blob: 6638fccfef581ca0d549542ae1c838cb8d1025a1 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
Ted Kremenek109de0d2008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Chris Lattner89b36582008-08-17 07:19:36 +000018#include "llvm/ADT/SmallString.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "llvm/Support/Debug.h"
Edwin Török675d5622009-07-11 20:10:48 +000020#include "llvm/Support/ErrorHandling.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000021#include "llvm/Support/MathExtras.h"
Chris Lattner1fefaac2008-08-23 22:23:09 +000022#include "llvm/Support/raw_ostream.h"
Chris Lattner89b36582008-08-17 07:19:36 +000023#include <cmath>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000024#include <limits>
25#include <cstring>
26#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027using namespace llvm;
28
29/// A utility function for allocating memory, checking for allocation failures,
30/// and ensuring the contents are zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000031inline static uint64_t* getClearedMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032 uint64_t * result = new uint64_t[numWords];
33 assert(result && "APInt memory allocation fails!");
34 memset(result, 0, numWords * sizeof(uint64_t));
35 return result;
36}
37
38/// A utility function for allocating memory and checking for allocation
39/// failure. The content is not zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000040inline static uint64_t* getMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000041 uint64_t * result = new uint64_t[numWords];
42 assert(result && "APInt memory allocation fails!");
43 return result;
44}
45
Chris Lattneree5417c2009-01-21 18:09:24 +000046void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner84886852008-08-20 17:02:31 +000047 pVal = getClearedMemory(getNumWords());
48 pVal[0] = val;
49 if (isSigned && int64_t(val) < 0)
50 for (unsigned i = 1; i < getNumWords(); ++i)
51 pVal[i] = -1ULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000052}
53
Chris Lattnera1f63bb2008-10-11 22:07:19 +000054void APInt::initSlowCase(const APInt& that) {
55 pVal = getMemory(getNumWords());
56 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
57}
58
59
Chris Lattneree5417c2009-01-21 18:09:24 +000060APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner1fefaac2008-08-23 22:23:09 +000061 : BitWidth(numBits), VAL(0) {
Chris Lattner84886852008-08-20 17:02:31 +000062 assert(BitWidth && "bitwidth too small");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000063 assert(bigVal && "Null pointer detected!");
64 if (isSingleWord())
65 VAL = bigVal[0];
66 else {
67 // Get memory, cleared to 0
68 pVal = getClearedMemory(getNumWords());
69 // Calculate the number of words to copy
Chris Lattneree5417c2009-01-21 18:09:24 +000070 unsigned words = std::min<unsigned>(numWords, getNumWords());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071 // Copy the words from bigVal to pVal
72 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
73 }
74 // Make sure unused high bits are cleared
75 clearUnusedBits();
76}
77
Chris Lattneree5417c2009-01-21 18:09:24 +000078APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000079 uint8_t radix)
80 : BitWidth(numbits), VAL(0) {
Chris Lattner84886852008-08-20 17:02:31 +000081 assert(BitWidth && "bitwidth too small");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082 fromString(numbits, StrStart, slen, radix);
83}
84
Chris Lattner84886852008-08-20 17:02:31 +000085APInt& APInt::AssignSlowCase(const APInt& RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086 // Don't do anything for X = X
87 if (this == &RHS)
88 return *this;
89
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner84886852008-08-20 17:02:31 +000091 // assume same bit-width single-word case is already handled
92 assert(!isSingleWord());
93 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 return *this;
95 }
96
Chris Lattner84886852008-08-20 17:02:31 +000097 if (isSingleWord()) {
98 // assume case where both are single words is already handled
99 assert(!RHS.isSingleWord());
100 VAL = 0;
101 pVal = getMemory(RHS.getNumWords());
102 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
103 } else if (getNumWords() == RHS.getNumWords())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
105 else if (RHS.isSingleWord()) {
106 delete [] pVal;
107 VAL = RHS.VAL;
108 } else {
109 delete [] pVal;
110 pVal = getMemory(RHS.getNumWords());
111 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
112 }
113 BitWidth = RHS.BitWidth;
114 return clearUnusedBits();
115}
116
117APInt& APInt::operator=(uint64_t RHS) {
118 if (isSingleWord())
119 VAL = RHS;
120 else {
121 pVal[0] = RHS;
122 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
123 }
124 return clearUnusedBits();
125}
126
Ted Kremenek109de0d2008-01-19 04:23:33 +0000127/// Profile - This method 'profiles' an APInt for use with FoldingSet.
128void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek79f65912008-02-19 20:50:41 +0000129 ID.AddInteger(BitWidth);
130
Ted Kremenek109de0d2008-01-19 04:23:33 +0000131 if (isSingleWord()) {
132 ID.AddInteger(VAL);
133 return;
134 }
135
Chris Lattneree5417c2009-01-21 18:09:24 +0000136 unsigned NumWords = getNumWords();
Ted Kremenek109de0d2008-01-19 04:23:33 +0000137 for (unsigned i = 0; i < NumWords; ++i)
138 ID.AddInteger(pVal[i]);
139}
140
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141/// add_1 - This function adds a single "digit" integer, y, to the multiple
142/// "digit" integer array, x[]. x[] is modified to reflect the addition and
143/// 1 is returned if there is a carry out, otherwise 0 is returned.
144/// @returns the carry of the addition.
Chris Lattneree5417c2009-01-21 18:09:24 +0000145static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
146 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000147 dest[i] = y + x[i];
148 if (dest[i] < y)
149 y = 1; // Carry one to next digit.
150 else {
151 y = 0; // No need to carry so exit early
152 break;
153 }
154 }
155 return y;
156}
157
158/// @brief Prefix increment operator. Increments the APInt by one.
159APInt& APInt::operator++() {
160 if (isSingleWord())
161 ++VAL;
162 else
163 add_1(pVal, pVal, getNumWords(), 1);
164 return clearUnusedBits();
165}
166
167/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
168/// the multi-digit integer array, x[], propagating the borrowed 1 value until
169/// no further borrowing is neeeded or it runs out of "digits" in x. The result
170/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
171/// In other words, if y > x then this function returns 1, otherwise 0.
172/// @returns the borrow out of the subtraction
Chris Lattneree5417c2009-01-21 18:09:24 +0000173static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
174 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000175 uint64_t X = x[i];
176 x[i] -= y;
177 if (y > X)
178 y = 1; // We have to "borrow 1" from next "digit"
179 else {
180 y = 0; // No need to borrow
181 break; // Remaining digits are unchanged so exit early
182 }
183 }
184 return bool(y);
185}
186
187/// @brief Prefix decrement operator. Decrements the APInt by one.
188APInt& APInt::operator--() {
189 if (isSingleWord())
190 --VAL;
191 else
192 sub_1(pVal, getNumWords(), 1);
193 return clearUnusedBits();
194}
195
196/// add - This function adds the integer array x to the integer array Y and
197/// places the result in dest.
198/// @returns the carry out from the addition
199/// @brief General addition of 64-bit integer arrays
200static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000201 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000202 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000203 for (unsigned i = 0; i< len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000204 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
205 dest[i] = x[i] + y[i] + carry;
206 carry = dest[i] < limit || (carry && dest[i] == limit);
207 }
208 return carry;
209}
210
211/// Adds the RHS APint to this APInt.
212/// @returns this, after addition of RHS.
213/// @brief Addition assignment operator.
214APInt& APInt::operator+=(const APInt& RHS) {
215 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
216 if (isSingleWord())
217 VAL += RHS.VAL;
218 else {
219 add(pVal, pVal, RHS.pVal, getNumWords());
220 }
221 return clearUnusedBits();
222}
223
224/// Subtracts the integer array y from the integer array x
225/// @returns returns the borrow out.
226/// @brief Generalized subtraction of 64-bit integer arrays.
227static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000228 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000229 bool borrow = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000230 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000231 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
232 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
233 dest[i] = x_tmp - y[i];
234 }
235 return borrow;
236}
237
238/// Subtracts the RHS APInt from this APInt
239/// @returns this, after subtraction
240/// @brief Subtraction assignment operator.
241APInt& APInt::operator-=(const APInt& RHS) {
242 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
243 if (isSingleWord())
244 VAL -= RHS.VAL;
245 else
246 sub(pVal, pVal, RHS.pVal, getNumWords());
247 return clearUnusedBits();
248}
249
250/// Multiplies an integer array, x by a a uint64_t integer and places the result
251/// into dest.
252/// @returns the carry out of the multiplication.
253/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattneree5417c2009-01-21 18:09:24 +0000254static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000255 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
256 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
257 uint64_t carry = 0;
258
259 // For each digit of x.
Chris Lattneree5417c2009-01-21 18:09:24 +0000260 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000261 // Split x into high and low words
262 uint64_t lx = x[i] & 0xffffffffULL;
263 uint64_t hx = x[i] >> 32;
264 // hasCarry - A flag to indicate if there is a carry to the next digit.
