blob: ad038717cb9b8c5554159b91ebf7918fb06f0e38 [file] [log] [blame]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001================================
2Source Level Debugging with LLVM
3================================
4
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00005.. contents::
6 :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM. It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information. Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here. The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26 compiler. No transformations, analyses, or code generators should need to
27 be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30 ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33 LLVM-to-LLVM tools should not need to know anything about the semantics of
34 the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37 LLVM should not put any restrictions of the flavor of the source-language,
38 and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41 to compile a program to native machine code and standard debugging
42 formats. This allows compatibility with traditional machine-code level
43 debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects. The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information. As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process. This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
66Currently, debug information is consumed by DwarfDebug to produce dwarf
67information used by the gdb debugger. Other targets could use the same
68information to produce stabs or other debug forms.
69
70It would also be reasonable to use debug information to feed profiling tools
71for analysis of generated code, or, tools for reconstructing the original
72source from generated code.
73
74TODO - expound a bit more.
75
76.. _intro_debugopt:
77
78Debugging optimized code
79------------------------
80
81An extremely high priority of LLVM debugging information is to make it interact
82well with optimizations and analysis. In particular, the LLVM debug
83information provides the following guarantees:
84
85* LLVM debug information **always provides information to accurately read
86 the source-level state of the program**, regardless of which LLVM
87 optimizations have been run, and without any modification to the
88 optimizations themselves. However, some optimizations may impact the
89 ability to modify the current state of the program with a debugger, such
90 as setting program variables, or calling functions that have been
91 deleted.
92
93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
94 debugging information, allowing them to update the debugging information
95 as they perform aggressive optimizations. This means that, with effort,
96 the LLVM optimizers could optimize debug code just as well as non-debug
97 code.
98
99* LLVM debug information does not prevent optimizations from
100 happening (for example inlining, basic block reordering/merging/cleanup,
101 tail duplication, etc).
102
103* LLVM debug information is automatically optimized along with the rest of
104 the program, using existing facilities. For example, duplicate
105 information is automatically merged by the linker, and unused information
106 is automatically removed.
107
108Basically, the debug information allows you to compile a program with
109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
110the program as it executes from a debugger. Compiling a program with
111"``-O3 -g``" gives you full debug information that is always available and
112accurate for reading (e.g., you get accurate stack traces despite tail call
113elimination and inlining), but you might lose the ability to modify the program
114and call functions where were optimized out of the program, or inlined away
115completely.
116
117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
118optimizer's handling of debugging information. It can be run like this:
119
120.. code-block:: bash
121
122 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
123 % make TEST=dbgopt
124
125This will test impact of debugging information on optimization passes. If
126debugging information influences optimization passes then it will be reported
127as a failure. See :doc:`TestingGuide` for more information on LLVM test
128infrastructure and how to run various tests.
129
130.. _format:
131
132Debugging information format
133============================
134
135LLVM debugging information has been carefully designed to make it possible for
136the optimizer to optimize the program and debugging information without
137necessarily having to know anything about debugging information. In
138particular, the use of metadata avoids duplicated debugging information from
139the beginning, and the global dead code elimination pass automatically deletes
140debugging information for a function if it decides to delete the function.
141
142To do this, most of the debugging information (descriptors for types,
143variables, functions, source files, etc) is inserted by the language front-end
144in the form of LLVM metadata.
145
146Debug information is designed to be agnostic about the target debugger and
147debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
148pass to decode the information that represents variables, types, functions,
149namespaces, etc: this allows for arbitrary source-language semantics and
150type-systems to be used, as long as there is a module written for the target
151debugger to interpret the information.
152
153To provide basic functionality, the LLVM debugger does have to make some
154assumptions about the source-level language being debugged, though it keeps
155these to a minimum. The only common features that the LLVM debugger assumes
156exist are :ref:`source files <format_files>`, and :ref:`program objects
157<format_global_variables>`. These abstract objects are used by a debugger to
158form stack traces, show information about local variables, etc.
159
160This section of the documentation first describes the representation aspects
161common to any source-language. :ref:`ccxx_frontend` describes the data layout
162conventions used by the C and C++ front-ends.
163
164Debug information descriptors
165-----------------------------
166
167In consideration of the complexity and volume of debug information, LLVM
168provides a specification for well formed debug descriptors.
169
170Consumers of LLVM debug information expect the descriptors for program objects
171to start in a canonical format, but the descriptors can include additional
David Blaikie61212bc2013-05-29 02:05:13 +0000172information appended at the end that is source-language specific. All debugging
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000173information objects start with a tag to indicate what type of object it is.
174The source-language is allowed to define its own objects, by using unreserved
175tag numbers. We recommend using with tags in the range 0x1000 through 0x2000
176(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
177
178The fields of debug descriptors used internally by LLVM are restricted to only
179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
180``mdnode``.
181
182.. code-block:: llvm
183
184 !1 = metadata !{
185 i32, ;; A tag
186 ...
187 }
188
189<a name="LLVMDebugVersion">The first field of a descriptor is always an
190``i32`` containing a tag value identifying the content of the descriptor.
191The remaining fields are specific to the descriptor. The values of tags are
192loosely bound to the tag values of DWARF information entries. However, that
David Blaikie61212bc2013-05-29 02:05:13 +0000193does not restrict the use of the information supplied to DWARF targets.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000194
195The details of the various descriptors follow.
196
197Compile unit descriptors
198^^^^^^^^^^^^^^^^^^^^^^^^
199
200.. code-block:: llvm
201
202 !0 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000203 i32, ;; Tag = 17 (DW_TAG_compile_unit)
204 metadata, ;; Source directory (including trailing slash) & file pair
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000205 i32, ;; DWARF language identifier (ex. DW_LANG_C89)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000206 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000207 i1, ;; True if this is optimized.
208 metadata, ;; Flags
209 i32 ;; Runtime version
210 metadata ;; List of enums types
211 metadata ;; List of retained types
212 metadata ;; List of subprograms
213 metadata ;; List of global variables
David Blaikie61212bc2013-05-29 02:05:13 +0000214 metadata ;; List of imported entities
215 metadata ;; Split debug filename
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000216 }
217
218These descriptors contain a source language ID for the file (we use the DWARF
2193.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
David Blaikie61212bc2013-05-29 02:05:13 +0000220``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of
221strings for the source file name and the working directory, as well as an
222identifier string for the compiler that produced it.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000223
224Compile unit descriptors provide the root context for objects declared in a
225specific compilation unit. File descriptors are defined using this context.
Eli Bendersky00a3e5e2012-11-28 00:27:25 +0000226These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
David Blaikie61212bc2013-05-29 02:05:13 +0000227keep track of subprograms, global variables, type information, and imported
228entities (declarations and namespaces).
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000229
230.. _format_files:
231
232File descriptors
233^^^^^^^^^^^^^^^^
234
235.. code-block:: llvm
236
237 !0 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000238 i32, ;; Tag = 41 (DW_TAG_file_type)
239 metadata, ;; Source directory (including trailing slash) & file pair
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000240 }
241
242These descriptors contain information for a file. Global variables and top
243level functions would be defined using this context. File descriptors also
244provide context for source line correspondence.
245
246Each input file is encoded as a separate file descriptor in LLVM debugging
247information output.
248
249.. _format_global_variables:
250
251Global variable descriptors
252^^^^^^^^^^^^^^^^^^^^^^^^^^^
253
254.. code-block:: llvm
255
256 !1 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000257 i32, ;; Tag = 52 (DW_TAG_variable)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000258 i32, ;; Unused field.
259 metadata, ;; Reference to context descriptor
260 metadata, ;; Name
261 metadata, ;; Display name (fully qualified C++ name)
262 metadata, ;; MIPS linkage name (for C++)
263 metadata, ;; Reference to file where defined
264 i32, ;; Line number where defined
265 metadata, ;; Reference to type descriptor
266 i1, ;; True if the global is local to compile unit (static)
267 i1, ;; True if the global is defined in the compile unit (not extern)
David Blaikie61212bc2013-05-29 02:05:13 +0000268 {}*, ;; Reference to the global variable
269 metadata, ;; The static member declaration, if any
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000270 }
271
Eli Bendersky00a3e5e2012-11-28 00:27:25 +0000272These descriptors provide debug information about globals variables. They
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000273provide details such as name, type and where the variable is defined. All
274global variables are collected inside the named metadata ``!llvm.dbg.cu``.
275
276.. _format_subprograms:
277
278Subprogram descriptors
279^^^^^^^^^^^^^^^^^^^^^^
280
281.. code-block:: llvm
282
283 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000284 i32, ;; Tag = 46 (DW_TAG_subprogram)
285 metadata, ;; Source directory (including trailing slash) & file pair
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000286 metadata, ;; Reference to context descriptor
287 metadata, ;; Name
288 metadata, ;; Display name (fully qualified C++ name)
289 metadata, ;; MIPS linkage name (for C++)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000290 i32, ;; Line number where defined
291 metadata, ;; Reference to type descriptor
292 i1, ;; True if the global is local to compile unit (static)
293 i1, ;; True if the global is defined in the compile unit (not extern)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000294 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
295 i32, ;; Index into a virtual function
296 metadata, ;; indicates which base type contains the vtable pointer for the
297 ;; derived class
298 i32, ;; Flags - Artifical, Private, Protected, Explicit, Prototyped.
299 i1, ;; isOptimized
300 Function * , ;; Pointer to LLVM function
301 metadata, ;; Lists function template parameters
302 metadata, ;; Function declaration descriptor
Dmitri Gribenko49136802013-02-16 20:07:40 +0000303 metadata, ;; List of function variables
304 i32 ;; Line number where the scope of the subprogram begins
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000305 }
306
307These descriptors provide debug information about functions, methods and
308subprograms. They provide details such as name, return types and the source
309location where the subprogram is defined.
