blob: 9af62184a0d51636ced14c6781d27e5b39c65d9b [file] [log] [blame]
Chris Lattner87be16a2010-10-05 06:04:14 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner41efbfa2010-10-05 06:37:31 +000015//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
20 return getI32Imm((unsigned)N->getZExtValue());
21}]>;
22
23
24//===----------------------------------------------------------------------===//
25// Random Pseudo Instructions.
26
Chris Lattner8af88ef2010-10-05 06:10:16 +000027// PIC base construction. This expands to code that looks like this:
28// call $next_inst
29// popl %destreg"
30let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
31 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
32 "", []>;
33
34
35// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
36// a stack adjustment and the codegen must know that they may modify the stack
37// pointer before prolog-epilog rewriting occurs.
38// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
39// sub / add which can clobber EFLAGS.
40let Defs = [ESP, EFLAGS], Uses = [ESP] in {
41def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
42 "#ADJCALLSTACKDOWN",
43 [(X86callseq_start timm:$amt)]>,
44 Requires<[In32BitMode]>;
45def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
46 "#ADJCALLSTACKUP",
47 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
48 Requires<[In32BitMode]>;
49}
50
51// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
52// a stack adjustment and the codegen must know that they may modify the stack
53// pointer before prolog-epilog rewriting occurs.
54// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
55// sub / add which can clobber EFLAGS.
56let Defs = [RSP, EFLAGS], Uses = [RSP] in {
57def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
58 "#ADJCALLSTACKDOWN",
59 [(X86callseq_start timm:$amt)]>,
60 Requires<[In64BitMode]>;
61def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
62 "#ADJCALLSTACKUP",
63 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
64 Requires<[In64BitMode]>;
65}
66
67
68
69// x86-64 va_start lowering magic.
70let usesCustomInserter = 1 in {
71def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
72 (outs),
73 (ins GR8:$al,
74 i64imm:$regsavefi, i64imm:$offset,
75 variable_ops),
76 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
77 [(X86vastart_save_xmm_regs GR8:$al,
78 imm:$regsavefi,
79 imm:$offset)]>;
80
81// Dynamic stack allocation yields _alloca call for Cygwin/Mingw targets. Calls
82// to _alloca is needed to probe the stack when allocating more than 4k bytes in
83// one go. Touching the stack at 4K increments is necessary to ensure that the
84// guard pages used by the OS virtual memory manager are allocated in correct
85// sequence.
86// The main point of having separate instruction are extra unmodelled effects
87// (compared to ordinary calls) like stack pointer change.
88
89let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
90 def MINGW_ALLOCA : I<0, Pseudo, (outs), (ins),
91 "# dynamic stack allocation",
92 [(X86MingwAlloca)]>;
93}
94
95
Chris Lattner87be16a2010-10-05 06:04:14 +000096
97//===----------------------------------------------------------------------===//
98// EH Pseudo Instructions
99//
100let isTerminator = 1, isReturn = 1, isBarrier = 1,
101 hasCtrlDep = 1, isCodeGenOnly = 1 in {
102def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
103 "ret\t#eh_return, addr: $addr",
104 [(X86ehret GR32:$addr)]>;
105
106}
107
108let isTerminator = 1, isReturn = 1, isBarrier = 1,
109 hasCtrlDep = 1, isCodeGenOnly = 1 in {
110def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
111 "ret\t#eh_return, addr: $addr",
112 [(X86ehret GR64:$addr)]>;
113
114}
115
Chris Lattner8af88ef2010-10-05 06:10:16 +0000116//===----------------------------------------------------------------------===//
117// Alias Instructions
118//===----------------------------------------------------------------------===//
119
120// Alias instructions that map movr0 to xor.
121// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
122// FIXME: Set encoding to pseudo.
123let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
124 isCodeGenOnly = 1 in {
125def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
126 [(set GR8:$dst, 0)]>;
127
128// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
129// encoding and avoids a partial-register update sometimes, but doing so
130// at isel time interferes with rematerialization in the current register
131// allocator. For now, this is rewritten when the instruction is lowered
132// to an MCInst.
133def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
134 "",
135 [(set GR16:$dst, 0)]>, OpSize;
136
137// FIXME: Set encoding to pseudo.
138def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
139 [(set GR32:$dst, 0)]>;
140}
141
Chris Lattner010496c2010-10-05 06:22:35 +0000142// We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
143// smaller encoding, but doing so at isel time interferes with rematerialization
144// in the current register allocator. For now, this is rewritten when the
145// instruction is lowered to an MCInst.
146// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
147// when we have a better way to specify isel priority.
148let Defs = [EFLAGS],
149 AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
150def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
151 [(set GR64:$dst, 0)]>;
152
153// Materialize i64 constant where top 32-bits are zero. This could theoretically
154// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
155// that would make it more difficult to rematerialize.
156let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
157def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
158 "", [(set GR64:$dst, i64immZExt32:$src)]>;
159
Chris Lattner35649fc2010-10-05 06:33:16 +0000160
Chris Lattner2c383d82010-10-05 21:18:04 +0000161// Use sbb to materialize carry bit.
162let Uses = [EFLAGS], Defs = [EFLAGS], isCodeGenOnly = 1 in {
163// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
Chris Lattner35649fc2010-10-05 06:33:16 +0000164// However, Pat<> can't replicate the destination reg into the inputs of the
165// result.
Chris Lattner2c383d82010-10-05 21:18:04 +0000166// FIXME: Change these to have encoding Pseudo when X86MCCodeEmitter replaces
Chris Lattner35649fc2010-10-05 06:33:16 +0000167// X86CodeEmitter.
Chris Lattner2c383d82010-10-05 21:18:04 +0000168def SETB_C8r : I<0x18, MRMInitReg, (outs GR8:$dst), (ins), "",
169 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
170def SETB_C16r : I<0x19, MRMInitReg, (outs GR16:$dst), (ins), "",
171 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>,
172 OpSize;
173def SETB_C32r : I<0x19, MRMInitReg, (outs GR32:$dst), (ins), "",
174 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
Chris Lattner35649fc2010-10-05 06:33:16 +0000175def SETB_C64r : RI<0x19, MRMInitReg, (outs GR64:$dst), (ins), "",
176 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
Chris Lattner2c383d82010-10-05 21:18:04 +0000177} // isCodeGenOnly
178
Chris Lattner35649fc2010-10-05 06:33:16 +0000179
180def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
181 (SETB_C64r)>;
182
Chris Lattner010496c2010-10-05 06:22:35 +0000183
Chris Lattnerd3f033d2010-10-05 06:27:48 +0000184//===----------------------------------------------------------------------===//
185// String Pseudo Instructions
186//
187let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
188def REP_MOVSB : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
189 [(X86rep_movs i8)]>, REP;
190def REP_MOVSW : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
191 [(X86rep_movs i16)]>, REP, OpSize;
192def REP_MOVSD : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
193 [(X86rep_movs i32)]>, REP;
194}
195
196let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in
197def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
198 [(X86rep_movs i64)]>, REP;
199
200
201// FIXME: Should use "(X86rep_stos AL)" as the pattern.