265 // hasCarry == 0, no carry
266 // hasCarry == 1, has carry
267 // hasCarry == 2, no carry and the calculation result == 0.
268 uint8_t hasCarry = 0;
269 dest[i] = carry + lx * ly;
270 // Determine if the add above introduces carry.
271 hasCarry = (dest[i] < carry) ? 1 : 0;
272 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
273 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
274 // (2^32 - 1) + 2^32 = 2^64.
275 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
276
277 carry += (lx * hy) & 0xffffffffULL;
278 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
279 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
280 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
281 }
282 return carry;
283}
284
285/// Multiplies integer array x by integer array y and stores the result into
286/// the integer array dest. Note that dest's size must be >= xlen + ylen.
287/// @brief Generalized multiplicate of integer arrays.
Chris Lattneree5417c2009-01-21 18:09:24 +0000288static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
289 unsigned ylen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000290 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattneree5417c2009-01-21 18:09:24 +0000291 for (unsigned i = 1; i < ylen; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
293 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +0000294 for (unsigned j = 0; j < xlen; ++j) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000295 lx = x[j] & 0xffffffffULL;
296 hx = x[j] >> 32;
297 // hasCarry - A flag to indicate if has carry.
298 // hasCarry == 0, no carry
299 // hasCarry == 1, has carry
300 // hasCarry == 2, no carry and the calculation result == 0.
301 uint8_t hasCarry = 0;
302 uint64_t resul = carry + lx * ly;
303 hasCarry = (resul < carry) ? 1 : 0;
304 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
305 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
306
307 carry += (lx * hy) & 0xffffffffULL;
308 resul = (carry << 32) | (resul & 0xffffffffULL);
309 dest[i+j] += resul;
310 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
311 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
312 ((lx * hy) >> 32) + hx * hy;
313 }
314 dest[i+xlen] = carry;
315 }
316}
317
318APInt& APInt::operator*=(const APInt& RHS) {
319 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
320 if (isSingleWord()) {
321 VAL *= RHS.VAL;
322 clearUnusedBits();
323 return *this;
324 }
325
326 // Get some bit facts about LHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000327 unsigned lhsBits = getActiveBits();
328 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000329 if (!lhsWords)
330 // 0 * X ===> 0
331 return *this;
332
333 // Get some bit facts about RHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000334 unsigned rhsBits = RHS.getActiveBits();
335 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336 if (!rhsWords) {
337 // X * 0 ===> 0
338 clear();
339 return *this;
340 }
341
342 // Allocate space for the result
Chris Lattneree5417c2009-01-21 18:09:24 +0000343 unsigned destWords = rhsWords + lhsWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344 uint64_t *dest = getMemory(destWords);
345
346 // Perform the long multiply
347 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
348
349 // Copy result back into *this
350 clear();
Chris Lattneree5417c2009-01-21 18:09:24 +0000351 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000352 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
353
354 // delete dest array and return
355 delete[] dest;
356 return *this;
357}
358
359APInt& APInt::operator&=(const APInt& RHS) {
360 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
361 if (isSingleWord()) {
362 VAL &= RHS.VAL;
363 return *this;
364 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000365 unsigned numWords = getNumWords();
366 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000367 pVal[i] &= RHS.pVal[i];
368 return *this;
369}
370
371APInt& APInt::operator|=(const APInt& RHS) {
372 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
373 if (isSingleWord()) {
374 VAL |= RHS.VAL;
375 return *this;
376 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000377 unsigned numWords = getNumWords();
378 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379 pVal[i] |= RHS.pVal[i];
380 return *this;
381}
382
383APInt& APInt::operator^=(const APInt& RHS) {
384 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
385 if (isSingleWord()) {
386 VAL ^= RHS.VAL;
387 this->clearUnusedBits();
388 return *this;
389 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000390 unsigned numWords = getNumWords();
391 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000392 pVal[i] ^= RHS.pVal[i];
393 return clearUnusedBits();
394}
395
Chris Lattner84886852008-08-20 17:02:31 +0000396APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000397 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398 uint64_t* val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000399 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000400 val[i] = pVal[i] & RHS.pVal[i];
401 return APInt(val, getBitWidth());
402}
403
Chris Lattner84886852008-08-20 17:02:31 +0000404APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000405 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000406 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000407 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408 val[i] = pVal[i] | RHS.pVal[i];
409 return APInt(val, getBitWidth());
410}
411
Chris Lattner84886852008-08-20 17:02:31 +0000412APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000413 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000414 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000415 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000416 val[i] = pVal[i] ^ RHS.pVal[i];
417
418 // 0^0==1 so clear the high bits in case they got set.
419 return APInt(val, getBitWidth()).clearUnusedBits();
420}
421
422bool APInt::operator !() const {
423 if (isSingleWord())
424 return !VAL;
425
Chris Lattneree5417c2009-01-21 18:09:24 +0000426 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000427 if (pVal[i])
428 return false;
429 return true;
430}
431
432APInt APInt::operator*(const APInt& RHS) const {
433 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
434 if (isSingleWord())
435 return APInt(BitWidth, VAL * RHS.VAL);
436 APInt Result(*this);
437 Result *= RHS;
438 return Result.clearUnusedBits();
439}
440
441APInt APInt::operator+(const APInt& RHS) const {
442 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
443 if (isSingleWord())
444 return APInt(BitWidth, VAL + RHS.VAL);
445 APInt Result(BitWidth, 0);
446 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
447 return Result.clearUnusedBits();
448}
449
450APInt APInt::operator-(const APInt& RHS) const {
451 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
452 if (isSingleWord())
453 return APInt(BitWidth, VAL - RHS.VAL);
454 APInt Result(BitWidth, 0);
455 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
456 return Result.clearUnusedBits();
457}
458
Chris Lattneree5417c2009-01-21 18:09:24 +0000459bool APInt::operator[](unsigned bitPosition) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000460 return (maskBit(bitPosition) &
461 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
462}
463
Chris Lattner84886852008-08-20 17:02:31 +0000464bool APInt::EqualSlowCase(const APInt& RHS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000465 // Get some facts about the number of bits used in the two operands.
Chris Lattneree5417c2009-01-21 18:09:24 +0000466 unsigned n1 = getActiveBits();
467 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000468
469 // If the number of bits isn't the same, they aren't equal
470 if (n1 != n2)
471 return false;
472
473 // If the number of bits fits in a word, we only need to compare the low word.
474 if (n1 <= APINT_BITS_PER_WORD)
475 return pVal[0] == RHS.pVal[0];
476
477 // Otherwise, compare everything
478 for (int i = whichWord(n1 - 1); i >= 0; --i)
479 if (pVal[i] != RHS.pVal[i])
480 return false;
481 return true;
482}
483
Chris Lattner84886852008-08-20 17:02:31 +0000484bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000485 unsigned n = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000486 if (n <= APINT_BITS_PER_WORD)
487 return pVal[0] == Val;
488 else
489 return false;
490}
491
492bool APInt::ult(const APInt& RHS) const {
493 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
494 if (isSingleWord())
495 return VAL < RHS.VAL;
496
497 // Get active bit length of both operands
Chris Lattneree5417c2009-01-21 18:09:24 +0000498 unsigned n1 = getActiveBits();
499 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000500
501 // If magnitude of LHS is less than RHS, return true.
502 if (n1 < n2)
503 return true;
504
505 // If magnitude of RHS is greather than LHS, return false.
506 if (n2 < n1)
507 return false;
508
509 // If they bot fit in a word, just compare the low order word
510 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
511 return pVal[0] < RHS.pVal[0];
512
513 // Otherwise, compare all words
Chris Lattneree5417c2009-01-21 18:09:24 +0000514 unsigned topWord = whichWord(std::max(n1,n2)-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000515 for (int i = topWord; i >= 0; --i) {
516 if (pVal[i] > RHS.pVal[i])
517 return false;
518 if (pVal[i] < RHS.pVal[i])
519 return true;
520 }
521 return false;
522}
523
524bool APInt::slt(const APInt& RHS) const {
525 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
526 if (isSingleWord()) {
527 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
528 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
529 return lhsSext < rhsSext;
530 }
531
532 APInt lhs(*this);
533 APInt rhs(RHS);
534 bool lhsNeg = isNegative();
535 bool rhsNeg = rhs.isNegative();
536 if (lhsNeg) {
537 // Sign bit is set so perform two's complement to make it positive
538 lhs.flip();
539 lhs++;
540 }
541 if (rhsNeg) {
542 // Sign bit is set so perform two's complement to make it positive
543 rhs.flip();
544 rhs++;
545 }
546
547 // Now we have unsigned values to compare so do the comparison if necessary
548 // based on the negativeness of the values.
