blob: bc4a7461d1d6a7b936b3e2a2e5c4250800fafb3d [file] [log] [blame]
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +00001//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
Evan Cheng559806f2006-01-27 08:10:46 +000018#include "X86Subtarget.h"
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000019#include "llvm/Target/TargetLowering.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21
22namespace llvm {
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000023 namespace X86ISD {
Evan Chengd9558e02006-01-06 00:43:03 +000024 // X86 Specific DAG Nodes
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000025 enum NodeType {
26 // Start the numbering where the builtin ops leave off.
Evan Cheng7df96d62005-12-17 01:21:05 +000027 FIRST_NUMBER = ISD::BUILTIN_OP_END+X86::INSTRUCTION_LIST_END,
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000028
Evan Chenge3413162006-01-09 18:33:28 +000029 /// SHLD, SHRD - Double shift instructions. These correspond to
30 /// X86::SHLDxx and X86::SHRDxx instructions.
31 SHLD,
32 SHRD,
33
Evan Chengef6ffb12006-01-31 03:14:29 +000034 /// FAND - Bitwise logical AND of floating point values. This corresponds
35 /// to X86::ANDPS or X86::ANDPD.
36 FAND,
37
Evan Cheng223547a2006-01-31 22:28:30 +000038 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
39 /// to X86::XORPS or X86::XORPD.
40 FXOR,
41
Evan Chenge3de85b2006-02-04 02:20:30 +000042 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
43 /// integer source in memory and FP reg result. This corresponds to the
44 /// X86::FILD*m instructions. It has three inputs (token chain, address,
45 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
46 /// also produces a flag).
Evan Chenga3195e82006-01-12 22:54:21 +000047 FILD,
Evan Chenge3de85b2006-02-04 02:20:30 +000048 FILD_FLAG,
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000049
50 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
51 /// integer destination in memory and a FP reg source. This corresponds
52 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
Evan Chenga3195e82006-01-12 22:54:21 +000053 /// has two inputs (token chain and address) and two outputs (int value and
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000054 /// token chain).
55 FP_TO_INT16_IN_MEM,
56 FP_TO_INT32_IN_MEM,
57 FP_TO_INT64_IN_MEM,
58
Evan Chengb077b842005-12-21 02:39:21 +000059 /// FLD - This instruction implements an extending load to FP stack slots.
60 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
Evan Cheng38bcbaf2005-12-23 07:31:11 +000061 /// operand, ptr to load from, and a ValueType node indicating the type
62 /// to load to.
Evan Chengb077b842005-12-21 02:39:21 +000063 FLD,
64
Evan Chengd90eb7f2006-01-05 00:27:02 +000065 /// FST - This instruction implements a truncating store to FP stack
66 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
67 /// chain operand, value to store, address, and a ValueType to store it
68 /// as.
69 FST,
70
71 /// FP_SET_RESULT - This corresponds to FpGETRESULT pseudo instrcuction
72 /// which copies from ST(0) to the destination. It takes a chain and writes
73 /// a RFP result and a chain.
74 FP_GET_RESULT,
75
Evan Chengb077b842005-12-21 02:39:21 +000076 /// FP_SET_RESULT - This corresponds to FpSETRESULT pseudo instrcuction
77 /// which copies the source operand to ST(0). It takes a chain and writes
78 /// a chain and a flag.
79 FP_SET_RESULT,
80
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000081 /// CALL/TAILCALL - These operations represent an abstract X86 call
82 /// instruction, which includes a bunch of information. In particular the
83 /// operands of these node are:
84 ///
85 /// #0 - The incoming token chain
86 /// #1 - The callee
87 /// #2 - The number of arg bytes the caller pushes on the stack.
88 /// #3 - The number of arg bytes the callee pops off the stack.
89 /// #4 - The value to pass in AL/AX/EAX (optional)
90 /// #5 - The value to pass in DL/DX/EDX (optional)
91 ///
92 /// The result values of these nodes are:
93 ///
94 /// #0 - The outgoing token chain
95 /// #1 - The first register result value (optional)
96 /// #2 - The second register result value (optional)
97 ///
98 /// The CALL vs TAILCALL distinction boils down to whether the callee is
99 /// known not to modify the caller's stack frame, as is standard with
100 /// LLVM.
101 CALL,
102 TAILCALL,
Andrew Lenharthb873ff32005-11-20 21:41:10 +0000103
104 /// RDTSC_DAG - This operation implements the lowering for
105 /// readcyclecounter
106 RDTSC_DAG,
Evan Cheng7df96d62005-12-17 01:21:05 +0000107
108 /// X86 compare and logical compare instructions.
