blob: d783f89fb2abeb8b87852103e6c62c9d45824ce4 [file] [log] [blame]
Misha Brukmancd603132003-06-02 03:28:00 +00001//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner40ead952002-12-02 21:24:12 +00009//
10// This file contains the pass that transforms the X86 machine instructions into
11// actual executable machine code.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattnercb533582003-08-03 21:14:38 +000015#define DEBUG_TYPE "jit"
Chris Lattner40ead952002-12-02 21:24:12 +000016#include "X86TargetMachine.h"
Chris Lattnerea1ddab2002-12-03 06:34:06 +000017#include "X86.h"
Chris Lattner40ead952002-12-02 21:24:12 +000018#include "llvm/PassManager.h"
19#include "llvm/CodeGen/MachineCodeEmitter.h"
Chris Lattner5ae99fe2002-12-28 20:24:48 +000020#include "llvm/CodeGen/MachineFunctionPass.h"
Chris Lattner76041ce2002-12-02 21:44:34 +000021#include "llvm/CodeGen/MachineInstr.h"
Chris Lattnerc01d1232003-10-20 03:42:58 +000022#include "llvm/Function.h"
Chris Lattnera11136b2003-08-01 22:21:34 +000023#include "Support/Debug.h"
Chris Lattner302de592003-06-06 04:00:05 +000024#include "Support/Statistic.h"
John Criswell7a73b802003-06-30 21:59:07 +000025#include "Config/alloca.h"
Chris Lattner65b05ce2003-12-12 07:11:18 +000026using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000027
Chris Lattner40ead952002-12-02 21:24:12 +000028namespace {
Chris Lattner302de592003-06-06 04:00:05 +000029 Statistic<>
30 NumEmitted("x86-emitter", "Number of machine instructions emitted");
31
Chris Lattner04b0b302003-06-01 23:23:50 +000032 class JITResolver {
33 MachineCodeEmitter &MCE;
34
35 // LazyCodeGenMap - Keep track of call sites for functions that are to be
36 // lazily resolved.
37 std::map<unsigned, Function*> LazyCodeGenMap;
38
39 // LazyResolverMap - Keep track of the lazy resolver created for a
40 // particular function so that we can reuse them if necessary.
41 std::map<Function*, unsigned> LazyResolverMap;
42 public:
43 JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
44 unsigned getLazyResolver(Function *F);
45 unsigned addFunctionReference(unsigned Address, Function *F);
46
47 private:
48 unsigned emitStubForFunction(Function *F);
49 static void CompilationCallback();
50 unsigned resolveFunctionReference(unsigned RetAddr);
51 };
52
Chris Lattner28289702003-12-20 02:03:14 +000053 static JITResolver &getResolver(MachineCodeEmitter &MCE) {
54 static JITResolver *TheJITResolver = 0;
55 if (TheJITResolver == 0)
56 TheJITResolver = new JITResolver(MCE);
57 return *TheJITResolver;
58 }
Chris Lattner04b0b302003-06-01 23:23:50 +000059}
60
Chris Lattner28289702003-12-20 02:03:14 +000061
Chris Lattner1e60a912003-12-20 01:22:19 +000062void *X86JITInfo::getJITStubForFunction(Function *F, MachineCodeEmitter &MCE) {
Chris Lattner28289702003-12-20 02:03:14 +000063 return (void*)((unsigned long)getResolver(MCE).getLazyResolver(F));
Chris Lattner65b05ce2003-12-12 07:11:18 +000064}
Chris Lattner04b0b302003-06-01 23:23:50 +000065
Chris Lattner1e60a912003-12-20 01:22:19 +000066void X86JITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
67 char *OldByte = (char *) Old;
68 *OldByte++ = 0xE9; // Emit JMP opcode.
69 int32_t *OldWord = (int32_t *) OldByte;
70 int32_t NewAddr = (intptr_t) New;
71 int32_t OldAddr = (intptr_t) OldWord;
72 *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code.
73}
74
Chris Lattner04b0b302003-06-01 23:23:50 +000075/// addFunctionReference - This method is called when we need to emit the
76/// address of a function that has not yet been emitted, so we don't know the
77/// address. Instead, we emit a call to the CompilationCallback method, and
78/// keep track of where we are.