549 if (lhsNeg)
550 if (rhsNeg)
551 return lhs.ugt(rhs);
552 else
553 return true;
554 else if (rhsNeg)
555 return false;
556 else
557 return lhs.ult(rhs);
558}
559
Chris Lattneree5417c2009-01-21 18:09:24 +0000560APInt& APInt::set(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000561 if (isSingleWord())
562 VAL |= maskBit(bitPosition);
563 else
564 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
565 return *this;
566}
567
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000568/// Set the given bit to 0 whose position is given as "bitPosition".
569/// @brief Set a given bit to 0.
Chris Lattneree5417c2009-01-21 18:09:24 +0000570APInt& APInt::clear(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000571 if (isSingleWord())
572 VAL &= ~maskBit(bitPosition);
573 else
574 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
575 return *this;
576}
577
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000578/// @brief Toggle every bit to its opposite value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000579
580/// Toggle a given bit to its opposite value whose position is given
581/// as "bitPosition".
582/// @brief Toggles a given bit to its opposite value.
Chris Lattneree5417c2009-01-21 18:09:24 +0000583APInt& APInt::flip(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000584 assert(bitPosition < BitWidth && "Out of the bit-width range!");
585 if ((*this)[bitPosition]) clear(bitPosition);
586 else set(bitPosition);
587 return *this;
588}
589
Chris Lattneree5417c2009-01-21 18:09:24 +0000590unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000591 assert(str != 0 && "Invalid value string");
592 assert(slen > 0 && "Invalid string length");
593
594 // Each computation below needs to know if its negative
Chris Lattneree5417c2009-01-21 18:09:24 +0000595 unsigned isNegative = str[0] == '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000596 if (isNegative) {
597 slen--;
598 str++;
599 }
600 // For radixes of power-of-two values, the bits required is accurately and
601 // easily computed
602 if (radix == 2)
603 return slen + isNegative;
604 if (radix == 8)
605 return slen * 3 + isNegative;
606 if (radix == 16)
607 return slen * 4 + isNegative;
608
609 // Otherwise it must be radix == 10, the hard case
610 assert(radix == 10 && "Invalid radix");
611
612 // This is grossly inefficient but accurate. We could probably do something
613 // with a computation of roughly slen*64/20 and then adjust by the value of
614 // the first few digits. But, I'm not sure how accurate that could be.
615
616 // Compute a sufficient number of bits that is always large enough but might
617 // be too large. This avoids the assertion in the constructor.
Chris Lattneree5417c2009-01-21 18:09:24 +0000618 unsigned sufficient = slen*64/18;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000619
620 // Convert to the actual binary value.
621 APInt tmp(sufficient, str, slen, radix);
622
623 // Compute how many bits are required.
624 return isNegative + tmp.logBase2() + 1;
625}
626
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000627// From http://www.burtleburtle.net, byBob Jenkins.
628// When targeting x86, both GCC and LLVM seem to recognize this as a
629// rotate instruction.
630#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000631
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000632// From http://www.burtleburtle.net, by Bob Jenkins.
633#define mix(a,b,c) \
634 { \
635 a -= c; a ^= rot(c, 4); c += b; \
636 b -= a; b ^= rot(a, 6); a += c; \
637 c -= b; c ^= rot(b, 8); b += a; \
638 a -= c; a ^= rot(c,16); c += b; \
639 b -= a; b ^= rot(a,19); a += c; \
640 c -= b; c ^= rot(b, 4); b += a; \
641 }
642
643// From http://www.burtleburtle.net, by Bob Jenkins.
644#define final(a,b,c) \
645 { \
646 c ^= b; c -= rot(b,14); \
647 a ^= c; a -= rot(c,11); \
648 b ^= a; b -= rot(a,25); \
649 c ^= b; c -= rot(b,16); \
650 a ^= c; a -= rot(c,4); \
651 b ^= a; b -= rot(a,14); \
652 c ^= b; c -= rot(b,24); \
653 }
654
655// hashword() was adapted from http://www.burtleburtle.net, by Bob
656// Jenkins. k is a pointer to an array of uint32_t values; length is
657// the length of the key, in 32-bit chunks. This version only handles
658// keys that are a multiple of 32 bits in size.
659static inline uint32_t hashword(const uint64_t *k64, size_t length)
660{
661 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
662 uint32_t a,b,c;
663
664 /* Set up the internal state */
665 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
666
667 /*------------------------------------------------- handle most of the key */
668 while (length > 3)
669 {
670 a += k[0];
671 b += k[1];
672 c += k[2];
673 mix(a,b,c);
674 length -= 3;
675 k += 3;
676 }
677
678 /*------------------------------------------- handle the last 3 uint32_t's */
Mike Stump7134bb52009-05-13 23:23:20 +0000679 switch (length) { /* all the case statements fall through */
680 case 3 : c+=k[2];
681 case 2 : b+=k[1];
682 case 1 : a+=k[0];
683 final(a,b,c);
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000684 case 0: /* case 0: nothing left to add */
685 break;
686 }
687 /*------------------------------------------------------ report the result */
688 return c;
689}
690
691// hashword8() was adapted from http://www.burtleburtle.net, by Bob
692// Jenkins. This computes a 32-bit hash from one 64-bit word. When
693// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
694// function into about 35 instructions when inlined.
695static inline uint32_t hashword8(const uint64_t k64)
696{
697 uint32_t a,b,c;
698 a = b = c = 0xdeadbeef + 4;
699 b += k64 >> 32;
700 a += k64 & 0xffffffff;
701 final(a,b,c);
702 return c;
703}
704#undef final
705#undef mix
706#undef rot
707
708uint64_t APInt::getHashValue() const {
709 uint64_t hash;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000710 if (isSingleWord())
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000711 hash = hashword8(VAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712 else
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000713 hash = hashword(pVal, getNumWords()*2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000714 return hash;
715}
716
717/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000718APInt APInt::getHiBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719 return APIntOps::lshr(*this, BitWidth - numBits);
720}
721
722/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000723APInt APInt::getLoBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
725 BitWidth - numBits);
726}
727
728bool APInt::isPowerOf2() const {
729 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
730}
731
Chris Lattneree5417c2009-01-21 18:09:24 +0000732unsigned APInt::countLeadingZerosSlowCase() const {
733 unsigned Count = 0;
734 for (unsigned i = getNumWords(); i > 0u; --i) {
Chris Lattner84886852008-08-20 17:02:31 +0000735 if (pVal[i-1] == 0)
736 Count += APINT_BITS_PER_WORD;
737 else {
738 Count += CountLeadingZeros_64(pVal[i-1]);
739 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 }
741 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000742 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000743 if (remainder)
744 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner00b08ce2007-11-23 22:42:31 +0000745 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746}
747
Chris Lattneree5417c2009-01-21 18:09:24 +0000748static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
749 unsigned Count = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000750 if (skip)
751 V <<= skip;
752 while (V && (V & (1ULL << 63))) {
753 Count++;
754 V <<= 1;
755 }
756 return Count;
757}
758
Chris Lattneree5417c2009-01-21 18:09:24 +0000759unsigned APInt::countLeadingOnes() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000760 if (isSingleWord())
761 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
762
Chris Lattneree5417c2009-01-21 18:09:24 +0000763 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
edwinb95462a2009-01-27 18:06:03 +0000764 unsigned shift;
765 if (!highWordBits) {
766 highWordBits = APINT_BITS_PER_WORD;
767 shift = 0;
768 } else {
769 shift = APINT_BITS_PER_WORD - highWordBits;
770 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000771 int i = getNumWords() - 1;
Chris Lattneree5417c2009-01-21 18:09:24 +0000772 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000773 if (Count == highWordBits) {
774 for (i--; i >= 0; --i) {
775 if (pVal[i] == -1ULL)
776 Count += APINT_BITS_PER_WORD;
777 else {
778 Count += countLeadingOnes_64(pVal[i], 0);
779 break;
780 }
781 }
782 }
783 return Count;
784}
785
Chris Lattneree5417c2009-01-21 18:09:24 +0000786unsigned APInt::countTrailingZeros() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 if (isSingleWord())
Chris Lattneree5417c2009-01-21 18:09:24 +0000788 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
789 unsigned Count = 0;
790 unsigned i = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000791 for (; i < getNumWords() && pVal[i] == 0; ++i)
792 Count += APINT_BITS_PER_WORD;
793 if (i < getNumWords())
794 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000795 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000796}
797
Chris Lattneree5417c2009-01-21 18:09:24 +0000798unsigned APInt::countTrailingOnesSlowCase() const {
799 unsigned Count = 0;
800 unsigned i = 0;
Dan Gohmane4428412008-02-14 22:38:45 +0000801 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohmanf550d412008-02-13 21:11:05 +0000802 Count += APINT_BITS_PER_WORD;
803 if (i < getNumWords())
804 Count += CountTrailingOnes_64(pVal[i]);
805 return std::min(Count, BitWidth);
806}
807
Chris Lattneree5417c2009-01-21 18:09:24 +0000808unsigned APInt::countPopulationSlowCase() const {
809 unsigned Count = 0;
810 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000811 Count += CountPopulation_64(pVal[i]);
812 return Count;
813}
814
815APInt APInt::byteSwap() const {
816 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
817 if (BitWidth == 16)
818 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
819 else if (BitWidth == 32)
Chris Lattneree5417c2009-01-21 18:09:24 +0000820 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000821 else if (BitWidth == 48) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000822 unsigned Tmp1 = unsigned(VAL >> 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000823 Tmp1 = ByteSwap_32(Tmp1);
824 uint16_t Tmp2 = uint16_t(VAL);
825 Tmp2 = ByteSwap_16(Tmp2);
826 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
827 } else if (BitWidth == 64)
828 return APInt(BitWidth, ByteSwap_64(VAL));
829 else {
830 APInt Result(BitWidth, 0);
831 char *pByte = (char*)Result.pVal;
Chris Lattneree5417c2009-01-21 18:09:24 +0000832 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000833 char Tmp = pByte[i];
834 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
835 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
836 }
837 return Result;
838 }
839}
840
841APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
842 const APInt& API2) {
843 APInt A = API1, B = API2;
844 while (!!B) {
845 APInt T = B;
846 B = APIntOps::urem(A, B);
847 A = T;
848 }
849 return A;
850}
851
Chris Lattneree5417c2009-01-21 18:09:24 +0000852APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000853 union {
854 double D;
855 uint64_t I;
856 } T;
857 T.D = Double;
858
859 // Get the sign bit from the highest order bit
860 bool isNeg = T.I >> 63;
861
862 // Get the 11-bit exponent and adjust for the 1023 bit bias
863 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
864
865 // If the exponent is negative, the value is < 0 so just return 0.
