blob: 4fdbdc5b8b1996207ae07cdbffd05c67b5bffb7c [file] [log] [blame]
Chris Lattner87be16a2010-10-05 06:04:14 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner41efbfa2010-10-05 06:37:31 +000015//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
20 return getI32Imm((unsigned)N->getZExtValue());
21}]>;
22
23
24//===----------------------------------------------------------------------===//
25// Random Pseudo Instructions.
26
Chris Lattner8af88ef2010-10-05 06:10:16 +000027// PIC base construction. This expands to code that looks like this:
28// call $next_inst
29// popl %destreg"
30let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
31 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
32 "", []>;
33
34
35// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
36// a stack adjustment and the codegen must know that they may modify the stack
37// pointer before prolog-epilog rewriting occurs.
38// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
39// sub / add which can clobber EFLAGS.
40let Defs = [ESP, EFLAGS], Uses = [ESP] in {
41def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
42 "#ADJCALLSTACKDOWN",
43 [(X86callseq_start timm:$amt)]>,
44 Requires<[In32BitMode]>;
45def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
46 "#ADJCALLSTACKUP",
47 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
48 Requires<[In32BitMode]>;
49}
50
51// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
52// a stack adjustment and the codegen must know that they may modify the stack
53// pointer before prolog-epilog rewriting occurs.
54// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
55// sub / add which can clobber EFLAGS.
56let Defs = [RSP, EFLAGS], Uses = [RSP] in {
57def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
58 "#ADJCALLSTACKDOWN",
59 [(X86callseq_start timm:$amt)]>,
60 Requires<[In64BitMode]>;
61def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
62 "#ADJCALLSTACKUP",
63 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
64 Requires<[In64BitMode]>;
65}
66
67
68
69// x86-64 va_start lowering magic.
70let usesCustomInserter = 1 in {
71def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
72 (outs),
73 (ins GR8:$al,
74 i64imm:$regsavefi, i64imm:$offset,
75 variable_ops),
76 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
77 [(X86vastart_save_xmm_regs GR8:$al,
78 imm:$regsavefi,
79 imm:$offset)]>;
80
81// Dynamic stack allocation yields _alloca call for Cygwin/Mingw targets. Calls
82// to _alloca is needed to probe the stack when allocating more than 4k bytes in
83// one go. Touching the stack at 4K increments is necessary to ensure that the
84// guard pages used by the OS virtual memory manager are allocated in correct
85// sequence.
86// The main point of having separate instruction are extra unmodelled effects
87// (compared to ordinary calls) like stack pointer change.
88
89let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
90 def MINGW_ALLOCA : I<0, Pseudo, (outs), (ins),
91 "# dynamic stack allocation",
92 [(X86MingwAlloca)]>;
93}
94
95
Chris Lattner87be16a2010-10-05 06:04:14 +000096
97//===----------------------------------------------------------------------===//
98// EH Pseudo Instructions
99//
100let isTerminator = 1, isReturn = 1, isBarrier = 1,
101 hasCtrlDep = 1, isCodeGenOnly = 1 in {
102def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
103 "ret\t#eh_return, addr: $addr",
104 [(X86ehret GR32:$addr)]>;
105
106}
107
108let isTerminator = 1, isReturn = 1, isBarrier = 1,
109 hasCtrlDep = 1, isCodeGenOnly = 1 in {
110def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
111 "ret\t#eh_return, addr: $addr",
112 [(X86ehret GR64:$addr)]>;
113
114}
115
Chris Lattner8af88ef2010-10-05 06:10:16 +0000116//===----------------------------------------------------------------------===//
117// Alias Instructions
118//===----------------------------------------------------------------------===//
119
120// Alias instructions that map movr0 to xor.
121// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
122// FIXME: Set encoding to pseudo.
123let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
124 isCodeGenOnly = 1 in {
125def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
126 [(set GR8:$dst, 0)]>;
127
128// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
129// encoding and avoids a partial-register update sometimes, but doing so
130// at isel time interferes with rematerialization in the current register
131// allocator. For now, this is rewritten when the instruction is lowered
132// to an MCInst.
133def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
134 "",
135 [(set GR16:$dst, 0)]>, OpSize;
136
137// FIXME: Set encoding to pseudo.
138def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
139 [(set GR32:$dst, 0)]>;
140}
141
Chris Lattner010496c2010-10-05 06:22:35 +0000142// We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
143// smaller encoding, but doing so at isel time interferes with rematerialization
144// in the current register allocator. For now, this is rewritten when the
145// instruction is lowered to an MCInst.
146// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
147// when we have a better way to specify isel priority.
148let Defs = [EFLAGS],
149 AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
150def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
151 [(set GR64:$dst, 0)]>;
152
153// Materialize i64 constant where top 32-bits are zero. This could theoretically
154// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
155// that would make it more difficult to rematerialize.
156let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
157def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
158 "", [(set GR64:$dst, i64immZExt32:$src)]>;
159
Chris Lattner35649fc2010-10-05 06:33:16 +0000160
Chris Lattner2c383d82010-10-05 21:18:04 +0000161// Use sbb to materialize carry bit.
162let Uses = [EFLAGS], Defs = [EFLAGS], isCodeGenOnly = 1 in {
163// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
Chris Lattner35649fc2010-10-05 06:33:16 +0000164// However, Pat<> can't replicate the destination reg into the inputs of the
165// result.
Chris Lattner2c383d82010-10-05 21:18:04 +0000166// FIXME: Change these to have encoding Pseudo when X86MCCodeEmitter replaces
Chris Lattner35649fc2010-10-05 06:33:16 +0000167// X86CodeEmitter.
Chris Lattner2c383d82010-10-05 21:18:04 +0000168def SETB_C8r : I<0x18, MRMInitReg, (outs GR8:$dst), (ins), "",
169 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
170def SETB_C16r : I<0x19, MRMInitReg, (outs GR16:$dst), (ins), "",
171 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>,
172 OpSize;
173def SETB_C32r : I<0x19, MRMInitReg, (outs GR32:$dst), (ins), "",
174 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
Chris Lattner35649fc2010-10-05 06:33:16 +0000175def SETB_C64r : RI<0x19, MRMInitReg, (outs GR64:$dst), (ins), "",
176 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
Chris Lattner2c383d82010-10-05 21:18:04 +0000177} // isCodeGenOnly
178
Chris Lattner35649fc2010-10-05 06:33:16 +0000179
180def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
181 (SETB_C64r)>;
182
Chris Lattner010496c2010-10-05 06:22:35 +0000183
Chris Lattnerd3f033d2010-10-05 06:27:48 +0000184//===----------------------------------------------------------------------===//
185// String Pseudo Instructions
186//
187let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
188def REP_MOVSB : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
189 [(X86rep_movs i8)]>, REP;
190def REP_MOVSW : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
191 [(X86rep_movs i16)]>, REP, OpSize;
192def REP_MOVSD : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
193 [(X86rep_movs i32)]>, REP;
194}
195
196let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in
197def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
198 [(X86rep_movs i64)]>, REP;
199
200
201// FIXME: Should use "(X86rep_stos AL)" as the pattern.
