the xor is a signbit, then this is just an add.
1917 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman3996f472008-06-22 19:56:46 +00001918 if (CI->getValue().isSignBit())
1919 return SE.getAddExpr(getSCEV(U->getOperand(0)),
1920 getSCEV(U->getOperand(1)));
Nick Lewycky7fd27892008-07-07 06:15:49 +00001921
1922 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman3996f472008-06-22 19:56:46 +00001923 else if (CI->isAllOnesValue())
1924 return SE.getNotSCEV(getSCEV(U->getOperand(0)));
1925 }
1926 break;
1927
1928 case Instruction::Shl:
1929 // Turn shift left of a constant amount into a multiply.
1930 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1931 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1932 Constant *X = ConstantInt::get(
1933 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1934 return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1935 }
1936 break;
1937
Nick Lewycky7fd27892008-07-07 06:15:49 +00001938 case Instruction::LShr:
Nick Lewycky35b56022009-01-13 09:18:58 +00001939 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky7fd27892008-07-07 06:15:49 +00001940 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1941 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1942 Constant *X = ConstantInt::get(
1943 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1944 return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1945 }
1946 break;
1947
Dan Gohman3996f472008-06-22 19:56:46 +00001948 case Instruction::Trunc:
1949 return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
1950
1951 case Instruction::ZExt:
1952 return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1953
1954 case Instruction::SExt:
1955 return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1956
1957 case Instruction::BitCast:
1958 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001959 if ((U->getType()->isInteger() ||
1960 isa<PointerType>(U->getType())) &&
1961 (U->getOperand(0)->getType()->isInteger() ||
1962 isa<PointerType>(U->getOperand(0)->getType())))
Dan Gohman3996f472008-06-22 19:56:46 +00001963 return getSCEV(U->getOperand(0));
1964 break;
1965
Dan Gohman01c2ee72009-04-16 03:18:22 +00001966 case Instruction::IntToPtr:
1967 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1968 TD.getIntPtrType());
1969
1970 case Instruction::PtrToInt:
1971 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1972 U->getType());
1973
1974 case Instruction::GetElementPtr: {
1975 const Type *IntPtrTy = TD.getIntPtrType();
1976 Value *Base = U->getOperand(0);
1977 SCEVHandle TotalOffset = SE.getIntegerSCEV(0, IntPtrTy);
1978 gep_type_iterator GTI = gep_type_begin(U);
1979 for (GetElementPtrInst::op_iterator I = next(U->op_begin()),
1980 E = U->op_end();
1981 I != E; ++I) {
1982 Value *Index = *I;
1983 // Compute the (potentially symbolic) offset in bytes for this index.
1984 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1985 // For a struct, add the member offset.
1986 const StructLayout &SL = *TD.getStructLayout(STy);
1987 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1988 uint64_t Offset = SL.getElementOffset(FieldNo);
1989 TotalOffset = SE.getAddExpr(TotalOffset,
1990 SE.getIntegerSCEV(Offset, IntPtrTy));
1991 } else {
1992 // For an array, add the element offset, explicitly scaled.
1993 SCEVHandle LocalOffset = getSCEV(Index);
1994 if (!isa<PointerType>(LocalOffset->getType()))
1995 // Getelementptr indicies are signed.
1996 LocalOffset = getTruncateOrSignExtend(LocalOffset,
1997 IntPtrTy);
1998 LocalOffset =
1999 SE.getMulExpr(LocalOffset,
2000 SE.getIntegerSCEV(TD.getTypePaddedSize(*GTI),
2001 IntPtrTy));
2002 TotalOffset = SE.getAddExpr(TotalOffset, LocalOffset);
2003 }
2004 }
2005 return SE.getAddExpr(getSCEV(Base), TotalOffset);
2006 }
2007
Dan Gohman3996f472008-06-22 19:56:46 +00002008 case Instruction::PHI:
2009 return createNodeForPHI(cast<PHINode>(U));
2010
2011 case Instruction::Select:
2012 // This could be a smax or umax that was lowered earlier.
2013 // Try to recover it.
2014 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2015 Value *LHS = ICI->getOperand(0);
2016 Value *RHS = ICI->getOperand(1);
2017 switch (ICI->getPredicate()) {
2018 case ICmpInst::ICMP_SLT:
2019 case ICmpInst::ICMP_SLE:
2020 std::swap(LHS, RHS);
2021 // fall through
2022 case ICmpInst::ICMP_SGT:
2023 case ICmpInst::ICMP_SGE:
2024 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2025 return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2026 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Eli Friedman8e2fd032008-07-30 04:36:32 +00002027 // ~smax(~x, ~y) == smin(x, y).
2028 return SE.getNotSCEV(SE.getSMaxExpr(
2029 SE.getNotSCEV(getSCEV(LHS)),
2030 SE.getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002031 break;
2032 case ICmpInst::ICMP_ULT:
2033 case ICmpInst::ICMP_ULE:
2034 std::swap(LHS, RHS);
2035 // fall through
2036 case ICmpInst::ICMP_UGT:
2037 case ICmpInst::ICMP_UGE:
2038 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2039 return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2040 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2041 // ~umax(~x, ~y) == umin(x, y)
2042 return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)),
2043 SE.getNotSCEV(getSCEV(RHS))));
2044 break;
2045 default:
2046 break;
2047 }
2048 }
2049
2050 default: // We cannot analyze this expression.
2051 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002052 }
2053
Dan Gohman89f85052007-10-22 18:31:58 +00002054 return SE.getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002055}
2056
2057
2058
2059//===----------------------------------------------------------------------===//
2060// Iteration Count Computation Code
2061//
2062
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002063/// getBackedgeTakenCount - If the specified loop has a predictable
2064/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2065/// object. The backedge-taken count is the number of times the loop header
2066/// will be branched to from within the loop. This is one less than the
2067/// trip count of the loop, since it doesn't count the first iteration,
2068/// when the header is branched to from outside the loop.
2069///
2070/// Note that it is not valid to call this method on a loop without a
2071/// loop-invariant backedge-taken count (see
2072/// hasLoopInvariantBackedgeTakenCount).
2073///
2074SCEVHandle ScalarEvolutionsImpl::getBackedgeTakenCount(const Loop *L) {
2075 std::map<const Loop*, SCEVHandle>::iterator I = BackedgeTakenCounts.find(L);
2076 if (I == BackedgeTakenCounts.end()) {
2077 SCEVHandle ItCount = ComputeBackedgeTakenCount(L);
2078 I = BackedgeTakenCounts.insert(std::make_pair(L, ItCount)).first;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002079 if (ItCount != UnknownValue) {
2080 assert(ItCount->isLoopInvariant(L) &&
2081 "Computed trip count isn't loop invariant for loop!");
2082 ++NumTripCountsComputed;
2083 } else if (isa<PHINode>(L->getHeader()->begin())) {
2084 // Only count loops that have phi nodes as not being computable.