79///
80unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
81 LazyCodeGenMap[Address] = F;
82 return (intptr_t)&JITResolver::CompilationCallback;
83}
84
85unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
86 std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
87 assert(I != LazyCodeGenMap.end() && "Not in map!");
88 Function *F = I->second;
89 LazyCodeGenMap.erase(I);
90 return MCE.forceCompilationOf(F);
91}
92
93unsigned JITResolver::getLazyResolver(Function *F) {
94 std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
95 if (I != LazyResolverMap.end() && I->first == F) return I->second;
96
97//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
98
99 unsigned Stub = emitStubForFunction(F);
100 LazyResolverMap.insert(I, std::make_pair(F, Stub));
101 return Stub;
102}
103
104void JITResolver::CompilationCallback() {
105 unsigned *StackPtr = (unsigned*)__builtin_frame_address(0);
Misha Brukmanbc80b222003-06-02 04:13:58 +0000106 unsigned RetAddr = (unsigned)(intptr_t)__builtin_return_address(0);
Chris Lattner04b0b302003-06-01 23:23:50 +0000107 assert(StackPtr[1] == RetAddr &&
108 "Could not find return address on the stack!");
Chris Lattner30d002b2003-06-06 18:25:33 +0000109
110 // It's a stub if there is an interrupt marker after the call...
111 bool isStub = ((unsigned char*)(intptr_t)RetAddr)[0] == 0xCD;
Chris Lattner04b0b302003-06-01 23:23:50 +0000112
Chris Lattner302de592003-06-06 04:00:05 +0000113 // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame
114 // pointer elimination has been performed. Having a variable sized alloca
115 // disables frame pointer elimination currently, even if it's dead. This is a
116 // gross hack.
117 alloca(10+isStub);
118 // FIXME FIXME FIXME FIXME
119
Chris Lattner04b0b302003-06-01 23:23:50 +0000120 // The call instruction should have pushed the return value onto the stack...
121 RetAddr -= 4; // Backtrack to the reference itself...
122
123#if 0
124 DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
125 << " ESP=0x" << (unsigned)StackPtr << std::dec
126 << ": Resolving call to function: "
127 << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
128#endif
129
130 // Sanity check to make sure this really is a call instruction...
Chris Lattner30d002b2003-06-06 18:25:33 +0000131 assert(((unsigned char*)(intptr_t)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000132
Chris Lattner28289702003-12-20 02:03:14 +0000133 JITResolver &JR = getResolver(*(MachineCodeEmitter*)0);
134 unsigned NewVal = JR.resolveFunctionReference(RetAddr);
Chris Lattner04b0b302003-06-01 23:23:50 +0000135
136 // Rewrite the call target... so that we don't fault every time we execute
137 // the call.
Chris Lattner30d002b2003-06-06 18:25:33 +0000138 *(unsigned*)(intptr_t)RetAddr = NewVal-RetAddr-4;
Chris Lattner04b0b302003-06-01 23:23:50 +0000139
140 if (isStub) {
141 // If this is a stub, rewrite the call into an unconditional branch
142 // instruction so that two return addresses are not pushed onto the stack
143 // when the requested function finally gets called. This also makes the
144 // 0xCD byte (interrupt) dead, so the marker doesn't effect anything.
Chris Lattner30d002b2003-06-06 18:25:33 +0000145 ((unsigned char*)(intptr_t)RetAddr)[-1] = 0xE9;
Chris Lattner04b0b302003-06-01 23:23:50 +0000146 }
147
148 // Change the return address to reexecute the call instruction...
149 StackPtr[1] -= 5;
150}
151
152/// emitStubForFunction - This method is used by the JIT when it needs to emit
153/// the address of a function for a function whose code has not yet been
154/// generated. In order to do this, it generates a stub which jumps to the lazy
155/// function compiler, which will eventually get fixed to call the function
156/// directly.