202let Defs = [ECX,EDI], Uses = [AL,ECX,EDI], isCodeGenOnly = 1 in
203def REP_STOSB : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
204 [(X86rep_stos i8)]>, REP;
205let Defs = [ECX,EDI], Uses = [AX,ECX,EDI], isCodeGenOnly = 1 in
206def REP_STOSW : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
207 [(X86rep_stos i16)]>, REP, OpSize;
208let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI], isCodeGenOnly = 1 in
209def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
210 [(X86rep_stos i32)]>, REP;
211
212let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI], isCodeGenOnly = 1 in
213def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
214 [(X86rep_stos i64)]>, REP;
Chris Lattner010496c2010-10-05 06:22:35 +0000215
216
Chris Lattner8af88ef2010-10-05 06:10:16 +0000217//===----------------------------------------------------------------------===//
218// Thread Local Storage Instructions
219//
220
221// ELF TLS Support
222// All calls clobber the non-callee saved registers. ESP is marked as
223// a use to prevent stack-pointer assignments that appear immediately
224// before calls from potentially appearing dead.
225let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
226 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
227 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
228 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
229 Uses = [ESP] in
230def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
231 "leal\t$sym, %eax; "
232 "call\t___tls_get_addr@PLT",
233 [(X86tlsaddr tls32addr:$sym)]>,
234 Requires<[In32BitMode]>;
235
236// All calls clobber the non-callee saved registers. RSP is marked as
237// a use to prevent stack-pointer assignments that appear immediately
238// before calls from potentially appearing dead.
239let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
240 FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
241 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
242 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
243 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
244 Uses = [RSP] in
245def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
246 ".byte\t0x66; "
247 "leaq\t$sym(%rip), %rdi; "
248 ".word\t0x6666; "
249 "rex64; "
250 "call\t__tls_get_addr@PLT",
251 [(X86tlsaddr tls64addr:$sym)]>,
252 Requires<[In64BitMode]>;
253
254// Darwin TLS Support
255// For i386, the address of the thunk is passed on the stack, on return the
256// address of the variable is in %eax. %ecx is trashed during the function
257// call. All other registers are preserved.
258let Defs = [EAX, ECX],
259 Uses = [ESP],
260 usesCustomInserter = 1 in
261def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
262 "# TLSCall_32",
263 [(X86TLSCall addr:$sym)]>,
264 Requires<[In32BitMode]>;
265
266// For x86_64, the address of the thunk is passed in %rdi, on return
267// the address of the variable is in %rax. All other registers are preserved.
268let Defs = [RAX],
269 Uses = [RDI],
270 usesCustomInserter = 1 in
271def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
272 "# TLSCall_64",
273 [(X86TLSCall addr:$sym)]>,
274 Requires<[In64BitMode]>;
Chris Lattner87be16a2010-10-05 06:04:14 +0000275
Chris Lattner6dbbff92010-10-05 23:09:10 +0000276
277//===----------------------------------------------------------------------===//
278// Conditional Move Pseudo Instructions
279
280let Constraints = "$src1 = $dst" in {
281
282// Conditional moves
283let Uses = [EFLAGS] in {
284
285// X86 doesn't have 8-bit conditional moves. Use a customInserter to
286// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
287// however that requires promoting the operands, and can induce additional
288// i8 register pressure. Note that CMOV_GR8 is conservatively considered to
289// clobber EFLAGS, because if one of the operands is zero, the expansion
290// could involve an xor.
291let usesCustomInserter = 1, Constraints = "", Defs = [EFLAGS] in {
292def CMOV_GR8 : I<0, Pseudo,
293 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
294 "#CMOV_GR8 PSEUDO!",
295 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
296 imm:$cond, EFLAGS))]>;
297
298let Predicates = [NoCMov] in {
299def CMOV_GR32 : I<0, Pseudo,
300 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
301 "#CMOV_GR32* PSEUDO!",
302 [(set GR32:$dst,
303 (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
304def CMOV_GR16 : I<0, Pseudo,
305 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
306 "#CMOV_GR16* PSEUDO!",
307 [(set GR16:$dst,
308 (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
309def CMOV_RFP32 : I<0, Pseudo,
310 (outs RFP32:$dst),
311 (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
312 "#CMOV_RFP32 PSEUDO!",
313 [(set RFP32:$dst,
314 (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
315 EFLAGS))]>;
316def CMOV_RFP64 : I<0, Pseudo,
317 (outs RFP64:$dst),
318 (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
319 "#CMOV_RFP64 PSEUDO!",
320 [(set RFP64:$dst,
321 (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
322 EFLAGS))]>;
323def CMOV_RFP80 : I<0, Pseudo,
324 (outs RFP80:$dst),
325 (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
326 "#CMOV_RFP80 PSEUDO!",
327 [(set RFP80:$dst,
328 (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
329 EFLAGS))]>;
330} // Predicates = [NoCMov]
331} // UsesCustomInserter = 1, Constraints = "", Defs = [EFLAGS]
332} // Uses = [EFLAGS]
333
334} // Constraints = "$src1 = $dst" in
335
336
Chris Lattner87be16a2010-10-05 06:04:14 +0000337//===----------------------------------------------------------------------===//
Chris Lattner010496c2010-10-05 06:22:35 +0000338// Atomic Instruction Pseudo Instructions
339//===----------------------------------------------------------------------===//
340
341// Atomic exchange, and, or, xor
342let Constraints = "$val = $dst", Defs = [EFLAGS],
343 usesCustomInserter = 1 in {
344
345def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
346 "#ATOMAND8 PSEUDO!",
347 [(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>;
348def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
349 "#ATOMOR8 PSEUDO!",
350 [(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>;
351def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
352 "#ATOMXOR8 PSEUDO!",
353 [(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>;
354def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
355 "#ATOMNAND8 PSEUDO!",
356 [(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>;
357
358def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
359 "#ATOMAND16 PSEUDO!",
360 [(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>;
361def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
362 "#ATOMOR16 PSEUDO!",
363 [(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>;
364def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
365 "#ATOMXOR16 PSEUDO!",
366 [(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>;
367def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
368 "#ATOMNAND16 PSEUDO!",
369 [(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>;
370def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val),
371 "#ATOMMIN16 PSEUDO!",
372 [(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>;
373def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
374 "#ATOMMAX16 PSEUDO!",
375 [(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>;
376def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
377 "#ATOMUMIN16 PSEUDO!",
378 [(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>;
379def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
380 "#ATOMUMAX16 PSEUDO!",
381 [(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>;
382
383
384def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
385 "#ATOMAND32 PSEUDO!",
386 [(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>;
387def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
388 "#ATOMOR32 PSEUDO!",
389 [(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>;
390def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
391 "#ATOMXOR32 PSEUDO!",
392 [(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>;
393def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
394 "#ATOMNAND32 PSEUDO!",
395 [(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>;