866 if (exp < 0)
867 return APInt(width, 0u);
868
869 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
870 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
871
872 // If the exponent doesn't shift all bits out of the mantissa
873 if (exp < 52)
874 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
875 APInt(width, mantissa >> (52 - exp));
876
877 // If the client didn't provide enough bits for us to shift the mantissa into
878 // then the result is undefined, just return 0
879 if (width <= exp - 52)
880 return APInt(width, 0);
881
882 // Otherwise, we have to shift the mantissa bits up to the right location
883 APInt Tmp(width, mantissa);
Chris Lattneree5417c2009-01-21 18:09:24 +0000884 Tmp = Tmp.shl((unsigned)exp - 52);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000885 return isNeg ? -Tmp : Tmp;
886}
887
888/// RoundToDouble - This function convert this APInt to a double.
889/// The layout for double is as following (IEEE Standard 754):
890/// --------------------------------------
891/// | Sign Exponent Fraction Bias |
892/// |-------------------------------------- |
893/// | 1[63] 11[62-52] 52[51-00] 1023 |
894/// --------------------------------------
895double APInt::roundToDouble(bool isSigned) const {
896
897 // Handle the simple case where the value is contained in one uint64_t.
898 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
899 if (isSigned) {
Dale Johannesen25210cd2009-08-12 17:42:34 +0000900 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000901 return double(sext);
902 } else
Dale Johannesen25210cd2009-08-12 17:42:34 +0000903 return double(getWord(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000904 }
905
906 // Determine if the value is negative.
907 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
908
909 // Construct the absolute value if we're negative.
910 APInt Tmp(isNeg ? -(*this) : (*this));
911
912 // Figure out how many bits we're using.
Chris Lattneree5417c2009-01-21 18:09:24 +0000913 unsigned n = Tmp.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000914
915 // The exponent (without bias normalization) is just the number of bits
916 // we are using. Note that the sign bit is gone since we constructed the
917 // absolute value.
918 uint64_t exp = n;
919
920 // Return infinity for exponent overflow
921 if (exp > 1023) {
922 if (!isSigned || !isNeg)
923 return std::numeric_limits<double>::infinity();
924 else
925 return -std::numeric_limits<double>::infinity();
926 }
927 exp += 1023; // Increment for 1023 bias
928
929 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
930 // extract the high 52 bits from the correct words in pVal.
931 uint64_t mantissa;
932 unsigned hiWord = whichWord(n-1);
933 if (hiWord == 0) {
934 mantissa = Tmp.pVal[0];
935 if (n > 52)
936 mantissa >>= n - 52; // shift down, we want the top 52 bits.
937 } else {
938 assert(hiWord > 0 && "huh?");
939 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
940 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
941 mantissa = hibits | lobits;
942 }
943
944 // The leading bit of mantissa is implicit, so get rid of it.
945 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
946 union {
947 double D;
948 uint64_t I;
949 } T;
950 T.I = sign | (exp << 52) | mantissa;
951 return T.D;
952}
953
954// Truncate to new width.
Chris Lattneree5417c2009-01-21 18:09:24 +0000955APInt &APInt::trunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000956 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner84886852008-08-20 17:02:31 +0000957 assert(width && "Can't truncate to 0 bits");
Chris Lattneree5417c2009-01-21 18:09:24 +0000958 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000959 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +0000960 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961 if (wordsBefore != wordsAfter) {
962 if (wordsAfter == 1) {
963 uint64_t *tmp = pVal;
964 VAL = pVal[0];
965 delete [] tmp;
966 } else {
967 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattneree5417c2009-01-21 18:09:24 +0000968 for (unsigned i = 0; i < wordsAfter; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000969 newVal[i] = pVal[i];
970 delete [] pVal;
971 pVal = newVal;
972 }
973 }
974 return clearUnusedBits();
975}
976
977// Sign extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +0000978APInt &APInt::sext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000979 assert(width > BitWidth && "Invalid APInt SignExtend request");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000980 // If the sign bit isn't set, this is the same as zext.
981 if (!isNegative()) {
982 zext(width);
983 return *this;
984 }
985
986 // The sign bit is set. First, get some facts
Chris Lattneree5417c2009-01-21 18:09:24 +0000987 unsigned wordsBefore = getNumWords();
988 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000989 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +0000990 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991
992 // Mask the high order word appropriately
993 if (wordsBefore == wordsAfter) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000994 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000995 // The extension is contained to the wordsBefore-1th word.
996 uint64_t mask = ~0ULL;
997 if (newWordBits)
998 mask >>= APINT_BITS_PER_WORD - newWordBits;
999 mask <<= wordBits;
1000 if (wordsBefore == 1)
1001 VAL |= mask;
1002 else
1003 pVal[wordsBefore-1] |= mask;
1004 return clearUnusedBits();
1005 }
1006
1007 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1008 uint64_t *newVal = getMemory(wordsAfter);
1009 if (wordsBefore == 1)
1010 newVal[0] = VAL | mask;
1011 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001012 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001013 newVal[i] = pVal[i];
1014 newVal[wordsBefore-1] |= mask;
1015 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001016 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001017 newVal[i] = -1ULL;
1018 if (wordsBefore != 1)
1019 delete [] pVal;
1020 pVal = newVal;
1021 return clearUnusedBits();
1022}
1023
1024// Zero extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +00001025APInt &APInt::zext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001026 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattneree5417c2009-01-21 18:09:24 +00001027 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +00001029 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001030 if (wordsBefore != wordsAfter) {
1031 uint64_t *newVal = getClearedMemory(wordsAfter);
1032 if (wordsBefore == 1)
1033 newVal[0] = VAL;
1034 else
Chris Lattneree5417c2009-01-21 18:09:24 +00001035 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001036 newVal[i] = pVal[i];
1037 if (wordsBefore != 1)
1038 delete [] pVal;
1039 pVal = newVal;
1040 }
1041 return *this;
1042}
1043
Chris Lattneree5417c2009-01-21 18:09:24 +00001044APInt &APInt::zextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001045 if (BitWidth < width)
1046 return zext(width);
1047 if (BitWidth > width)
1048 return trunc(width);
1049 return *this;
1050}
1051
Chris Lattneree5417c2009-01-21 18:09:24 +00001052APInt &APInt::sextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 if (BitWidth < width)
1054 return sext(width);
1055 if (BitWidth > width)
1056 return trunc(width);
1057 return *this;
1058}
1059
1060/// Arithmetic right-shift this APInt by shiftAmt.
1061/// @brief Arithmetic right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001062APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001063 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001064}
1065
1066/// Arithmetic right-shift this APInt by shiftAmt.