2085 ++NumTripCountsNotComputed;
2086 }
2087 }
2088 return I->second;
2089}
2090
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002091/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002092/// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002093/// ScalarEvolution's ability to compute a trip count, or if the loop
2094/// is deleted.
2095void ScalarEvolutionsImpl::forgetLoopBackedgeTakenCount(const Loop *L) {
2096 BackedgeTakenCounts.erase(L);
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002097}
2098
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002099/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2100/// of the specified loop will execute.
2101SCEVHandle ScalarEvolutionsImpl::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002102 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patel02451fa2007-08-21 00:31:24 +00002103 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002104 L->getExitBlocks(ExitBlocks);
2105 if (ExitBlocks.size() != 1) return UnknownValue;
2106
2107 // Okay, there is one exit block. Try to find the condition that causes the
2108 // loop to be exited.
2109 BasicBlock *ExitBlock = ExitBlocks[0];
2110
2111 BasicBlock *ExitingBlock = 0;
2112 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2113 PI != E; ++PI)
2114 if (L->contains(*PI)) {
2115 if (ExitingBlock == 0)
2116 ExitingBlock = *PI;
2117 else
2118 return UnknownValue; // More than one block exiting!
2119 }
2120 assert(ExitingBlock && "No exits from loop, something is broken!");
2121
2122 // Okay, we've computed the exiting block. See what condition causes us to
2123 // exit.
2124 //
2125 // FIXME: we should be able to handle switch instructions (with a single exit)
2126 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2127 if (ExitBr == 0) return UnknownValue;
2128 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2129
2130 // At this point, we know we have a conditional branch that determines whether
2131 // the loop is exited. However, we don't know if the branch is executed each
2132 // time through the loop. If not, then the execution count of the branch will
2133 // not be equal to the trip count of the loop.
2134 //
2135 // Currently we check for this by checking to see if the Exit branch goes to
2136 // the loop header. If so, we know it will always execute the same number of
2137 // times as the loop. We also handle the case where the exit block *is* the
2138 // loop header. This is common for un-rotated loops. More extensive analysis
2139 // could be done to handle more cases here.
2140 if (ExitBr->getSuccessor(0) != L->getHeader() &&
2141 ExitBr->getSuccessor(1) != L->getHeader() &&
2142 ExitBr->getParent() != L->getHeader())
2143 return UnknownValue;
2144
2145 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2146
Nick Lewyckyb3d24332008-02-21 08:34:02 +00002147 // If it's not an integer comparison then compute it the hard way.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002148 // Note that ICmpInst deals with pointer comparisons too so we must check
2149 // the type of the operand.
2150 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002151 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002152 ExitBr->getSuccessor(0) == ExitBlock);
2153
2154 // If the condition was exit on true, convert the condition to exit on false
2155 ICmpInst::Predicate Cond;
2156 if (ExitBr->getSuccessor(1) == ExitBlock)
2157 Cond = ExitCond->getPredicate();
2158 else
2159 Cond = ExitCond->getInversePredicate();
2160
2161 // Handle common loops like: for (X = "string"; *X; ++X)
2162 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2163 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2164 SCEVHandle ItCnt =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002165 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002166 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2167 }
2168
2169 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2170 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2171
2172 // Try to evaluate any dependencies out of the loop.
2173 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2174 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2175 Tmp = getSCEVAtScope(RHS, L);
2176 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2177
2178 // At this point, we would like to compute how many iterations of the
2179 // loop the predicate will return true for these inputs.
Dan Gohman2d96e352008-09-16 18:52:57 +00002180 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2181 // If there is a loop-invariant, force it into the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002182 std::swap(LHS, RHS);
2183 Cond = ICmpInst::getSwappedPredicate(Cond);
2184 }
2185
2186 // FIXME: think about handling pointer comparisons! i.e.:
2187 // while (P != P+100) ++P;
2188
2189 // If we have a comparison of a chrec against a constant, try to use value
2190 // ranges to answer this query.
2191 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2192 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2193 if (AddRec->getLoop() == L) {
2194 // Form the comparison range using the constant of the correct type so
2195 // that the ConstantRange class knows to do a signed or unsigned
2196 // comparison.
2197 ConstantInt *CompVal = RHSC->getValue();
2198 const Type *RealTy = ExitCond->getOperand(0)->getType();
2199 CompVal = dyn_cast<ConstantInt>(
2200 ConstantExpr::getBitCast(CompVal, RealTy));
2201 if (CompVal) {
2202 // Form the constant range.
2203 ConstantRange CompRange(
2204 ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2205
Dan Gohman89f85052007-10-22 18:31:58 +00002206 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002207 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2208 }
2209 }
2210
2211 switch (Cond) {
2212 case ICmpInst::ICMP_NE: { // while (X != Y)
2213 // Convert to: while (X-Y != 0)
Dan Gohman89f85052007-10-22 18:31:58 +00002214 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002215 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2216 break;
2217 }
2218 case ICmpInst::ICMP_EQ: {
2219 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohman89f85052007-10-22 18:31:58 +00002220 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002221 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2222 break;
2223 }
2224 case ICmpInst::ICMP_SLT: {
Nick Lewycky35b56022009-01-13 09:18:58 +00002225 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002226 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2227 break;
2228 }
2229 case ICmpInst::ICMP_SGT: {
Eli Friedman0dcd4ed2008-07-30 00:04:08 +00002230 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
Nick Lewycky35b56022009-01-13 09:18:58 +00002231 SE.getNotSCEV(RHS), L, true);
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002232 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2233 break;
2234 }
2235 case ICmpInst::ICMP_ULT: {
Nick Lewycky35b56022009-01-13 09:18:58 +00002236 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002237 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2238 break;
2239 }
2240 case ICmpInst::ICMP_UGT: {
Dale Johannesend721b952008-04-20 16:58:57 +00002241 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
Nick Lewycky35b56022009-01-13 09:18:58 +00002242 SE.getNotSCEV(RHS), L, false);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002243 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2244 break;
2245 }
2246 default:
2247#if 0
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002248 cerr << "ComputeBackedgeTakenCount ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002249 if (ExitCond->getOperand(0)->getType()->isUnsigned())
2250 cerr << "[unsigned] ";
2251 cerr << *LHS << " "
2252 << Instruction::getOpcodeName(Instruction::ICmp)
2253 << " " << *RHS << "\n";
2254#endif
2255 break;
2256 }
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002257 return
2258 ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2259 ExitBr->getSuccessor(0) == ExitBlock);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002260}
2261
2262static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00002263EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2264 ScalarEvolution &SE) {
2265 SCEVHandle InVal = SE.getConstant(C);
2266 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002267 assert(isa<SCEVConstant>(Val) &&
2268 "Evaluation of SCEV at constant didn't fold correctly?");
2269 return cast<SCEVConstant>(Val)->getValue();
2270}
2271
2272/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2273/// and a GEP expression (missing the pointer index) indexing into it, return
2274/// the addressed element of the initializer or null if the index expression is
2275/// invalid.