396def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val),
397 "#ATOMMIN32 PSEUDO!",
398 [(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>;
399def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
400 "#ATOMMAX32 PSEUDO!",
401 [(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>;
402def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
403 "#ATOMUMIN32 PSEUDO!",
404 [(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>;
405def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
406 "#ATOMUMAX32 PSEUDO!",
407 [(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>;
408
409
410
411def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
412 "#ATOMAND64 PSEUDO!",
413 [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
414def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
415 "#ATOMOR64 PSEUDO!",
416 [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
417def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
418 "#ATOMXOR64 PSEUDO!",
419 [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
420def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
421 "#ATOMNAND64 PSEUDO!",
422 [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
423def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
424 "#ATOMMIN64 PSEUDO!",
425 [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
426def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
427 "#ATOMMAX64 PSEUDO!",
428 [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
429def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
430 "#ATOMUMIN64 PSEUDO!",
431 [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
432def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
433 "#ATOMUMAX64 PSEUDO!",
434 [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
435}
436
437let Constraints = "$val1 = $dst1, $val2 = $dst2",
438 Defs = [EFLAGS, EAX, EBX, ECX, EDX],
439 Uses = [EAX, EBX, ECX, EDX],
440 mayLoad = 1, mayStore = 1,
441 usesCustomInserter = 1 in {
442def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
443 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
444 "#ATOMAND6432 PSEUDO!", []>;
445def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
446 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
447 "#ATOMOR6432 PSEUDO!", []>;
448def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
449 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
450 "#ATOMXOR6432 PSEUDO!", []>;
451def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
452 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
453 "#ATOMNAND6432 PSEUDO!", []>;
454def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
455 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
456 "#ATOMADD6432 PSEUDO!", []>;
457def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
458 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
459 "#ATOMSUB6432 PSEUDO!", []>;
460def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
461 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
462 "#ATOMSWAP6432 PSEUDO!", []>;
463}
464
465//===----------------------------------------------------------------------===//
466// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
467//===----------------------------------------------------------------------===//
468
469// FIXME: Use normal instructions and add lock prefix dynamically.
470
471// Memory barriers
472
473// TODO: Get this to fold the constant into the instruction.
474def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
475 "lock\n\t"
476 "or{l}\t{$zero, $dst|$dst, $zero}",
477 []>, Requires<[In32BitMode]>, LOCK;
478
479let hasSideEffects = 1 in
480def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
481 "#MEMBARRIER",
482 [(X86MemBarrier)]>, Requires<[HasSSE2]>;
483
484// TODO: Get this to fold the constant into the instruction.
485let hasSideEffects = 1, Defs = [ESP] in
486def Int_MemBarrierNoSSE64 : RI<0x09, MRM1r, (outs), (ins GR64:$zero),
487 "lock\n\t"
488 "or{q}\t{$zero, (%rsp)|(%rsp), $zero}",
489 [(X86MemBarrierNoSSE GR64:$zero)]>,
490 Requires<[In64BitMode]>, LOCK;
491
492
493// Optimized codegen when the non-memory output is not used.
494let Defs = [EFLAGS], mayLoad = 1, mayStore = 1 in {
495def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
496 "lock\n\t"
497 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
498def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
499 "lock\n\t"
500 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
501def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
502 "lock\n\t"
503 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
504def LOCK_ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
505 "lock\n\t"
506 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
507
508def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
509 "lock\n\t"
510 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
511def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
512 "lock\n\t"
513 "add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
514def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
515 "lock\n\t"
516 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
517def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs),
518 (ins i64mem:$dst, i64i32imm :$src2),
519 "lock\n\t"
520 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
521
522def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
523 "lock\n\t"
524 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
525def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
526 "lock\n\t"
527 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
528def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs),
529 (ins i64mem:$dst, i64i8imm :$src2),
530 "lock\n\t"
531 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
532
533def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
534 "lock\n\t"
535 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
536def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
537 "lock\n\t"
538 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
539def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
540 "lock\n\t"
541 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
542def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
543 "lock\n\t"
544 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
545
546
547def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2),
548 "lock\n\t"
549 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
550def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2),
551 "lock\n\t"
552 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
553def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2),
554 "lock\n\t"
555 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
556def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs),
557 (ins i64mem:$dst, i64i32imm:$src2),
558 "lock\n\t"
559 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
560
561
562def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
563 "lock\n\t"
564 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
565def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
566 "lock\n\t"
567 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
568def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs),
569 (ins i64mem:$dst, i64i8imm :$src2),
570 "lock\n\t"
571 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
572
573def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
574 "lock\n\t"
575 "inc{b}\t$dst", []>, LOCK;
576def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
577 "lock\n\t"
578 "inc{w}\t$dst", []>, OpSize, LOCK;
579def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
580 "lock\n\t"
581 "inc{l}\t$dst", []>, LOCK;
582def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
583 "lock\n\t"
584 "inc{q}\t$dst", []>, LOCK;
585
586def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
587 "lock\n\t"
588 "dec{b}\t$dst", []>, LOCK;
589def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
590 "lock\n\t"
591 "dec{w}\t$dst", []>, OpSize, LOCK;
592def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
593 "lock\n\t"
594 "dec{l}\t$dst", []>, LOCK;
595def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
596 "lock\n\t"
597 "dec{q}\t$dst", []>, LOCK;
598}
599
600// Atomic compare and swap.