310
311Block descriptors
312^^^^^^^^^^^^^^^^^
313
314.. code-block:: llvm
315
316 !3 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000317 i32, ;; Tag = 11 (DW_TAG_lexical_block)
318 metadata,;; Source directory (including trailing slash) & file pair
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000319 metadata,;; Reference to context descriptor
320 i32, ;; Line number
321 i32, ;; Column number
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000322 i32 ;; Unique ID to identify blocks from a template function
323 }
324
325This descriptor provides debug information about nested blocks within a
326subprogram. The line number and column numbers are used to dinstinguish two
327lexical blocks at same depth.
328
329.. code-block:: llvm
330
331 !3 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000332 i32, ;; Tag = 11 (DW_TAG_lexical_block)
333 metadata,;; Source directory (including trailing slash) & file pair
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000334 metadata ;; Reference to the scope we're annotating with a file change
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000335 }
336
337This descriptor provides a wrapper around a lexical scope to handle file
338changes in the middle of a lexical block.
339
340.. _format_basic_type:
341
342Basic type descriptors
343^^^^^^^^^^^^^^^^^^^^^^
344
345.. code-block:: llvm
346
347 !4 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000348 i32, ;; Tag = 36 (DW_TAG_base_type)
349 metadata,;; Source directory (including trailing slash) & file pair (may be null)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000350 metadata, ;; Reference to context
351 metadata, ;; Name (may be "" for anonymous types)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000352 i32, ;; Line number where defined (may be 0)
353 i64, ;; Size in bits
354 i64, ;; Alignment in bits
355 i64, ;; Offset in bits
356 i32, ;; Flags
357 i32 ;; DWARF type encoding
358 }
359
360These descriptors define primitive types used in the code. Example ``int``,
361``bool`` and ``float``. The context provides the scope of the type, which is
362usually the top level. Since basic types are not usually user defined the
363context and line number can be left as NULL and 0. The size, alignment and
364offset are expressed in bits and can be 64 bit values. The alignment is used
365to round the offset when embedded in a :ref:`composite type
366<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
367The offset is the bit offset if embedded in a :ref:`composite type
368<format_composite_type>`.
369
370The type encoding provides the details of the type. The values are typically
371one of the following:
372
373.. code-block:: llvm
374
375 DW_ATE_address = 1
376 DW_ATE_boolean = 2
377 DW_ATE_float = 4
378 DW_ATE_signed = 5
379 DW_ATE_signed_char = 6
380 DW_ATE_unsigned = 7
381 DW_ATE_unsigned_char = 8
382
383.. _format_derived_type:
384
385Derived type descriptors
386^^^^^^^^^^^^^^^^^^^^^^^^
387
388.. code-block:: llvm
389
390 !5 = metadata !{
391 i32, ;; Tag (see below)
David Blaikie61212bc2013-05-29 02:05:13 +0000392 metadata,;; Source directory (including trailing slash) & file pair (may be null)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000393 metadata, ;; Reference to context
394 metadata, ;; Name (may be "" for anonymous types)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000395 i32, ;; Line number where defined (may be 0)
396 i64, ;; Size in bits
397 i64, ;; Alignment in bits
398 i64, ;; Offset in bits
399 i32, ;; Flags to encode attributes, e.g. private
400 metadata, ;; Reference to type derived from
401 metadata, ;; (optional) Name of the Objective C property associated with
David Blaikie92f09172013-01-07 06:02:07 +0000402 ;; Objective-C an ivar, or the type of which this
403 ;; pointer-to-member is pointing to members of.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000404 metadata, ;; (optional) Name of the Objective C property getter selector.
405 metadata, ;; (optional) Name of the Objective C property setter selector.
406 i32 ;; (optional) Objective C property attributes.
407 }
408
409These descriptors are used to define types derived from other types. The value
410of the tag varies depending on the meaning. The following are possible tag
411values:
412
413.. code-block:: llvm
414
David Blaikie92f09172013-01-07 06:02:07 +0000415 DW_TAG_formal_parameter = 5
416 DW_TAG_member = 13
417 DW_TAG_pointer_type = 15
418 DW_TAG_reference_type = 16
419 DW_TAG_typedef = 22
420 DW_TAG_ptr_to_member_type = 31
421 DW_TAG_const_type = 38
422 DW_TAG_volatile_type = 53
423 DW_TAG_restrict_type = 55
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000424
425``DW_TAG_member`` is used to define a member of a :ref:`composite type
426<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type
427of the member is the :ref:`derived type <format_derived_type>`.
428``DW_TAG_formal_parameter`` is used to define a member which is a formal
429argument of a subprogram.
430
431``DW_TAG_typedef`` is used to provide a name for the derived type.
432
433``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
434``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
435:ref:`derived type <format_derived_type>`.
436
437:ref:`Derived type <format_derived_type>` location can be determined from the
438context and line number. The size, alignment and offset are expressed in bits
439and can be 64 bit values. The alignment is used to round the offset when
440embedded in a :ref:`composite type <format_composite_type>` (example to keep
441float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
442in a :ref:`composite type <format_composite_type>`.
443
444Note that the ``void *`` type is expressed as a type derived from NULL.
445
446.. _format_composite_type:
447
448Composite type descriptors
449^^^^^^^^^^^^^^^^^^^^^^^^^^
450
451.. code-block:: llvm
452
453 !6 = metadata !{
454 i32, ;; Tag (see below)
David Blaikie61212bc2013-05-29 02:05:13 +0000455 metadata,;; Source directory (including trailing slash) & file pair (may be null)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000456 metadata, ;; Reference to context
457 metadata, ;; Name (may be "" for anonymous types)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000458 i32, ;; Line number where defined (may be 0)
459 i64, ;; Size in bits
460 i64, ;; Alignment in bits
461 i64, ;; Offset in bits
462 i32, ;; Flags
463 metadata, ;; Reference to type derived from
464 metadata, ;; Reference to array of member descriptors
465 i32 ;; Runtime languages
David Blaikie61212bc2013-05-29 02:05:13 +0000466 metadata, ;; Base type containing the vtable pointer for this type
467 metadata ;; Template parameters
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000468 }
469
470These descriptors are used to define types that are composed of 0 or more
471elements. The value of the tag varies depending on the meaning. The following
472are possible tag values:
473
474.. code-block:: llvm
475
476 DW_TAG_array_type = 1
477 DW_TAG_enumeration_type = 4
478 DW_TAG_structure_type = 19
479 DW_TAG_union_type = 23
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000480 DW_TAG_subroutine_type = 21
481 DW_TAG_inheritance = 28
482
483The vector flag indicates that an array type is a native packed vector.
484
Eric Christopher9a1e0e22013-01-08 01:53:52 +0000485The members of array types (tag = ``DW_TAG_array_type``) are
486:ref:`subrange descriptors <format_subrange>`, each
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000487representing the range of subscripts at that level of indexing.
488
489The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
490:ref:`enumerator descriptors <format_enumerator>`, each representing the
491definition of enumeration value for the set. All enumeration type descriptors
492are collected inside the named metadata ``!llvm.dbg.cu``.
493
494The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
495``DW_TAG_union_type``) types are any one of the :ref:`basic
496<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
497<format_composite_type>` type descriptors, each representing a field member of
498the structure or union.
499
500For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
501information about base classes, static members and member functions. If a
502member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
503of ``DW_TAG_inheritance``, then the type represents a base class. If the member
504of is a :ref:`global variable descriptor <format_global_variables>` then it
505represents a static member. And, if the member is a :ref:`subprogram
506descriptor <format_subprograms>` then it represents a member function. For
507static members and member functions, ``getName()`` returns the members link or
508the C++ mangled name. ``getDisplayName()`` the simplied version of the name.
509
510The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
511is the return type for the subroutine. The remaining elements are the formal
512arguments to the subroutine.
513
514:ref:`Composite type <format_composite_type>` location can be determined from
515the context and line number. The size, alignment and offset are expressed in
516bits and can be 64 bit values. The alignment is used to round the offset when
517embedded in a :ref:`composite type <format_composite_type>` (as an example, to
518keep float doubles on 64 bit boundaries). The offset is the bit offset if
519embedded in a :ref:`composite type <format_composite_type>`.
520
521.. _format_subrange:
522
523Subrange descriptors
524^^^^^^^^^^^^^^^^^^^^
525
526.. code-block:: llvm
527
528 !42 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000529 i32, ;; Tag = 33 (DW_TAG_subrange_type)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000530 i64, ;; Low value
531 i64 ;; High value
532 }
533
534These descriptors are used to define ranges of array subscripts for an array
535:ref:`composite type <format_composite_type>`. The low value defines the lower
536bounds typically zero for C/C++. The high value is the upper bounds. Values
537are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High``
538the array bounds are not included in generated debugging information.
539
540.. _format_enumerator:
541
542Enumerator descriptors
543^^^^^^^^^^^^^^^^^^^^^^
544
545.. code-block:: llvm
546
547 !6 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000548 i32, ;; Tag = 40 (DW_TAG_enumerator)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000549 metadata, ;; Name
550 i64 ;; Value
551 }
552
553These descriptors are used to define members of an enumeration :ref:`composite
554type <format_composite_type>`, it associates the name to the value.
555
556Local variables
557^^^^^^^^^^^^^^^
558
559.. code-block:: llvm
560
561 !7 = metadata !{
562 i32, ;; Tag (see below)
563 metadata, ;; Context
564 metadata, ;; Name
565 metadata, ;; Reference to file where defined
566 i32, ;; 24 bit - Line number where defined
567 ;; 8 bit - Argument number. 1 indicates 1st argument.
568 metadata, ;; Type descriptor
569 i32, ;; flags
570 metadata ;; (optional) Reference to inline location
571 }
572
573These descriptors are used to define variables local to a sub program. The
574value of the tag depends on the usage of the variable:
575
576.. code-block:: llvm
577
578 DW_TAG_auto_variable = 256
579 DW_TAG_arg_variable = 257
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000580
581An auto variable is any variable declared in the body of the function. An
582argument variable is any variable that appears as a formal argument to the
Eric Christopher72a81be2013-01-08 00:16:33 +0000583function.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000584
585The context is either the subprogram or block where the variable is defined.