2276static Constant *
2277GetAddressedElementFromGlobal(GlobalVariable *GV,
2278 const std::vector<ConstantInt*> &Indices) {
2279 Constant *Init = GV->getInitializer();
2280 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2281 uint64_t Idx = Indices[i]->getZExtValue();
2282 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2283 assert(Idx < CS->getNumOperands() && "Bad struct index!");
2284 Init = cast<Constant>(CS->getOperand(Idx));
2285 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2286 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
2287 Init = cast<Constant>(CA->getOperand(Idx));
2288 } else if (isa<ConstantAggregateZero>(Init)) {
2289 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2290 assert(Idx < STy->getNumElements() && "Bad struct index!");
2291 Init = Constant::getNullValue(STy->getElementType(Idx));
2292 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2293 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
2294 Init = Constant::getNullValue(ATy->getElementType());
2295 } else {
2296 assert(0 && "Unknown constant aggregate type!");
2297 }
2298 return 0;
2299 } else {
2300 return 0; // Unknown initializer type
2301 }
2302 }
2303 return Init;
2304}
2305
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002306/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2307/// 'icmp op load X, cst', try to see if we can compute the backedge
2308/// execution count.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002309SCEVHandle ScalarEvolutionsImpl::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002310ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2311 const Loop *L,
2312 ICmpInst::Predicate predicate) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002313 if (LI->isVolatile()) return UnknownValue;
2314
2315 // Check to see if the loaded pointer is a getelementptr of a global.
2316 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2317 if (!GEP) return UnknownValue;
2318
2319 // Make sure that it is really a constant global we are gepping, with an
2320 // initializer, and make sure the first IDX is really 0.
2321 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2322 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2323 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2324 !cast<Constant>(GEP->getOperand(1))->isNullValue())
2325 return UnknownValue;
2326
2327 // Okay, we allow one non-constant index into the GEP instruction.
2328 Value *VarIdx = 0;
2329 std::vector<ConstantInt*> Indexes;
2330 unsigned VarIdxNum = 0;
2331 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2332 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2333 Indexes.push_back(CI);
2334 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2335 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
2336 VarIdx = GEP->getOperand(i);
2337 VarIdxNum = i-2;
2338 Indexes.push_back(0);
2339 }
2340
2341 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2342 // Check to see if X is a loop variant variable value now.
2343 SCEVHandle Idx = getSCEV(VarIdx);
2344 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2345 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2346
2347 // We can only recognize very limited forms of loop index expressions, in
2348 // particular, only affine AddRec's like {C1,+,C2}.
2349 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2350 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2351 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2352 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2353 return UnknownValue;
2354
2355 unsigned MaxSteps = MaxBruteForceIterations;
2356 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2357 ConstantInt *ItCst =
2358 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohman89f85052007-10-22 18:31:58 +00002359 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002360
2361 // Form the GEP offset.
2362 Indexes[VarIdxNum] = Val;
2363
2364 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2365 if (Result == 0) break; // Cannot compute!
2366
2367 // Evaluate the condition for this iteration.
2368 Result = ConstantExpr::getICmp(predicate, Result, RHS);
2369 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
2370 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2371#if 0
2372 cerr << "\n***\n*** Computed loop count " << *ItCst
2373 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2374 << "***\n";
2375#endif
2376 ++NumArrayLenItCounts;
Dan Gohman89f85052007-10-22 18:31:58 +00002377 return SE.getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002378 }
2379 }
2380 return UnknownValue;
2381}
2382
2383
2384/// CanConstantFold - Return true if we can constant fold an instruction of the
2385/// specified type, assuming that all operands were constants.
2386static bool CanConstantFold(const Instruction *I) {
2387 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2388 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2389 return true;
2390
2391 if (const CallInst *CI = dyn_cast<CallInst>(I))
2392 if (const Function *F = CI->getCalledFunction())
Dan Gohmane6e001f2008-01-31 01:05:10 +00002393 return canConstantFoldCallTo(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394 return false;
2395}
2396
2397/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2398/// in the loop that V is derived from. We allow arbitrary operations along the
2399/// way, but the operands of an operation must either be constants or a value
2400/// derived from a constant PHI. If this expression does not fit with these
2401/// constraints, return null.
2402static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2403 // If this is not an instruction, or if this is an instruction outside of the
2404 // loop, it can't be derived from a loop PHI.
2405 Instruction *I = dyn_cast<Instruction>(V);
2406 if (I == 0 || !L->contains(I->getParent())) return 0;
2407
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002408 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002409 if (L->getHeader() == I->getParent())
2410 return PN;
2411 else
2412 // We don't currently keep track of the control flow needed to evaluate
2413 // PHIs, so we cannot handle PHIs inside of loops.
2414 return 0;
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002415 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002416
2417 // If we won't be able to constant fold this expression even if the operands
2418 // are constants, return early.
2419 if (!CanConstantFold(I)) return 0;
2420
2421 // Otherwise, we can evaluate this instruction if all of its operands are
2422 // constant or derived from a PHI node themselves.
2423 PHINode *PHI = 0;
2424 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2425 if (!(isa<Constant>(I->getOperand(Op)) ||
2426 isa<GlobalValue>(I->getOperand(Op)))) {
2427 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2428 if (P == 0) return 0; // Not evolving from PHI
2429 if (PHI == 0)
2430 PHI = P;
2431 else if (PHI != P)
2432 return 0; // Evolving from multiple different PHIs.
2433 }
2434
2435 // This is a expression evolving from a constant PHI!
2436 return PHI;
2437}
2438
2439/// EvaluateExpression - Given an expression that passes the
2440/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2441/// in the loop has the value PHIVal. If we can't fold this expression for some
2442/// reason, return null.