601let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
602def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
603 "lock\n\t"
604 "cmpxchg8b\t$ptr",
605 [(X86cas8 addr:$ptr)]>, TB, LOCK;
606}
607let Defs = [AL, EFLAGS], Uses = [AL] in {
608def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap),
609 "lock\n\t"
610 "cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}",
611 [(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
612}
613
614let Defs = [AX, EFLAGS], Uses = [AX] in {
615def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap),
616 "lock\n\t"
617 "cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}",
618 [(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK;
619}
620
621let Defs = [EAX, EFLAGS], Uses = [EAX] in {
622def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
623 "lock\n\t"
624 "cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}",
625 [(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK;
626}
627
628let Defs = [RAX, EFLAGS], Uses = [RAX] in {
629def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
630 "lock\n\t"
631 "cmpxchgq\t$swap,$ptr",
632 [(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
633}
634
635// Atomic exchange and add
636let Constraints = "$val = $dst", Defs = [EFLAGS] in {
637def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
638 "lock\n\t"
639 "xadd{b}\t{$val, $ptr|$ptr, $val}",
640 [(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>,
641 TB, LOCK;
642def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr),
643 "lock\n\t"
644 "xadd{w}\t{$val, $ptr|$ptr, $val}",
645 [(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>,
646 TB, OpSize, LOCK;
647def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr),
648 "lock\n\t"
649 "xadd{l}\t{$val, $ptr|$ptr, $val}",
650 [(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>,
651 TB, LOCK;
652def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val,i64mem:$ptr),
653 "lock\n\t"
654 "xadd\t$val, $ptr",
655 [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
656 TB, LOCK;
657}
658
Chris Lattner5673e1d2010-10-05 06:41:40 +0000659//===----------------------------------------------------------------------===//
660// Conditional Move Pseudo Instructions.
661//===----------------------------------------------------------------------===//
662
663
664// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
665// instruction selection into a branch sequence.
666let Uses = [EFLAGS], usesCustomInserter = 1 in {
667 def CMOV_FR32 : I<0, Pseudo,
668 (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
669 "#CMOV_FR32 PSEUDO!",
670 [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
671 EFLAGS))]>;
672 def CMOV_FR64 : I<0, Pseudo,
673 (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
674 "#CMOV_FR64 PSEUDO!",
675 [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
676 EFLAGS))]>;
677 def CMOV_V4F32 : I<0, Pseudo,
678 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
679 "#CMOV_V4F32 PSEUDO!",
680 [(set VR128:$dst,
681 (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
682 EFLAGS)))]>;
683 def CMOV_V2F64 : I<0, Pseudo,
684 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
685 "#CMOV_V2F64 PSEUDO!",
686 [(set VR128:$dst,
687 (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
688 EFLAGS)))]>;
689 def CMOV_V2I64 : I<0, Pseudo,
690 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
691 "#CMOV_V2I64 PSEUDO!",
692 [(set VR128:$dst,
693 (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
694 EFLAGS)))]>;
695}
696
Chris Lattner010496c2010-10-05 06:22:35 +0000697
698//===----------------------------------------------------------------------===//
699// DAG Pattern Matching Rules
Chris Lattner87be16a2010-10-05 06:04:14 +0000700//===----------------------------------------------------------------------===//
701
702// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
703def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
704def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
705def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
706def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
707def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
708def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
709
710def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
711 (ADD32ri GR32:$src1, tconstpool:$src2)>;
712def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
713 (ADD32ri GR32:$src1, tjumptable:$src2)>;
714def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
715 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
716def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
717 (ADD32ri GR32:$src1, texternalsym:$src2)>;
718def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
719 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
720
721def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
722 (MOV32mi addr:$dst, tglobaladdr:$src)>;
723def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
724 (MOV32mi addr:$dst, texternalsym:$src)>;
725def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
726 (MOV32mi addr:$dst, tblockaddress:$src)>;
727
728
729
730// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
731// code model mode, should use 'movabs'. FIXME: This is really a hack, the
732// 'movabs' predicate should handle this sort of thing.
733def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
734 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
735def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
736 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
737def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
738 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
739def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
740 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
741def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
742 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
743
744// In static codegen with small code model, we can get the address of a label
745// into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of
746// the MOV64ri64i32 should accept these.
747def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
748 (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>;
749def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
750 (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>;
751def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
752 (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
753def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
754 (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
755def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
756 (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
757
758// In kernel code model, we can get the address of a label
759// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
760// the MOV64ri32 should accept these.
761def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
762 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
763def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
764 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
765def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
766 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
767def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
768 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
769def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
770 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
771
772// If we have small model and -static mode, it is safe to store global addresses
773// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
774// for MOV64mi32 should handle this sort of thing.
775def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
776 (MOV64mi32 addr:$dst, tconstpool:$src)>,
777 Requires<[NearData, IsStatic]>;
778def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
779 (MOV64mi32 addr:$dst, tjumptable:$src)>,
780 Requires<[NearData, IsStatic]>;
781def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
782 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
783 Requires<[NearData, IsStatic]>;
784def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
785 (MOV64mi32 addr:$dst, texternalsym:$src)>,
786 Requires<[NearData, IsStatic]>;
787def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
788 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
789 Requires<[NearData, IsStatic]>;
790
791
792
793// Calls
794
795// tls has some funny stuff here...
796// This corresponds to movabs $foo@tpoff, %rax
797def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
798 (MOV64ri tglobaltlsaddr :$dst)>;
799// This corresponds to add $foo@tpoff, %rax
800def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
801 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
802// This corresponds to mov foo@tpoff(%rbx), %eax
803def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
804 (MOV64rm tglobaltlsaddr :$dst)>;
805
806
807// Direct PC relative function call for small code model. 32-bit displacement
808// sign extended to 64-bit.
809def : Pat<(X86call (i64 tglobaladdr:$dst)),
810 (CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>;
811def : Pat<(X86call (i64 texternalsym:$dst)),
812 (CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>;
813
814def : Pat<(X86call (i64 tglobaladdr:$dst)),
815 (WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>;
816def : Pat<(X86call (i64 texternalsym:$dst)),
817 (WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>;
818
819// tailcall stuff
820def : Pat<(X86tcret GR32_TC:$dst, imm:$off),
821 (TCRETURNri GR32_TC:$dst, imm:$off)>,
822 Requires<[In32BitMode]>;
823
824// FIXME: This is disabled for 32-bit PIC mode because the global base
825// register which is part of the address mode may be assigned a
826// callee-saved register.