109 CMP, TEST,
110
Evan Chengd5781fc2005-12-21 20:21:51 +0000111 /// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag
112 /// operand produced by a CMP instruction.
113 SETCC,
114
115 /// X86 conditional moves. Operand 1 and operand 2 are the two values
116 /// to select from (operand 1 is a R/W operand). Operand 3 is the condition
117 /// code, and operand 4 is the flag operand produced by a CMP or TEST
Evan Chenge3413162006-01-09 18:33:28 +0000118 /// instruction. It also writes a flag result.
Evan Cheng7df96d62005-12-17 01:21:05 +0000119 CMOV,
Evan Cheng898101c2005-12-19 23:12:38 +0000120
Evan Chengd5781fc2005-12-21 20:21:51 +0000121 /// X86 conditional branches. Operand 1 is the chain operand, operand 2
122 /// is the block to branch if condition is true, operand 3 is the
123 /// condition code, and operand 4 is the flag operand produced by a CMP
124 /// or TEST instruction.
Evan Cheng898101c2005-12-19 23:12:38 +0000125 BRCOND,
Evan Chengb077b842005-12-21 02:39:21 +0000126
Evan Cheng67f92a72006-01-11 22:15:48 +0000127 /// Return with a flag operand. Operand 1 is the chain operand, operand
128 /// 2 is the number of bytes of stack to pop.
Evan Chengb077b842005-12-21 02:39:21 +0000129 RET_FLAG,
Evan Cheng67f92a72006-01-11 22:15:48 +0000130
131 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
132 REP_STOS,
133
134 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
135 REP_MOVS,
Evan Cheng223547a2006-01-31 22:28:30 +0000136
137 /// LOAD_PACK Load a 128-bit packed float / double value. It has the same
138 /// operands as a normal load.
139 LOAD_PACK,
Evan Cheng7ccced62006-02-18 00:15:05 +0000140
141 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
142 /// at function entry, used for PIC code.
143 GlobalBaseReg,
Evan Chenga0ea0532006-02-23 02:43:52 +0000144
Evan Cheng020d2e82006-02-23 20:41:18 +0000145 /// TCPWrapper - A wrapper node for TargetConstantPool,
146 /// TargetExternalSymbol, and TargetGlobalAddress.
147 Wrapper,
Evan Cheng48090aa2006-03-21 23:01:21 +0000148
149 /// SCALAR_TO_VECTOR - X86 version of SCALAR_TO_VECTOR. The destination base
150 /// type does not have to match the operand type.
151 SCALAR_TO_VECTOR,
Evan Chengb9df0ca2006-03-22 02:53:00 +0000152
153 /// UNPCKLP - X86 unpack and interleave low instructions.
154 UNPCKLP,
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000155 };
Evan Chengd9558e02006-01-06 00:43:03 +0000156
157 // X86 specific condition code. These correspond to X86_*_COND in
158 // X86InstrInfo.td. They must be kept in synch.
159 enum CondCode {
160 COND_A = 0,
161 COND_AE = 1,
162 COND_B = 2,
163 COND_BE = 3,
164 COND_E = 4,
165 COND_G = 5,
166 COND_GE = 6,
167 COND_L = 7,
168 COND_LE = 8,
169 COND_NE = 9,
170 COND_NO = 10,
171 COND_NP = 11,
172 COND_NS = 12,
173 COND_O = 13,
174 COND_P = 14,
175 COND_S = 15,
176 COND_INVALID
177 };
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000178 }
179
Evan Chengb9df0ca2006-03-22 02:53:00 +0000180 /// Define some predicates that are used for node matching.
181 namespace X86 {
Evan Cheng0188ecb2006-03-22 18:59:22 +0000182 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
183 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
184 bool isPSHUFDMask(SDNode *N);
185
Evan Cheng14aed5e2006-03-24 01:18:28 +0000186 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
187 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
188 bool isSHUFPMask(SDNode *N);
189
Evan Cheng2c0dbd02006-03-24 02:58:06 +0000190 /// isMOVLHPSorUNPCKLPDMask - Return true if the specified VECTOR_SHUFFLE
191 /// operand specifies a shuffle of elements that is suitable for input to
192 /// MOVLHPS or UNPCKLPD.
193 bool isMOVLHPSorUNPCKLPDMask(SDNode *N);
194
195 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
196 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
197 bool isMOVHLPSMask(SDNode *N);
198
199 /// isUNPCKHPDMask - Return true if the specified VECTOR_SHUFFLE operand
200 /// specifies a shuffle of elements that is suitable for input to UNPCKHPD.