202let Defs = [ECX,EDI], Uses = [AL,ECX,EDI], isCodeGenOnly = 1 in
203def REP_STOSB : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
204 [(X86rep_stos i8)]>, REP;
205let Defs = [ECX,EDI], Uses = [AX,ECX,EDI], isCodeGenOnly = 1 in
206def REP_STOSW : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
207 [(X86rep_stos i16)]>, REP, OpSize;
208let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI], isCodeGenOnly = 1 in
209def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
210 [(X86rep_stos i32)]>, REP;
211
212let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI], isCodeGenOnly = 1 in
213def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
214 [(X86rep_stos i64)]>, REP;
Chris Lattner010496c2010-10-05 06:22:35 +0000215
216
Chris Lattner8af88ef2010-10-05 06:10:16 +0000217//===----------------------------------------------------------------------===//
218// Thread Local Storage Instructions
219//
220
221// ELF TLS Support
222// All calls clobber the non-callee saved registers. ESP is marked as
223// a use to prevent stack-pointer assignments that appear immediately
224// before calls from potentially appearing dead.
225let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
226 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
227 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
228 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
229 Uses = [ESP] in
230def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
231 "leal\t$sym, %eax; "
232 "call\t___tls_get_addr@PLT",
233 [(X86tlsaddr tls32addr:$sym)]>,
234 Requires<[In32BitMode]>;
235
236// All calls clobber the non-callee saved registers. RSP is marked as
237// a use to prevent stack-pointer assignments that appear immediately
238// before calls from potentially appearing dead.
239let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
240 FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
241 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
242 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
243 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
244 Uses = [RSP] in
245def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
246 ".byte\t0x66; "
247 "leaq\t$sym(%rip), %rdi; "
248 ".word\t0x6666; "
249 "rex64; "
250 "call\t__tls_get_addr@PLT",
251 [(X86tlsaddr tls64addr:$sym)]>,
252 Requires<[In64BitMode]>;
253
254// Darwin TLS Support
255// For i386, the address of the thunk is passed on the stack, on return the
256// address of the variable is in %eax. %ecx is trashed during the function
257// call. All other registers are preserved.
258let Defs = [EAX, ECX],
259 Uses = [ESP],
260 usesCustomInserter = 1 in
261def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
262 "# TLSCall_32",
263 [(X86TLSCall addr:$sym)]>,
264 Requires<[In32BitMode]>;
265
266// For x86_64, the address of the thunk is passed in %rdi, on return
267// the address of the variable is in %rax. All other registers are preserved.
268let Defs = [RAX],
269 Uses = [RDI],
270 usesCustomInserter = 1 in
271def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
272 "# TLSCall_64",
273 [(X86TLSCall addr:$sym)]>,
274 Requires<[In64BitMode]>;
Chris Lattner87be16a2010-10-05 06:04:14 +0000275
276//===----------------------------------------------------------------------===//
Chris Lattner010496c2010-10-05 06:22:35 +0000277// Atomic Instruction Pseudo Instructions
278//===----------------------------------------------------------------------===//
279
280// Atomic exchange, and, or, xor
281let Constraints = "$val = $dst", Defs = [EFLAGS],
282 usesCustomInserter = 1 in {
283
284def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
285 "#ATOMAND8 PSEUDO!",
286 [(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>;
287def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
288 "#ATOMOR8 PSEUDO!",
289 [(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>;
290def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
291 "#ATOMXOR8 PSEUDO!",
292 [(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>;
293def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
294 "#ATOMNAND8 PSEUDO!",
295 [(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>;
296
297def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
298 "#ATOMAND16 PSEUDO!",
299 [(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>;
300def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
301 "#ATOMOR16 PSEUDO!",
302 [(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>;
303def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
304 "#ATOMXOR16 PSEUDO!",
305 [(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>;
306def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
307 "#ATOMNAND16 PSEUDO!",
308 [(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>;
309def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val),
310 "#ATOMMIN16 PSEUDO!",
311 [(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>;
312def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
313 "#ATOMMAX16 PSEUDO!",
314 [(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>;
315def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
316 "#ATOMUMIN16 PSEUDO!",
317 [(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>;
318def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
319 "#ATOMUMAX16 PSEUDO!",
320 [(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>;
321
322
323def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
324 "#ATOMAND32 PSEUDO!",
325 [(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>;
326def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
327 "#ATOMOR32 PSEUDO!",
328 [(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>;
329def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
330 "#ATOMXOR32 PSEUDO!",
331 [(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>;
332def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
333 "#ATOMNAND32 PSEUDO!",
334 [(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>;
335def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val),
336 "#ATOMMIN32 PSEUDO!",
337 [(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>;
338def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
339 "#ATOMMAX32 PSEUDO!",
340 [(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>;
341def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
342 "#ATOMUMIN32 PSEUDO!",
343 [(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>;
344def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
345 "#ATOMUMAX32 PSEUDO!",
346 [(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>;
347
348
349
350def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
351 "#ATOMAND64 PSEUDO!",
352 [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
353def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
354 "#ATOMOR64 PSEUDO!",
355 [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
356def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
357 "#ATOMXOR64 PSEUDO!",
358 [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
359def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
360 "#ATOMNAND64 PSEUDO!",
361 [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
362def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
363 "#ATOMMIN64 PSEUDO!",
364 [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
365def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
366 "#ATOMMAX64 PSEUDO!",
367 [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
368def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
369 "#ATOMUMIN64 PSEUDO!",
370 [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
371def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
372 "#ATOMUMAX64 PSEUDO!",
373 [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
374}
375
376let Constraints = "$val1 = $dst1, $val2 = $dst2",
377 Defs = [EFLAGS, EAX, EBX, ECX, EDX],
378 Uses = [EAX, EBX, ECX, EDX],
379 mayLoad = 1, mayStore = 1,
380 usesCustomInserter = 1 in {
381def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
382 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
383 "#ATOMAND6432 PSEUDO!", []>;
384def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
385 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
386 "#ATOMOR6432 PSEUDO!", []>;
387def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
388 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
389 "#ATOMXOR6432 PSEUDO!", []>;
390def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
391 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
392 "#ATOMNAND6432 PSEUDO!", []>;
393def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
394 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
395 "#ATOMADD6432 PSEUDO!", []>;
396def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
397 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
398 "#ATOMSUB6432 PSEUDO!", []>;
399def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
400 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
401 "#ATOMSWAP6432 PSEUDO!", []>;
402}
403
404//===----------------------------------------------------------------------===//
405// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
406//===----------------------------------------------------------------------===//
407
408// FIXME: Use normal instructions and add lock prefix dynamically.