586Name the source variable name. Context and line indicate where the variable
587was defined. Type descriptor defines the declared type of the variable.
588
589.. _format_common_intrinsics:
590
591Debugger intrinsic functions
592^^^^^^^^^^^^^^^^^^^^^^^^^^^^
593
594LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
595provide debug information at various points in generated code.
596
597``llvm.dbg.declare``
598^^^^^^^^^^^^^^^^^^^^
599
600.. code-block:: llvm
601
602 void %llvm.dbg.declare(metadata, metadata)
603
604This intrinsic provides information about a local element (e.g., variable).
605The first argument is metadata holding the alloca for the variable. The second
606argument is metadata containing a description of the variable.
607
608``llvm.dbg.value``
609^^^^^^^^^^^^^^^^^^
610
611.. code-block:: llvm
612
613 void %llvm.dbg.value(metadata, i64, metadata)
614
615This intrinsic provides information when a user source variable is set to a new
616value. The first argument is the new value (wrapped as metadata). The second
617argument is the offset in the user source variable where the new value is
618written. The third argument is metadata containing a description of the user
619source variable.
620
621Object lifetimes and scoping
622============================
623
624In many languages, the local variables in functions can have their lifetimes or
625scopes limited to a subset of a function. In the C family of languages, for
626example, variables are only live (readable and writable) within the source
627block that they are defined in. In functional languages, values are only
628readable after they have been defined. Though this is a very obvious concept,
629it is non-trivial to model in LLVM, because it has no notion of scoping in this
630sense, and does not want to be tied to a language's scoping rules.
631
632In order to handle this, the LLVM debug format uses the metadata attached to
633llvm instructions to encode line number and scoping information. Consider the
634following C fragment, for example:
635
636.. code-block:: c
637
638 1. void foo() {
639 2. int X = 21;
640 3. int Y = 22;
641 4. {
642 5. int Z = 23;
643 6. Z = X;
644 7. }
645 8. X = Y;
646 9. }
647
648Compiled to LLVM, this function would be represented like this:
649
650.. code-block:: llvm
651
David Blaikie61212bc2013-05-29 02:05:13 +0000652 define void @_Z3foov() #0 {
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000653 entry:
David Blaikie61212bc2013-05-29 02:05:13 +0000654 %X = alloca i32, align 4 ; [#uses=3 type=i32*]
655 %Y = alloca i32, align 4 ; [#uses=2 type=i32*]
656 %Z = alloca i32, align 4 ; [#uses=2 type=i32*]
657 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !8), !dbg !10
658 ; [debug line = 2:7] [debug variable = X]
659 store i32 21, i32* %X, align 4, !dbg !11 ; [debug line = 2:13]
660 call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !12), !dbg !13
661 ; [debug line = 3:7] [debug variable = Y]
662 store i32 22, i32* %Y, align 4, !dbg !14 ; [debug line = 3:13]
663 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
664 ; [debug line = 5:9] [debug variable = Z]
665 store i32 23, i32* %Z, align 4, !dbg !18 ; [debug line = 5:15]
666 %0 = load i32* %X, align 4, !dbg !19 ; [#uses=1 type=i32] \
667 [debug line = 6:5]
668 store i32 %0, i32* %Z, align 4, !dbg !19 ; [debug line = 6:5]
669 %1 = load i32* %Y, align 4, !dbg !20 ; [#uses=1 type=i32] \
670 [debug line = 8:3]
671 store i32 %1, i32* %X, align 4, !dbg !20 ; [debug line = 8:3]
672 ret void, !dbg !21 ; [debug line = 9:1]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000673 }
674
David Blaikie61212bc2013-05-29 02:05:13 +0000675 ; [#uses=3]
676 ; Function Attrs: nounwind readnone
677 declare void @llvm.dbg.declare(metadata, metadata) #1
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000678
David Blaikie61212bc2013-05-29 02:05:13 +0000679 attributes #0 = { optsize zeroext "less-precise-fpmad"="false"
680 "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="true"
681 "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false"
682 "use-soft-float"="false" }
683 attributes #1 = { nounwind readnone }
684
685 !llvm.dbg.cu = !{!0}
686
687 !0 = metadata !{i32 786449, metadata !1, i32 12,
688 metadata !"clang version 3.4 ", i1 false, metadata !"", i32 0,
689 metadata !2, metadata !2, metadata !3, metadata !2,
690 metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \
691 [/private/tmp/foo.c] \
692 [DW_LANG_C]
693 !1 = metadata !{metadata !"foo.c", metadata !"/private/tmp"}
694 !2 = metadata !{i32 0}
695 !3 = metadata !{metadata !4}
696 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
697 metadata !"foo", metadata !"_Z3foov", i32 1, metadata !6,
698 i1 false, i1 true, i32 0, i32 0, null, i32 256, i1 false,
699 void ()* @_Z3foov, null, null, metadata !2, i32 1}
700 ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
701 !5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] \
702 [/private/tmp/foo.c]
703 !6 = metadata !{i32 786453, i32 0, i32 0, metadata !"", i32 0, i64 0, i64 0,
704 i64 0, i32 0, null, metadata !7, i32 0, i32 0}
705 ; [ DW_TAG_subroutine_type ] \
706 [line 0, size 0, align 0, offset 0] [from ]
707 !7 = metadata !{null}
708 !8 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2, \
709 metadata !9, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \
710 [line 2]
711 !9 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32, \
712 i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \
713 [line 0, size 32, align 32, offset 0, enc DW_ATE_signed]
714 !10 = metadata !{i32 2, i32 7, metadata !4, null}
715 !11 = metadata !{i32 2, i32 13, metadata !4, null}
716 !12 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3, \
717 metadata !9, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \
718 [line 3]
719 !13 = metadata !{i32 3, i32 7, metadata !4, null}
720 !14 = metadata !{i32 3, i32 13, metadata !4, null}
721 !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5, \
722 metadata !9, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \
723 [line 5]
724 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 3, i32 0}
725 ; [ DW_TAG_lexical_block ] [/private/tmp/foo.c]
726 !17 = metadata !{i32 5, i32 9, metadata !16, null}
727 !18 = metadata !{i32 5, i32 15, metadata !16, null}
728 !19 = metadata !{i32 6, i32 5, metadata !16, null}
729 !20 = metadata !{i32 8, i32 3, metadata !4, null}
730 !21 = metadata !{i32 9, i32 1, metadata !4, null}
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000731
732This example illustrates a few important details about LLVM debugging
733information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
734location information, which are attached to an instruction, are applied
735together to allow a debugger to analyze the relationship between statements,
736variable definitions, and the code used to implement the function.
737
738.. code-block:: llvm
739
David Blaikie61212bc2013-05-29 02:05:13 +0000740 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !8), !dbg !10
741 ; [debug line = 2:7] [debug variable = X]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000742
743The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
David Blaikie61212bc2013-05-29 02:05:13 +0000744variable ``X``. The metadata ``!dbg !10`` attached to the intrinsic provides
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000745scope information for the variable ``X``.
746
747.. code-block:: llvm
748
David Blaikie61212bc2013-05-29 02:05:13 +0000749 !10 = metadata !{i32 2, i32 7, metadata !4, null}
750 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
751 metadata !"foo", metadata !"_Z3foov", i32 1, metadata !6,
752 i1 false, i1 true, i32 0, i32 0, null, i32 256, i1 false,
753 void ()* @_Z3foov, null, null, metadata !2, i32 1}
754 ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000755
David Blaikie61212bc2013-05-29 02:05:13 +0000756Here ``!10`` is metadata providing location information. It has four fields:
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000757line number, column number, scope, and original scope. The original scope
758represents inline location if this instruction is inlined inside a caller, and
David Blaikie61212bc2013-05-29 02:05:13 +0000759is null otherwise. In this example, scope is encoded by ``!4``, a
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000760:ref:`subprogram descriptor <format_subprograms>`. This way the location
761information attached to the intrinsics indicates that the variable ``X`` is
762declared at line number 2 at a function level scope in function ``foo``.
763
764Now lets take another example.
765
766.. code-block:: llvm
767
David Blaikie61212bc2013-05-29 02:05:13 +0000768 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
769 ; [debug line = 5:9] [debug variable = Z]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000770
David Blaikie61212bc2013-05-29 02:05:13 +0000771The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
772variable ``Z``. The metadata ``!dbg !17`` attached to the intrinsic provides
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000773scope information for the variable ``Z``.
774
775.. code-block:: llvm
776
David Blaikie61212bc2013-05-29 02:05:13 +0000777 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 3, i32 0}
778 ; [ DW_TAG_lexical_block ] [/private/tmp/foo.c]
779 !17 = metadata !{i32 5, i32 9, metadata !16, null}
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000780
David Blaikie61212bc2013-05-29 02:05:13 +0000781Here ``!15`` indicates that ``Z`` is declared at line number 5 and
782column number 9 inside of lexical scope ``!16``. The lexical scope itself
783resides inside of subprogram ``!4`` described above.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000784
785The scope information attached with each instruction provides a straightforward
786way to find instructions covered by a scope.
787
788.. _ccxx_frontend:
789
790C/C++ front-end specific debug information
791==========================================
792
793The C and C++ front-ends represent information about the program in a format
794that is effectively identical to `DWARF 3.0
795<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
796content. This allows code generators to trivially support native debuggers by
797generating standard dwarf information, and contains enough information for
798non-dwarf targets to translate it as needed.
799
800This section describes the forms used to represent C and C++ programs. Other
801languages could pattern themselves after this (which itself is tuned to
802representing programs in the same way that DWARF 3 does), or they could choose
803to provide completely different forms if they don't fit into the DWARF model.
804As support for debugging information gets added to the various LLVM
805source-language front-ends, the information used should be documented here.
806
807The following sections provide examples of various C/C++ constructs and the
808debug information that would best describe those constructs.
809
810C/C++ source file information
811-----------------------------
812
813Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
814directory ``/Users/mine/sources``, the following code:
815
816.. code-block:: c
817
818 #include "MyHeader.h"
819
820 int main(int argc, char *argv[]) {
821 return 0;
822 }
823
824a C/C++ front-end would generate the following descriptors:
825
826.. code-block:: llvm
827
828 ...