2443static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2444 if (isa<PHINode>(V)) return PHIVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002445 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002446 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002447 Instruction *I = cast<Instruction>(V);
2448
2449 std::vector<Constant*> Operands;
2450 Operands.resize(I->getNumOperands());
2451
2452 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2453 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2454 if (Operands[i] == 0) return 0;
2455 }
2456
Chris Lattnerd6e56912007-12-10 22:53:04 +00002457 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2458 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2459 &Operands[0], Operands.size());
2460 else
2461 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2462 &Operands[0], Operands.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002463}
2464
2465/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2466/// in the header of its containing loop, we know the loop executes a
2467/// constant number of times, and the PHI node is just a recurrence
2468/// involving constants, fold it.
2469Constant *ScalarEvolutionsImpl::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002470getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002471 std::map<PHINode*, Constant*>::iterator I =
2472 ConstantEvolutionLoopExitValue.find(PN);
2473 if (I != ConstantEvolutionLoopExitValue.end())
2474 return I->second;
2475
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002476 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002477 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2478
2479 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2480
2481 // Since the loop is canonicalized, the PHI node must have two entries. One
2482 // entry must be a constant (coming in from outside of the loop), and the
2483 // second must be derived from the same PHI.
2484 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2485 Constant *StartCST =
2486 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2487 if (StartCST == 0)
2488 return RetVal = 0; // Must be a constant.
2489
2490 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2491 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2492 if (PN2 != PN)
2493 return RetVal = 0; // Not derived from same PHI.
2494
2495 // Execute the loop symbolically to determine the exit value.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002496 if (BEs.getActiveBits() >= 32)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002497 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2498
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002499 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002500 unsigned IterationNum = 0;
2501 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2502 if (IterationNum == NumIterations)
2503 return RetVal = PHIVal; // Got exit value!
2504
2505 // Compute the value of the PHI node for the next iteration.
2506 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2507 if (NextPHI == PHIVal)
2508 return RetVal = NextPHI; // Stopped evolving!
2509 if (NextPHI == 0)
2510 return 0; // Couldn't evaluate!
2511 PHIVal = NextPHI;
2512 }
2513}
2514
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002515/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002516/// constant number of times (the condition evolves only from constants),
2517/// try to evaluate a few iterations of the loop until we get the exit
2518/// condition gets a value of ExitWhen (true or false). If we cannot
2519/// evaluate the trip count of the loop, return UnknownValue.
2520SCEVHandle ScalarEvolutionsImpl::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002521ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002522 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2523 if (PN == 0) return UnknownValue;
2524
2525 // Since the loop is canonicalized, the PHI node must have two entries. One
2526 // entry must be a constant (coming in from outside of the loop), and the
2527 // second must be derived from the same PHI.
2528 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2529 Constant *StartCST =
2530 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2531 if (StartCST == 0) return UnknownValue; // Must be a constant.
2532
2533 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2534 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2535 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2536
2537 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2538 // the loop symbolically to determine when the condition gets a value of
2539 // "ExitWhen".
2540 unsigned IterationNum = 0;
2541 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2542 for (Constant *PHIVal = StartCST;
2543 IterationNum != MaxIterations; ++IterationNum) {
2544 ConstantInt *CondVal =
2545 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2546
2547 // Couldn't symbolically evaluate.
2548 if (!CondVal) return UnknownValue;
2549
2550 if (CondVal->getValue() == uint64_t(ExitWhen)) {
2551 ConstantEvolutionLoopExitValue[PN] = PHIVal;
2552 ++NumBruteForceTripCountsComputed;
Dan Gohman89f85052007-10-22 18:31:58 +00002553 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002554 }
2555
2556 // Compute the value of the PHI node for the next iteration.
2557 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2558 if (NextPHI == 0 || NextPHI == PHIVal)
2559 return UnknownValue; // Couldn't evaluate or not making progress...
2560 PHIVal = NextPHI;
2561 }
2562
2563 // Too many iterations were needed to evaluate.
2564 return UnknownValue;
2565}
2566
2567/// getSCEVAtScope - Compute the value of the specified expression within the
2568/// indicated loop (which may be null to indicate in no loop). If the
2569/// expression cannot be evaluated, return UnknownValue.
2570SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
2571 // FIXME: this should be turned into a virtual method on SCEV!
2572
2573 if (isa<SCEVConstant>(V)) return V;
2574
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002575 // If this instruction is evolved from a constant-evolving PHI, compute the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002576 // exit value from the loop without using SCEVs.
2577 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2578 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2579 const Loop *LI = this->LI[I->getParent()];
2580 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2581 if (PHINode *PN = dyn_cast<PHINode>(I))
2582 if (PN->getParent() == LI->getHeader()) {
2583 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002584 // to see if the loop that contains it has a known backedge-taken
2585 // count. If so, we may be able to force computation of the exit
2586 // value.
2587 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2588 if (SCEVConstant *BTCC =
2589 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002590 // Okay, we know how many times the containing loop executes. If
2591 // this is a constant evolving PHI node, get the final value at
2592 // the specified iteration number.
2593 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002594 BTCC->getValue()->getValue(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002595 LI);
Dan Gohman89f85052007-10-22 18:31:58 +00002596 if (RV) return SE.getUnknown(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002597 }
2598 }
2599
2600 // Okay, this is an expression that we cannot symbolically evaluate
2601 // into a SCEV. Check to see if it's possible to symbolically evaluate
2602 // the arguments into constants, and if so, try to constant propagate the
2603 // result. This is particularly useful for computing loop exit values.
2604 if (CanConstantFold(I)) {
2605 std::vector<Constant*> Operands;
2606 Operands.reserve(I->getNumOperands());
2607 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2608 Value *Op = I->getOperand(i);
2609 if (Constant *C = dyn_cast<Constant>(Op)) {
2610 Operands.push_back(C);
2611 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00002612 // If any of the operands is non-constant and if they are
Dan Gohman01c2ee72009-04-16 03:18:22 +00002613 // non-integer and non-pointer, don't even try to analyze them
2614 // with scev techniques.
2615 if (!isa<IntegerType>(Op->getType()) &&
2616 !isa<PointerType>(Op->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00002617 return V;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002618
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002619 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2620 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2621 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2622 Op->getType(),
2623 false));
2624 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2625 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2626 Operands.push_back(ConstantExpr::getIntegerCast(C,
2627 Op->getType(),
2628 false));
2629 else
2630 return V;
2631 } else {
2632 return V;
2633 }
2634 }
2635 }
Chris Lattnerd6e56912007-12-10 22:53:04 +00002636
2637 Constant *C;
2638 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2639 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2640 &Operands[0], Operands.size());
2641 else
2642 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2643 &Operands[0], Operands.size());
Dan Gohman89f85052007-10-22 18:31:58 +00002644 return SE.getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002645 }
2646 }
2647
2648 // This is some other type of SCEVUnknown, just return it.