409
410// Memory barriers
411
412// TODO: Get this to fold the constant into the instruction.
413def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
414 "lock\n\t"
415 "or{l}\t{$zero, $dst|$dst, $zero}",
416 []>, Requires<[In32BitMode]>, LOCK;
417
418let hasSideEffects = 1 in
419def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
420 "#MEMBARRIER",
421 [(X86MemBarrier)]>, Requires<[HasSSE2]>;
422
423// TODO: Get this to fold the constant into the instruction.
424let hasSideEffects = 1, Defs = [ESP] in
425def Int_MemBarrierNoSSE64 : RI<0x09, MRM1r, (outs), (ins GR64:$zero),
426 "lock\n\t"
427 "or{q}\t{$zero, (%rsp)|(%rsp), $zero}",
428 [(X86MemBarrierNoSSE GR64:$zero)]>,
429 Requires<[In64BitMode]>, LOCK;
430
431
432// Optimized codegen when the non-memory output is not used.
433let Defs = [EFLAGS], mayLoad = 1, mayStore = 1 in {
434def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
435 "lock\n\t"
436 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
437def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
438 "lock\n\t"
439 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
440def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
441 "lock\n\t"
442 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
443def LOCK_ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
444 "lock\n\t"
445 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
446
447def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
448 "lock\n\t"
449 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
450def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
451 "lock\n\t"
452 "add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
453def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
454 "lock\n\t"
455 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
456def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs),
457 (ins i64mem:$dst, i64i32imm :$src2),
458 "lock\n\t"
459 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
460
461def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
462 "lock\n\t"
463 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
464def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
465 "lock\n\t"
466 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
467def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs),
468 (ins i64mem:$dst, i64i8imm :$src2),
469 "lock\n\t"
470 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
471
472def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
473 "lock\n\t"
474 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
475def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
476 "lock\n\t"
477 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
478def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
479 "lock\n\t"
480 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
481def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
482 "lock\n\t"
483 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
484
485
486def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2),
487 "lock\n\t"
488 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
489def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2),
490 "lock\n\t"
491 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
492def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2),
493 "lock\n\t"
494 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
495def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs),
496 (ins i64mem:$dst, i64i32imm:$src2),
497 "lock\n\t"
498 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
499
500
501def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
502 "lock\n\t"
503 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
504def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
505 "lock\n\t"
506 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
507def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs),
508 (ins i64mem:$dst, i64i8imm :$src2),
509 "lock\n\t"
510 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
511
512def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
513 "lock\n\t"
514 "inc{b}\t$dst", []>, LOCK;
515def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
516 "lock\n\t"
517 "inc{w}\t$dst", []>, OpSize, LOCK;
518def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
519 "lock\n\t"
520 "inc{l}\t$dst", []>, LOCK;
521def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
522 "lock\n\t"
523 "inc{q}\t$dst", []>, LOCK;
524
525def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
526 "lock\n\t"
527 "dec{b}\t$dst", []>, LOCK;
528def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
529 "lock\n\t"
530 "dec{w}\t$dst", []>, OpSize, LOCK;
531def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
532 "lock\n\t"
533 "dec{l}\t$dst", []>, LOCK;
534def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
535 "lock\n\t"
536 "dec{q}\t$dst", []>, LOCK;
537}
538
539// Atomic compare and swap.
540let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
541def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
542 "lock\n\t"
543 "cmpxchg8b\t$ptr",
544 [(X86cas8 addr:$ptr)]>, TB, LOCK;
545}
546let Defs = [AL, EFLAGS], Uses = [AL] in {
547def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap),
548 "lock\n\t"
549 "cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}",
550 [(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
551}
552
553let Defs = [AX, EFLAGS], Uses = [AX] in {
554def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap),
555 "lock\n\t"
556 "cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}",
557 [(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK;
558}
559
560let Defs = [EAX, EFLAGS], Uses = [EAX] in {
561def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
562 "lock\n\t"
563 "cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}",
564 [(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK;
565}
566
567let Defs = [RAX, EFLAGS], Uses = [RAX] in {
568def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
569 "lock\n\t"
570 "cmpxchgq\t$swap,$ptr",
571 [(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
572}
573
574// Atomic exchange and add
575let Constraints = "$val = $dst", Defs = [EFLAGS] in {
576def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
577 "lock\n\t"
578 "xadd{b}\t{$val, $ptr|$ptr, $val}",
579 [(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>,
580 TB, LOCK;
581def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr),
582 "lock\n\t"
583 "xadd{w}\t{$val, $ptr|$ptr, $val}",
584 [(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>,
585 TB, OpSize, LOCK;
586def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr),
587 "lock\n\t"
588 "xadd{l}\t{$val, $ptr|$ptr, $val}",
589 [(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>,
590 TB, LOCK;
591def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val,i64mem:$ptr),
592 "lock\n\t"
593 "xadd\t$val, $ptr",
594 [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
595 TB, LOCK;
596}
597
Chris Lattner5673e1d2010-10-05 06:41:40 +0000598//===----------------------------------------------------------------------===//
599// Conditional Move Pseudo Instructions.
600//===----------------------------------------------------------------------===//
601
602
603// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
604// instruction selection into a branch sequence.