829 ;;
830 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
831 ;;
David Blaikie61212bc2013-05-29 02:05:13 +0000832 !0 = metadata !{
833 i32 786449, ;; Tag
834 metadata !1, ;; File/directory name
835 i32 4, ;; Language Id
836 metadata !"clang version 3.4 ",
837 i1 false, ;; Optimized compile unit
838 metadata !"", ;; Compiler flags
839 i32 0, ;; Runtime version
840 metadata !2, ;; Enumeration types
841 metadata !2, ;; Retained types
842 metadata !3, ;; Subprograms
843 metadata !2, ;; Global variables
844 metadata !2, ;; Imported entities (declarations and namespaces)
845 metadata !"" ;; Split debug filename
846 }
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000847
848 ;;
849 ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
850 ;;
851 !1 = metadata !{
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000852 metadata !"MySource.cpp",
David Blaikie61212bc2013-05-29 02:05:13 +0000853 metadata !"/Users/mine/sources"
854 }
855 !5 = metadata !{
856 i32 786473, ;; Tag
857 metadata !1
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000858 }
859
860 ;;
861 ;; Define the file for the file "/Users/mine/sources/Myheader.h"
862 ;;
David Blaikie61212bc2013-05-29 02:05:13 +0000863 !14 = metadata !{
864 i32 786473, ;; Tag
865 metadata !15
866 }
867 !15 = metadata !{
868 metadata !"./MyHeader.h",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000869 metadata !"/Users/mine/sources",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000870 }
871
872 ...
873
874``llvm::Instruction`` provides easy access to metadata attached with an
875instruction. One can extract line number information encoded in LLVM IR using
876``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
877
878.. code-block:: c++
879
880 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction
881 DILocation Loc(N); // DILocation is in DebugInfo.h
882 unsigned Line = Loc.getLineNumber();
883 StringRef File = Loc.getFilename();
884 StringRef Dir = Loc.getDirectory();
885 }
886
887C/C++ global variable information
888---------------------------------
889
890Given an integer global variable declared as follows:
891
892.. code-block:: c
893
894 int MyGlobal = 100;
895
896a C/C++ front-end would generate the following descriptors:
897
898.. code-block:: llvm
899
900 ;;
901 ;; Define the global itself.
902 ;;
903 %MyGlobal = global int 100
904 ...
905 ;;
906 ;; List of debug info of globals
907 ;;
908 !llvm.dbg.cu = !{!0}
909
910 ;; Define the compile unit.
911 !0 = metadata !{
912 i32 786449, ;; Tag
913 i32 0, ;; Context
914 i32 4, ;; Language
915 metadata !"foo.cpp", ;; File
916 metadata !"/Volumes/Data/tmp", ;; Directory
917 metadata !"clang version 3.1 ", ;; Producer
918 i1 true, ;; Deprecated field
919 i1 false, ;; "isOptimized"?
920 metadata !"", ;; Flags
921 i32 0, ;; Runtime Version
922 metadata !1, ;; Enum Types
923 metadata !1, ;; Retained Types
924 metadata !1, ;; Subprograms
David Blaikie61212bc2013-05-29 02:05:13 +0000925 metadata !3, ;; Global Variables
926 metadata !1, ;; Imported entities
927 "", ;; Split debug filename
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000928 } ; [ DW_TAG_compile_unit ]
929
930 ;; The Array of Global Variables
931 !3 = metadata !{
932 metadata !4
933 }
934
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000935 ;;
936 ;; Define the global variable itself.
937 ;;
David Blaikie61212bc2013-05-29 02:05:13 +0000938 !4 = metadata !{
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000939 i32 786484, ;; Tag
940 i32 0, ;; Unused
941 null, ;; Unused
942 metadata !"MyGlobal", ;; Name
943 metadata !"MyGlobal", ;; Display Name
944 metadata !"", ;; Linkage Name
945 metadata !6, ;; File
946 i32 1, ;; Line
947 metadata !7, ;; Type
948 i32 0, ;; IsLocalToUnit
949 i32 1, ;; IsDefinition
David Blaikie61212bc2013-05-29 02:05:13 +0000950 i32* @MyGlobal, ;; LLVM-IR Value
951 null ;; Static member declaration
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000952 } ; [ DW_TAG_variable ]
953
954 ;;
955 ;; Define the file
956 ;;
David Blaikie61212bc2013-05-29 02:05:13 +0000957 !5 = metadata !{
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000958 metadata !"foo.cpp", ;; File
959 metadata !"/Volumes/Data/tmp", ;; Directory
David Blaikie61212bc2013-05-29 02:05:13 +0000960 }
961 !6 = metadata !{
962 i32 786473, ;; Tag
963 metadata !5 ;; Unused
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000964 } ; [ DW_TAG_file_type ]
965
966 ;;
967 ;; Define the type
968 ;;
969 !7 = metadata !{
970 i32 786468, ;; Tag
971 null, ;; Unused
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000972 null, ;; Unused
David Blaikie61212bc2013-05-29 02:05:13 +0000973 metadata !"int", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000974 i32 0, ;; Line
975 i64 32, ;; Size in Bits
976 i64 32, ;; Align in Bits
977 i64 0, ;; Offset
978 i32 0, ;; Flags
979 i32 5 ;; Encoding
980 } ; [ DW_TAG_base_type ]
981
982C/C++ function information
983--------------------------
984
985Given a function declared as follows:
986
987.. code-block:: c
988
989 int main(int argc, char *argv[]) {
990 return 0;
991 }
992
993a C/C++ front-end would generate the following descriptors:
994
995.. code-block:: llvm
996
997 ;;
David Blaikie61212bc2013-05-29 02:05:13 +0000998 ;; Define the anchor for subprograms.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000999 ;;
1000 !6 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001001 i32 786484, ;; Tag
1002 metadata !1, ;; File
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001003 metadata !1, ;; Context
1004 metadata !"main", ;; Name
1005 metadata !"main", ;; Display name
1006 metadata !"main", ;; Linkage name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001007 i32 1, ;; Line number
1008 metadata !4, ;; Type
1009 i1 false, ;; Is local
1010 i1 true, ;; Is definition
1011 i32 0, ;; Virtuality attribute, e.g. pure virtual function
1012 i32 0, ;; Index into virtual table for C++ methods
1013 i32 0, ;; Type that holds virtual table.
1014 i32 0, ;; Flags
1015 i1 false, ;; True if this function is optimized
1016 Function *, ;; Pointer to llvm::Function
David Blaikie61212bc2013-05-29 02:05:13 +00001017 null, ;; Function template parameters
1018 null, ;; List of function variables (emitted when optimizing)
1019 1 ;; Line number of the opening '{' of the function
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001020 }
1021 ;;
1022 ;; Define the subprogram itself.
1023 ;;
1024 define i32 @main(i32 %argc, i8** %argv) {
1025 ...
1026 }
1027
1028C/C++ basic types
1029-----------------
1030
1031The following are the basic type descriptors for C/C++ core types:
1032
1033bool
1034^^^^
1035
1036.. code-block:: llvm
1037
1038 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001039 i32 786468, ;; Tag
1040 null, ;; File
1041 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001042 metadata !"bool", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001043 i32 0, ;; Line number
1044 i64 8, ;; Size in Bits
1045 i64 8, ;; Align in Bits
1046 i64 0, ;; Offset in Bits
1047 i32 0, ;; Flags
1048 i32 2 ;; Encoding
1049 }
1050
1051char
1052^^^^
1053
1054.. code-block:: llvm
1055
1056 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001057 i32 786468, ;; Tag
1058 null, ;; File
1059 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001060 metadata !"char", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001061 i32 0, ;; Line number
1062 i64 8, ;; Size in Bits
1063 i64 8, ;; Align in Bits
1064 i64 0, ;; Offset in Bits
1065 i32 0, ;; Flags
1066 i32 6 ;; Encoding
1067 }
1068
1069unsigned char
1070^^^^^^^^^^^^^
1071
1072.. code-block:: llvm
1073
1074 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001075 i32 786468, ;; Tag
1076 null, ;; File
1077 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001078 metadata !"unsigned char",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001079 i32 0, ;; Line number
1080 i64 8, ;; Size in Bits
1081 i64 8, ;; Align in Bits
1082 i64 0, ;; Offset in Bits
1083 i32 0, ;; Flags
1084 i32 8 ;; Encoding
1085 }
1086
1087short
1088^^^^^
1089
1090.. code-block:: llvm
1091
1092 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001093 i32 786468, ;; Tag
1094 null, ;; File
1095 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001096 metadata !"short int",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001097 i32 0, ;; Line number
1098 i64 16, ;; Size in Bits
1099 i64 16, ;; Align in Bits
1100 i64 0, ;; Offset in Bits
1101 i32 0, ;; Flags
1102 i32 5 ;; Encoding
1103 }
1104
1105unsigned short
1106^^^^^^^^^^^^^^
1107
1108.. code-block:: llvm
1109
1110 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001111 i32 786468, ;; Tag
1112 null, ;; File
1113 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001114 metadata !"short unsigned int",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001115 i32 0, ;; Line number
1116 i64 16, ;; Size in Bits
1117 i64 16, ;; Align in Bits
1118 i64 0, ;; Offset in Bits
1119 i32 0, ;; Flags
1120 i32 7 ;; Encoding
1121 }
1122
1123int
1124^^^
1125
1126.. code-block:: llvm
1127
1128 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001129 i32 786468, ;; Tag
1130 null, ;; File
1131 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001132 metadata !"int", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001133 i32 0, ;; Line number
1134 i64 32, ;; Size in Bits
1135 i64 32, ;; Align in Bits
1136 i64 0, ;; Offset in Bits
1137 i32 0, ;; Flags
1138 i32 5 ;; Encoding
1139 }
1140
1141unsigned int
1142^^^^^^^^^^^^
1143
1144.. code-block:: llvm
1145
1146 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001147 i32 786468, ;; Tag
1148 null, ;; File
1149 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001150 metadata !"unsigned int",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001151 i32 0, ;; Line number
1152 i64 32, ;; Size in Bits
1153 i64 32, ;; Align in Bits
1154 i64 0, ;; Offset in Bits
1155 i32 0, ;; Flags
1156 i32 7 ;; Encoding
1157 }
1158
1159long long
1160^^^^^^^^^
1161
1162.. code-block:: llvm
1163
1164 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001165 i32 786468, ;; Tag
1166 null, ;; File
1167 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001168 metadata !"long long int",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001169 i32 0, ;; Line number
1170 i64 64, ;; Size in Bits
1171 i64 64, ;; Align in Bits
1172 i64 0, ;; Offset in Bits
1173 i32 0, ;; Flags
1174 i32 5 ;; Encoding
1175 }
1176
1177unsigned long long
1178^^^^^^^^^^^^^^^^^^
1179
1180.. code-block:: llvm
1181
1182 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001183 i32 786468, ;; Tag
1184 null, ;; File
1185 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001186 metadata !"long long unsigned int",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001187 i32 0, ;; Line number
1188 i64 64, ;; Size in Bits
1189 i64 64, ;; Align in Bits
1190 i64 0, ;; Offset in Bits
1191 i32 0, ;; Flags
1192 i32 7 ;; Encoding
1193 }
1194
1195float
1196^^^^^
1197
1198.. code-block:: llvm
1199
1200 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001201 i32 786468, ;; Tag
1202 null, ;; File
1203 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001204 metadata !"float",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001205 i32 0, ;; Line number
1206 i64 32, ;; Size in Bits
1207 i64 32, ;; Align in Bits
1208 i64 0, ;; Offset in Bits
1209 i32 0, ;; Flags
1210 i32 4 ;; Encoding
1211 }
1212
1213double
1214^^^^^^
1215
1216.. code-block:: llvm
1217
1218 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001219 i32 786468, ;; Tag
1220 null, ;; File
1221 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001222 metadata !"double",;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001223 i32 0, ;; Line number
1224 i64 64, ;; Size in Bits
1225 i64 64, ;; Align in Bits
1226 i64 0, ;; Offset in Bits
1227 i32 0, ;; Flags
1228 i32 4 ;; Encoding
1229 }
1230
1231C/C++ derived types
1232-------------------
1233
1234Given the following as an example of C/C++ derived type:
1235
1236.. code-block:: c
1237
1238 typedef const int *IntPtr;
1239
1240a C/C++ front-end would generate the following descriptors:
1241
1242.. code-block:: llvm
1243
1244 ;;
1245 ;; Define the typedef "IntPtr".