827def : Pat<(X86tcret (load addr:$dst), imm:$off),
828 (TCRETURNmi addr:$dst, imm:$off)>,
829 Requires<[In32BitMode, IsNotPIC]>;
830
831def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
832 (TCRETURNdi texternalsym:$dst, imm:$off)>,
833 Requires<[In32BitMode]>;
834
835def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
836 (TCRETURNdi texternalsym:$dst, imm:$off)>,
837 Requires<[In32BitMode]>;
838
839def : Pat<(X86tcret GR64_TC:$dst, imm:$off),
840 (TCRETURNri64 GR64_TC:$dst, imm:$off)>,
841 Requires<[In64BitMode]>;
842
843def : Pat<(X86tcret (load addr:$dst), imm:$off),
844 (TCRETURNmi64 addr:$dst, imm:$off)>,
845 Requires<[In64BitMode]>;
846
847def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
848 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
849 Requires<[In64BitMode]>;
850
851def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
852 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
853 Requires<[In64BitMode]>;
854
855// Normal calls, with various flavors of addresses.
856def : Pat<(X86call (i32 tglobaladdr:$dst)),
857 (CALLpcrel32 tglobaladdr:$dst)>;
858def : Pat<(X86call (i32 texternalsym:$dst)),
859 (CALLpcrel32 texternalsym:$dst)>;
860def : Pat<(X86call (i32 imm:$dst)),
861 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
862
863// X86 specific add which produces a flag.
864def : Pat<(addc GR32:$src1, GR32:$src2),
865 (ADD32rr GR32:$src1, GR32:$src2)>;
866def : Pat<(addc GR32:$src1, (load addr:$src2)),
867 (ADD32rm GR32:$src1, addr:$src2)>;
868def : Pat<(addc GR32:$src1, imm:$src2),
869 (ADD32ri GR32:$src1, imm:$src2)>;
870def : Pat<(addc GR32:$src1, i32immSExt8:$src2),
871 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
872
873def : Pat<(addc GR64:$src1, GR64:$src2),
874 (ADD64rr GR64:$src1, GR64:$src2)>;
875def : Pat<(addc GR64:$src1, (load addr:$src2)),
876 (ADD64rm GR64:$src1, addr:$src2)>;
877def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
878 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
879def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
880 (ADD64ri32 GR64:$src1, imm:$src2)>;
881
882def : Pat<(subc GR32:$src1, GR32:$src2),
883 (SUB32rr GR32:$src1, GR32:$src2)>;
884def : Pat<(subc GR32:$src1, (load addr:$src2)),
885 (SUB32rm GR32:$src1, addr:$src2)>;
886def : Pat<(subc GR32:$src1, imm:$src2),
887 (SUB32ri GR32:$src1, imm:$src2)>;
888def : Pat<(subc GR32:$src1, i32immSExt8:$src2),
889 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
890
891def : Pat<(subc GR64:$src1, GR64:$src2),
892 (SUB64rr GR64:$src1, GR64:$src2)>;
893def : Pat<(subc GR64:$src1, (load addr:$src2)),
894 (SUB64rm GR64:$src1, addr:$src2)>;
895def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
896 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
897def : Pat<(subc GR64:$src1, imm:$src2),
898 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
899
900// Comparisons.
901
902// TEST R,R is smaller than CMP R,0
903def : Pat<(X86cmp GR8:$src1, 0),
904 (TEST8rr GR8:$src1, GR8:$src1)>;
905def : Pat<(X86cmp GR16:$src1, 0),
906 (TEST16rr GR16:$src1, GR16:$src1)>;
907def : Pat<(X86cmp GR32:$src1, 0),
908 (TEST32rr GR32:$src1, GR32:$src1)>;
909def : Pat<(X86cmp GR64:$src1, 0),
910 (TEST64rr GR64:$src1, GR64:$src1)>;
911
912// Conditional moves with folded loads with operands swapped and conditions
913// inverted.
Chris Lattner286997c2010-10-05 22:42:54 +0000914multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
915 Instruction Inst64> {
916 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
917 (Inst16 GR16:$src2, addr:$src1)>;
918 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
919 (Inst32 GR32:$src2, addr:$src1)>;
920 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
921 (Inst64 GR64:$src2, addr:$src1)>;
922}
Chris Lattner87be16a2010-10-05 06:04:14 +0000923
Chris Lattnerdf72eae2010-10-05 22:51:56 +0000924defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
925defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
926defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
927defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
928defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
Chris Lattner25cbf502010-10-05 23:00:14 +0000929defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
Chris Lattnerdf72eae2010-10-05 22:51:56 +0000930defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
931defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
932defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
933defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
934defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
935defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
936defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
937defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
938defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
939defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
Chris Lattner87be16a2010-10-05 06:04:14 +0000940
941// zextload bool -> zextload byte
942def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
943def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
944def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
945def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
946
947// extload bool -> extload byte
948// When extloading from 16-bit and smaller memory locations into 64-bit
949// registers, use zero-extending loads so that the entire 64-bit register is
950// defined, avoiding partial-register updates.
951
952def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
953def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
954def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
955def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
956def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
957def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
958
959def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
960def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>;
961def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
962// For other extloads, use subregs, since the high contents of the register are
963// defined after an extload.
964def : Pat<(extloadi64i32 addr:$src),
965 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
966 sub_32bit)>;
967
968// anyext. Define these to do an explicit zero-extend to
969// avoid partial-register updates.
970def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>;
971def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
972
973// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
974def : Pat<(i32 (anyext GR16:$src)),
975 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
976
977def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>;
978def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
979def : Pat<(i64 (anyext GR32:$src)),
980 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
981
Chris Lattnerd8cc2722010-10-05 06:47:35 +0000982
983// Any instruction that defines a 32-bit result leaves the high half of the
984// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
985// be copying from a truncate. And x86's cmov doesn't do anything if the
986// condition is false. But any other 32-bit operation will zero-extend
987// up to 64 bits.
988def def32 : PatLeaf<(i32 GR32:$src), [{
989 return N->getOpcode() != ISD::TRUNCATE &&
990 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
991 N->getOpcode() != ISD::CopyFromReg &&
992 N->getOpcode() != X86ISD::CMOV;
993}]>;
994
995// In the case of a 32-bit def that is known to implicitly zero-extend,
996// we can use a SUBREG_TO_REG.
997def : Pat<(i64 (zext def32:$src)),
998 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
999
Chris Lattner87be16a2010-10-05 06:04:14 +00001000//===----------------------------------------------------------------------===//
Chris Lattner99ae6652010-10-08 03:54:52 +00001001// Pattern match OR as ADD
1002//===----------------------------------------------------------------------===//
1003
1004// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1005// 3-addressified into an LEA instruction to avoid copies. However, we also
1006// want to finally emit these instructions as an or at the end of the code
1007// generator to make the generated code easier to read. To do this, we select
1008// into "disjoint bits" pseudo ops.