605let Uses = [EFLAGS], usesCustomInserter = 1 in {
606 def CMOV_FR32 : I<0, Pseudo,
607 (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
608 "#CMOV_FR32 PSEUDO!",
609 [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
610 EFLAGS))]>;
611 def CMOV_FR64 : I<0, Pseudo,
612 (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
613 "#CMOV_FR64 PSEUDO!",
614 [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
615 EFLAGS))]>;
616 def CMOV_V4F32 : I<0, Pseudo,
617 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
618 "#CMOV_V4F32 PSEUDO!",
619 [(set VR128:$dst,
620 (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
621 EFLAGS)))]>;
622 def CMOV_V2F64 : I<0, Pseudo,
623 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
624 "#CMOV_V2F64 PSEUDO!",
625 [(set VR128:$dst,
626 (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
627 EFLAGS)))]>;
628 def CMOV_V2I64 : I<0, Pseudo,
629 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
630 "#CMOV_V2I64 PSEUDO!",
631 [(set VR128:$dst,
632 (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
633 EFLAGS)))]>;
634}
635
Chris Lattner010496c2010-10-05 06:22:35 +0000636
637//===----------------------------------------------------------------------===//
638// DAG Pattern Matching Rules
Chris Lattner87be16a2010-10-05 06:04:14 +0000639//===----------------------------------------------------------------------===//
640
641// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
642def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
643def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
644def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
645def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
646def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
647def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
648
649def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
650 (ADD32ri GR32:$src1, tconstpool:$src2)>;
651def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
652 (ADD32ri GR32:$src1, tjumptable:$src2)>;
653def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
654 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
655def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
656 (ADD32ri GR32:$src1, texternalsym:$src2)>;
657def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
658 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
659
660def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
661 (MOV32mi addr:$dst, tglobaladdr:$src)>;
662def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
663 (MOV32mi addr:$dst, texternalsym:$src)>;
664def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
665 (MOV32mi addr:$dst, tblockaddress:$src)>;
666
667
668
669// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
670// code model mode, should use 'movabs'. FIXME: This is really a hack, the
671// 'movabs' predicate should handle this sort of thing.
672def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
673 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
674def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
675 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
676def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
677 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
678def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
679 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
680def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
681 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
682
683// In static codegen with small code model, we can get the address of a label
684// into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of
685// the MOV64ri64i32 should accept these.
686def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
687 (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>;
688def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
689 (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>;
690def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
691 (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
692def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
693 (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
694def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
695 (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
696
697// In kernel code model, we can get the address of a label
698// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
699// the MOV64ri32 should accept these.
700def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
701 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
702def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
703 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
704def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
705 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
706def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
707 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
708def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
709 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
710
711// If we have small model and -static mode, it is safe to store global addresses
712// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
713// for MOV64mi32 should handle this sort of thing.
714def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
715 (MOV64mi32 addr:$dst, tconstpool:$src)>,
716 Requires<[NearData, IsStatic]>;
717def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
718 (MOV64mi32 addr:$dst, tjumptable:$src)>,
719 Requires<[NearData, IsStatic]>;
720def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
721 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
722 Requires<[NearData, IsStatic]>;
723def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
724 (MOV64mi32 addr:$dst, texternalsym:$src)>,
725 Requires<[NearData, IsStatic]>;
726def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
727 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
728 Requires<[NearData, IsStatic]>;
729
730
731
732// Calls
733
734// tls has some funny stuff here...
735// This corresponds to movabs $foo@tpoff, %rax
736def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
737 (MOV64ri tglobaltlsaddr :$dst)>;
738// This corresponds to add $foo@tpoff, %rax
739def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
740 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
741// This corresponds to mov foo@tpoff(%rbx), %eax
742def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
743 (MOV64rm tglobaltlsaddr :$dst)>;
744
745
746// Direct PC relative function call for small code model. 32-bit displacement
747// sign extended to 64-bit.
748def : Pat<(X86call (i64 tglobaladdr:$dst)),
749 (CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>;
750def : Pat<(X86call (i64 texternalsym:$dst)),
751 (CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>;
752
753def : Pat<(X86call (i64 tglobaladdr:$dst)),
754 (WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>;
755def : Pat<(X86call (i64 texternalsym:$dst)),
756 (WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>;
757
758// tailcall stuff
759def : Pat<(X86tcret GR32_TC:$dst, imm:$off),
760 (TCRETURNri GR32_TC:$dst, imm:$off)>,
761 Requires<[In32BitMode]>;
762
763// FIXME: This is disabled for 32-bit PIC mode because the global base
764// register which is part of the address mode may be assigned a
765// callee-saved register.
766def : Pat<(X86tcret (load addr:$dst), imm:$off),
767 (TCRETURNmi addr:$dst, imm:$off)>,
768 Requires<[In32BitMode, IsNotPIC]>;
769
770def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
771 (TCRETURNdi texternalsym:$dst, imm:$off)>,
772 Requires<[In32BitMode]>;
773
774def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
775 (TCRETURNdi texternalsym:$dst, imm:$off)>,
776 Requires<[In32BitMode]>;
777
778def : Pat<(X86tcret GR64_TC:$dst, imm:$off),
779 (TCRETURNri64 GR64_TC:$dst, imm:$off)>,
780 Requires<[In64BitMode]>;
781
782def : Pat<(X86tcret (load addr:$dst), imm:$off),
783 (TCRETURNmi64 addr:$dst, imm:$off)>,
784 Requires<[In64BitMode]>;
785
786def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
787 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
788 Requires<[In64BitMode]>;
789
790def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
791 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
792 Requires<[In64BitMode]>;
793
794// Normal calls, with various flavors of addresses.
795def : Pat<(X86call (i32 tglobaladdr:$dst)),
796 (CALLpcrel32 tglobaladdr:$dst)>;
797def : Pat<(X86call (i32 texternalsym:$dst)),
798 (CALLpcrel32 texternalsym:$dst)>;
799def : Pat<(X86call (i32 imm:$dst)),
800 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
801
802// X86 specific add which produces a flag.
803def : Pat<(addc GR32:$src1, GR32:$src2),
804 (ADD32rr GR32:$src1, GR32:$src2)>;
805def : Pat<(addc GR32:$src1, (load addr:$src2)),
806 (ADD32rm GR32:$src1, addr:$src2)>;
807def : Pat<(addc GR32:$src1, imm:$src2),
808 (ADD32ri GR32:$src1, imm:$src2)>;
809def : Pat<(addc GR32:$src1, i32immSExt8:$src2),
810 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
811
812def : Pat<(addc GR64:$src1, GR64:$src2),
813 (ADD64rr GR64:$src1, GR64:$src2)>;
814def : Pat<(addc GR64:$src1, (load addr:$src2)),
815 (ADD64rm GR64:$src1, addr:$src2)>;
816def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
817 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
818def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
819 (ADD64ri32 GR64:$src1, imm:$src2)>;
820
821def : Pat<(subc GR32:$src1, GR32:$src2),
822 (SUB32rr GR32:$src1, GR32:$src2)>;
823def : Pat<(subc GR32:$src1, (load addr:$src2)),
824 (SUB32rm GR32:$src1, addr:$src2)>;
825def : Pat<(subc GR32:$src1, imm:$src2),
826 (SUB32ri GR32:$src1, imm:$src2)>;
827def : Pat<(subc GR32:$src1, i32immSExt8:$src2),
828 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
829
830def : Pat<(subc GR64:$src1, GR64:$src2),
831 (SUB64rr GR64:$src1, GR64:$src2)>;
832def : Pat<(subc GR64:$src1, (load addr:$src2)),
833 (SUB64rm GR64:$src1, addr:$src2)>;
834def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
835 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
836def : Pat<(subc GR64:$src1, imm:$src2),
837 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
838
839// Comparisons.