2649 return V;
2650 }
2651
2652 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2653 // Avoid performing the look-up in the common case where the specified
2654 // expression has no loop-variant portions.
2655 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2656 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2657 if (OpAtScope != Comm->getOperand(i)) {
2658 if (OpAtScope == UnknownValue) return UnknownValue;
2659 // Okay, at least one of these operands is loop variant but might be
2660 // foldable. Build a new instance of the folded commutative expression.
2661 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2662 NewOps.push_back(OpAtScope);
2663
2664 for (++i; i != e; ++i) {
2665 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2666 if (OpAtScope == UnknownValue) return UnknownValue;
2667 NewOps.push_back(OpAtScope);
2668 }
2669 if (isa<SCEVAddExpr>(Comm))
Dan Gohman89f85052007-10-22 18:31:58 +00002670 return SE.getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00002671 if (isa<SCEVMulExpr>(Comm))
2672 return SE.getMulExpr(NewOps);
2673 if (isa<SCEVSMaxExpr>(Comm))
2674 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002675 if (isa<SCEVUMaxExpr>(Comm))
2676 return SE.getUMaxExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00002677 assert(0 && "Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002678 }
2679 }
2680 // If we got here, all operands are loop invariant.
2681 return Comm;
2682 }
2683
Nick Lewycky35b56022009-01-13 09:18:58 +00002684 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2685 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002686 if (LHS == UnknownValue) return LHS;
Nick Lewycky35b56022009-01-13 09:18:58 +00002687 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002688 if (RHS == UnknownValue) return RHS;
Nick Lewycky35b56022009-01-13 09:18:58 +00002689 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2690 return Div; // must be loop invariant
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00002691 return SE.getUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002692 }
2693
2694 // If this is a loop recurrence for a loop that does not contain L, then we
2695 // are dealing with the final value computed by the loop.
2696 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2697 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2698 // To evaluate this recurrence, we need to know how many times the AddRec
2699 // loop iterates. Compute this now.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002700 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2701 if (BackedgeTakenCount == UnknownValue) return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002702
Eli Friedman7489ec92008-08-04 23:49:06 +00002703 // Then, evaluate the AddRec.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002704 return AddRec->evaluateAtIteration(BackedgeTakenCount, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002705 }
2706 return UnknownValue;
2707 }
2708
2709 //assert(0 && "Unknown SCEV type!");
2710 return UnknownValue;
2711}
2712
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002713/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2714/// following equation:
2715///
2716/// A * X = B (mod N)
2717///
2718/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2719/// A and B isn't important.
2720///
2721/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2722static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2723 ScalarEvolution &SE) {
2724 uint32_t BW = A.getBitWidth();
2725 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2726 assert(A != 0 && "A must be non-zero.");
2727
2728 // 1. D = gcd(A, N)
2729 //
2730 // The gcd of A and N may have only one prime factor: 2. The number of
2731 // trailing zeros in A is its multiplicity
2732 uint32_t Mult2 = A.countTrailingZeros();
2733 // D = 2^Mult2
2734
2735 // 2. Check if B is divisible by D.
2736 //
2737 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2738 // is not less than multiplicity of this prime factor for D.
2739 if (B.countTrailingZeros() < Mult2)
Dan Gohman0ad08b02009-04-18 17:58:19 +00002740 return SE.getCouldNotCompute();
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002741
2742 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2743 // modulo (N / D).
2744 //
2745 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
2746 // bit width during computations.
2747 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
2748 APInt Mod(BW + 1, 0);
2749 Mod.set(BW - Mult2); // Mod = N / D
2750 APInt I = AD.multiplicativeInverse(Mod);
2751
2752 // 4. Compute the minimum unsigned root of the equation:
2753 // I * (B / D) mod (N / D)
2754 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2755
2756 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2757 // bits.
2758 return SE.getConstant(Result.trunc(BW));
2759}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002760
2761/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2762/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2763/// might be the same) or two SCEVCouldNotCompute objects.
2764///
2765static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman89f85052007-10-22 18:31:58 +00002766SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002767 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2768 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2769 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2770 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2771
2772 // We currently can only solve this if the coefficients are constants.
2773 if (!LC || !MC || !NC) {
Dan Gohman0ad08b02009-04-18 17:58:19 +00002774 SCEV *CNC = SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002775 return std::make_pair(CNC, CNC);
2776 }
2777
2778 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2779 const APInt &L = LC->getValue()->getValue();
2780 const APInt &M = MC->getValue()->getValue();
2781 const APInt &N = NC->getValue()->getValue();
2782 APInt Two(BitWidth, 2);
2783 APInt Four(BitWidth, 4);
2784
2785 {
2786 using namespace APIntOps;
2787 const APInt& C = L;
2788 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2789 // The B coefficient is M-N/2
2790 APInt B(M);
2791 B -= sdiv(N,Two);
2792
2793 // The A coefficient is N/2
2794 APInt A(N.sdiv(Two));
2795
2796 // Compute the B^2-4ac term.
2797 APInt SqrtTerm(B);
2798 SqrtTerm *= B;
2799 SqrtTerm -= Four * (A * C);
2800
2801 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2802 // integer value or else APInt::sqrt() will assert.
2803 APInt SqrtVal(SqrtTerm.sqrt());
2804
2805 // Compute the two solutions for the quadratic formula.
2806 // The divisions must be performed as signed divisions.
2807 APInt NegB(-B);
2808 APInt TwoA( A << 1 );
Nick Lewycky35776692008-11-03 02:43:49 +00002809 if (TwoA.isMinValue()) {
Dan Gohman0ad08b02009-04-18 17:58:19 +00002810 SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky35776692008-11-03 02:43:49 +00002811 return std::make_pair(CNC, CNC);
2812 }
2813
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002814 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2815 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2816
Dan Gohman89f85052007-10-22 18:31:58 +00002817 return std::make_pair(SE.getConstant(Solution1),
2818 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002819 } // end APIntOps namespace
2820}
2821
2822/// HowFarToZero - Return the number of times a backedge comparing the specified
2823/// value to zero will execute. If not computable, return UnknownValue
2824SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2825 // If the value is a constant
2826 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2827 // If the value is already zero, the branch will execute zero times.
2828 if (C->getValue()->isZero()) return C;
2829 return UnknownValue; // Otherwise it will loop infinitely.
2830 }
2831
2832 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2833 if (!AddRec || AddRec->getLoop() != L)
2834 return UnknownValue;
2835
2836 if (AddRec->isAffine()) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002837 // If this is an affine expression, the execution count of this branch is
2838 // the minimum unsigned root of the following equation:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002839 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002840 // Start + Step*N = 0 (mod 2^BW)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002841 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002842 // equivalent to:
2843 //
2844 // Step*N = -Start (mod 2^BW)
2845 //
2846 // where BW is the common bit width of Start and Step.
