blob: 4b1ab2850c0a5fb32ca2461c6ac174631fb850af [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// Register - You should define one instance of this class for each register
25// in the target machine. String n will become the "name" of the register.
26class Register<string n> {
27 string Namespace = "";
28 string Name = n;
29
30 // SpillSize - If this value is set to a non-zero value, it is the size in
31 // bits of the spill slot required to hold this register. If this value is
32 // set to zero, the information is inferred from any register classes the
33 // register belongs to.
34 int SpillSize = 0;
35
36 // SpillAlignment - This value is used to specify the alignment required for
37 // spilling the register. Like SpillSize, this should only be explicitly
38 // specified if the register is not in a register class.
39 int SpillAlignment = 0;
40
41 // Aliases - A list of registers that this register overlaps with. A read or
42 // modification of this register can potentially read or modify the aliased
43 // registers.
44 list<Register> Aliases = [];
45
46 // SubRegs - A list of registers that are parts of this register. Note these
47 // are "immediate" sub-registers and the registers within the list do not
48 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
49 // not [AX, AH, AL].
50 list<Register> SubRegs = [];
51
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +000052 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053 // These values can be determined by locating the <target>.h file in the
54 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
55 // order of these names correspond to the enumeration used by gcc. A value of
Anton Korobeynikov0c2107c2007-11-11 19:53:50 +000056 // -1 indicates that the gcc number is undefined and -2 that register number
57 // is invalid for this mode/flavour.
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +000058 list<int> DwarfNumbers = [];
Dan Gohmanf17a25c2007-07-18 16:29:46 +000059}
60
61// RegisterWithSubRegs - This can be used to define instances of Register which
62// need to specify sub-registers.
63// List "subregs" specifies which registers are sub-registers to this one. This
64// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
65// This allows the code generator to be careful not to put two values with
66// overlapping live ranges into registers which alias.
67class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
68 let SubRegs = subregs;
69}
70
71// SubRegSet - This can be used to define a specific mapping of registers to
72// indices, for use as named subregs of a particular physical register. Each
73// register in 'subregs' becomes an addressable subregister at index 'n' of the
74// corresponding register in 'regs'.
75class SubRegSet<int n, list<Register> regs, list<Register> subregs> {
76 int index = n;
77
78 list<Register> From = regs;
79 list<Register> To = subregs;
80}
81
82// RegisterClass - Now that all of the registers are defined, and aliases
83// between registers are defined, specify which registers belong to which
84// register classes. This also defines the default allocation order of
85// registers by register allocators.
86//
87class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
88 list<Register> regList> {
89 string Namespace = namespace;
90
91 // RegType - Specify the list ValueType of the registers in this register
92 // class. Note that all registers in a register class must have the same
93 // ValueTypes. This is a list because some targets permit storing different
94 // types in same register, for example vector values with 128-bit total size,
95 // but different count/size of items, like SSE on x86.
96 //
97 list<ValueType> RegTypes = regTypes;
98
99 // Size - Specify the spill size in bits of the registers. A default value of
100 // zero lets tablgen pick an appropriate size.
101 int Size = 0;
102
103 // Alignment - Specify the alignment required of the registers when they are
104 // stored or loaded to memory.
105 //
106 int Alignment = alignment;
107
Evan Cheng77ac1822007-09-19 01:35:01 +0000108 // CopyCost - This value is used to specify the cost of copying a value
109 // between two registers in this register class. The default value is one
110 // meaning it takes a single instruction to perform the copying. A negative
111 // value means copying is extremely expensive or impossible.
112 int CopyCost = 1;
113
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000114 // MemberList - Specify which registers are in this class. If the
115 // allocation_order_* method are not specified, this also defines the order of
116 // allocation used by the register allocator.
117 //
118 list<Register> MemberList = regList;
119
120 // SubClassList - Specify which register classes correspond to subregisters
121 // of this class. The order should be by subregister set index.
122 list<RegisterClass> SubRegClassList = [];
123
124 // MethodProtos/MethodBodies - These members can be used to insert arbitrary
125 // code into a generated register class. The normal usage of this is to
126 // overload virtual methods.