840
841// TEST R,R is smaller than CMP R,0
842def : Pat<(X86cmp GR8:$src1, 0),
843 (TEST8rr GR8:$src1, GR8:$src1)>;
844def : Pat<(X86cmp GR16:$src1, 0),
845 (TEST16rr GR16:$src1, GR16:$src1)>;
846def : Pat<(X86cmp GR32:$src1, 0),
847 (TEST32rr GR32:$src1, GR32:$src1)>;
848def : Pat<(X86cmp GR64:$src1, 0),
849 (TEST64rr GR64:$src1, GR64:$src1)>;
850
851// Conditional moves with folded loads with operands swapped and conditions
852// inverted.
853def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_B, EFLAGS),
854 (CMOVAE16rm GR16:$src2, addr:$src1)>;
855def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_B, EFLAGS),
856 (CMOVAE32rm GR32:$src2, addr:$src1)>;
857def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_AE, EFLAGS),
858 (CMOVB16rm GR16:$src2, addr:$src1)>;
859def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_AE, EFLAGS),
860 (CMOVB32rm GR32:$src2, addr:$src1)>;
861def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_E, EFLAGS),
862 (CMOVNE16rm GR16:$src2, addr:$src1)>;
863def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_E, EFLAGS),
864 (CMOVNE32rm GR32:$src2, addr:$src1)>;
865def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NE, EFLAGS),
866 (CMOVE16rm GR16:$src2, addr:$src1)>;
867def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NE, EFLAGS),
868 (CMOVE32rm GR32:$src2, addr:$src1)>;
869def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_BE, EFLAGS),
870 (CMOVA16rm GR16:$src2, addr:$src1)>;
871def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_BE, EFLAGS),
872 (CMOVA32rm GR32:$src2, addr:$src1)>;
873def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_A, EFLAGS),
874 (CMOVBE16rm GR16:$src2, addr:$src1)>;
875def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_A, EFLAGS),
876 (CMOVBE32rm GR32:$src2, addr:$src1)>;
877def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_L, EFLAGS),
878 (CMOVGE16rm GR16:$src2, addr:$src1)>;
879def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_L, EFLAGS),
880 (CMOVGE32rm GR32:$src2, addr:$src1)>;
881def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_GE, EFLAGS),
882 (CMOVL16rm GR16:$src2, addr:$src1)>;
883def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_GE, EFLAGS),
884 (CMOVL32rm GR32:$src2, addr:$src1)>;
885def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_LE, EFLAGS),
886 (CMOVG16rm GR16:$src2, addr:$src1)>;
887def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_LE, EFLAGS),
888 (CMOVG32rm GR32:$src2, addr:$src1)>;
889def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_G, EFLAGS),
890 (CMOVLE16rm GR16:$src2, addr:$src1)>;
891def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_G, EFLAGS),
892 (CMOVLE32rm GR32:$src2, addr:$src1)>;
893def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_P, EFLAGS),
894 (CMOVNP16rm GR16:$src2, addr:$src1)>;
895def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_P, EFLAGS),
896 (CMOVNP32rm GR32:$src2, addr:$src1)>;
897def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NP, EFLAGS),
898 (CMOVP16rm GR16:$src2, addr:$src1)>;
899def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NP, EFLAGS),
900 (CMOVP32rm GR32:$src2, addr:$src1)>;
901def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_S, EFLAGS),
902 (CMOVNS16rm GR16:$src2, addr:$src1)>;
903def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_S, EFLAGS),
904 (CMOVNS32rm GR32:$src2, addr:$src1)>;
905def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NS, EFLAGS),
906 (CMOVS16rm GR16:$src2, addr:$src1)>;
907def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NS, EFLAGS),
908 (CMOVS32rm GR32:$src2, addr:$src1)>;
909def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_O, EFLAGS),
910 (CMOVNO16rm GR16:$src2, addr:$src1)>;
911def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_O, EFLAGS),
912 (CMOVNO32rm GR32:$src2, addr:$src1)>;
913def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NO, EFLAGS),
914 (CMOVO16rm GR16:$src2, addr:$src1)>;
915def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NO, EFLAGS),
916 (CMOVO32rm GR32:$src2, addr:$src1)>;
917
918def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_B, EFLAGS),
919 (CMOVAE64rm GR64:$src2, addr:$src1)>;
920def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_AE, EFLAGS),
921 (CMOVB64rm GR64:$src2, addr:$src1)>;
922def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_E, EFLAGS),
923 (CMOVNE64rm GR64:$src2, addr:$src1)>;
924def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NE, EFLAGS),
925 (CMOVE64rm GR64:$src2, addr:$src1)>;
926def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_BE, EFLAGS),
927 (CMOVA64rm GR64:$src2, addr:$src1)>;
928def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_A, EFLAGS),
929 (CMOVBE64rm GR64:$src2, addr:$src1)>;
930def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_L, EFLAGS),
931 (CMOVGE64rm GR64:$src2, addr:$src1)>;
932def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_GE, EFLAGS),
933 (CMOVL64rm GR64:$src2, addr:$src1)>;
934def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_LE, EFLAGS),
935 (CMOVG64rm GR64:$src2, addr:$src1)>;
936def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_G, EFLAGS),
937 (CMOVLE64rm GR64:$src2, addr:$src1)>;
938def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_P, EFLAGS),
939 (CMOVNP64rm GR64:$src2, addr:$src1)>;
940def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NP, EFLAGS),
941 (CMOVP64rm GR64:$src2, addr:$src1)>;
942def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_S, EFLAGS),
943 (CMOVNS64rm GR64:$src2, addr:$src1)>;
944def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NS, EFLAGS),
945 (CMOVS64rm GR64:$src2, addr:$src1)>;
946def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_O, EFLAGS),
947 (CMOVNO64rm GR64:$src2, addr:$src1)>;
948def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NO, EFLAGS),
949 (CMOVO64rm GR64:$src2, addr:$src1)>;
950
951
952// zextload bool -> zextload byte
953def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
954def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
955def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
956def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
957
958// extload bool -> extload byte
959// When extloading from 16-bit and smaller memory locations into 64-bit
960// registers, use zero-extending loads so that the entire 64-bit register is
961// defined, avoiding partial-register updates.
962
963def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
964def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
965def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
966def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
967def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
968def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
969
970def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
971def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>;
972def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
973// For other extloads, use subregs, since the high contents of the register are
974// defined after an extload.
975def : Pat<(extloadi64i32 addr:$src),
976 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
977 sub_32bit)>;
978
979// anyext. Define these to do an explicit zero-extend to
980// avoid partial-register updates.