2847
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002848 // Get the initial value for the loop.
2849 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2850 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002851
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002852 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002853
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002854 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002855 // For now we handle only constant steps.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002856
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002857 // First, handle unitary steps.
2858 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
2859 return SE.getNegativeSCEV(Start); // N = -Start (as unsigned)
2860 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
2861 return Start; // N = Start (as unsigned)
2862
2863 // Then, try to solve the above equation provided that Start is constant.
2864 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
2865 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
2866 -StartC->getValue()->getValue(),SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002867 }
2868 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2869 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2870 // the quadratic equation to solve it.
Dan Gohman89f85052007-10-22 18:31:58 +00002871 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002872 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2873 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2874 if (R1) {
2875#if 0
2876 cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2877 << " sol#2: " << *R2 << "\n";
2878#endif
2879 // Pick the smallest positive root value.
2880 if (ConstantInt *CB =
2881 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2882 R1->getValue(), R2->getValue()))) {
2883 if (CB->getZExtValue() == false)
2884 std::swap(R1, R2); // R1 is the minimum root now.
2885
2886 // We can only use this value if the chrec ends up with an exact zero
2887 // value at this index. When solving for "X*X != 5", for example, we
2888 // should not accept a root of 2.
Dan Gohman89f85052007-10-22 18:31:58 +00002889 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE);
Dan Gohman7b560c42008-06-18 16:23:07 +00002890 if (Val->isZero())
2891 return R1; // We found a quadratic root!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002892 }
2893 }
2894 }
2895
2896 return UnknownValue;
2897}
2898
2899/// HowFarToNonZero - Return the number of times a backedge checking the
2900/// specified value for nonzero will execute. If not computable, return
2901/// UnknownValue
2902SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2903 // Loops that look like: while (X == 0) are very strange indeed. We don't
2904 // handle them yet except for the trivial case. This could be expanded in the
2905 // future as needed.
2906
2907 // If the value is a constant, check to see if it is known to be non-zero
2908 // already. If so, the backedge will execute zero times.
2909 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewyckyf6805182008-02-21 09:14:53 +00002910 if (!C->getValue()->isNullValue())
2911 return SE.getIntegerSCEV(0, C->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002912 return UnknownValue; // Otherwise it will loop infinitely.
2913 }
2914
2915 // We could implement others, but I really doubt anyone writes loops like
2916 // this, and if they did, they would already be constant folded.
2917 return UnknownValue;
2918}
2919
Dan Gohman1cddf972008-09-15 22:18:04 +00002920/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
2921/// (which may not be an immediate predecessor) which has exactly one
2922/// successor from which BB is reachable, or null if no such block is
2923/// found.
2924///
2925BasicBlock *
2926ScalarEvolutionsImpl::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
2927 // If the block has a unique predecessor, the predecessor must have
2928 // no other successors from which BB is reachable.
2929 if (BasicBlock *Pred = BB->getSinglePredecessor())
2930 return Pred;
2931
2932 // A loop's header is defined to be a block that dominates the loop.
2933 // If the loop has a preheader, it must be a block that has exactly
2934 // one successor that can reach BB. This is slightly more strict
2935 // than necessary, but works if critical edges are split.
2936 if (Loop *L = LI.getLoopFor(BB))
2937 return L->getLoopPreheader();
2938
2939 return 0;
2940}
2941
Dan Gohmancacd2012009-02-12 22:19:27 +00002942/// isLoopGuardedByCond - Test whether entry to the loop is protected by
Nick Lewycky1b020bf2008-07-12 07:41:32 +00002943/// a conditional between LHS and RHS.
Dan Gohmancacd2012009-02-12 22:19:27 +00002944bool ScalarEvolutionsImpl::isLoopGuardedByCond(const Loop *L,
2945 ICmpInst::Predicate Pred,
Nick Lewycky1b020bf2008-07-12 07:41:32 +00002946 SCEV *LHS, SCEV *RHS) {
2947 BasicBlock *Preheader = L->getLoopPreheader();
2948 BasicBlock *PreheaderDest = L->getHeader();
Nick Lewycky1b020bf2008-07-12 07:41:32 +00002949
Dan Gohmanab678fb2008-08-12 20:17:31 +00002950 // Starting at the preheader, climb up the predecessor chain, as long as
Dan Gohman1cddf972008-09-15 22:18:04 +00002951 // there are predecessors that can be found that have unique successors
2952 // leading to the original header.
2953 for (; Preheader;
2954 PreheaderDest = Preheader,
2955 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
Dan Gohmanab678fb2008-08-12 20:17:31 +00002956
2957 BranchInst *LoopEntryPredicate =
Nick Lewycky1b020bf2008-07-12 07:41:32 +00002958 dyn_cast<BranchInst>(Preheader->getTerminator());
Dan Gohmanab678fb2008-08-12 20:17:31 +00002959 if (!LoopEntryPredicate ||
2960 LoopEntryPredicate->isUnconditional())
2961 continue;
2962
2963 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
2964 if (!ICI) continue;
2965
2966 // Now that we found a conditional branch that dominates the loop, check to
2967 // see if it is the comparison we are looking for.
2968 Value *PreCondLHS = ICI->getOperand(0);
2969 Value *PreCondRHS = ICI->getOperand(1);
2970 ICmpInst::Predicate Cond;
2971 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2972 Cond = ICI->getPredicate();
2973 else
2974 Cond = ICI->getInversePredicate();
2975
Dan Gohmancacd2012009-02-12 22:19:27 +00002976 if (Cond == Pred)
2977 ; // An exact match.
2978 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
2979 ; // The actual condition is beyond sufficient.
2980 else
2981 // Check a few special cases.
2982 switch (Cond) {
2983 case ICmpInst::ICMP_UGT:
2984 if (Pred == ICmpInst::ICMP_ULT) {
2985 std::swap(PreCondLHS, PreCondRHS);
2986 Cond = ICmpInst::ICMP_ULT;
2987 break;
2988 }
2989 continue;
2990 case ICmpInst::ICMP_SGT:
2991 if (Pred == ICmpInst::ICMP_SLT) {
2992 std::swap(PreCondLHS, PreCondRHS);
2993 Cond = ICmpInst::ICMP_SLT;
2994 break;
2995 }
2996 continue;
2997 case ICmpInst::ICMP_NE:
2998 // Expressions like (x >u 0) are often canonicalized to (x != 0),
2999 // so check for this case by checking if the NE is comparing against
3000 // a minimum or maximum constant.