1246 ;;
1247 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001248 i32 786454, ;; Tag
1249 metadata !3, ;; File
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001250 metadata !1, ;; Context
1251 metadata !"IntPtr", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001252 i32 0, ;; Line number
1253 i64 0, ;; Size in bits
1254 i64 0, ;; Align in bits
1255 i64 0, ;; Offset in bits
1256 i32 0, ;; Flags
1257 metadata !4 ;; Derived From type
1258 }
1259 ;;
1260 ;; Define the pointer type.
1261 ;;
1262 !4 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001263 i32 786447, ;; Tag
1264 null, ;; File
1265 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001266 metadata !"", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001267 i32 0, ;; Line number
1268 i64 64, ;; Size in bits
1269 i64 64, ;; Align in bits
1270 i64 0, ;; Offset in bits
1271 i32 0, ;; Flags
1272 metadata !5 ;; Derived From type
1273 }
1274 ;;
1275 ;; Define the const type.
1276 ;;
1277 !5 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001278 i32 786470, ;; Tag
1279 null, ;; File
1280 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001281 metadata !"", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001282 i32 0, ;; Line number
David Blaikie61212bc2013-05-29 02:05:13 +00001283 i64 0, ;; Size in bits
1284 i64 0, ;; Align in bits
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001285 i64 0, ;; Offset in bits
1286 i32 0, ;; Flags
1287 metadata !6 ;; Derived From type
1288 }
1289 ;;
1290 ;; Define the int type.
1291 ;;
1292 !6 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001293 i32 786468, ;; Tag
1294 null, ;; File
1295 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001296 metadata !"int", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001297 i32 0, ;; Line number
1298 i64 32, ;; Size in bits
1299 i64 32, ;; Align in bits
1300 i64 0, ;; Offset in bits
1301 i32 0, ;; Flags
David Blaikie61212bc2013-05-29 02:05:13 +00001302 i32 5 ;; Encoding
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001303 }
1304
1305C/C++ struct/union types
1306------------------------
1307
1308Given the following as an example of C/C++ struct type:
1309
1310.. code-block:: c
1311
1312 struct Color {
1313 unsigned Red;
1314 unsigned Green;
1315 unsigned Blue;
1316 };
1317
1318a C/C++ front-end would generate the following descriptors:
1319
1320.. code-block:: llvm
1321
1322 ;;
1323 ;; Define basic type for unsigned int.
1324 ;;
1325 !5 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001326 i32 786468, ;; Tag
1327 null, ;; File
1328 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001329 metadata !"unsigned int",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001330 i32 0, ;; Line number
1331 i64 32, ;; Size in Bits
1332 i64 32, ;; Align in Bits
1333 i64 0, ;; Offset in Bits
1334 i32 0, ;; Flags
1335 i32 7 ;; Encoding
1336 }
1337 ;;
1338 ;; Define composite type for struct Color.
1339 ;;
1340 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001341 i32 786451, ;; Tag
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001342 metadata !1, ;; Compile unit
David Blaikie61212bc2013-05-29 02:05:13 +00001343 null, ;; Context
1344 metadata !"Color", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001345 i32 1, ;; Line number
1346 i64 96, ;; Size in bits
1347 i64 32, ;; Align in bits
1348 i64 0, ;; Offset in bits
1349 i32 0, ;; Flags
1350 null, ;; Derived From
1351 metadata !3, ;; Elements
David Blaikie61212bc2013-05-29 02:05:13 +00001352 i32 0, ;; Runtime Language
1353 null, ;; Base type containing the vtable pointer for this type
1354 null ;; Template parameters
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001355 }
1356
1357 ;;
1358 ;; Define the Red field.
1359 ;;
1360 !4 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001361 i32 786445, ;; Tag
1362 metadata !1, ;; File
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001363 metadata !1, ;; Context
1364 metadata !"Red", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001365 i32 2, ;; Line number
1366 i64 32, ;; Size in bits
1367 i64 32, ;; Align in bits
1368 i64 0, ;; Offset in bits
1369 i32 0, ;; Flags
1370 metadata !5 ;; Derived From type
1371 }
1372
1373 ;;
1374 ;; Define the Green field.
1375 ;;
1376 !6 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001377 i32 786445, ;; Tag
1378 metadata !1, ;; File
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001379 metadata !1, ;; Context
1380 metadata !"Green", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001381 i32 3, ;; Line number
1382 i64 32, ;; Size in bits
1383 i64 32, ;; Align in bits
1384 i64 32, ;; Offset in bits
1385 i32 0, ;; Flags
1386 metadata !5 ;; Derived From type
1387 }
1388
1389 ;;
1390 ;; Define the Blue field.
1391 ;;
1392 !7 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001393 i32 786445, ;; Tag
1394 metadata !1, ;; File
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001395 metadata !1, ;; Context
1396 metadata !"Blue", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001397 i32 4, ;; Line number
1398 i64 32, ;; Size in bits
1399 i64 32, ;; Align in bits
1400 i64 64, ;; Offset in bits
1401 i32 0, ;; Flags
1402 metadata !5 ;; Derived From type
1403 }
1404
1405 ;;
1406 ;; Define the array of fields used by the composite type Color.
1407 ;;
1408 !3 = metadata !{metadata !4, metadata !6, metadata !7}
1409
1410C/C++ enumeration types
1411-----------------------
1412
1413Given the following as an example of C/C++ enumeration type:
1414
1415.. code-block:: c
1416
1417 enum Trees {
1418 Spruce = 100,
1419 Oak = 200,
1420 Maple = 300
1421 };
1422
1423a C/C++ front-end would generate the following descriptors:
1424
1425.. code-block:: llvm
1426
1427 ;;
1428 ;; Define composite type for enum Trees
1429 ;;
1430 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001431 i32 786436, ;; Tag
1432 metadata !1, ;; File
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001433 metadata !1, ;; Context
1434 metadata !"Trees", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001435 i32 1, ;; Line number
1436 i64 32, ;; Size in bits
1437 i64 32, ;; Align in bits
1438 i64 0, ;; Offset in bits
1439 i32 0, ;; Flags
1440 null, ;; Derived From type
1441 metadata !3, ;; Elements
1442 i32 0 ;; Runtime language
1443 }
1444
1445 ;;
1446 ;; Define the array of enumerators used by composite type Trees.
1447 ;;
1448 !3 = metadata !{metadata !4, metadata !5, metadata !6}
1449
1450 ;;
1451 ;; Define Spruce enumerator.
1452 ;;
David Blaikie61212bc2013-05-29 02:05:13 +00001453 !4 = metadata !{i32 786472, metadata !"Spruce", i64 100}
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001454
1455 ;;
1456 ;; Define Oak enumerator.
1457 ;;
David Blaikie61212bc2013-05-29 02:05:13 +00001458 !5 = metadata !{i32 786472, metadata !"Oak", i64 200}
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001459
1460 ;;
1461 ;; Define Maple enumerator.
1462 ;;
David Blaikie61212bc2013-05-29 02:05:13 +00001463 !6 = metadata !{i32 786472, metadata !"Maple", i64 300}
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001464
1465Debugging information format
1466============================
1467
1468Debugging Information Extension for Objective C Properties
1469----------------------------------------------------------
1470
1471Introduction
1472^^^^^^^^^^^^
1473
1474Objective C provides a simpler way to declare and define accessor methods using
1475declared properties. The language provides features to declare a property and
1476to let compiler synthesize accessor methods.