981def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>;
982def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
983
984// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
985def : Pat<(i32 (anyext GR16:$src)),
986 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
987
988def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>;
989def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
990def : Pat<(i64 (anyext GR32:$src)),
991 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
992
Chris Lattnerd8cc2722010-10-05 06:47:35 +0000993
994// Any instruction that defines a 32-bit result leaves the high half of the
995// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
996// be copying from a truncate. And x86's cmov doesn't do anything if the
997// condition is false. But any other 32-bit operation will zero-extend
998// up to 64 bits.
999def def32 : PatLeaf<(i32 GR32:$src), [{
1000 return N->getOpcode() != ISD::TRUNCATE &&
1001 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1002 N->getOpcode() != ISD::CopyFromReg &&
1003 N->getOpcode() != X86ISD::CMOV;
1004}]>;
1005
1006// In the case of a 32-bit def that is known to implicitly zero-extend,
1007// we can use a SUBREG_TO_REG.
1008def : Pat<(i64 (zext def32:$src)),
1009 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1010
Chris Lattner87be16a2010-10-05 06:04:14 +00001011//===----------------------------------------------------------------------===//
1012// Some peepholes
1013//===----------------------------------------------------------------------===//
1014
1015// Odd encoding trick: -128 fits into an 8-bit immediate field while
1016// +128 doesn't, so in this special case use a sub instead of an add.
1017def : Pat<(add GR16:$src1, 128),
1018 (SUB16ri8 GR16:$src1, -128)>;
1019def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1020 (SUB16mi8 addr:$dst, -128)>;
1021
1022def : Pat<(add GR32:$src1, 128),
1023 (SUB32ri8 GR32:$src1, -128)>;
1024def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1025 (SUB32mi8 addr:$dst, -128)>;
1026
1027def : Pat<(add GR64:$src1, 128),
1028 (SUB64ri8 GR64:$src1, -128)>;
1029def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1030 (SUB64mi8 addr:$dst, -128)>;
1031
1032// The same trick applies for 32-bit immediate fields in 64-bit
1033// instructions.
1034def : Pat<(add GR64:$src1, 0x0000000080000000),
1035 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1036def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1037 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1038
1039// Use a 32-bit and with implicit zero-extension instead of a 64-bit and if it
1040// has an immediate with at least 32 bits of leading zeros, to avoid needing to
1041// materialize that immediate in a register first.
1042def : Pat<(and GR64:$src, i64immZExt32:$imm),
1043 (SUBREG_TO_REG
1044 (i64 0),
1045 (AND32ri
1046 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1047 (i32 (GetLo32XForm imm:$imm))),
1048 sub_32bit)>;
1049
1050
1051// r & (2^16-1) ==> movz
1052def : Pat<(and GR32:$src1, 0xffff),
1053 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1054// r & (2^8-1) ==> movz
1055def : Pat<(and GR32:$src1, 0xff),
1056 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1057 GR32_ABCD)),
1058 sub_8bit))>,
1059 Requires<[In32BitMode]>;
1060// r & (2^8-1) ==> movz
1061def : Pat<(and GR16:$src1, 0xff),
1062 (MOVZX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1,
1063 GR16_ABCD)),
1064 sub_8bit))>,
1065 Requires<[In32BitMode]>;
1066
1067// r & (2^32-1) ==> movz
1068def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1069 (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1070// r & (2^16-1) ==> movz
1071def : Pat<(and GR64:$src, 0xffff),
1072 (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
1073// r & (2^8-1) ==> movz
1074def : Pat<(and GR64:$src, 0xff),
1075 (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
1076// r & (2^8-1) ==> movz
1077def : Pat<(and GR32:$src1, 0xff),
1078 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1079 Requires<[In64BitMode]>;
1080// r & (2^8-1) ==> movz
1081def : Pat<(and GR16:$src1, 0xff),
1082 (MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)))>,
1083 Requires<[In64BitMode]>;
1084
1085
1086// sext_inreg patterns
1087def : Pat<(sext_inreg GR32:$src, i16),
1088 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1089def : Pat<(sext_inreg GR32:$src, i8),
1090 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1091 GR32_ABCD)),
1092 sub_8bit))>,
1093 Requires<[In32BitMode]>;
1094def : Pat<(sext_inreg GR16:$src, i8),
1095 (MOVSX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1096 GR16_ABCD)),
1097 sub_8bit))>,
1098 Requires<[In32BitMode]>;
1099
1100def : Pat<(sext_inreg GR64:$src, i32),
1101 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1102def : Pat<(sext_inreg GR64:$src, i16),
1103 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1104def : Pat<(sext_inreg GR64:$src, i8),
1105 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1106def : Pat<(sext_inreg GR32:$src, i8),
1107 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1108 Requires<[In64BitMode]>;
1109def : Pat<(sext_inreg GR16:$src, i8),
1110 (MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, sub_8bit)))>,
1111 Requires<[In64BitMode]>;
1112
1113
1114// trunc patterns
1115def : Pat<(i16 (trunc GR32:$src)),
1116 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1117def : Pat<(i8 (trunc GR32:$src)),
1118 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1119 sub_8bit)>,
1120 Requires<[In32BitMode]>;
1121def : Pat<(i8 (trunc GR16:$src)),
1122 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1123 sub_8bit)>,
1124 Requires<[In32BitMode]>;
1125def : Pat<(i32 (trunc GR64:$src)),
1126 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1127def : Pat<(i16 (trunc GR64:$src)),
1128 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1129def : Pat<(i8 (trunc GR64:$src)),
1130 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1131def : Pat<(i8 (trunc GR32:$src)),
1132 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1133 Requires<[In64BitMode]>;
1134def : Pat<(i8 (trunc GR16:$src)),
1135 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1136 Requires<[In64BitMode]>;
1137
1138// h-register tricks
1139def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1140 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1141 sub_8bit_hi)>,
1142 Requires<[In32BitMode]>;
1143def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1144 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1145 sub_8bit_hi)>,
1146 Requires<[In32BitMode]>;
1147def : Pat<(srl GR16:$src, (i8 8)),
1148 (EXTRACT_SUBREG
1149 (MOVZX32rr8
1150 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1151 sub_8bit_hi)),
1152 sub_16bit)>,
1153 Requires<[In32BitMode]>;
1154def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1155 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1156 GR16_ABCD)),
1157 sub_8bit_hi))>,
1158 Requires<[In32BitMode]>;
1159def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1160 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1161 GR16_ABCD)),
1162 sub_8bit_hi))>,
1163 Requires<[In32BitMode]>;
1164def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1165 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1166 GR32_ABCD)),
1167 sub_8bit_hi))>,
1168 Requires<[In32BitMode]>;
1169def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1170 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1171 GR32_ABCD)),
1172 sub_8bit_hi))>,
1173 Requires<[In32BitMode]>;
1174
1175// h-register tricks.