1009
1010// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1011def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1012 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1013 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1014
1015 unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
1016 APInt Mask = APInt::getAllOnesValue(BitWidth);
1017 APInt KnownZero0, KnownOne0;
1018 CurDAG->ComputeMaskedBits(N->getOperand(0), Mask, KnownZero0, KnownOne0, 0);
1019 APInt KnownZero1, KnownOne1;
1020 CurDAG->ComputeMaskedBits(N->getOperand(1), Mask, KnownZero1, KnownOne1, 0);
1021 return (~KnownZero0 & ~KnownZero1) == 0;
1022}]>;
1023
1024
1025// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1026let AddedComplexity = 5 in { // Try this before the selecting to OR
1027
1028let isCommutable = 1, isConvertibleToThreeAddress = 1,
1029 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1030def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1031 "", // orw/addw REG, REG
1032 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1033def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1034 "", // orl/addl REG, REG
1035 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1036def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1037 "", // orq/addq REG, REG
1038 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
Chris Lattner15df55d2010-10-08 03:57:25 +00001039
1040
1041def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1042 "", // orw/addw REG, imm
1043 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1044def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1045 "", // orl/addl REG, imm
1046 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1047def ADD64ri32_DB : I<0, Pseudo,
1048 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1049 "", // orq/addq REG, imm
1050 [(set GR64:$dst, (or_is_add GR64:$src1,
1051 i64immSExt32:$src2))]>;
1052
1053def ADD16ri8_DB : I<0, Pseudo,
1054 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1055 "", // orw/addw REG, imm8
1056 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1057def ADD32ri8_DB : I<0, Pseudo,
1058 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1059 "", // orl/addl REG, imm8
1060 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1061def ADD64ri8_DB : I<0, Pseudo,
1062 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1063 "", // orq/addq REG, imm8
1064 [(set GR64:$dst, (or_is_add GR64:$src1,
1065 i64immSExt8:$src2))]>;
Chris Lattner99ae6652010-10-08 03:54:52 +00001066}
Chris Lattner99ae6652010-10-08 03:54:52 +00001067} // AddedComplexity
1068
1069
1070//===----------------------------------------------------------------------===//
Chris Lattner87be16a2010-10-05 06:04:14 +00001071// Some peepholes
1072//===----------------------------------------------------------------------===//
1073
1074// Odd encoding trick: -128 fits into an 8-bit immediate field while
1075// +128 doesn't, so in this special case use a sub instead of an add.
1076def : Pat<(add GR16:$src1, 128),
1077 (SUB16ri8 GR16:$src1, -128)>;
1078def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1079 (SUB16mi8 addr:$dst, -128)>;
1080
1081def : Pat<(add GR32:$src1, 128),
1082 (SUB32ri8 GR32:$src1, -128)>;
1083def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1084 (SUB32mi8 addr:$dst, -128)>;
1085
1086def : Pat<(add GR64:$src1, 128),
1087 (SUB64ri8 GR64:$src1, -128)>;
1088def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1089 (SUB64mi8 addr:$dst, -128)>;
1090
1091// The same trick applies for 32-bit immediate fields in 64-bit
1092// instructions.
1093def : Pat<(add GR64:$src1, 0x0000000080000000),
1094 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1095def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1096 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1097
1098// Use a 32-bit and with implicit zero-extension instead of a 64-bit and if it
1099// has an immediate with at least 32 bits of leading zeros, to avoid needing to
1100// materialize that immediate in a register first.
1101def : Pat<(and GR64:$src, i64immZExt32:$imm),
1102 (SUBREG_TO_REG
1103 (i64 0),
1104 (AND32ri
1105 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1106 (i32 (GetLo32XForm imm:$imm))),
1107 sub_32bit)>;
1108
1109
1110// r & (2^16-1) ==> movz
1111def : Pat<(and GR32:$src1, 0xffff),
1112 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1113// r & (2^8-1) ==> movz
1114def : Pat<(and GR32:$src1, 0xff),
1115 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1116 GR32_ABCD)),
1117 sub_8bit))>,
1118 Requires<[In32BitMode]>;
1119// r & (2^8-1) ==> movz
1120def : Pat<(and GR16:$src1, 0xff),
1121 (MOVZX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1,
1122 GR16_ABCD)),
1123 sub_8bit))>,
1124 Requires<[In32BitMode]>;
1125
1126// r & (2^32-1) ==> movz
1127def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1128 (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1129// r & (2^16-1) ==> movz
1130def : Pat<(and GR64:$src, 0xffff),
1131 (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
1132// r & (2^8-1) ==> movz
1133def : Pat<(and GR64:$src, 0xff),
1134 (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
1135// r & (2^8-1) ==> movz
1136def : Pat<(and GR32:$src1, 0xff),
1137 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1138 Requires<[In64BitMode]>;
1139// r & (2^8-1) ==> movz
1140def : Pat<(and GR16:$src1, 0xff),
1141 (MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)))>,
1142 Requires<[In64BitMode]>;
1143
1144
1145// sext_inreg patterns
1146def : Pat<(sext_inreg GR32:$src, i16),
1147 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1148def : Pat<(sext_inreg GR32:$src, i8),
1149 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1150 GR32_ABCD)),
1151 sub_8bit))>,
1152 Requires<[In32BitMode]>;
1153def : Pat<(sext_inreg GR16:$src, i8),
1154 (MOVSX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1155 GR16_ABCD)),
1156 sub_8bit))>,
1157 Requires<[In32BitMode]>;
1158
1159def : Pat<(sext_inreg GR64:$src, i32),
1160 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1161def : Pat<(sext_inreg GR64:$src, i16),
1162 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1163def : Pat<(sext_inreg GR64:$src, i8),
1164 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1165def : Pat<(sext_inreg GR32:$src, i8),
1166 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1167 Requires<[In64BitMode]>;
1168def : Pat<(sext_inreg GR16:$src, i8),
1169 (MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, sub_8bit)))>,
1170 Requires<[In64BitMode]>;
1171
1172
1173// trunc patterns
1174def : Pat<(i16 (trunc GR32:$src)),
1175 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1176def : Pat<(i8 (trunc GR32:$src)),
1177 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1178 sub_8bit)>,
1179 Requires<[In32BitMode]>;
1180def : Pat<(i8 (trunc GR16:$src)),
1181 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1182 sub_8bit)>,
1183 Requires<[In32BitMode]>;
1184def : Pat<(i32 (trunc GR64:$src)),
1185 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1186def : Pat<(i16 (trunc GR64:$src)),
1187 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1188def : Pat<(i8 (trunc GR64:$src)),
1189 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1190def : Pat<(i8 (trunc GR32:$src)),
1191 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1192 Requires<[In64BitMode]>;
1193def : Pat<(i8 (trunc GR16:$src)),
1194 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1195 Requires<[In64BitMode]>;
1196
1197// h-register tricks
1198def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1199 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1200 sub_8bit_hi)>,
1201 Requires<[In32BitMode]>;
1202def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1203 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1204 sub_8bit_hi)>,
1205 Requires<[In32BitMode]>;
1206def : Pat<(srl GR16:$src, (i8 8)),
1207 (EXTRACT_SUBREG
1208 (MOVZX32rr8
1209 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1210 sub_8bit_hi)),
1211 sub_16bit)>,
1212 Requires<[In32BitMode]>;
1213def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1214 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1215 GR16_ABCD)),
1216 sub_8bit_hi))>,
1217 Requires<[In32BitMode]>;
1218def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1219 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1220 GR16_ABCD)),
1221 sub_8bit_hi))>,
1222 Requires<[In32BitMode]>;
1223def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1224 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1225 GR32_ABCD)),
1226 sub_8bit_hi))>,
1227 Requires<[In32BitMode]>;
1228def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1229 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1230 GR32_ABCD)),
1231 sub_8bit_hi))>,
1232 Requires<[In32BitMode]>;
1233
1234// h-register tricks.