1067/// @brief Arithmetic right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001068APInt APInt::ashr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001069 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1070 // Handle a degenerate case
1071 if (shiftAmt == 0)
1072 return *this;
1073
1074 // Handle single word shifts with built-in ashr
1075 if (isSingleWord()) {
1076 if (shiftAmt == BitWidth)
1077 return APInt(BitWidth, 0); // undefined
1078 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001079 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001080 return APInt(BitWidth,
1081 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1082 }
1083 }
1084
1085 // If all the bits were shifted out, the result is, technically, undefined.
1086 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1087 // issues in the algorithm below.
1088 if (shiftAmt == BitWidth) {
1089 if (isNegative())
Zhou Sheng3f7ab5c2008-06-05 13:27:38 +00001090 return APInt(BitWidth, -1ULL, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001091 else
1092 return APInt(BitWidth, 0);
1093 }
1094
1095 // Create some space for the result.
1096 uint64_t * val = new uint64_t[getNumWords()];
1097
1098 // Compute some values needed by the following shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001099 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1100 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1101 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1102 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103 if (bitsInWord == 0)
1104 bitsInWord = APINT_BITS_PER_WORD;
1105
1106 // If we are shifting whole words, just move whole words
1107 if (wordShift == 0) {
1108 // Move the words containing significant bits
Chris Lattneree5417c2009-01-21 18:09:24 +00001109 for (unsigned i = 0; i <= breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001110 val[i] = pVal[i+offset]; // move whole word
1111
1112 // Adjust the top significant word for sign bit fill, if negative
1113 if (isNegative())
1114 if (bitsInWord < APINT_BITS_PER_WORD)
1115 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1116 } else {
1117 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001118 for (unsigned i = 0; i < breakWord; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001119 // This combines the shifted corresponding word with the low bits from
1120 // the next word (shifted into this word's high bits).
1121 val[i] = (pVal[i+offset] >> wordShift) |
1122 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1123 }
1124
1125 // Shift the break word. In this case there are no bits from the next word
1126 // to include in this word.
1127 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1128
1129 // Deal with sign extenstion in the break word, and possibly the word before
1130 // it.
1131 if (isNegative()) {
1132 if (wordShift > bitsInWord) {
1133 if (breakWord > 0)
1134 val[breakWord-1] |=
1135 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1136 val[breakWord] |= ~0ULL;
1137 } else
1138 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1139 }
1140 }
1141
1142 // Remaining words are 0 or -1, just assign them.
1143 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattneree5417c2009-01-21 18:09:24 +00001144 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001145 val[i] = fillValue;
1146 return APInt(val, BitWidth).clearUnusedBits();
1147}
1148
1149/// Logical right-shift this APInt by shiftAmt.
1150/// @brief Logical right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001151APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001152 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001153}
1154
1155/// Logical right-shift this APInt by shiftAmt.
1156/// @brief Logical right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001157APInt APInt::lshr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001158 if (isSingleWord()) {
1159 if (shiftAmt == BitWidth)
1160 return APInt(BitWidth, 0);
1161 else
1162 return APInt(BitWidth, this->VAL >> shiftAmt);
1163 }
1164
1165 // If all the bits were shifted out, the result is 0. This avoids issues
1166 // with shifting by the size of the integer type, which produces undefined
1167 // results. We define these "undefined results" to always be 0.
1168 if (shiftAmt == BitWidth)
1169 return APInt(BitWidth, 0);
1170
1171 // If none of the bits are shifted out, the result is *this. This avoids
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001172 // issues with shifting by the size of the integer type, which produces
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001173 // undefined results in the code below. This is also an optimization.
1174 if (shiftAmt == 0)
1175 return *this;
1176
1177 // Create some space for the result.
1178 uint64_t * val = new uint64_t[getNumWords()];
1179
1180 // If we are shifting less than a word, compute the shift with a simple carry
1181 if (shiftAmt < APINT_BITS_PER_WORD) {
1182 uint64_t carry = 0;
1183 for (int i = getNumWords()-1; i >= 0; --i) {
1184 val[i] = (pVal[i] >> shiftAmt) | carry;
1185 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1186 }
1187 return APInt(val, BitWidth).clearUnusedBits();
1188 }
1189
1190 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001191 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1192 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001193
1194 // If we are shifting whole words, just move whole words
1195 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001196 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001197 val[i] = pVal[i+offset];
Chris Lattneree5417c2009-01-21 18:09:24 +00001198 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001199 val[i] = 0;
1200 return APInt(val,BitWidth).clearUnusedBits();
1201 }
1202
1203 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001204 unsigned breakWord = getNumWords() - offset -1;
1205 for (unsigned i = 0; i < breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001206 val[i] = (pVal[i+offset] >> wordShift) |
1207 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1208 // Shift the break word.
1209 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1210
1211 // Remaining words are 0
Chris Lattneree5417c2009-01-21 18:09:24 +00001212 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001213 val[i] = 0;
1214 return APInt(val, BitWidth).clearUnusedBits();
1215}
1216
1217/// Left-shift this APInt by shiftAmt.
1218/// @brief Left-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001219APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001220 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattneree5417c2009-01-21 18:09:24 +00001221 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001222}
1223
Chris Lattneree5417c2009-01-21 18:09:24 +00001224APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001225 // If all the bits were shifted out, the result is 0. This avoids issues
1226 // with shifting by the size of the integer type, which produces undefined
1227 // results. We define these "undefined results" to always be 0.
1228 if (shiftAmt == BitWidth)
1229 return APInt(BitWidth, 0);
1230
1231 // If none of the bits are shifted out, the result is *this. This avoids a
1232 // lshr by the words size in the loop below which can produce incorrect
1233 // results. It also avoids the expensive computation below for a common case.
1234 if (shiftAmt == 0)
1235 return *this;
1236
1237 // Create some space for the result.
1238 uint64_t * val = new uint64_t[getNumWords()];
1239
1240 // If we are shifting less than a word, do it the easy way
1241 if (shiftAmt < APINT_BITS_PER_WORD) {
1242 uint64_t carry = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001243 for (unsigned i = 0; i < getNumWords(); i++) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244 val[i] = pVal[i] << shiftAmt | carry;
1245 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1246 }
1247 return APInt(val, BitWidth).clearUnusedBits();
1248 }
1249
1250 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001251 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1252 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001253
1254 // If we are shifting whole words, just move whole words
1255 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001256 for (unsigned i = 0; i < offset; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001257 val[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001258 for (unsigned i = offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001259 val[i] = pVal[i-offset];
1260 return APInt(val,BitWidth).clearUnusedBits();
1261 }
1262
1263 // Copy whole words from this to Result.
Chris Lattneree5417c2009-01-21 18:09:24 +00001264 unsigned i = getNumWords() - 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 for (; i > offset; --i)
1266 val[i] = pVal[i-offset] << wordShift |
1267 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1268 val[offset] = pVal[0] << wordShift;
1269 for (i = 0; i < offset; ++i)
1270 val[i] = 0;
1271 return APInt(val, BitWidth).clearUnusedBits();
1272}
1273
Dan Gohman625ff8d2008-02-29 01:40:47 +00001274APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001275 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001276}
1277
Chris Lattneree5417c2009-01-21 18:09:24 +00001278APInt APInt::rotl(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001279 if (rotateAmt == 0)
1280 return *this;
1281 // Don't get too fancy, just use existing shift/or facilities
1282 APInt hi(*this);
1283 APInt lo(*this);
1284 hi.shl(rotateAmt);
1285 lo.lshr(BitWidth - rotateAmt);
1286 return hi | lo;
1287}
1288
Dan Gohman625ff8d2008-02-29 01:40:47 +00001289APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001290 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001291}
1292
Chris Lattneree5417c2009-01-21 18:09:24 +00001293APInt APInt::rotr(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001294 if (rotateAmt == 0)
1295 return *this;
1296 // Don't get too fancy, just use existing shift/or facilities
1297 APInt hi(*this);
1298 APInt lo(*this);
1299 lo.lshr(rotateAmt);
1300 hi.shl(BitWidth - rotateAmt);
1301 return hi | lo;
1302}
1303
1304// Square Root - this method computes and returns the square root of "this".
1305// Three mechanisms are used for computation. For small values (<= 5 bits),
1306// a table lookup is done. This gets some performance for common cases. For
1307// values using less than 52 bits, the value is converted to double and then
1308// the libc sqrt function is called. The result is rounded and then converted
1309// back to a uint64_t which is then used to construct the result. Finally,
1310// the Babylonian method for computing square roots is used.
1311APInt APInt::sqrt() const {
1312
1313 // Determine the magnitude of the value.
Chris Lattneree5417c2009-01-21 18:09:24 +00001314 unsigned magnitude = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001315
1316 // Use a fast table for some small values. This also gets rid of some
1317 // rounding errors in libc sqrt for small values.