1176// For now, be conservative on x86-64 and use an h-register extract only if the
1177// value is immediately zero-extended or stored, which are somewhat common
1178// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1179// from being allocated in the same instruction as the h register, as there's
1180// currently no way to describe this requirement to the register allocator.
1181
1182// h-register extract and zero-extend.
1183def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1184 (SUBREG_TO_REG
1185 (i64 0),
1186 (MOVZX32_NOREXrr8
1187 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1188 sub_8bit_hi)),
1189 sub_32bit)>;
1190def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1191 (MOVZX32_NOREXrr8
1192 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1193 sub_8bit_hi))>,
1194 Requires<[In64BitMode]>;
1195def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1196 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1197 GR32_ABCD)),
1198 sub_8bit_hi))>,
1199 Requires<[In64BitMode]>;
1200def : Pat<(srl GR16:$src, (i8 8)),
1201 (EXTRACT_SUBREG
1202 (MOVZX32_NOREXrr8
1203 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1204 sub_8bit_hi)),
1205 sub_16bit)>,
1206 Requires<[In64BitMode]>;
1207def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1208 (MOVZX32_NOREXrr8
1209 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1210 sub_8bit_hi))>,
1211 Requires<[In64BitMode]>;
1212def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1213 (MOVZX32_NOREXrr8
1214 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1215 sub_8bit_hi))>,
1216 Requires<[In64BitMode]>;
1217def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1218 (SUBREG_TO_REG
1219 (i64 0),
1220 (MOVZX32_NOREXrr8
1221 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1222 sub_8bit_hi)),
1223 sub_32bit)>;
1224def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1225 (SUBREG_TO_REG
1226 (i64 0),
1227 (MOVZX32_NOREXrr8
1228 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1229 sub_8bit_hi)),
1230 sub_32bit)>;
1231
1232// h-register extract and store.
1233def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1234 (MOV8mr_NOREX
1235 addr:$dst,
1236 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1237 sub_8bit_hi))>;
1238def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1239 (MOV8mr_NOREX
1240 addr:$dst,
1241 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1242 sub_8bit_hi))>,
1243 Requires<[In64BitMode]>;
1244def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1245 (MOV8mr_NOREX
1246 addr:$dst,
1247 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1248 sub_8bit_hi))>,
1249 Requires<[In64BitMode]>;
1250
1251
1252// (shl x, 1) ==> (add x, x)
1253def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1254def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1255def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1256def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1257
1258// (shl x (and y, 31)) ==> (shl x, y)
1259def : Pat<(shl GR8:$src1, (and CL, 31)),
1260 (SHL8rCL GR8:$src1)>;
1261def : Pat<(shl GR16:$src1, (and CL, 31)),
1262 (SHL16rCL GR16:$src1)>;
1263def : Pat<(shl GR32:$src1, (and CL, 31)),
1264 (SHL32rCL GR32:$src1)>;
1265def : Pat<(store (shl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1266 (SHL8mCL addr:$dst)>;
1267def : Pat<(store (shl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1268 (SHL16mCL addr:$dst)>;
1269def : Pat<(store (shl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1270 (SHL32mCL addr:$dst)>;
1271
1272def : Pat<(srl GR8:$src1, (and CL, 31)),
1273 (SHR8rCL GR8:$src1)>;
1274def : Pat<(srl GR16:$src1, (and CL, 31)),
1275 (SHR16rCL GR16:$src1)>;
1276def : Pat<(srl GR32:$src1, (and CL, 31)),
1277 (SHR32rCL GR32:$src1)>;
1278def : Pat<(store (srl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1279 (SHR8mCL addr:$dst)>;
1280def : Pat<(store (srl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1281 (SHR16mCL addr:$dst)>;
1282def : Pat<(store (srl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1283 (SHR32mCL addr:$dst)>;
1284
1285def : Pat<(sra GR8:$src1, (and CL, 31)),
1286 (SAR8rCL GR8:$src1)>;
1287def : Pat<(sra GR16:$src1, (and CL, 31)),
1288 (SAR16rCL GR16:$src1)>;
1289def : Pat<(sra GR32:$src1, (and CL, 31)),
1290 (SAR32rCL GR32:$src1)>;
1291def : Pat<(store (sra (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1292 (SAR8mCL addr:$dst)>;
1293def : Pat<(store (sra (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1294 (SAR16mCL addr:$dst)>;
1295def : Pat<(store (sra (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1296 (SAR32mCL addr:$dst)>;
1297
1298// (shl x (and y, 63)) ==> (shl x, y)
1299def : Pat<(shl GR64:$src1, (and CL, 63)),
1300 (SHL64rCL GR64:$src1)>;
1301def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1302 (SHL64mCL addr:$dst)>;
1303
1304def : Pat<(srl GR64:$src1, (and CL, 63)),
1305 (SHR64rCL GR64:$src1)>;
1306def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1307 (SHR64mCL addr:$dst)>;
1308
1309def : Pat<(sra GR64:$src1, (and CL, 63)),
1310 (SAR64rCL GR64:$src1)>;
1311def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1312 (SAR64mCL addr:$dst)>;
1313
1314
1315// (anyext (setcc_carry)) -> (setcc_carry)
1316def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1317 (SETB_C16r)>;
1318def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1319 (SETB_C32r)>;
1320def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1321 (SETB_C32r)>;
1322
1323// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1324let AddedComplexity = 5 in { // Try this before the selecting to OR
1325def : Pat<(or_is_add GR16:$src1, imm:$src2),
1326 (ADD16ri GR16:$src1, imm:$src2)>;
1327def : Pat<(or_is_add GR32:$src1, imm:$src2),
1328 (ADD32ri GR32:$src1, imm:$src2)>;
1329def : Pat<(or_is_add GR16:$src1, i16immSExt8:$src2),
1330 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1331def : Pat<(or_is_add GR32:$src1, i32immSExt8:$src2),
1332 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1333def : Pat<(or_is_add GR16:$src1, GR16:$src2),
1334 (ADD16rr GR16:$src1, GR16:$src2)>;
1335def : Pat<(or_is_add GR32:$src1, GR32:$src2),
1336 (ADD32rr GR32:$src1, GR32:$src2)>;
1337def : Pat<(or_is_add GR64:$src1, i64immSExt8:$src2),
1338 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1339def : Pat<(or_is_add GR64:$src1, i64immSExt32:$src2),
1340 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1341def : Pat<(or_is_add GR64:$src1, GR64:$src2),
1342 (ADD64rr GR64:$src1, GR64:$src2)>;
1343} // AddedComplexity
1344
1345//===----------------------------------------------------------------------===//
1346// EFLAGS-defining Patterns
1347//===----------------------------------------------------------------------===//
1348
1349// add reg, reg
1350def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1351def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1352def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1353
1354// add reg, mem
1355def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1356 (ADD8rm GR8:$src1, addr:$src2)>;
1357def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1358 (ADD16rm GR16:$src1, addr:$src2)>;
1359def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1360 (ADD32rm GR32:$src1, addr:$src2)>;
1361
1362// add reg, imm
1363def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1364def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1365def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1366def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1367 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1368def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1369 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1370
1371// sub reg, reg
1372def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1373def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1374def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1375
1376// sub reg, mem
1377def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1378 (SUB8rm GR8:$src1, addr:$src2)>;
1379def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1380 (SUB16rm GR16:$src1, addr:$src2)>;
1381def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1382 (SUB32rm GR32:$src1, addr:$src2)>;
1383
1384// sub reg, imm
1385def : Pat<(sub GR8:$src1, imm:$src2),
1386 (SUB8ri GR8:$src1, imm:$src2)>;
1387def : Pat<(sub GR16:$src1, imm:$src2),
1388 (SUB16ri GR16:$src1, imm:$src2)>;
1389def : Pat<(sub GR32:$src1, imm:$src2),
1390 (SUB32ri GR32:$src1, imm:$src2)>;