157///
158unsigned JITResolver::emitStubForFunction(Function *F) {
159 MCE.startFunctionStub(*F, 6);
160 MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
161
162 unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F);
163 MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
164
165 MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
166 return (intptr_t)MCE.finishFunctionStub(*F);
167}
168
169
170
171namespace {
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000172 class Emitter : public MachineFunctionPass {
173 const X86InstrInfo *II;
Chris Lattner8f04b092002-12-02 21:56:18 +0000174 MachineCodeEmitter &MCE;
Chris Lattnerdee12632003-07-26 23:06:00 +0000175 std::map<const BasicBlock*, unsigned> BasicBlockAddrs;
176 std::vector<std::pair<const BasicBlock*, unsigned> > BBRefs;
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000177 public:
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000178 Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {}
Chris Lattner40ead952002-12-02 21:24:12 +0000179
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000180 bool runOnMachineFunction(MachineFunction &MF);
Chris Lattner76041ce2002-12-02 21:44:34 +0000181
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000182 virtual const char *getPassName() const {
183 return "X86 Machine Code Emitter";
184 }
185
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000186 private:
Chris Lattner76041ce2002-12-02 21:44:34 +0000187 void emitBasicBlock(MachineBasicBlock &MBB);
188 void emitInstruction(MachineInstr &MI);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000189
Chris Lattner04b0b302003-06-01 23:23:50 +0000190 void emitPCRelativeBlockAddress(BasicBlock *BB);
191 void emitMaybePCRelativeValue(unsigned Address, bool isPCRelative);
192 void emitGlobalAddressForCall(GlobalValue *GV);
193 void emitGlobalAddressForPtr(GlobalValue *GV);
194
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000195 void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
196 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
197 void emitConstant(unsigned Val, unsigned Size);
198
199 void emitMemModRMByte(const MachineInstr &MI,
200 unsigned Op, unsigned RegOpcodeField);
201
Chris Lattner40ead952002-12-02 21:24:12 +0000202 };
203}
204
Chris Lattner40ead952002-12-02 21:24:12 +0000205/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
Brian Gaeke45f0b6d2003-10-16 23:45:05 +0000206/// machine code emitted. This uses a MachineCodeEmitter object to handle
Chris Lattner40ead952002-12-02 21:24:12 +0000207/// actually outputting the machine code and resolving things like the address
208/// of functions. This method should returns true if machine code emission is
209/// not supported.
210///
Brian Gaeke8844a0b2003-08-13 18:17:27 +0000211bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
Chris Lattner40ead952002-12-02 21:24:12 +0000212 MachineCodeEmitter &MCE) {
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000213 PM.add(new Emitter(MCE));
Chris Lattner40ead952002-12-02 21:24:12 +0000214 return false;
215}
Chris Lattner76041ce2002-12-02 21:44:34 +0000216
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000217bool Emitter::runOnMachineFunction(MachineFunction &MF) {
218 II = &((X86TargetMachine&)MF.getTarget()).getInstrInfo();
Chris Lattner76041ce2002-12-02 21:44:34 +0000219
220 MCE.startFunction(MF);
Chris Lattnere831b6b2003-01-13 00:33:59 +0000221 MCE.emitConstantPool(MF.getConstantPool());
Chris Lattner76041ce2002-12-02 21:44:34 +0000222 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
223 emitBasicBlock(*I);
224 MCE.finishFunction(MF);
Chris Lattner04b0b302003-06-01 23:23:50 +0000225
226 // Resolve all forward branches now...
227 for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
228 unsigned Location = BasicBlockAddrs[BBRefs[i].first];
229 unsigned Ref = BBRefs[i].second;
Chris Lattner30d002b2003-06-06 18:25:33 +0000230 *(unsigned*)(intptr_t)Ref = Location-Ref-4;
Chris Lattner04b0b302003-06-01 23:23:50 +0000231 }
232 BBRefs.clear();
233 BasicBlockAddrs.clear();
Chris Lattner76041ce2002-12-02 21:44:34 +0000234 return false;
235}
236
237void Emitter::emitBasicBlock(MachineBasicBlock &MBB) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000238 if (uint64_t Addr = MCE.getCurrentPCValue())
239 BasicBlockAddrs[MBB.getBasicBlock()] = Addr;
240
Chris Lattner76041ce2002-12-02 21:44:34 +0000241 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
242 emitInstruction(**I);
243}
244
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000245
Chris Lattner04b0b302003-06-01 23:23:50 +0000246/// emitPCRelativeBlockAddress - This method emits the PC relative address of
247/// the specified basic block, or if the basic block hasn't been emitted yet
248/// (because this is a forward branch), it keeps track of the information
249/// necessary to resolve this address later (and emits a dummy value).