127 code MethodProtos = [{}];
128 code MethodBodies = [{}];
129}
130
131
132//===----------------------------------------------------------------------===//
133// DwarfRegNum - This class provides a mapping of the llvm register enumeration
134// to the register numbering used by gcc and gdb. These values are used by a
135// debug information writer (ex. DwarfWriter) to describe where values may be
136// located during execution.
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +0000137class DwarfRegNum<list<int> Numbers> {
138 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000139 // These values can be determined by locating the <target>.h file in the
140 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
141 // order of these names correspond to the enumeration used by gcc. A value of
Anton Korobeynikov0c2107c2007-11-11 19:53:50 +0000142 // -1 indicates that the gcc number is undefined and -2 that register number is
143 // invalid for this mode/flavour.
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +0000144 list<int> DwarfNumbers = Numbers;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145}
146
147//===----------------------------------------------------------------------===//
148// Pull in the common support for scheduling
149//
150include "TargetSchedule.td"
151
152class Predicate; // Forward def
153
154//===----------------------------------------------------------------------===//
155// Instruction set description - These classes correspond to the C++ classes in
156// the Target/TargetInstrInfo.h file.
157//
158class Instruction {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000159 string Namespace = "";
160
Evan Chengb783fa32007-07-19 01:14:50 +0000161 dag OutOperandList; // An dag containing the MI def operand list.
162 dag InOperandList; // An dag containing the MI use operand list.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000163 string AsmString = ""; // The .s format to print the instruction with.
164
165 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
166 // otherwise, uninitialized.
167 list<dag> Pattern;
168
169 // The follow state will eventually be inferred automatically from the
170 // instruction pattern.
171
172 list<Register> Uses = []; // Default to using no non-operand registers
173 list<Register> Defs = []; // Default to modifying no non-operand registers
174
175 // Predicates - List of predicates which will be turned into isel matching
176 // code.
177 list<Predicate> Predicates = [];
178
179 // Code size.
180 int CodeSize = 0;
181
182 // Added complexity passed onto matching pattern.
183 int AddedComplexity = 0;
184
185 // These bits capture information about the high-level semantics of the
186 // instruction.
187 bit isReturn = 0; // Is this instruction a return instruction?
188 bit isBranch = 0; // Is this instruction a branch instruction?
Owen Andersonf8053082007-11-12 07:39:39 +0000189 bit isIndirectBranch = 0; // Is this instruction an indirect branch?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000190 bit isBarrier = 0; // Can control flow fall through this instruction?
191 bit isCall = 0; // Is this instruction a call instruction?
Chris Lattner1a1932c2008-01-06 23:38:27 +0000192 bit isSimpleLoad = 0; // Is this just a load instruction?
Chris Lattnerf58bdaa2008-01-07 23:16:55 +0000193 bit mayLoad = 0; // Is it possible for this inst to read memory?
194 bit mayStore = 0; // Is it possible for this inst to write memory?
Evan Chenge399fbb2007-12-12 23:12:09 +0000195 bit isImplicitDef = 0; // Is this instruction an implicit def instruction?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 bit isTwoAddress = 0; // Is this a two address instruction?
197 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
198 bit isCommutable = 0; // Is this 3 operand instruction commutable?
199 bit isTerminator = 0; // Is this part of the terminator for a basic block?
200 bit isReMaterializable = 0; // Is this instruction re-materializable?
201 bit isPredicable = 0; // Is this instruction predicable?
202 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
203 bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.
204 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000205 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
Bill Wendlingaf109da2007-12-14 01:48:59 +0000206
Chris Lattnerc90ee9c2008-01-10 07:59:24 +0000207 // Side effect flags - When set, the flags have these meanings:
Bill Wendlinga8551892007-12-17 21:02:07 +0000208 //
Chris Lattnerc90ee9c2008-01-10 07:59:24 +0000209 // hasSideEffects - The instruction has side effects that are not
210 // captured by any operands of the instruction or other flags.
Bill Wendlinga8551892007-12-17 21:02:07 +0000211 // mayHaveSideEffects - Some instances of the instruction can have side
212 // effects. The virtual method "isReallySideEffectFree" is called to
213 // determine this. Load instructions are an example of where this is
214 // useful. In general, loads always have side effects. However, loads from
215 // constant pools don't. Individual back ends make this determination.