201 bool isUNPCKHPDMask(SDNode *N);
202
Evan Chengb9df0ca2006-03-22 02:53:00 +0000203 /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand
204 /// specifies a splat of a single element.
205 bool isSplatMask(SDNode *N);
206
Evan Cheng63d33002006-03-22 08:01:21 +0000207 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
208 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
209 /// instructions.
210 unsigned getShuffleSHUFImmediate(SDNode *N);
Evan Chengb9df0ca2006-03-22 02:53:00 +0000211 }
212
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000213 //===----------------------------------------------------------------------===//
214 // X86TargetLowering - X86 Implementation of the TargetLowering interface
215 class X86TargetLowering : public TargetLowering {
216 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
217 int ReturnAddrIndex; // FrameIndex for return slot.
218 int BytesToPopOnReturn; // Number of arg bytes ret should pop.
219 int BytesCallerReserves; // Number of arg bytes caller makes.
220 public:
221 X86TargetLowering(TargetMachine &TM);
222
223 // Return the number of bytes that a function should pop when it returns (in
224 // addition to the space used by the return address).
225 //
226 unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
227
228 // Return the number of bytes that the caller reserves for arguments passed
229 // to this function.
230 unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
231
232 /// LowerOperation - Provide custom lowering hooks for some operations.
233 ///
234 virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
235
236 /// LowerArguments - This hook must be implemented to indicate how we should
237 /// lower the arguments for the specified function, into the specified DAG.
238 virtual std::vector<SDOperand>
239 LowerArguments(Function &F, SelectionDAG &DAG);
240
241 /// LowerCallTo - This hook lowers an abstract call to a function into an
242 /// actual call.
243 virtual std::pair<SDOperand, SDOperand>
244 LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC,
245 bool isTailCall, SDOperand Callee, ArgListTy &Args,
246 SelectionDAG &DAG);
247
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000248 virtual std::pair<SDOperand, SDOperand>
249 LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
250 SelectionDAG &DAG);
251
Evan Cheng4a460802006-01-11 00:33:36 +0000252 virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
253 MachineBasicBlock *MBB);
254
Evan Cheng72261582005-12-20 06:22:03 +0000255 /// getTargetNodeName - This method returns the name of a target specific
256 /// DAG node.
257 virtual const char *getTargetNodeName(unsigned Opcode) const;
258
Nate Begeman368e18d2006-02-16 21:11:51 +0000259 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
260 /// in Mask are known to be either zero or one and return them in the
261 /// KnownZero/KnownOne bitsets.
262 virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
263 uint64_t Mask,
264 uint64_t &KnownZero,
265 uint64_t &KnownOne,
266 unsigned Depth = 0) const;
267
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000268 SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG);
269
Chris Lattner259e97c2006-01-31 19:43:35 +0000270 std::vector<unsigned>
Chris Lattner1efa40f2006-02-22 00:56:39 +0000271 getRegClassForInlineAsmConstraint(const std::string &Constraint,
272 MVT::ValueType VT) const;
Evan Chengc4c62572006-03-13 23:20:37 +0000273
274 /// isLegalAddressImmediate - Return true if the integer value or
275 /// GlobalValue can be used as the offset of the target addressing mode.
276 virtual bool isLegalAddressImmediate(int64_t V) const;
277 virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
278
Evan Cheng0188ecb2006-03-22 18:59:22 +0000279 /// isShuffleMaskLegal - Targets can use this to indicate that they only
280 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
281 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
282 /// are assumed to be legal.
Evan Chengca6e8ea2006-03-22 22:07:06 +0000283 virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const;
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000284 private:
285 // C Calling Convention implementation.
286 std::vector<SDOperand> LowerCCCArguments(Function &F, SelectionDAG &DAG);
287 std::pair<SDOperand, SDOperand>
288 LowerCCCCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
289 bool isTailCall,
290 SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
291
292 // Fast Calling Convention implementation.
293 std::vector<SDOperand> LowerFastCCArguments(Function &F, SelectionDAG &DAG);
294 std::pair<SDOperand, SDOperand>
295 LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, bool isTailCall,
296 SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
Evan Cheng559806f2006-01-27 08:10:46 +0000297
298 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
299 /// make the right decision when generating code for different targets.
300 const X86Subtarget *Subtarget;
301
302 /// X86ScalarSSE - Select between SSE2 or x87 floating point ops.
303 bool X86ScalarSSE;
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000304 };
305}
306
307#endif // X86ISELLOWERING_H