1391def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1392 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1393def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1394 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1395
1396// mul reg, reg
1397def : Pat<(mul GR16:$src1, GR16:$src2),
1398 (IMUL16rr GR16:$src1, GR16:$src2)>;
1399def : Pat<(mul GR32:$src1, GR32:$src2),
1400 (IMUL32rr GR32:$src1, GR32:$src2)>;
1401
1402// mul reg, mem
1403def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1404 (IMUL16rm GR16:$src1, addr:$src2)>;
1405def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1406 (IMUL32rm GR32:$src1, addr:$src2)>;
1407
1408// mul reg, imm
1409def : Pat<(mul GR16:$src1, imm:$src2),
1410 (IMUL16rri GR16:$src1, imm:$src2)>;
1411def : Pat<(mul GR32:$src1, imm:$src2),
1412 (IMUL32rri GR32:$src1, imm:$src2)>;
1413def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1414 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1415def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1416 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1417
1418// reg = mul mem, imm
1419def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1420 (IMUL16rmi addr:$src1, imm:$src2)>;
1421def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1422 (IMUL32rmi addr:$src1, imm:$src2)>;
1423def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1424 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1425def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1426 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1427
1428// Optimize multiply by 2 with EFLAGS result.
1429let AddedComplexity = 2 in {
1430def : Pat<(X86smul_flag GR16:$src1, 2), (ADD16rr GR16:$src1, GR16:$src1)>;
1431def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>;
1432}
1433
1434// Patterns for nodes that do not produce flags, for instructions that do.
1435
1436// addition
1437def : Pat<(add GR64:$src1, GR64:$src2),
1438 (ADD64rr GR64:$src1, GR64:$src2)>;
1439def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1440 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1441def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1442 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1443def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1444 (ADD64rm GR64:$src1, addr:$src2)>;
1445
1446// subtraction
1447def : Pat<(sub GR64:$src1, GR64:$src2),
1448 (SUB64rr GR64:$src1, GR64:$src2)>;
1449def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1450 (SUB64rm GR64:$src1, addr:$src2)>;
1451def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1452 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1453def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1454 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1455
1456// Multiply
1457def : Pat<(mul GR64:$src1, GR64:$src2),
1458 (IMUL64rr GR64:$src1, GR64:$src2)>;
1459def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1460 (IMUL64rm GR64:$src1, addr:$src2)>;
1461def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1462 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1463def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1464 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1465def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1466 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1467def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1468 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1469
1470// Increment reg.
1471def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>;
1472def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
1473def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1474def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
1475def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1476def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1477
1478// Decrement reg.
1479def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>;
1480def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
1481def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1482def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
1483def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1484def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1485
1486// or reg/reg.
1487def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1488def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1489def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1490def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1491
1492// or reg/mem
1493def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1494 (OR8rm GR8:$src1, addr:$src2)>;
1495def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1496 (OR16rm GR16:$src1, addr:$src2)>;
1497def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1498 (OR32rm GR32:$src1, addr:$src2)>;
1499def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1500 (OR64rm GR64:$src1, addr:$src2)>;
1501
1502// or reg/imm
1503def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1504def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1505def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1506def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1507 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1508def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1509 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1510def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1511 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1512def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1513 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1514
1515// xor reg/reg
1516def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1517def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1518def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1519def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1520
1521// xor reg/mem
1522def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1523 (XOR8rm GR8:$src1, addr:$src2)>;
1524def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1525 (XOR16rm GR16:$src1, addr:$src2)>;
1526def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1527 (XOR32rm GR32:$src1, addr:$src2)>;
1528def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1529 (XOR64rm GR64:$src1, addr:$src2)>;
1530
1531// xor reg/imm
1532def : Pat<(xor GR8:$src1, imm:$src2),
1533 (XOR8ri GR8:$src1, imm:$src2)>;
1534def : Pat<(xor GR16:$src1, imm:$src2),
1535 (XOR16ri GR16:$src1, imm:$src2)>;
1536def : Pat<(xor GR32:$src1, imm:$src2),
1537 (XOR32ri GR32:$src1, imm:$src2)>;
1538def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1539 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1540def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1541 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1542def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1543 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1544def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1545 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1546
1547// and reg/reg
1548def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1549def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1550def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1551def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1552
1553// and reg/mem
1554def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1555 (AND8rm GR8:$src1, addr:$src2)>;
1556def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1557 (AND16rm GR16:$src1, addr:$src2)>;
1558def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1559 (AND32rm GR32:$src1, addr:$src2)>;
1560def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1561 (AND64rm GR64:$src1, addr:$src2)>;
1562
1563// and reg/imm
1564def : Pat<(and GR8:$src1, imm:$src2),
1565 (AND8ri GR8:$src1, imm:$src2)>;
1566def : Pat<(and GR16:$src1, imm:$src2),
1567 (AND16ri GR16:$src1, imm:$src2)>;
1568def : Pat<(and GR32:$src1, imm:$src2),
1569 (AND32ri GR32:$src1, imm:$src2)>;
1570def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1571 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1572def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1573 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1574def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1575 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1576def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1577 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
Chris Lattner87be16a2010-10-05 06:04:14 +00001578