Chris Lattnerc90ee9c2008-01-10 07:59:24 +0000216 // neverHasSideEffects - Set on an instruction with no pattern if it has no
217 // side effects.
218 bit hasSideEffects = 0;
Bill Wendlinga8551892007-12-17 21:02:07 +0000219 bit mayHaveSideEffects = 0;
Chris Lattnerc90ee9c2008-01-10 07:59:24 +0000220 bit neverHasSideEffects = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000221
222 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
223
224 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
225
226 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
227 /// be encoded into the output machineinstr.
228 string DisableEncoding = "";
229}
230
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000231/// Predicates - These are extra conditionals which are turned into instruction
232/// selector matching code. Currently each predicate is just a string.
233class Predicate<string cond> {
234 string CondString = cond;
235}
236
237/// NoHonorSignDependentRounding - This predicate is true if support for
238/// sign-dependent-rounding is not enabled.
239def NoHonorSignDependentRounding
240 : Predicate<"!HonorSignDependentRoundingFPMath()">;
241
242class Requires<list<Predicate> preds> {
243 list<Predicate> Predicates = preds;
244}
245
246/// ops definition - This is just a simple marker used to identify the operands
Evan Chengb783fa32007-07-19 01:14:50 +0000247/// list for an instruction. outs and ins are identical both syntatically and
248/// semantically, they are used to define def operands and use operands to
249/// improve readibility. This should be used like this:
250/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000251def ops;
Evan Chengb783fa32007-07-19 01:14:50 +0000252def outs;
253def ins;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000254
255/// variable_ops definition - Mark this instruction as taking a variable number
256/// of operands.
257def variable_ops;
258
259/// ptr_rc definition - Mark this operand as being a pointer value whose
260/// register class is resolved dynamically via a callback to TargetInstrInfo.
261/// FIXME: We should probably change this to a class which contain a list of
262/// flags. But currently we have but one flag.
263def ptr_rc;
264
265/// Operand Types - These provide the built-in operand types that may be used
266/// by a target. Targets can optionally provide their own operand types as
267/// needed, though this should not be needed for RISC targets.
268class Operand<ValueType ty> {
269 ValueType Type = ty;
270 string PrintMethod = "printOperand";
271 dag MIOperandInfo = (ops);
272}
273
274def i1imm : Operand<i1>;
275def i8imm : Operand<i8>;
276def i16imm : Operand<i16>;
277def i32imm : Operand<i32>;
278def i64imm : Operand<i64>;
279
280/// zero_reg definition - Special node to stand for the zero register.
281///
282def zero_reg;
283
284/// PredicateOperand - This can be used to define a predicate operand for an
285/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
286/// AlwaysVal specifies the value of this predicate when set to "always
287/// execute".
288class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
289 : Operand<ty> {
290 let MIOperandInfo = OpTypes;
291 dag DefaultOps = AlwaysVal;
292}
293
294/// OptionalDefOperand - This is used to define a optional definition operand
295/// for an instruction. DefaultOps is the register the operand represents if none
296/// is supplied, e.g. zero_reg.
297class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
298 : Operand<ty> {
299 let MIOperandInfo = OpTypes;
300 dag DefaultOps = defaultops;
301}
302
303
304// InstrInfo - This class should only be instantiated once to provide parameters
305// which are global to the the target machine.
306//
307class InstrInfo {
308 // If the target wants to associate some target-specific information with each
309 // instruction, it should provide these two lists to indicate how to assemble
310 // the target specific information into the 32 bits available.
311 //
312 list<string> TSFlagsFields = [];
313 list<int> TSFlagsShifts = [];
314
315 // Target can specify its instructions in either big or little-endian formats.
316 // For instance, while both Sparc and PowerPC are big-endian platforms, the
317 // Sparc manual specifies its instructions in the format [31..0] (big), while
318 // PowerPC specifies them using the format [0..31] (little).
319 bit isLittleEndianEncoding = 0;
320}
321
322// Standard Instructions.