1318 if (magnitude <= 5) {
1319 static const uint8_t results[32] = {
1320 /* 0 */ 0,
1321 /* 1- 2 */ 1, 1,
1322 /* 3- 6 */ 2, 2, 2, 2,
1323 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1324 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1325 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1326 /* 31 */ 6
1327 };
1328 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1329 }
1330
1331 // If the magnitude of the value fits in less than 52 bits (the precision of
1332 // an IEEE double precision floating point value), then we can use the
1333 // libc sqrt function which will probably use a hardware sqrt computation.
1334 // This should be faster than the algorithm below.
1335 if (magnitude < 52) {
1336#ifdef _MSC_VER
1337 // Amazingly, VC++ doesn't have round().
1338 return APInt(BitWidth,
1339 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1340#else
1341 return APInt(BitWidth,
1342 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1343#endif
1344 }
1345
1346 // Okay, all the short cuts are exhausted. We must compute it. The following
1347 // is a classical Babylonian method for computing the square root. This code
1348 // was adapted to APINt from a wikipedia article on such computations.
1349 // See http://www.wikipedia.org/ and go to the page named
1350 // Calculate_an_integer_square_root.
Chris Lattneree5417c2009-01-21 18:09:24 +00001351 unsigned nbits = BitWidth, i = 4;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001352 APInt testy(BitWidth, 16);
1353 APInt x_old(BitWidth, 1);
1354 APInt x_new(BitWidth, 0);
1355 APInt two(BitWidth, 2);
1356
1357 // Select a good starting value using binary logarithms.
1358 for (;; i += 2, testy = testy.shl(2))
1359 if (i >= nbits || this->ule(testy)) {
1360 x_old = x_old.shl(i / 2);
1361 break;
1362 }
1363
1364 // Use the Babylonian method to arrive at the integer square root:
1365 for (;;) {
1366 x_new = (this->udiv(x_old) + x_old).udiv(two);
1367 if (x_old.ule(x_new))
1368 break;
1369 x_old = x_new;
1370 }
1371
1372 // Make sure we return the closest approximation
1373 // NOTE: The rounding calculation below is correct. It will produce an
1374 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1375 // determined to be a rounding issue with pari/gp as it begins to use a
1376 // floating point representation after 192 bits. There are no discrepancies
1377 // between this algorithm and pari/gp for bit widths < 192 bits.
1378 APInt square(x_old * x_old);
1379 APInt nextSquare((x_old + 1) * (x_old +1));
1380 if (this->ult(square))
1381 return x_old;
1382 else if (this->ule(nextSquare)) {
1383 APInt midpoint((nextSquare - square).udiv(two));
1384 APInt offset(*this - square);
1385 if (offset.ult(midpoint))
1386 return x_old;
1387 else
1388 return x_old + 1;
1389 } else
Edwin Törökbd448e32009-07-14 16:55:14 +00001390 llvm_unreachable("Error in APInt::sqrt computation");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001391 return x_old + 1;
1392}
1393
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001394/// Computes the multiplicative inverse of this APInt for a given modulo. The
1395/// iterative extended Euclidean algorithm is used to solve for this value,
1396/// however we simplify it to speed up calculating only the inverse, and take
1397/// advantage of div+rem calculations. We also use some tricks to avoid copying
1398/// (potentially large) APInts around.
1399APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1400 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1401
1402 // Using the properties listed at the following web page (accessed 06/21/08):
1403 // http://www.numbertheory.org/php/euclid.html
1404 // (especially the properties numbered 3, 4 and 9) it can be proved that
1405 // BitWidth bits suffice for all the computations in the algorithm implemented
1406 // below. More precisely, this number of bits suffice if the multiplicative
1407 // inverse exists, but may not suffice for the general extended Euclidean
1408 // algorithm.
1409
1410 APInt r[2] = { modulo, *this };
1411 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1412 APInt q(BitWidth, 0);
1413
1414 unsigned i;
1415 for (i = 0; r[i^1] != 0; i ^= 1) {
1416 // An overview of the math without the confusing bit-flipping:
1417 // q = r[i-2] / r[i-1]
1418 // r[i] = r[i-2] % r[i-1]
1419 // t[i] = t[i-2] - t[i-1] * q
1420 udivrem(r[i], r[i^1], q, r[i]);
1421 t[i] -= t[i^1] * q;
1422 }
1423
1424 // If this APInt and the modulo are not coprime, there is no multiplicative
1425 // inverse, so return 0. We check this by looking at the next-to-last
1426 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1427 // algorithm.
1428 if (r[i] != 1)
1429 return APInt(BitWidth, 0);
1430
1431 // The next-to-last t is the multiplicative inverse. However, we are
1432 // interested in a positive inverse. Calcuate a positive one from a negative
1433 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00001434 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001435 return t[i].isNegative() ? t[i] + modulo : t[i];
1436}
1437
Jay Foad56b11f92009-04-30 10:15:35 +00001438/// Calculate the magic numbers required to implement a signed integer division
1439/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1440/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1441/// Warren, Jr., chapter 10.
1442APInt::ms APInt::magic() const {
1443 const APInt& d = *this;
1444 unsigned p;
1445 APInt ad, anc, delta, q1, r1, q2, r2, t;
1446 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1447 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1448 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1449 struct ms mag;
1450
1451 ad = d.abs();
1452 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1453 anc = t - 1 - t.urem(ad); // absolute value of nc
1454 p = d.getBitWidth() - 1; // initialize p
1455 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1456 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1457 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1458 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1459 do {
1460 p = p + 1;
1461 q1 = q1<<1; // update q1 = 2p/abs(nc)
1462 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1463 if (r1.uge(anc)) { // must be unsigned comparison
1464 q1 = q1 + 1;
1465 r1 = r1 - anc;
1466 }
1467 q2 = q2<<1; // update q2 = 2p/abs(d)
1468 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1469 if (r2.uge(ad)) { // must be unsigned comparison
1470 q2 = q2 + 1;
1471 r2 = r2 - ad;
1472 }
1473 delta = ad - r2;
1474 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
1475
1476 mag.m = q2 + 1;
1477 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1478 mag.s = p - d.getBitWidth(); // resulting shift
1479 return mag;
1480}
1481
1482/// Calculate the magic numbers required to implement an unsigned integer
1483/// division by a constant as a sequence of multiplies, adds and shifts.
1484/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1485/// S. Warren, Jr., chapter 10.
1486APInt::mu APInt::magicu() const {
1487 const APInt& d = *this;
1488 unsigned p;
1489 APInt nc, delta, q1, r1, q2, r2;
1490 struct mu magu;
1491 magu.a = 0; // initialize "add" indicator
1492 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1493 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1494 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1495
1496 nc = allOnes - (-d).urem(d);
1497 p = d.getBitWidth() - 1; // initialize p
1498 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1499 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1500 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1501 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1502 do {
1503 p = p + 1;
1504 if (r1.uge(nc - r1)) {
1505 q1 = q1 + q1 + 1; // update q1
1506 r1 = r1 + r1 - nc; // update r1
1507 }
1508 else {
1509 q1 = q1+q1; // update q1
1510 r1 = r1+r1; // update r1
1511 }
1512 if ((r2 + 1).uge(d - r2)) {
1513 if (q2.uge(signedMax)) magu.a = 1;
1514 q2 = q2+q2 + 1; // update q2
1515 r2 = r2+r2 + 1 - d; // update r2
1516 }
1517 else {
1518 if (q2.uge(signedMin)) magu.a = 1;
1519 q2 = q2+q2; // update q2
1520 r2 = r2+r2 + 1; // update r2
1521 }
1522 delta = d - 1 - r2;
1523 } while (p < d.getBitWidth()*2 &&
1524 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1525 magu.m = q2 + 1; // resulting magic number
1526 magu.s = p - d.getBitWidth(); // resulting shift
1527 return magu;
1528}
1529
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001530/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1531/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1532/// variables here have the same names as in the algorithm. Comments explain
1533/// the algorithm and any deviation from it.
Chris Lattneree5417c2009-01-21 18:09:24 +00001534static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1535 unsigned m, unsigned n) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001536 assert(u && "Must provide dividend");
1537 assert(v && "Must provide divisor");
1538 assert(q && "Must provide quotient");
1539 assert(u != v && u != q && v != q && "Must us different memory");
1540 assert(n>1 && "n must be > 1");
1541
1542 // Knuth uses the value b as the base of the number system. In our case b
1543 // is 2^31 so we just set it to -1u.
1544 uint64_t b = uint64_t(1) << 32;
1545
Chris Lattner89b36582008-08-17 07:19:36 +00001546#if 0
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001547 DEBUG(errs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1548 DEBUG(errs() << "KnuthDiv: original:");
1549 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1550 DEBUG(errs() << " by");
1551 DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
1552 DEBUG(errs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001553#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001554 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1555 // u and v by d. Note that we have taken Knuth's advice here to use a power
1556 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1557 // 2 allows us to shift instead of multiply and it is easy to determine the
1558 // shift amount from the leading zeros. We are basically normalizing the u
1559 // and v so that its high bits are shifted to the top of v's range without
1560 // overflow. Note that this can require an extra word in u so that u must
1561 // be of length m+n+1.