3001 if (!ICmpInst::isTrueWhenEqual(Pred))
3002 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3003 const APInt &A = CI->getValue();
3004 switch (Pred) {
3005 case ICmpInst::ICMP_SLT:
3006 if (A.isMaxSignedValue()) break;
3007 continue;
3008 case ICmpInst::ICMP_SGT:
3009 if (A.isMinSignedValue()) break;
3010 continue;
3011 case ICmpInst::ICMP_ULT:
3012 if (A.isMaxValue()) break;
3013 continue;
3014 case ICmpInst::ICMP_UGT:
3015 if (A.isMinValue()) break;
3016 continue;
3017 default:
3018 continue;
3019 }
3020 Cond = ICmpInst::ICMP_NE;
3021 // NE is symmetric but the original comparison may not be. Swap
3022 // the operands if necessary so that they match below.
3023 if (isa<SCEVConstant>(LHS))
3024 std::swap(PreCondLHS, PreCondRHS);
3025 break;
3026 }
3027 continue;
3028 default:
3029 // We weren't able to reconcile the condition.
3030 continue;
3031 }
Dan Gohmanab678fb2008-08-12 20:17:31 +00003032
3033 if (!PreCondLHS->getType()->isInteger()) continue;
3034
3035 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3036 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3037 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3038 (LHS == SE.getNotSCEV(PreCondRHSSCEV) &&
3039 RHS == SE.getNotSCEV(PreCondLHSSCEV)))
3040 return true;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003041 }
3042
Dan Gohmanab678fb2008-08-12 20:17:31 +00003043 return false;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003044}
3045
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003046/// HowManyLessThans - Return the number of times a backedge containing the
3047/// specified less-than comparison will execute. If not computable, return
3048/// UnknownValue.
3049SCEVHandle ScalarEvolutionsImpl::
Nick Lewycky35b56022009-01-13 09:18:58 +00003050HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003051 // Only handle: "ADDREC < LoopInvariant".
3052 if (!RHS->isLoopInvariant(L)) return UnknownValue;
3053
3054 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3055 if (!AddRec || AddRec->getLoop() != L)
3056 return UnknownValue;
3057
3058 if (AddRec->isAffine()) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003059 // FORNOW: We only support unit strides.
3060 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
3061 if (AddRec->getOperand(1) != One)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003062 return UnknownValue;
3063
Nick Lewycky35b56022009-01-13 09:18:58 +00003064 // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant
3065 // m. So, we count the number of iterations in which {n,+,1} < m is true.
3066 // Note that we cannot simply return max(m-n,0) because it's not safe to
Wojciech Matyjewicz1377a542008-02-13 12:21:32 +00003067 // treat m-n as signed nor unsigned due to overflow possibility.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003068
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003069 // First, we get the value of the LHS in the first iteration: n
3070 SCEVHandle Start = AddRec->getOperand(0);
3071
Dan Gohmancacd2012009-02-12 22:19:27 +00003072 if (isLoopGuardedByCond(L,
3073 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
Nick Lewycky35b56022009-01-13 09:18:58 +00003074 SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) {
3075 // Since we know that the condition is true in order to enter the loop,
3076 // we know that it will run exactly m-n times.
3077 return SE.getMinusSCEV(RHS, Start);
3078 } else {
3079 // Then, we get the value of the LHS in the first iteration in which the
3080 // above condition doesn't hold. This equals to max(m,n).
3081 SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start)
3082 : SE.getUMaxExpr(RHS, Start);
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003083
Nick Lewycky35b56022009-01-13 09:18:58 +00003084 // Finally, we subtract these two values to get the number of times the
3085 // backedge is executed: max(m,n)-n.
3086 return SE.getMinusSCEV(End, Start);
Nick Lewycky64d1fff2008-12-16 08:30:01 +00003087 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003088 }
3089
3090 return UnknownValue;
3091}
3092
3093/// getNumIterationsInRange - Return the number of iterations of this loop that
3094/// produce values in the specified constant range. Another way of looking at
3095/// this is that it returns the first iteration number where the value is not in
3096/// the condition, thus computing the exit count. If the iteration count can't
3097/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman89f85052007-10-22 18:31:58 +00003098SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3099 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003100 if (Range.isFullSet()) // Infinite loop.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003101 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003102
3103 // If the start is a non-zero constant, shift the range to simplify things.
3104 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3105 if (!SC->getValue()->isZero()) {
3106 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003107 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3108 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003109 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
3110 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00003111 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003112 // This is strange and shouldn't happen.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003113 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003114 }
3115
3116 // The only time we can solve this is when we have all constant indices.
3117 // Otherwise, we cannot determine the overflow conditions.
3118 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3119 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003120 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003121
3122
3123 // Okay at this point we know that all elements of the chrec are constants and
3124 // that the start element is zero.
3125
3126 // First check to see if the range contains zero. If not, the first
3127 // iteration exits.
Dan Gohman01c2ee72009-04-16 03:18:22 +00003128 unsigned BitWidth = SE.getTargetData().getTypeSizeInBits(getType());
3129 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman89f85052007-10-22 18:31:58 +00003130 return SE.getConstant(ConstantInt::get(getType(),0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003131
3132 if (isAffine()) {
3133 // If this is an affine expression then we have this situation:
3134 // Solve {0,+,A} in Range === Ax in Range
3135
3136 // We know that zero is in the range. If A is positive then we know that
3137 // the upper value of the range must be the first possible exit value.
3138 // If A is negative then the lower of the range is the last possible loop
3139 // value. Also note that we already checked for a full range.
Dan Gohman01c2ee72009-04-16 03:18:22 +00003140 APInt One(BitWidth,1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003141 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3142 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3143
3144 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00003145 APInt ExitVal = (End + A).udiv(A);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003146 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3147
3148 // Evaluate at the exit value. If we really did fall out of the valid
3149 // range, then we computed our trip count, otherwise wrap around or other
3150 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00003151 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003152 if (Range.contains(Val->getValue()))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003153 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003154
3155 // Ensure that the previous value is in the range. This is a sanity check.
3156 assert(Range.contains(
3157 EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003158 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003159 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00003160 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003161 } else if (isQuadratic()) {
3162 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3163 // quadratic equation to solve it. To do this, we must frame our problem in
3164 // terms of figuring out when zero is crossed, instead of when
3165 // Range.getUpper() is crossed.
3166 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003167 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3168 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003169
3170 // Next, solve the constructed addrec
3171 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00003172 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003173 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3174 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3175 if (R1) {
3176 // Pick the smallest positive root value.