1477
1478The debugger lets developer inspect Objective C interfaces and their instance
1479variables and class variables. However, the debugger does not know anything
1480about the properties defined in Objective C interfaces. The debugger consumes
1481information generated by compiler in DWARF format. The format does not support
1482encoding of Objective C properties. This proposal describes DWARF extensions to
1483encode Objective C properties, which the debugger can use to let developers
1484inspect Objective C properties.
1485
1486Proposal
1487^^^^^^^^
1488
1489Objective C properties exist separately from class members. A property can be
1490defined only by "setter" and "getter" selectors, and be calculated anew on each
1491access. Or a property can just be a direct access to some declared ivar.
1492Finally it can have an ivar "automatically synthesized" for it by the compiler,
1493in which case the property can be referred to in user code directly using the
1494standard C dereference syntax as well as through the property "dot" syntax, but
1495there is no entry in the ``@interface`` declaration corresponding to this ivar.
1496
1497To facilitate debugging, these properties we will add a new DWARF TAG into the
1498``DW_TAG_structure_type`` definition for the class to hold the description of a
1499given property, and a set of DWARF attributes that provide said description.
1500The property tag will also contain the name and declared type of the property.
1501
1502If there is a related ivar, there will also be a DWARF property attribute placed
1503in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1504for that property. And in the case where the compiler synthesizes the ivar
1505directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1506ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1507to access this ivar directly in code, and with the property attribute pointing
1508back to the property it is backing.
1509
1510The following examples will serve as illustration for our discussion:
1511
1512.. code-block:: objc
1513
1514 @interface I1 {
1515 int n2;
1516 }
1517
1518 @property int p1;
1519 @property int p2;
1520 @end
1521
1522 @implementation I1
1523 @synthesize p1;
1524 @synthesize p2 = n2;
1525 @end
1526
1527This produces the following DWARF (this is a "pseudo dwarfdump" output):
1528
1529.. code-block:: none
1530
1531 0x00000100: TAG_structure_type [7] *
1532 AT_APPLE_runtime_class( 0x10 )
1533 AT_name( "I1" )
1534 AT_decl_file( "Objc_Property.m" )
1535 AT_decl_line( 3 )
1536
1537 0x00000110 TAG_APPLE_property
1538 AT_name ( "p1" )
1539 AT_type ( {0x00000150} ( int ) )
1540
1541 0x00000120: TAG_APPLE_property
1542 AT_name ( "p2" )
1543 AT_type ( {0x00000150} ( int ) )
1544
1545 0x00000130: TAG_member [8]
1546 AT_name( "_p1" )
1547 AT_APPLE_property ( {0x00000110} "p1" )
1548 AT_type( {0x00000150} ( int ) )
1549 AT_artificial ( 0x1 )
1550
1551 0x00000140: TAG_member [8]
1552 AT_name( "n2" )
1553 AT_APPLE_property ( {0x00000120} "p2" )
1554 AT_type( {0x00000150} ( int ) )
1555
1556 0x00000150: AT_type( ( int ) )
1557
1558Note, the current convention is that the name of the ivar for an
1559auto-synthesized property is the name of the property from which it derives
1560with an underscore prepended, as is shown in the example. But we actually
1561don't need to know this convention, since we are given the name of the ivar
1562directly.
1563
1564Also, it is common practice in ObjC to have different property declarations in
1565the @interface and @implementation - e.g. to provide a read-only property in
1566the interface,and a read-write interface in the implementation. In that case,
1567the compiler should emit whichever property declaration will be in force in the
1568current translation unit.
1569
1570Developers can decorate a property with attributes which are encoded using
1571``DW_AT_APPLE_property_attribute``.
1572
1573.. code-block:: objc
1574
1575 @property (readonly, nonatomic) int pr;
1576
1577.. code-block:: none
1578
1579 TAG_APPLE_property [8]
1580 AT_name( "pr" )
1581 AT_type ( {0x00000147} (int) )
1582 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1583
1584The setter and getter method names are attached to the property using
1585``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1586
1587.. code-block:: objc
1588
1589 @interface I1
1590 @property (setter=myOwnP3Setter:) int p3;
1591 -(void)myOwnP3Setter:(int)a;
1592 @end
1593
1594 @implementation I1
1595 @synthesize p3;
1596 -(void)myOwnP3Setter:(int)a{ }
1597 @end
1598
1599The DWARF for this would be:
1600
1601.. code-block:: none
1602
1603 0x000003bd: TAG_structure_type [7] *
1604 AT_APPLE_runtime_class( 0x10 )
1605 AT_name( "I1" )
1606 AT_decl_file( "Objc_Property.m" )
1607 AT_decl_line( 3 )
1608
1609 0x000003cd TAG_APPLE_property
1610 AT_name ( "p3" )
1611 AT_APPLE_property_setter ( "myOwnP3Setter:" )
1612 AT_type( {0x00000147} ( int ) )
1613
1614 0x000003f3: TAG_member [8]
1615 AT_name( "_p3" )
1616 AT_type ( {0x00000147} ( int ) )
1617 AT_APPLE_property ( {0x000003cd} )
1618 AT_artificial ( 0x1 )
1619
1620New DWARF Tags
1621^^^^^^^^^^^^^^
1622
1623+-----------------------+--------+
1624| TAG | Value |
1625+=======================+========+
1626| DW_TAG_APPLE_property | 0x4200 |
1627+-----------------------+--------+
1628
1629New DWARF Attributes
1630^^^^^^^^^^^^^^^^^^^^
1631
1632+--------------------------------+--------+-----------+
1633| Attribute | Value | Classes |
1634+================================+========+===========+
1635| DW_AT_APPLE_property | 0x3fed | Reference |
1636+--------------------------------+--------+-----------+
1637| DW_AT_APPLE_property_getter | 0x3fe9 | String |
1638+--------------------------------+--------+-----------+
1639| DW_AT_APPLE_property_setter | 0x3fea | String |
1640+--------------------------------+--------+-----------+
1641| DW_AT_APPLE_property_attribute | 0x3feb | Constant |
1642+--------------------------------+--------+-----------+
1643
1644New DWARF Constants
1645^^^^^^^^^^^^^^^^^^^
1646
1647+--------------------------------+-------+
1648| Name | Value |
1649+================================+=======+
1650| DW_AT_APPLE_PROPERTY_readonly | 0x1 |
1651+--------------------------------+-------+
1652| DW_AT_APPLE_PROPERTY_readwrite | 0x2 |
1653+--------------------------------+-------+
1654| DW_AT_APPLE_PROPERTY_assign | 0x4 |
1655+--------------------------------+-------+
1656| DW_AT_APPLE_PROPERTY_retain | 0x8 |
1657+--------------------------------+-------+
1658| DW_AT_APPLE_PROPERTY_copy | 0x10 |
1659+--------------------------------+-------+
1660| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 |
1661+--------------------------------+-------+
1662
1663Name Accelerator Tables
1664-----------------------
1665
1666Introduction
1667^^^^^^^^^^^^
1668
1669The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1670debugger needs. The "``pub``" in the section name indicates that the entries
1671in the table are publicly visible names only. This means no static or hidden
1672functions show up in the "``.debug_pubnames``". No static variables or private
1673class variables are in the "``.debug_pubtypes``". Many compilers add different
1674things to these tables, so we can't rely upon the contents between gcc, icc, or
1675clang.
1676
1677The typical query given by users tends not to match up with the contents of
1678these tables. For example, the DWARF spec states that "In the case of the name
1679of a function member or static data member of a C++ structure, class or union,
1680the name presented in the "``.debug_pubnames``" section is not the simple name
1681given by the ``DW_AT_name attribute`` of the referenced debugging information
1682entry, but rather the fully qualified name of the data or function member."
1683So the only names in these tables for complex C++ entries is a fully
1684qualified name. Debugger users tend not to enter their search strings as
1685"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1686"``a::b::c``". So the name entered in the name table must be demangled in
1687order to chop it up appropriately and additional names must be manually entered
1688into the table to make it effective as a name lookup table for debuggers to
1689se.
1690
1691All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1692its inconsistent and useless public-only name content making it a waste of
1693space in the object file. These tables, when they are written to disk, are not
1694sorted in any way, leaving every debugger to do its own parsing and sorting.
1695These tables also include an inlined copy of the string values in the table
1696itself making the tables much larger than they need to be on disk, especially
1697for large C++ programs.
1698
1699Can't we just fix the sections by adding all of the names we need to this
1700table? No, because that is not what the tables are defined to contain and we
1701won't know the difference between the old bad tables and the new good tables.
1702At best we could make our own renamed sections that contain all of the data we
1703need.
1704
1705These tables are also insufficient for what a debugger like LLDB needs. LLDB
1706uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
1707often asked to look for type "``foo``" or namespace "``bar``", or list items in
1708namespace "``baz``". Namespaces are not included in the pubnames or pubtypes
1709tables. Since clang asks a lot of questions when it is parsing an expression,
1710we need to be very fast when looking up names, as it happens a lot. Having new
1711accelerator tables that are optimized for very quick lookups will benefit this
1712type of debugging experience greatly.
1713
1714We would like to generate name lookup tables that can be mapped into memory
1715from disk, and used as is, with little or no up-front parsing. We would also
1716be able to control the exact content of these different tables so they contain
1717exactly what we need. The Name Accelerator Tables were designed to fix these
1718issues. In order to solve these issues we need to:
1719
1720* Have a format that can be mapped into memory from disk and used as is
1721* Lookups should be very fast
1722* Extensible table format so these tables can be made by many producers
1723* Contain all of the names needed for typical lookups out of the box
1724* Strict rules for the contents of tables
1725
1726Table size is important and the accelerator table format should allow the reuse
1727of strings from common string tables so the strings for the names are not
1728duplicated. We also want to make sure the table is ready to be used as-is by
1729simply mapping the table into memory with minimal header parsing.