323def PHI : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000324 let OutOperandList = (ops);
325 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000326 let AsmString = "PHINODE";
327 let Namespace = "TargetInstrInfo";
328}
329def INLINEASM : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000330 let OutOperandList = (ops);
331 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000332 let AsmString = "";
333 let Namespace = "TargetInstrInfo";
334}
335def LABEL : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000336 let OutOperandList = (ops);
Evan Cheng13d1c292008-01-31 09:59:15 +0000337 let InOperandList = (ops i32imm:$id, i32imm:$flavor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338 let AsmString = "";
339 let Namespace = "TargetInstrInfo";
340 let hasCtrlDep = 1;
341}
Christopher Lamb071a2a72007-07-26 07:48:21 +0000342def EXTRACT_SUBREG : Instruction {
343 let OutOperandList = (ops variable_ops);
344 let InOperandList = (ops variable_ops);
345 let AsmString = "";
346 let Namespace = "TargetInstrInfo";
Chris Lattnerc90ee9c2008-01-10 07:59:24 +0000347 let neverHasSideEffects = 1;
Christopher Lamb071a2a72007-07-26 07:48:21 +0000348}
349def INSERT_SUBREG : Instruction {
350 let OutOperandList = (ops variable_ops);
351 let InOperandList = (ops variable_ops);
352 let AsmString = "";
353 let Namespace = "TargetInstrInfo";
Chris Lattnerc90ee9c2008-01-10 07:59:24 +0000354 let neverHasSideEffects = 1;
Christopher Lamb071a2a72007-07-26 07:48:21 +0000355}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000356
357//===----------------------------------------------------------------------===//
358// AsmWriter - This class can be implemented by targets that need to customize
359// the format of the .s file writer.
360//
361// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
362// on X86 for example).
363//
364class AsmWriter {
365 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
366 // class. Generated AsmWriter classes are always prefixed with the target
367 // name.
368 string AsmWriterClassName = "AsmPrinter";
369
370 // InstFormatName - AsmWriters can specify the name of the format string to
371 // print instructions with.
372 string InstFormatName = "AsmString";
373
374 // Variant - AsmWriters can be of multiple different variants. Variants are
375 // used to support targets that need to emit assembly code in ways that are
376 // mostly the same for different targets, but have minor differences in
377 // syntax. If the asmstring contains {|} characters in them, this integer
378 // will specify which alternative to use. For example "{x|y|z}" with Variant
379 // == 1, will expand to "y".
380 int Variant = 0;
381}
382def DefaultAsmWriter : AsmWriter;
383
384
385//===----------------------------------------------------------------------===//
386// Target - This class contains the "global" target information
387//
388class Target {
389 // InstructionSet - Instruction set description for this target.
390 InstrInfo InstructionSet;
391
392 // AssemblyWriters - The AsmWriter instances available for this target.
393 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
394}
395
396//===----------------------------------------------------------------------===//
397// SubtargetFeature - A characteristic of the chip set.
398//
399class SubtargetFeature<string n, string a, string v, string d,
400 list<SubtargetFeature> i = []> {
401 // Name - Feature name. Used by command line (-mattr=) to determine the
402 // appropriate target chip.
403 //
404 string Name = n;
405
406 // Attribute - Attribute to be set by feature.
407 //
408 string Attribute = a;
409
410 // Value - Value the attribute to be set to by feature.
411 //
412 string Value = v;
413
414 // Desc - Feature description. Used by command line (-mattr=) to display help
415 // information.
416 //
417 string Desc = d;
418
419 // Implies - Features that this feature implies are present. If one of those
420 // features isn't set, then this one shouldn't be set either.
421 //
422 list<SubtargetFeature> Implies = i;
423}
424
425//===----------------------------------------------------------------------===//
426// Processor chip sets - These values represent each of the chip sets supported
427// by the scheduler. Each Processor definition requires corresponding
428// instruction itineraries.
429//
430class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
431 // Name - Chip set name. Used by command line (-mcpu=) to determine the
432 // appropriate target chip.
433 //
434 string Name = n;
435
436 // ProcItin - The scheduling information for the target processor.
437 //
438 ProcessorItineraries ProcItin = pi;
439
440 // Features - list of
441 list<SubtargetFeature> Features = f;
442}
443
444//===----------------------------------------------------------------------===//
445// Pull in the common support for calling conventions.
446//
447include "TargetCallingConv.td"
448
449//===----------------------------------------------------------------------===//
450// Pull in the common support for DAG isel generation.
451//
452include "TargetSelectionDAG.td"