250///
251void Emitter::emitPCRelativeBlockAddress(BasicBlock *BB) {
252 // FIXME: Emit backward branches directly
253 BBRefs.push_back(std::make_pair(BB, MCE.getCurrentPCValue()));
254 MCE.emitWord(0); // Emit a dummy value
255}
256
257/// emitMaybePCRelativeValue - Emit a 32-bit address which may be PC relative.
258///
259void Emitter::emitMaybePCRelativeValue(unsigned Address, bool isPCRelative) {
260 if (isPCRelative)
261 MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
262 else
263 MCE.emitWord(Address);
264}
265
266/// emitGlobalAddressForCall - Emit the specified address to the code stream
267/// assuming this is part of a function call, which is PC relative.
268///
269void Emitter::emitGlobalAddressForCall(GlobalValue *GV) {
270 // Get the address from the backend...
271 unsigned Address = MCE.getGlobalValueAddress(GV);
272
Chris Lattner04b0b302003-06-01 23:23:50 +0000273 if (Address == 0) {
274 // FIXME: this is JIT specific!
Chris Lattner28289702003-12-20 02:03:14 +0000275 Address = getResolver(MCE).addFunctionReference(MCE.getCurrentPCValue(),
276 cast<Function>(GV));
Chris Lattner04b0b302003-06-01 23:23:50 +0000277 }
278 emitMaybePCRelativeValue(Address, true);
279}
280
281/// emitGlobalAddress - Emit the specified address to the code stream assuming
282/// this is part of a "take the address of a global" instruction, which is not
283/// PC relative.
284///
285void Emitter::emitGlobalAddressForPtr(GlobalValue *GV) {
286 // Get the address from the backend...
287 unsigned Address = MCE.getGlobalValueAddress(GV);
288
289 // If the machine code emitter doesn't know what the address IS yet, we have
290 // to take special measures.
291 //
292 if (Address == 0) {
293 // FIXME: this is JIT specific!
Chris Lattner28289702003-12-20 02:03:14 +0000294 Address = getResolver(MCE).getLazyResolver((Function*)GV);
Chris Lattner04b0b302003-06-01 23:23:50 +0000295 }
296
297 emitMaybePCRelativeValue(Address, false);
298}
299
300
301
Chris Lattnerff3261a2003-06-03 15:31:23 +0000302/// N86 namespace - Native X86 Register numbers... used by X86 backend.
303///
304namespace N86 {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000305 enum {
306 EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
307 };
308}
309
310
311// getX86RegNum - This function maps LLVM register identifiers to their X86
312// specific numbering, which is used in various places encoding instructions.
313//
314static unsigned getX86RegNum(unsigned RegNo) {
315 switch(RegNo) {
316 case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
317 case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
318 case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
319 case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
320 case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
321 case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
322 case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
323 case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000324
325 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
326 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
327 return RegNo-X86::ST0;
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000328 default:
329 assert(RegNo >= MRegisterInfo::FirstVirtualRegister &&
330 "Unknown physical register!");
331 assert(0 && "Register allocator hasn't allocated reg correctly yet!");
332 return 0;
333 }
334}
335
336inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
337 unsigned RM) {
338 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
339 return RM | (RegOpcode << 3) | (Mod << 6);
340}
341
342void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
343 MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
344}
345
346void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
347 // SIB byte is in the same format as the ModRMByte...
348 MCE.emitByte(ModRMByte(SS, Index, Base));
349}
350
351void Emitter::emitConstant(unsigned Val, unsigned Size) {
352 // Output the constant in little endian byte order...
353 for (unsigned i = 0; i != Size; ++i) {
354 MCE.emitByte(Val & 255);
355 Val >>= 8;
356 }
357}
358
359static bool isDisp8(int Value) {
360 return Value == (signed char)Value;
361}
362
363void Emitter::emitMemModRMByte(const MachineInstr &MI,
364 unsigned Op, unsigned RegOpcodeField) {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000365 const MachineOperand &Disp = MI.getOperand(Op+3);
366 if (MI.getOperand(Op).isConstantPoolIndex()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000367 // Emit a direct address reference [disp32] where the displacement of the
368 // constant pool entry is controlled by the MCE.