1235// For now, be conservative on x86-64 and use an h-register extract only if the
1236// value is immediately zero-extended or stored, which are somewhat common
1237// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1238// from being allocated in the same instruction as the h register, as there's
1239// currently no way to describe this requirement to the register allocator.
1240
1241// h-register extract and zero-extend.
1242def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1243 (SUBREG_TO_REG
1244 (i64 0),
1245 (MOVZX32_NOREXrr8
1246 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1247 sub_8bit_hi)),
1248 sub_32bit)>;
1249def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1250 (MOVZX32_NOREXrr8
1251 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1252 sub_8bit_hi))>,
1253 Requires<[In64BitMode]>;
1254def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1255 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1256 GR32_ABCD)),
1257 sub_8bit_hi))>,
1258 Requires<[In64BitMode]>;
1259def : Pat<(srl GR16:$src, (i8 8)),
1260 (EXTRACT_SUBREG
1261 (MOVZX32_NOREXrr8
1262 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1263 sub_8bit_hi)),
1264 sub_16bit)>,
1265 Requires<[In64BitMode]>;
1266def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1267 (MOVZX32_NOREXrr8
1268 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1269 sub_8bit_hi))>,
1270 Requires<[In64BitMode]>;
1271def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1272 (MOVZX32_NOREXrr8
1273 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1274 sub_8bit_hi))>,
1275 Requires<[In64BitMode]>;
1276def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1277 (SUBREG_TO_REG
1278 (i64 0),
1279 (MOVZX32_NOREXrr8
1280 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1281 sub_8bit_hi)),
1282 sub_32bit)>;
1283def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1284 (SUBREG_TO_REG
1285 (i64 0),
1286 (MOVZX32_NOREXrr8
1287 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1288 sub_8bit_hi)),
1289 sub_32bit)>;
1290
1291// h-register extract and store.
1292def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1293 (MOV8mr_NOREX
1294 addr:$dst,
1295 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1296 sub_8bit_hi))>;
1297def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1298 (MOV8mr_NOREX
1299 addr:$dst,
1300 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1301 sub_8bit_hi))>,
1302 Requires<[In64BitMode]>;
1303def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1304 (MOV8mr_NOREX
1305 addr:$dst,
1306 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1307 sub_8bit_hi))>,
1308 Requires<[In64BitMode]>;
1309
1310
1311// (shl x, 1) ==> (add x, x)
1312def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1313def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1314def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1315def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1316
1317// (shl x (and y, 31)) ==> (shl x, y)
1318def : Pat<(shl GR8:$src1, (and CL, 31)),
1319 (SHL8rCL GR8:$src1)>;
1320def : Pat<(shl GR16:$src1, (and CL, 31)),
1321 (SHL16rCL GR16:$src1)>;
1322def : Pat<(shl GR32:$src1, (and CL, 31)),
1323 (SHL32rCL GR32:$src1)>;
1324def : Pat<(store (shl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1325 (SHL8mCL addr:$dst)>;
1326def : Pat<(store (shl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1327 (SHL16mCL addr:$dst)>;
1328def : Pat<(store (shl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1329 (SHL32mCL addr:$dst)>;
1330
1331def : Pat<(srl GR8:$src1, (and CL, 31)),
1332 (SHR8rCL GR8:$src1)>;
1333def : Pat<(srl GR16:$src1, (and CL, 31)),
1334 (SHR16rCL GR16:$src1)>;
1335def : Pat<(srl GR32:$src1, (and CL, 31)),
1336 (SHR32rCL GR32:$src1)>;
1337def : Pat<(store (srl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1338 (SHR8mCL addr:$dst)>;
1339def : Pat<(store (srl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1340 (SHR16mCL addr:$dst)>;
1341def : Pat<(store (srl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1342 (SHR32mCL addr:$dst)>;
1343
1344def : Pat<(sra GR8:$src1, (and CL, 31)),
1345 (SAR8rCL GR8:$src1)>;
1346def : Pat<(sra GR16:$src1, (and CL, 31)),
1347 (SAR16rCL GR16:$src1)>;
1348def : Pat<(sra GR32:$src1, (and CL, 31)),
1349 (SAR32rCL GR32:$src1)>;
1350def : Pat<(store (sra (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1351 (SAR8mCL addr:$dst)>;
1352def : Pat<(store (sra (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1353 (SAR16mCL addr:$dst)>;
1354def : Pat<(store (sra (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1355 (SAR32mCL addr:$dst)>;
1356
1357// (shl x (and y, 63)) ==> (shl x, y)
1358def : Pat<(shl GR64:$src1, (and CL, 63)),
1359 (SHL64rCL GR64:$src1)>;
1360def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1361 (SHL64mCL addr:$dst)>;
1362
1363def : Pat<(srl GR64:$src1, (and CL, 63)),
1364 (SHR64rCL GR64:$src1)>;
1365def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1366 (SHR64mCL addr:$dst)>;
1367
1368def : Pat<(sra GR64:$src1, (and CL, 63)),
1369 (SAR64rCL GR64:$src1)>;
1370def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1371 (SAR64mCL addr:$dst)>;
1372
1373
1374// (anyext (setcc_carry)) -> (setcc_carry)
1375def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1376 (SETB_C16r)>;
1377def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1378 (SETB_C32r)>;
1379def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1380 (SETB_C32r)>;
1381
Chris Lattner99ae6652010-10-08 03:54:52 +00001382
1383
Chris Lattner87be16a2010-10-05 06:04:14 +00001384
1385//===----------------------------------------------------------------------===//
1386// EFLAGS-defining Patterns
1387//===----------------------------------------------------------------------===//
1388
1389// add reg, reg
1390def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1391def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1392def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1393
1394// add reg, mem
1395def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1396 (ADD8rm GR8:$src1, addr:$src2)>;
1397def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1398 (ADD16rm GR16:$src1, addr:$src2)>;
1399def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1400 (ADD32rm GR32:$src1, addr:$src2)>;
1401
1402// add reg, imm
1403def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1404def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1405def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1406def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1407 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1408def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1409 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1410
1411// sub reg, reg
1412def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1413def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1414def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1415
1416// sub reg, mem
1417def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1418 (SUB8rm GR8:$src1, addr:$src2)>;
1419def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1420 (SUB16rm GR16:$src1, addr:$src2)>;
1421def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1422 (SUB32rm GR32:$src1, addr:$src2)>;
1423
1424// sub reg, imm
1425def : Pat<(sub GR8:$src1, imm:$src2),
1426 (SUB8ri GR8:$src1, imm:$src2)>;
1427def : Pat<(sub GR16:$src1, imm:$src2),
1428 (SUB16ri GR16:$src1, imm:$src2)>;
1429def : Pat<(sub GR32:$src1, imm:$src2),
1430 (SUB32ri GR32:$src1, imm:$src2)>;
1431def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1432 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1433def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1434 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1435
1436// mul reg, reg
1437def : Pat<(mul GR16:$src1, GR16:$src2),
1438 (IMUL16rr GR16:$src1, GR16:$src2)>;
1439def : Pat<(mul GR32:$src1, GR32:$src2),
1440 (IMUL32rr GR32:$src1, GR32:$src2)>;
1441
1442// mul reg, mem