1730
1731The name lookups need to be fast and optimized for the kinds of lookups that
1732debuggers tend to do. Optimally we would like to touch as few parts of the
1733mapped table as possible when doing a name lookup and be able to quickly find
1734the name entry we are looking for, or discover there are no matches. In the
1735case of debuggers we optimized for lookups that fail most of the time.
1736
1737Each table that is defined should have strict rules on exactly what is in the
1738accelerator tables and documented so clients can rely on the content.
1739
1740Hash Tables
1741^^^^^^^^^^^
1742
1743Standard Hash Tables
1744""""""""""""""""""""
1745
1746Typical hash tables have a header, buckets, and each bucket points to the
1747bucket contents:
1748
1749.. code-block:: none
1750
1751 .------------.
1752 | HEADER |
1753 |------------|
1754 | BUCKETS |
1755 |------------|
1756 | DATA |
1757 `------------'
1758
1759The BUCKETS are an array of offsets to DATA for each hash:
1760
1761.. code-block:: none
1762
1763 .------------.
1764 | 0x00001000 | BUCKETS[0]
1765 | 0x00002000 | BUCKETS[1]
1766 | 0x00002200 | BUCKETS[2]
1767 | 0x000034f0 | BUCKETS[3]
1768 | | ...
1769 | 0xXXXXXXXX | BUCKETS[n_buckets]
1770 '------------'
1771
1772So for ``bucket[3]`` in the example above, we have an offset into the table
17730x000034f0 which points to a chain of entries for the bucket. Each bucket must
1774contain a next pointer, full 32 bit hash value, the string itself, and the data
1775for the current string value.
1776
1777.. code-block:: none
1778
1779 .------------.
1780 0x000034f0: | 0x00003500 | next pointer
1781 | 0x12345678 | 32 bit hash
1782 | "erase" | string value
1783 | data[n] | HashData for this bucket
1784 |------------|
1785 0x00003500: | 0x00003550 | next pointer
1786 | 0x29273623 | 32 bit hash
1787 | "dump" | string value
1788 | data[n] | HashData for this bucket
1789 |------------|
1790 0x00003550: | 0x00000000 | next pointer
1791 | 0x82638293 | 32 bit hash
1792 | "main" | string value
1793 | data[n] | HashData for this bucket
1794 `------------'
1795
1796The problem with this layout for debuggers is that we need to optimize for the
1797negative lookup case where the symbol we're searching for is not present. So
1798if we were to lookup "``printf``" in the table above, we would make a 32 hash
1799for "``printf``", it might match ``bucket[3]``. We would need to go to the
1800offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do
1801so, we need to read the next pointer, then read the hash, compare it, and skip
1802to the next bucket. Each time we are skipping many bytes in memory and
1803touching new cache pages just to do the compare on the full 32 bit hash. All
1804of these accesses then tell us that we didn't have a match.
1805
1806Name Hash Tables
1807""""""""""""""""
1808
1809To solve the issues mentioned above we have structured the hash tables a bit
1810differently: a header, buckets, an array of all unique 32 bit hash values,
1811followed by an array of hash value data offsets, one for each hash value, then
1812the data for all hash values:
1813
1814.. code-block:: none
1815
1816 .-------------.
1817 | HEADER |
1818 |-------------|
1819 | BUCKETS |
1820 |-------------|
1821 | HASHES |
1822 |-------------|
1823 | OFFSETS |
1824 |-------------|
1825 | DATA |
1826 `-------------'
1827
1828The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By
1829making all of the full 32 bit hash values contiguous in memory, we allow
1830ourselves to efficiently check for a match while touching as little memory as
1831possible. Most often checking the 32 bit hash values is as far as the lookup
1832goes. If it does match, it usually is a match with no collisions. So for a
1833table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1834values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1835``OFFSETS`` as:
1836
1837.. code-block:: none
1838
1839 .-------------------------.
1840 | HEADER.magic | uint32_t
1841 | HEADER.version | uint16_t
1842 | HEADER.hash_function | uint16_t
1843 | HEADER.bucket_count | uint32_t
1844 | HEADER.hashes_count | uint32_t
1845 | HEADER.header_data_len | uint32_t
1846 | HEADER_DATA | HeaderData
1847 |-------------------------|
Eric Christopherafa288d2013-03-18 20:21:47 +00001848 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001849 |-------------------------|
Eric Christopherafa288d2013-03-18 20:21:47 +00001850 | HASHES | uint32_t[n_hashes] // 32 bit hash values
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001851 |-------------------------|
Eric Christopherafa288d2013-03-18 20:21:47 +00001852 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001853 |-------------------------|
1854 | ALL HASH DATA |
1855 `-------------------------'
1856
1857So taking the exact same data from the standard hash example above we end up
1858with:
1859
1860.. code-block:: none
1861
1862 .------------.
1863 | HEADER |
1864 |------------|
1865 | 0 | BUCKETS[0]
1866 | 2 | BUCKETS[1]
1867 | 5 | BUCKETS[2]
1868 | 6 | BUCKETS[3]
1869 | | ...
1870 | ... | BUCKETS[n_buckets]
1871 |------------|
1872 | 0x........ | HASHES[0]
1873 | 0x........ | HASHES[1]
1874 | 0x........ | HASHES[2]
1875 | 0x........ | HASHES[3]
1876 | 0x........ | HASHES[4]
1877 | 0x........ | HASHES[5]
1878 | 0x12345678 | HASHES[6] hash for BUCKETS[3]
1879 | 0x29273623 | HASHES[7] hash for BUCKETS[3]
1880 | 0x82638293 | HASHES[8] hash for BUCKETS[3]
1881 | 0x........ | HASHES[9]
1882 | 0x........ | HASHES[10]
1883 | 0x........ | HASHES[11]
1884 | 0x........ | HASHES[12]
1885 | 0x........ | HASHES[13]
1886 | 0x........ | HASHES[n_hashes]
1887 |------------|
1888 | 0x........ | OFFSETS[0]
1889 | 0x........ | OFFSETS[1]
1890 | 0x........ | OFFSETS[2]
1891 | 0x........ | OFFSETS[3]
1892 | 0x........ | OFFSETS[4]
1893 | 0x........ | OFFSETS[5]
1894 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
1895 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
1896 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
1897 | 0x........ | OFFSETS[9]
1898 | 0x........ | OFFSETS[10]
1899 | 0x........ | OFFSETS[11]
1900 | 0x........ | OFFSETS[12]
1901 | 0x........ | OFFSETS[13]
1902 | 0x........ | OFFSETS[n_hashes]
1903 |------------|
1904 | |
1905 | |
1906 | |
1907 | |
1908 | |
1909 |------------|
1910 0x000034f0: | 0x00001203 | .debug_str ("erase")
1911 | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1912 | 0x........ | HashData[0]
1913 | 0x........ | HashData[1]
1914 | 0x........ | HashData[2]
1915 | 0x........ | HashData[3]
1916 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1917 |------------|
1918 0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1919 | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1920 | 0x........ | HashData[0]
1921 | 0x........ | HashData[1]
1922 | 0x00001203 | String offset into .debug_str ("dump")
1923 | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1924 | 0x........ | HashData[0]
1925 | 0x........ | HashData[1]
1926 | 0x........ | HashData[2]
1927 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1928 |------------|
1929 0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1930 | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1931 | 0x........ | HashData[0]
1932 | 0x........ | HashData[1]
1933 | 0x........ | HashData[2]
1934 | 0x........ | HashData[3]
1935 | 0x........ | HashData[4]
1936 | 0x........ | HashData[5]
1937 | 0x........ | HashData[6]
1938 | 0x........ | HashData[7]
1939 | 0x........ | HashData[8]
1940 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1941 `------------'
1942
1943So we still have all of the same data, we just organize it more efficiently for
1944debugger lookup. If we repeat the same "``printf``" lookup from above, we
1945would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1946hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which
1947is the index into the ``HASHES`` table. We would then compare any consecutive
194832 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1949``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo
1950``n_buckets`` is still 3. In the case of a failed lookup we would access the
1951memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1952before we know that we have no match. We don't end up marching through
1953multiple words of memory and we really keep the number of processor data cache
1954lines being accessed as small as possible.
1955
1956The string hash that is used for these lookup tables is the Daniel J.
1957Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a
1958very good hash for all kinds of names in programs with very few hash
1959collisions.
1960
1961Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1962
1963Details
1964^^^^^^^
1965
1966These name hash tables are designed to be generic where specializations of the
1967table get to define additional data that goes into the header ("``HeaderData``"),
1968how the string value is stored ("``KeyType``") and the content of the data for each
1969hash value.
1970
1971Header Layout
1972"""""""""""""
1973
1974The header has a fixed part, and the specialized part. The exact format of the
1975header is:
1976
1977.. code-block:: c
1978
1979 struct Header
1980 {
1981 uint32_t magic; // 'HASH' magic value to allow endian detection
1982 uint16_t version; // Version number
1983 uint16_t hash_function; // The hash function enumeration that was used
1984 uint32_t bucket_count; // The number of buckets in this hash table
1985 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table
1986 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1987 // Specifically the length of the following HeaderData field - this does not
1988 // include the size of the preceding fields
1989 HeaderData header_data; // Implementation specific header data
1990 };
1991
1992The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1993encoded as an ASCII integer. This allows the detection of the start of the
1994hash table and also allows the table's byte order to be determined so the table
1995can be correctly extracted. The "``magic``" value is followed by a 16 bit
1996``version`` number which allows the table to be revised and modified in the
1997future. The current version number is 1. ``hash_function`` is a ``uint16_t``
1998enumeration that specifies which hash function was used to produce this table.
1999The current values for the hash function enumerations include:
2000
2001.. code-block:: c
2002
2003 enum HashFunctionType
2004 {
2005 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
2006 };
2007
2008``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
2009are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit
2010hash values that are in the ``HASHES`` array, and is the same number of offsets
2011are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size
2012in bytes of the ``HeaderData`` that is filled in by specialized versions of
2013this table.
2014
2015Fixed Lookup
2016""""""""""""
2017
2018The header is followed by the buckets, hashes, offsets, and hash value data.