Chris Lattnere831b6b2003-01-13 00:33:59 +0000369 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
370 unsigned Index = MI.getOperand(Op).getConstantPoolIndex();
Chris Lattner04b0b302003-06-01 23:23:50 +0000371 unsigned Address = MCE.getConstantPoolEntryAddress(Index);
372 MCE.emitWord(Address+Disp.getImmedValue());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000373 return;
374 }
375
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000376 const MachineOperand &BaseReg = MI.getOperand(Op);
377 const MachineOperand &Scale = MI.getOperand(Op+1);
378 const MachineOperand &IndexReg = MI.getOperand(Op+2);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000379
380 // Is a SIB byte needed?
381 if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) {
382 if (BaseReg.getReg() == 0) { // Just a displacement?
383 // Emit special case [disp32] encoding
384 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
385 emitConstant(Disp.getImmedValue(), 4);
386 } else {
387 unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
388 if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) {
389 // Emit simple indirect register encoding... [EAX] f.e.
390 MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
391 } else if (isDisp8(Disp.getImmedValue())) {
392 // Emit the disp8 encoding... [REG+disp8]
393 MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
394 emitConstant(Disp.getImmedValue(), 1);
395 } else {
396 // Emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner20671842002-12-13 05:05:05 +0000397 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000398 emitConstant(Disp.getImmedValue(), 4);
399 }
400 }
401
402 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
403 assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
404
405 bool ForceDisp32 = false;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000406 bool ForceDisp8 = false;
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000407 if (BaseReg.getReg() == 0) {
408 // If there is no base register, we emit the special case SIB byte with
409 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
410 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
411 ForceDisp32 = true;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000412 } else if (Disp.getImmedValue() == 0 && BaseReg.getReg() != X86::EBP) {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000413 // Emit no displacement ModR/M byte
414 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
415 } else if (isDisp8(Disp.getImmedValue())) {
416 // Emit the disp8 encoding...
417 MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
Brian Gaeke95780cc2002-12-13 07:56:18 +0000418 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000419 } else {
420 // Emit the normal disp32 encoding...
421 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
422 }
423
424 // Calculate what the SS field value should be...
425 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
426 unsigned SS = SSTable[Scale.getImmedValue()];
427
428 if (BaseReg.getReg() == 0) {
429 // Handle the SIB byte for the case where there is no base. The
430 // displacement has already been output.
431 assert(IndexReg.getReg() && "Index register must be specified!");
432 emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
433 } else {
434 unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000435 unsigned IndexRegNo;
436 if (IndexReg.getReg())
437 IndexRegNo = getX86RegNum(IndexReg.getReg());
438 else
439 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000440 emitSIBByte(SS, IndexRegNo, BaseRegNo);
441 }
442
443 // Do we need to output a displacement?
Brian Gaeke95780cc2002-12-13 07:56:18 +0000444 if (Disp.getImmedValue() != 0 || ForceDisp32 || ForceDisp8) {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000445 if (!ForceDisp32 && isDisp8(Disp.getImmedValue()))
446 emitConstant(Disp.getImmedValue(), 1);
447 else
448 emitConstant(Disp.getImmedValue(), 4);
449 }
450 }
451}
452
Chris Lattner04b0b302003-06-01 23:23:50 +0000453static unsigned sizeOfPtr(const TargetInstrDescriptor &Desc) {
Chris Lattnera0f38c82002-12-13 03:51:55 +0000454 switch (Desc.TSFlags & X86II::ArgMask) {
455 case X86II::Arg8: return 1;
456 case X86II::Arg16: return 2;
457 case X86II::Arg32: return 4;
Chris Lattner5ada8df2002-12-25 05:09:21 +0000458 case X86II::ArgF32: return 4;
459 case X86II::ArgF64: return 8;
460 case X86II::ArgF80: return 10;
Chris Lattnera6a382c2002-12-13 03:50:13 +0000461 default: assert(0 && "Memory size not set!");
Chris Lattnerdf642e12002-12-20 04:12:48 +0000462 return 0;
Misha Brukman5000e432002-12-13 02:13:15 +0000463 }
464}
465
Chris Lattner76041ce2002-12-02 21:44:34 +0000466void Emitter::emitInstruction(MachineInstr &MI) {
Chris Lattner302de592003-06-06 04:00:05 +0000467 NumEmitted++; // Keep track of the # of mi's emitted
468
Chris Lattner76041ce2002-12-02 21:44:34 +0000469 unsigned Opcode = MI.getOpcode();
Chris Lattner3501fea2003-01-14 22:00:31 +0000470 const TargetInstrDescriptor &Desc = II->get(Opcode);
Chris Lattner76041ce2002-12-02 21:44:34 +0000471
Misha Brukman5560c9d2003-08-18 14:43:39 +0000472 // Emit instruction prefixes if necessary
Chris Lattner76041ce2002-12-02 21:44:34 +0000473 if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size...