Chris Lattneree5417c2009-01-21 18:09:24 +00001562 unsigned shift = CountLeadingZeros_32(v[n-1]);
1563 unsigned v_carry = 0;
1564 unsigned u_carry = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001565 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001566 for (unsigned i = 0; i < m+n; ++i) {
1567 unsigned u_tmp = u[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001568 u[i] = (u[i] << shift) | u_carry;
1569 u_carry = u_tmp;
1570 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001571 for (unsigned i = 0; i < n; ++i) {
1572 unsigned v_tmp = v[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001573 v[i] = (v[i] << shift) | v_carry;
1574 v_carry = v_tmp;
1575 }
1576 }
1577 u[m+n] = u_carry;
Chris Lattner89b36582008-08-17 07:19:36 +00001578#if 0
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001579 DEBUG(errs() << "KnuthDiv: normal:");
1580 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1581 DEBUG(errs() << " by");
1582 DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
1583 DEBUG(errs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001584#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001585
1586 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1587 int j = m;
1588 do {
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001589 DEBUG(errs() << "KnuthDiv: quotient digit #" << j << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001590 // D3. [Calculate q'.].
1591 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1592 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1593 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1594 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1595 // on v[n-2] determines at high speed most of the cases in which the trial
1596 // value qp is one too large, and it eliminates all cases where qp is two
1597 // too large.
1598 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001599 DEBUG(errs() << "KnuthDiv: dividend == " << dividend << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001600 uint64_t qp = dividend / v[n-1];
1601 uint64_t rp = dividend % v[n-1];
1602 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1603 qp--;
1604 rp += v[n-1];
1605 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1606 qp--;
1607 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001608 DEBUG(errs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001609
1610 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1611 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1612 // consists of a simple multiplication by a one-place number, combined with
1613 // a subtraction.
1614 bool isNeg = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001615 for (unsigned i = 0; i < n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001616 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1617 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1618 bool borrow = subtrahend > u_tmp;
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001619 DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp
1620 << ", subtrahend == " << subtrahend
1621 << ", borrow = " << borrow << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001622
1623 uint64_t result = u_tmp - subtrahend;
Chris Lattneree5417c2009-01-21 18:09:24 +00001624 unsigned k = j + i;
1625 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1626 u[k++] = (unsigned)(result >> 32); // subtract high word
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001627 while (borrow && k <= m+n) { // deal with borrow to the left
1628 borrow = u[k] == 0;
1629 u[k]--;
1630 k++;
1631 }
1632 isNeg |= borrow;
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001633 DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001634 u[j+i+1] << '\n');
1635 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001636 DEBUG(errs() << "KnuthDiv: after subtraction:");
1637 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1638 DEBUG(errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001639 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1640 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1641 // true value plus b**(n+1), namely as the b's complement of
1642 // the true value, and a "borrow" to the left should be remembered.
1643 //
1644 if (isNeg) {
1645 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattneree5417c2009-01-21 18:09:24 +00001646 for (unsigned i = 0; i <= m+n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001647 u[i] = ~u[i] + carry; // b's complement
1648 carry = carry && u[i] == 0;
1649 }
1650 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001651 DEBUG(errs() << "KnuthDiv: after complement:");
1652 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1653 DEBUG(errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001654
1655 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1656 // negative, go to step D6; otherwise go on to step D7.
Chris Lattneree5417c2009-01-21 18:09:24 +00001657 q[j] = (unsigned)qp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001658 if (isNeg) {
1659 // D6. [Add back]. The probability that this step is necessary is very
1660 // small, on the order of only 2/b. Make sure that test data accounts for
1661 // this possibility. Decrease q[j] by 1
1662 q[j]--;
1663 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1664 // A carry will occur to the left of u[j+n], and it should be ignored
1665 // since it cancels with the borrow that occurred in D4.
1666 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001667 for (unsigned i = 0; i < n; i++) {
1668 unsigned limit = std::min(u[j+i],v[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001669 u[j+i] += v[i] + carry;
1670 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1671 }
1672 u[j+n] += carry;
1673 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001674 DEBUG(errs() << "KnuthDiv: after correction:");
1675 DEBUG(for (int i = m+n; i >=0; i--) errs() <<" " << u[i]);
1676 DEBUG(errs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001677
1678 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1679 } while (--j >= 0);
1680
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001681 DEBUG(errs() << "KnuthDiv: quotient:");
1682 DEBUG(for (int i = m; i >=0; i--) errs() <<" " << q[i]);
1683 DEBUG(errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001684
1685 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1686 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1687 // compute the remainder (urem uses this).
1688 if (r) {
1689 // The value d is expressed by the "shift" value above since we avoided
1690 // multiplication by d by using a shift left. So, all we have to do is
1691 // shift right here. In order to mak
1692 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001693 unsigned carry = 0;
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001694 DEBUG(errs() << "KnuthDiv: remainder:");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001695 for (int i = n-1; i >= 0; i--) {
1696 r[i] = (u[i] >> shift) | carry;
1697 carry = u[i] << (32 - shift);
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001698 DEBUG(errs() << " " << r[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699 }
1700 } else {
1701 for (int i = n-1; i >= 0; i--) {
1702 r[i] = u[i];
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001703 DEBUG(errs() << " " << r[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001704 }
1705 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001706 DEBUG(errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707 }
Chris Lattner89b36582008-08-17 07:19:36 +00001708#if 0
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001709 DEBUG(errs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001710#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001711}
1712
Chris Lattneree5417c2009-01-21 18:09:24 +00001713void APInt::divide(const APInt LHS, unsigned lhsWords,
1714 const APInt &RHS, unsigned rhsWords,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001715 APInt *Quotient, APInt *Remainder)
1716{
1717 assert(lhsWords >= rhsWords && "Fractional result");
1718
1719 // First, compose the values into an array of 32-bit words instead of
1720 // 64-bit words. This is a necessity of both the "short division" algorithm
1721 // and the the Knuth "classical algorithm" which requires there to be native
1722 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1723 // can't use 64-bit operands here because we don't have native results of
Duncan Sandsf3a74072009-03-19 11:37:15 +00001724 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001725 // work on large-endian machines.
Dan Gohmand06cad62009-04-01 18:45:54 +00001726 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattneree5417c2009-01-21 18:09:24 +00001727 unsigned n = rhsWords * 2;
1728 unsigned m = (lhsWords * 2) - n;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001729
1730 // Allocate space for the temporary values we need either on the stack, if
1731 // it will fit, or on the heap if it won't.
Chris Lattneree5417c2009-01-21 18:09:24 +00001732 unsigned SPACE[128];
1733 unsigned *U = 0;
1734 unsigned *V = 0;
1735 unsigned *Q = 0;
1736 unsigned *R = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001737 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1738 U = &SPACE[0];
1739 V = &SPACE[m+n+1];
1740 Q = &SPACE[(m+n+1) + n];
1741 if (Remainder)
1742 R = &SPACE[(m+n+1) + n + (m+n)];
1743 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001744 U = new unsigned[m + n + 1];
1745 V = new unsigned[n];
1746 Q = new unsigned[m+n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001747 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001748 R = new unsigned[n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749 }
1750
1751 // Initialize the dividend
Chris Lattneree5417c2009-01-21 18:09:24 +00001752 memset(U, 0, (m+n+1)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001753 for (unsigned i = 0; i < lhsWords; ++i) {
1754 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001755 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmand06cad62009-04-01 18:45:54 +00001756 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001757 }
1758 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1759
1760 // Initialize the divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001761 memset(V, 0, (n)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001762 for (unsigned i = 0; i < rhsWords; ++i) {
1763 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001764 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmand06cad62009-04-01 18:45:54 +00001765 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001766 }
1767
1768 // initialize the quotient and remainder
Chris Lattneree5417c2009-01-21 18:09:24 +00001769 memset(Q, 0, (m+n) * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001770 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001771 memset(R, 0, n * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001772
1773 // Now, adjust m and n for the Knuth division. n is the number of words in
1774 // the divisor. m is the number of words by which the dividend exceeds the
1775 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1776 // contain any zero words or the Knuth algorithm fails.
1777 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1778 n--;
1779 m++;
1780 }
1781 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1782 m--;
1783
1784 // If we're left with only a single word for the divisor, Knuth doesn't work
1785 // so we implement the short division algorithm here. This is much simpler
1786 // and faster because we are certain that we can divide a 64-bit quantity
1787 // by a 32-bit quantity at hardware speed and short division is simply a
1788 // series of such operations. This is just like doing short division but we
1789 // are using base 2^32 instead of base 10.