2019
2020.. code-block:: c
2021
2022 struct FixedTable
2023 {
2024 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below
2025 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table
2026 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above
2027 };
2028
2029``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The
2030``hashes`` array contains all of the 32 bit hash values for all names in the
2031hash table. Each hash in the ``hashes`` table has an offset in the ``offsets``
2032array that points to the data for the hash value.
2033
2034This table setup makes it very easy to repurpose these tables to contain
2035different data, while keeping the lookup mechanism the same for all tables.
2036This layout also makes it possible to save the table to disk and map it in
2037later and do very efficient name lookups with little or no parsing.
2038
2039DWARF lookup tables can be implemented in a variety of ways and can store a lot
2040of information for each name. We want to make the DWARF tables extensible and
2041able to store the data efficiently so we have used some of the DWARF features
2042that enable efficient data storage to define exactly what kind of data we store
2043for each name.
2044
2045The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2046We might want to store an offset to all of the debug information entries (DIEs)
2047for each name. To keep things extensible, we create a list of items, or
2048Atoms, that are contained in the data for each name. First comes the type of
2049the data in each atom:
2050
2051.. code-block:: c
2052
2053 enum AtomType
2054 {
2055 eAtomTypeNULL = 0u,
2056 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
2057 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
2058 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2059 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
2060 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags
2061 };
2062
2063The enumeration values and their meanings are:
2064
2065.. code-block:: none
2066
2067 eAtomTypeNULL - a termination atom that specifies the end of the atom list
2068 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
2069 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
2070 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2071 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2072 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)
2073
2074Then we allow each atom type to define the atom type and how the data for each
2075atom type data is encoded:
2076
2077.. code-block:: c
2078
2079 struct Atom
2080 {
2081 uint16_t type; // AtomType enum value
2082 uint16_t form; // DWARF DW_FORM_XXX defines
2083 };
2084
2085The ``form`` type above is from the DWARF specification and defines the exact
2086encoding of the data for the Atom type. See the DWARF specification for the
2087``DW_FORM_`` definitions.
2088
2089.. code-block:: c
2090
2091 struct HeaderData
2092 {
2093 uint32_t die_offset_base;
2094 uint32_t atom_count;
2095 Atoms atoms[atom_count0];
2096 };
2097
2098``HeaderData`` defines the base DIE offset that should be added to any atoms
2099that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2100``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines
2101what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2102each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2103should be interpreted.
2104
2105For the current implementations of the "``.apple_names``" (all functions +
2106globals), the "``.apple_types``" (names of all types that are defined), and
2107the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2108array to be:
2109
2110.. code-block:: c
2111
2112 HeaderData.atom_count = 1;
2113 HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2114 HeaderData.atoms[0].form = DW_FORM_data4;
2115
2116This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
Eric Christopher61e0b782013-03-19 23:10:26 +00002117encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
2118multiple matching DIEs in a single file, which could come up with an inlined
2119function for instance. Future tables could include more information about the
2120DIE such as flags indicating if the DIE is a function, method, block,
2121or inlined.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00002122
2123The KeyType for the DWARF table is a 32 bit string table offset into the
Eric Christopher61e0b782013-03-19 23:10:26 +00002124".debug_str" table. The ".debug_str" is the string table for the DWARF which
2125may already contain copies of all of the strings. This helps make sure, with
2126help from the compiler, that we reuse the strings between all of the DWARF
2127sections and keeps the hash table size down. Another benefit to having the
2128compiler generate all strings as DW_FORM_strp in the debug info, is that
2129DWARF parsing can be made much faster.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00002130
2131After a lookup is made, we get an offset into the hash data. The hash data
Eric Christopher61e0b782013-03-19 23:10:26 +00002132needs to be able to deal with 32 bit hash collisions, so the chunk of data
2133at the offset in the hash data consists of a triple:
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00002134
2135.. code-block:: c
2136
2137 uint32_t str_offset
2138 uint32_t hash_data_count
2139 HashData[hash_data_count]
2140
2141If "str_offset" is zero, then the bucket contents are done. 99.9% of the
Eric Christopher61e0b782013-03-19 23:10:26 +00002142hash data chunks contain a single item (no 32 bit hash collision):
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00002143
2144.. code-block:: none
2145
2146 .------------.
2147 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2148 | 0x00000004 | uint32_t HashData count
2149 | 0x........ | uint32_t HashData[0] DIE offset
2150 | 0x........ | uint32_t HashData[1] DIE offset
2151 | 0x........ | uint32_t HashData[2] DIE offset
2152 | 0x........ | uint32_t HashData[3] DIE offset
2153 | 0x00000000 | uint32_t KeyType (end of hash chain)
2154 `------------'
2155
2156If there are collisions, you will have multiple valid string offsets:
2157
2158.. code-block:: none
2159
2160 .------------.
2161 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2162 | 0x00000004 | uint32_t HashData count
2163 | 0x........ | uint32_t HashData[0] DIE offset
2164 | 0x........ | uint32_t HashData[1] DIE offset
2165 | 0x........ | uint32_t HashData[2] DIE offset
2166 | 0x........ | uint32_t HashData[3] DIE offset
2167 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2168 | 0x00000002 | uint32_t HashData count
2169 | 0x........ | uint32_t HashData[0] DIE offset
2170 | 0x........ | uint32_t HashData[1] DIE offset
2171 | 0x00000000 | uint32_t KeyType (end of hash chain)
2172 `------------'
2173
2174Current testing with real world C++ binaries has shown that there is around 1
217532 bit hash collision per 100,000 name entries.
2176
2177Contents
2178^^^^^^^^
2179
2180As we said, we want to strictly define exactly what is included in the
2181different tables. For DWARF, we have 3 tables: "``.apple_names``",
2182"``.apple_types``", and "``.apple_namespaces``".
2183
2184"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2185``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2186``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2187``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains
2188``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2189static variables). All global and static variables should be included,
2190including those scoped within functions and classes. For example using the
2191following code:
2192
2193.. code-block:: c
2194
2195 static int var = 0;
2196
2197 void f ()
2198 {
2199 static int var = 0;
2200 }
2201
2202Both of the static ``var`` variables would be included in the table. All
2203functions should emit both their full names and their basenames. For C or C++,
2204the full name is the mangled name (if available) which is usually in the
2205``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2206function basename. If global or static variables have a mangled name in a
2207``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2208simple name found in the ``DW_AT_name`` attribute.
2209
2210"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2211tag is one of:
2212
2213* DW_TAG_array_type
2214* DW_TAG_class_type
2215* DW_TAG_enumeration_type
2216* DW_TAG_pointer_type
2217* DW_TAG_reference_type
2218* DW_TAG_string_type
2219* DW_TAG_structure_type
2220* DW_TAG_subroutine_type
2221* DW_TAG_typedef
2222* DW_TAG_union_type
2223* DW_TAG_ptr_to_member_type
2224* DW_TAG_set_type
2225* DW_TAG_subrange_type
2226* DW_TAG_base_type
2227* DW_TAG_const_type
2228* DW_TAG_constant
2229* DW_TAG_file_type
2230* DW_TAG_namelist
2231* DW_TAG_packed_type
2232* DW_TAG_volatile_type
2233* DW_TAG_restrict_type
2234* DW_TAG_interface_type
2235* DW_TAG_unspecified_type
2236* DW_TAG_shared_type
2237
2238Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2239not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2240value). For example, using the following code:
2241
2242.. code-block:: c
2243
2244 int main ()
2245 {
2246 int *b = 0;
2247 return *b;
2248 }
2249
2250We get a few type DIEs:
2251
2252.. code-block:: none
2253
2254 0x00000067: TAG_base_type [5]
2255 AT_encoding( DW_ATE_signed )
2256 AT_name( "int" )
2257 AT_byte_size( 0x04 )
2258
2259 0x0000006e: TAG_pointer_type [6]
2260 AT_type( {0x00000067} ( int ) )
2261 AT_byte_size( 0x08 )
2262
2263The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2264
2265"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2266If we run into a namespace that has no name this is an anonymous namespace, and
2267the name should be output as "``(anonymous namespace)``" (without the quotes).
2268Why? This matches the output of the ``abi::cxa_demangle()`` that is in the
2269standard C++ library that demangles mangled names.
2270
2271
2272Language Extensions and File Format Changes
2273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2274
2275Objective-C Extensions
2276""""""""""""""""""""""
2277
2278"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2279Objective-C class. The name used in the hash table is the name of the
2280Objective-C class itself. If the Objective-C class has a category, then an
2281entry is made for both the class name without the category, and for the class
2282name with the category. So if we have a DIE at offset 0x1234 with a name of
2283method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2284an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2285"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly
2286track down all Objective-C methods for an Objective-C class when doing
2287expressions. It is needed because of the dynamic nature of Objective-C where
2288anyone can add methods to a class. The DWARF for Objective-C methods is also
2289emitted differently from C++ classes where the methods are not usually
2290contained in the class definition, they are scattered about across one or more
2291compile units. Categories can also be defined in different shared libraries.
2292So we need to be able to quickly find all of the methods and class functions
2293given the Objective-C class name, or quickly find all methods and class
2294functions for a class + category name. This table does not contain any
2295selector names, it just maps Objective-C class names (or class names +
2296category) to all of the methods and class functions. The selectors are added
2297as function basenames in the "``.debug_names``" section.
2298
2299In the "``.apple_names``" section for Objective-C functions, the full name is
2300the entire function name with the brackets ("``-[NSString
2301stringWithCString:]``") and the basename is the selector only
2302("``stringWithCString:``").
2303
2304Mach-O Changes
2305""""""""""""""
2306
2307The sections names for the apple hash tables are for non mach-o files. For
2308mach-o files, the sections should be contained in the ``__DWARF`` segment with
2309names as follows:
2310
2311* "``.apple_names``" -> "``__apple_names``"
2312* "``.apple_types``" -> "``__apple_types``"
2313* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2314* "``.apple_objc``" -> "``__apple_objc``"
2315