Chris Lattner5ada8df2002-12-25 05:09:21 +0000474
475 switch (Desc.TSFlags & X86II::Op0Mask) {
476 case X86II::TB:
477 MCE.emitByte(0x0F); // Two-byte opcode prefix
478 break;
479 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
480 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
Chris Lattnere831b6b2003-01-13 00:33:59 +0000481 MCE.emitByte(0xD8+
482 (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8)
483 >> X86II::Op0Shift));
Chris Lattner5ada8df2002-12-25 05:09:21 +0000484 break; // Two-byte opcode prefix
Chris Lattnere831b6b2003-01-13 00:33:59 +0000485 default: assert(0 && "Invalid prefix!");
486 case 0: break; // No prefix!
Chris Lattner5ada8df2002-12-25 05:09:21 +0000487 }
Chris Lattner76041ce2002-12-02 21:44:34 +0000488
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000489 unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode);
Chris Lattner76041ce2002-12-02 21:44:34 +0000490 switch (Desc.TSFlags & X86II::FormMask) {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000491 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
Chris Lattner5ada8df2002-12-25 05:09:21 +0000492 case X86II::Pseudo:
Chris Lattner02beda12003-08-05 00:48:47 +0000493 if (Opcode != X86::IMPLICIT_USE && Opcode != X86::IMPLICIT_DEF)
Chris Lattner9dedbcc2003-05-06 21:31:47 +0000494 std::cerr << "X86 Machine Code Emitter: No 'form', not emitting: " << MI;
Chris Lattner5ada8df2002-12-25 05:09:21 +0000495 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000496
Chris Lattner76041ce2002-12-02 21:44:34 +0000497 case X86II::RawFrm:
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000498 MCE.emitByte(BaseOpcode);
Chris Lattner8f04b092002-12-02 21:56:18 +0000499 if (MI.getNumOperands() == 1) {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000500 MachineOperand &MO = MI.getOperand(0);
501 if (MO.isPCRelativeDisp()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000502 // Conditional branch... FIXME: this should use an MBB destination!