1443def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1444 (IMUL16rm GR16:$src1, addr:$src2)>;
1445def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1446 (IMUL32rm GR32:$src1, addr:$src2)>;
1447
1448// mul reg, imm
1449def : Pat<(mul GR16:$src1, imm:$src2),
1450 (IMUL16rri GR16:$src1, imm:$src2)>;
1451def : Pat<(mul GR32:$src1, imm:$src2),
1452 (IMUL32rri GR32:$src1, imm:$src2)>;
1453def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1454 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1455def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1456 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1457
1458// reg = mul mem, imm
1459def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1460 (IMUL16rmi addr:$src1, imm:$src2)>;
1461def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1462 (IMUL32rmi addr:$src1, imm:$src2)>;
1463def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1464 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1465def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1466 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1467
1468// Optimize multiply by 2 with EFLAGS result.
1469let AddedComplexity = 2 in {
1470def : Pat<(X86smul_flag GR16:$src1, 2), (ADD16rr GR16:$src1, GR16:$src1)>;
1471def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>;
1472}
1473
1474// Patterns for nodes that do not produce flags, for instructions that do.
1475
1476// addition
1477def : Pat<(add GR64:$src1, GR64:$src2),
1478 (ADD64rr GR64:$src1, GR64:$src2)>;
1479def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1480 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1481def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1482 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1483def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1484 (ADD64rm GR64:$src1, addr:$src2)>;
1485
1486// subtraction
1487def : Pat<(sub GR64:$src1, GR64:$src2),
1488 (SUB64rr GR64:$src1, GR64:$src2)>;
1489def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1490 (SUB64rm GR64:$src1, addr:$src2)>;
1491def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1492 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1493def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1494 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1495
1496// Multiply
1497def : Pat<(mul GR64:$src1, GR64:$src2),
1498 (IMUL64rr GR64:$src1, GR64:$src2)>;
1499def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1500 (IMUL64rm GR64:$src1, addr:$src2)>;
1501def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1502 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1503def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1504 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1505def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1506 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1507def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1508 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1509
1510// Increment reg.
1511def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>;
1512def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
1513def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1514def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
1515def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1516def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1517
1518// Decrement reg.
1519def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>;
1520def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
1521def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1522def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
1523def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1524def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1525
1526// or reg/reg.
1527def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1528def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1529def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1530def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1531
1532// or reg/mem
1533def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1534 (OR8rm GR8:$src1, addr:$src2)>;
1535def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1536 (OR16rm GR16:$src1, addr:$src2)>;
1537def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1538 (OR32rm GR32:$src1, addr:$src2)>;
1539def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1540 (OR64rm GR64:$src1, addr:$src2)>;
1541
1542// or reg/imm
1543def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1544def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1545def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1546def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1547 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1548def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1549 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1550def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1551 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1552def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1553 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1554
1555// xor reg/reg
1556def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1557def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1558def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1559def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1560
1561// xor reg/mem
1562def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1563 (XOR8rm GR8:$src1, addr:$src2)>;
1564def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1565 (XOR16rm GR16:$src1, addr:$src2)>;
1566def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1567 (XOR32rm GR32:$src1, addr:$src2)>;
1568def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1569 (XOR64rm GR64:$src1, addr:$src2)>;
1570
1571// xor reg/imm
1572def : Pat<(xor GR8:$src1, imm:$src2),
1573 (XOR8ri GR8:$src1, imm:$src2)>;
1574def : Pat<(xor GR16:$src1, imm:$src2),
1575 (XOR16ri GR16:$src1, imm:$src2)>;
1576def : Pat<(xor GR32:$src1, imm:$src2),
1577 (XOR32ri GR32:$src1, imm:$src2)>;
1578def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1579 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1580def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1581 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1582def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1583 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1584def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1585 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1586
1587// and reg/reg
1588def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1589def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1590def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1591def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1592
1593// and reg/mem
1594def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1595 (AND8rm GR8:$src1, addr:$src2)>;
1596def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1597 (AND16rm GR16:$src1, addr:$src2)>;
1598def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1599 (AND32rm GR32:$src1, addr:$src2)>;
1600def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1601 (AND64rm GR64:$src1, addr:$src2)>;
1602
1603// and reg/imm
1604def : Pat<(and GR8:$src1, imm:$src2),
1605 (AND8ri GR8:$src1, imm:$src2)>;
1606def : Pat<(and GR16:$src1, imm:$src2),
1607 (AND16ri GR16:$src1, imm:$src2)>;
1608def : Pat<(and GR32:$src1, imm:$src2),
1609 (AND32ri GR32:$src1, imm:$src2)>;
1610def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1611 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1612def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1613 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1614def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1615 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1616def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1617 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
Chris Lattner87be16a2010-10-05 06:04:14 +00001618