3177 if (ConstantInt *CB =
3178 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3179 R1->getValue(), R2->getValue()))) {
3180 if (CB->getZExtValue() == false)
3181 std::swap(R1, R2); // R1 is the minimum root now.
3182
3183 // Make sure the root is not off by one. The returned iteration should
3184 // not be in the range, but the previous one should be. When solving
3185 // for "X*X < 5", for example, we should not return a root of 2.
3186 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003187 R1->getValue(),
3188 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003189 if (Range.contains(R1Val->getValue())) {
3190 // The next iteration must be out of the range...
3191 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3192
Dan Gohman89f85052007-10-22 18:31:58 +00003193 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003194 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00003195 return SE.getConstant(NextVal);
Dan Gohman0ad08b02009-04-18 17:58:19 +00003196 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003197 }
3198
3199 // If R1 was not in the range, then it is a good return value. Make
3200 // sure that R1-1 WAS in the range though, just in case.
3201 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00003202 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003203 if (Range.contains(R1Val->getValue()))
3204 return R1;
Dan Gohman0ad08b02009-04-18 17:58:19 +00003205 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003206 }
3207 }
3208 }
3209
Dan Gohman0ad08b02009-04-18 17:58:19 +00003210 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003211}
3212
3213
3214
3215//===----------------------------------------------------------------------===//
3216// ScalarEvolution Class Implementation
3217//===----------------------------------------------------------------------===//
3218
3219bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00003220 Impl = new ScalarEvolutionsImpl(*this, F,
3221 getAnalysis<LoopInfo>(),
3222 getAnalysis<TargetData>());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003223 return false;
3224}
3225
3226void ScalarEvolution::releaseMemory() {
3227 delete (ScalarEvolutionsImpl*)Impl;
3228 Impl = 0;
3229}
3230
3231void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3232 AU.setPreservesAll();
3233 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman01c2ee72009-04-16 03:18:22 +00003234 AU.addRequiredTransitive<TargetData>();
3235}
3236
3237const TargetData &ScalarEvolution::getTargetData() const {
3238 return ((ScalarEvolutionsImpl*)Impl)->getTargetData();
3239}
3240
Dan Gohman0ad08b02009-04-18 17:58:19 +00003241SCEVHandle ScalarEvolution::getCouldNotCompute() {
3242 return ((ScalarEvolutionsImpl*)Impl)->getCouldNotCompute();
3243}
3244
Dan Gohman01c2ee72009-04-16 03:18:22 +00003245SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
3246 return ((ScalarEvolutionsImpl*)Impl)->getIntegerSCEV(Val, Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003247}
3248
3249SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
3250 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
3251}
3252
3253/// hasSCEV - Return true if the SCEV for this value has already been
3254/// computed.
3255bool ScalarEvolution::hasSCEV(Value *V) const {
3256 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
3257}
3258
3259
3260/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
3261/// the specified value.
3262void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
3263 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
3264}
3265
Dan Gohman01c2ee72009-04-16 03:18:22 +00003266/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3267///
3268SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
3269 return ((ScalarEvolutionsImpl*)Impl)->getNegativeSCEV(V);
3270}
3271
3272/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3273///
3274SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
3275 return ((ScalarEvolutionsImpl*)Impl)->getNotSCEV(V);
3276}
3277
3278/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
3279///
3280SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
3281 const SCEVHandle &RHS) {
3282 return ((ScalarEvolutionsImpl*)Impl)->getMinusSCEV(LHS, RHS);
3283}
3284
3285/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
3286/// of the input value to the specified type. If the type must be
3287/// extended, it is zero extended.
3288SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
3289 const Type *Ty) {
3290 return ((ScalarEvolutionsImpl*)Impl)->getTruncateOrZeroExtend(V, Ty);
3291}
3292
3293/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
3294/// of the input value to the specified type. If the type must be
3295/// extended, it is sign extended.
3296SCEVHandle ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
3297 const Type *Ty) {
3298 return ((ScalarEvolutionsImpl*)Impl)->getTruncateOrSignExtend(V, Ty);
3299}
3300
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003301
Dan Gohmancacd2012009-02-12 22:19:27 +00003302bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3303 ICmpInst::Predicate Pred,
3304 SCEV *LHS, SCEV *RHS) {
3305 return ((ScalarEvolutionsImpl*)Impl)->isLoopGuardedByCond(L, Pred,
3306 LHS, RHS);
3307}
3308
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003309SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) const {
3310 return ((ScalarEvolutionsImpl*)Impl)->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003311}
3312
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003313bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) const {
3314 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003315}
3316
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003317void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
3318 return ((ScalarEvolutionsImpl*)Impl)->forgetLoopBackedgeTakenCount(L);
Dan Gohmanf3a060a2009-02-17 20:49:49 +00003319}
3320
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003321SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
3322 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
3323}
3324
3325void ScalarEvolution::deleteValueFromRecords(Value *V) const {
3326 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
3327}
3328
3329static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
3330 const Loop *L) {
3331 // Print all inner loops first
3332 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3333 PrintLoopInfo(OS, SE, *I);
3334
Nick Lewyckye5da1912008-01-02 02:49:20 +00003335 OS << "Loop " << L->getHeader()->getName() << ": ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003336
Devang Patel02451fa2007-08-21 00:31:24 +00003337 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003338 L->getExitBlocks(ExitBlocks);
3339 if (ExitBlocks.size() != 1)
Nick Lewyckye5da1912008-01-02 02:49:20 +00003340 OS << "<multiple exits> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003341
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003342 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3343 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003344 } else {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003345 OS << "Unpredictable backedge-taken count. ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003346 }
3347
Nick Lewyckye5da1912008-01-02 02:49:20 +00003348 OS << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003349}
3350
3351void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
3352 Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
3353 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
3354
3355 OS << "Classifying expressions for: " << F.getName() << "\n";
3356 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3357 if (I->getType()->isInteger()) {
3358 OS << *I;
Dan Gohmanabe991f2008-09-14 17:21:12 +00003359 OS << " --> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003360 SCEVHandle SV = getSCEV(&*I);
3361 SV->print(OS);
3362 OS << "\t\t";
3363
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003364 if (const Loop *L = LI.getLoopFor((*I).getParent())) {
3365 OS << "Exits: ";
3366 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
3367 if (isa<SCEVCouldNotCompute>(ExitValue)) {
3368 OS << "<<Unknown>>";
3369 } else {
3370 OS << *ExitValue;
3371 }
3372 }
3373
3374
3375 OS << "\n";
3376 }
3377
3378 OS << "Determining loop execution counts for: " << F.getName() << "\n";
3379 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
3380 PrintLoopInfo(OS, this, *I);
3381}