503 emitPCRelativeBlockAddress(cast<BasicBlock>(MO.getVRegValue()));
Chris Lattnere831b6b2003-01-13 00:33:59 +0000504 } else if (MO.isGlobalAddress()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000505 assert(MO.isPCRelative() && "Call target is not PC Relative?");
506 emitGlobalAddressForCall(MO.getGlobal());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000507 } else if (MO.isExternalSymbol()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000508 unsigned Address = MCE.getGlobalValueAddress(MO.getSymbolName());
509 assert(Address && "Unknown external symbol!");
510 emitMaybePCRelativeValue(Address, MO.isPCRelative());
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000511 } else {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000512 assert(0 && "Unknown RawFrm operand!");
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000513 }
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000514 }
515 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000516
517 case X86II::AddRegFrm:
518 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg()));
519 if (MI.getNumOperands() == 2) {
520 MachineOperand &MO1 = MI.getOperand(1);
521 if (MO1.isImmediate() || MO1.getVRegValueOrNull() ||
522 MO1.isGlobalAddress() || MO1.isExternalSymbol()) {
523 unsigned Size = sizeOfPtr(Desc);
524 if (Value *V = MO1.getVRegValueOrNull()) {
525 assert(Size == 4 && "Don't know how to emit non-pointer values!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000526 emitGlobalAddressForPtr(cast<GlobalValue>(V));
Chris Lattnere831b6b2003-01-13 00:33:59 +0000527 } else if (MO1.isGlobalAddress()) {
528 assert(Size == 4 && "Don't know how to emit non-pointer values!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000529 assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?");
530 emitGlobalAddressForPtr(MO1.getGlobal());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000531 } else if (MO1.isExternalSymbol()) {
532 assert(Size == 4 && "Don't know how to emit non-pointer values!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000533
534 unsigned Address = MCE.getGlobalValueAddress(MO1.getSymbolName());
535 assert(Address && "Unknown external symbol!");
536 emitMaybePCRelativeValue(Address, MO1.isPCRelative());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000537 } else {
538 emitConstant(MO1.getImmedValue(), Size);
539 }
540 }
541 }
542 break;
543
544 case X86II::MRMDestReg: {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000545 MCE.emitByte(BaseOpcode);
Chris Lattnere831b6b2003-01-13 00:33:59 +0000546 MachineOperand &SrcOp = MI.getOperand(1+II->isTwoAddrInstr(Opcode));
547 emitRegModRMByte(MI.getOperand(0).getReg(), getX86RegNum(SrcOp.getReg()));
548 if (MI.getNumOperands() == 4)
549 emitConstant(MI.getOperand(3).getImmedValue(), sizeOfPtr(Desc));
Chris Lattner9dedbcc2003-05-06 21:31:47 +0000550 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000551 }
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000552 case X86II::MRMDestMem:
553 MCE.emitByte(BaseOpcode);
554 emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg()));
555 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000556
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000557 case X86II::MRMSrcReg:
558 MCE.emitByte(BaseOpcode);
Chris Lattnerc01d1232003-10-20 03:42:58 +0000559
560 if (MI.getNumOperands() == 2) {
561 emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(),
562 getX86RegNum(MI.getOperand(0).getReg()));
563 } else if (MI.getOperand(2).isImmediate()) {
564 emitRegModRMByte(MI.getOperand(1).getReg(),
565 getX86RegNum(MI.getOperand(0).getReg()));
566
567 emitConstant(MI.getOperand(2).getImmedValue(), sizeOfPtr(Desc));
568 } else {
569 emitRegModRMByte(MI.getOperand(2).getReg(),
570 getX86RegNum(MI.getOperand(0).getReg()));
571 }
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000572 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000573
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000574 case X86II::MRMSrcMem:
575 MCE.emitByte(BaseOpcode);
576 emitMemModRMByte(MI, MI.getNumOperands()-4,
577 getX86RegNum(MI.getOperand(0).getReg()));
578 break;
579
580 case X86II::MRMS0r: case X86II::MRMS1r:
581 case X86II::MRMS2r: case X86II::MRMS3r:
582 case X86II::MRMS4r: case X86II::MRMS5r:
583 case X86II::MRMS6r: case X86II::MRMS7r:
584 MCE.emitByte(BaseOpcode);
585 emitRegModRMByte(MI.getOperand(0).getReg(),
586 (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r);
587
Chris Lattnerd9096832002-12-15 08:01:39 +0000588 if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) {
Misha Brukman5000e432002-12-13 02:13:15 +0000589 unsigned Size = sizeOfPtr(Desc);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000590 emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), Size);
591 }
592 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000593
594 case X86II::MRMS0m: case X86II::MRMS1m:
595 case X86II::MRMS2m: case X86II::MRMS3m:
596 case X86II::MRMS4m: case X86II::MRMS5m:
597 case X86II::MRMS6m: case X86II::MRMS7m:
598 MCE.emitByte(BaseOpcode);
599 emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0m);
600
601 if (MI.getNumOperands() == 5) {
602 unsigned Size = sizeOfPtr(Desc);
603 emitConstant(MI.getOperand(4).getImmedValue(), Size);
604 }
605 break;
Chris Lattner76041ce2002-12-02 21:44:34 +0000606 }
607}