1790 assert(n != 0 && "Divide by zero?");
1791 if (n == 1) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001792 unsigned divisor = V[0];
1793 unsigned remainder = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001794 for (int i = m+n-1; i >= 0; i--) {
1795 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1796 if (partial_dividend == 0) {
1797 Q[i] = 0;
1798 remainder = 0;
1799 } else if (partial_dividend < divisor) {
1800 Q[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001801 remainder = (unsigned)partial_dividend;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001802 } else if (partial_dividend == divisor) {
1803 Q[i] = 1;
1804 remainder = 0;
1805 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001806 Q[i] = (unsigned)(partial_dividend / divisor);
1807 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001808 }
1809 }
1810 if (R)
1811 R[0] = remainder;
1812 } else {
1813 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1814 // case n > 1.
1815 KnuthDiv(U, V, Q, R, m, n);
1816 }
1817
1818 // If the caller wants the quotient
1819 if (Quotient) {
1820 // Set up the Quotient value's memory.
1821 if (Quotient->BitWidth != LHS.BitWidth) {
1822 if (Quotient->isSingleWord())
1823 Quotient->VAL = 0;
1824 else
1825 delete [] Quotient->pVal;
1826 Quotient->BitWidth = LHS.BitWidth;
1827 if (!Quotient->isSingleWord())
1828 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1829 } else
1830 Quotient->clear();
1831
1832 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1833 // order words.
1834 if (lhsWords == 1) {
1835 uint64_t tmp =
1836 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1837 if (Quotient->isSingleWord())
1838 Quotient->VAL = tmp;
1839 else
1840 Quotient->pVal[0] = tmp;
1841 } else {
1842 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1843 for (unsigned i = 0; i < lhsWords; ++i)
1844 Quotient->pVal[i] =
1845 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1846 }
1847 }
1848
1849 // If the caller wants the remainder
1850 if (Remainder) {
1851 // Set up the Remainder value's memory.
1852 if (Remainder->BitWidth != RHS.BitWidth) {
1853 if (Remainder->isSingleWord())
1854 Remainder->VAL = 0;
1855 else
1856 delete [] Remainder->pVal;
1857 Remainder->BitWidth = RHS.BitWidth;
1858 if (!Remainder->isSingleWord())
1859 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1860 } else
1861 Remainder->clear();
1862
1863 // The remainder is in R. Reconstitute the remainder into Remainder's low
1864 // order words.
1865 if (rhsWords == 1) {
1866 uint64_t tmp =
1867 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1868 if (Remainder->isSingleWord())
1869 Remainder->VAL = tmp;
1870 else
1871 Remainder->pVal[0] = tmp;
1872 } else {
1873 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1874 for (unsigned i = 0; i < rhsWords; ++i)
1875 Remainder->pVal[i] =
1876 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1877 }
1878 }
1879
1880 // Clean up the memory we allocated.
1881 if (U != &SPACE[0]) {
1882 delete [] U;
1883 delete [] V;
1884 delete [] Q;
1885 delete [] R;
1886 }
1887}
1888
1889APInt APInt::udiv(const APInt& RHS) const {
1890 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1891
1892 // First, deal with the easy case
1893 if (isSingleWord()) {
1894 assert(RHS.VAL != 0 && "Divide by zero?");
1895 return APInt(BitWidth, VAL / RHS.VAL);
1896 }
1897
1898 // Get some facts about the LHS and RHS number of bits and words
Chris Lattneree5417c2009-01-21 18:09:24 +00001899 unsigned rhsBits = RHS.getActiveBits();
1900 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001901 assert(rhsWords && "Divided by zero???");
Chris Lattneree5417c2009-01-21 18:09:24 +00001902 unsigned lhsBits = this->getActiveBits();
1903 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001904
1905 // Deal with some degenerate cases
1906 if (!lhsWords)
1907 // 0 / X ===> 0
1908 return APInt(BitWidth, 0);
1909 else if (lhsWords < rhsWords || this->ult(RHS)) {
1910 // X / Y ===> 0, iff X < Y
1911 return APInt(BitWidth, 0);
1912 } else if (*this == RHS) {
1913 // X / X ===> 1
1914 return APInt(BitWidth, 1);
1915 } else if (lhsWords == 1 && rhsWords == 1) {
1916 // All high words are zero, just use native divide
1917 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1918 }
1919
1920 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1921 APInt Quotient(1,0); // to hold result.
1922 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1923 return Quotient;
1924}
1925
1926APInt APInt::urem(const APInt& RHS) const {
1927 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1928 if (isSingleWord()) {
1929 assert(RHS.VAL != 0 && "Remainder by zero?");
1930 return APInt(BitWidth, VAL % RHS.VAL);
1931 }
1932
1933 // Get some facts about the LHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001934 unsigned lhsBits = getActiveBits();
1935 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001936
1937 // Get some facts about the RHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001938 unsigned rhsBits = RHS.getActiveBits();
1939 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001940 assert(rhsWords && "Performing remainder operation by zero ???");
1941
1942 // Check the degenerate cases
1943 if (lhsWords == 0) {
1944 // 0 % Y ===> 0
1945 return APInt(BitWidth, 0);
1946 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1947 // X % Y ===> X, iff X < Y
1948 return *this;
1949 } else if (*this == RHS) {
1950 // X % X == 0;
1951 return APInt(BitWidth, 0);
1952 } else if (lhsWords == 1) {
1953 // All high words are zero, just use native remainder
1954 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1955 }
1956
1957 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1958 APInt Remainder(1,0);
1959 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1960 return Remainder;
1961}
1962
1963void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1964 APInt &Quotient, APInt &Remainder) {
1965 // Get some size facts about the dividend and divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001966 unsigned lhsBits = LHS.getActiveBits();
1967 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1968 unsigned rhsBits = RHS.getActiveBits();
1969 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001970
1971 // Check the degenerate cases
1972 if (lhsWords == 0) {
1973 Quotient = 0; // 0 / Y ===> 0
1974 Remainder = 0; // 0 % Y ===> 0
1975 return;
1976 }
1977
1978 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1979 Quotient = 0; // X / Y ===> 0, iff X < Y
1980 Remainder = LHS; // X % Y ===> X, iff X < Y
1981 return;
1982 }
1983
1984 if (LHS == RHS) {
1985 Quotient = 1; // X / X ===> 1
1986 Remainder = 0; // X % X ===> 0;
1987 return;
1988 }
1989
1990 if (lhsWords == 1 && rhsWords == 1) {
1991 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001992 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1993 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1994 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1995 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001996 return;
1997 }
1998
1999 // Okay, lets do it the long way
2000 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2001}
2002
Chris Lattneree5417c2009-01-21 18:09:24 +00002003void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002004 uint8_t radix) {
2005 // Check our assumptions here
2006 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2007 "Radix should be 2, 8, 10, or 16!");
2008 assert(str && "String is null?");
2009 bool isNeg = str[0] == '-';
2010 if (isNeg)
2011 str++, slen--;
2012 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner981440e2009-04-25 18:34:04 +00002013 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2014 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2015 assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002016
2017 // Allocate memory
2018 if (!isSingleWord())
2019 pVal = getClearedMemory(getNumWords());
2020
2021 // Figure out if we can shift instead of multiply
Chris Lattneree5417c2009-01-21 18:09:24 +00002022 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002023
2024 // Set up an APInt for the digit to add outside the loop so we don't
2025 // constantly construct/destruct it.
2026 APInt apdigit(getBitWidth(), 0);
2027 APInt apradix(getBitWidth(), radix);
2028
2029 // Enter digit traversal loop
2030 for (unsigned i = 0; i < slen; i++) {
2031 // Get a digit
Chris Lattneree5417c2009-01-21 18:09:24 +00002032 unsigned digit = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002033 char cdigit = str[i];
2034 if (radix == 16) {
2035 if (!isxdigit(cdigit))
Edwin Törökbd448e32009-07-14 16:55:14 +00002036 llvm_unreachable("Invalid hex digit in string");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002037 if (isdigit(cdigit))
2038 digit = cdigit - '0';
2039 else if (cdigit >= 'a')
2040 digit = cdigit - 'a' + 10;
2041 else if (cdigit >= 'A')
2042 digit = cdigit - 'A' + 10;
2043 else
Edwin Törökbd448e32009-07-14 16:55:14 +00002044 llvm_unreachable("huh? we shouldn't get here");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002045 } else if (isdigit(cdigit)) {
2046 digit = cdigit - '0';
Bill Wendling1dde5862008-03-16 20:05:52 +00002047 assert((radix == 10 ||
2048 (radix == 8 && digit != 8 && digit != 9) ||
2049 (radix == 2 && (digit == 0 || digit == 1))) &&
2050 "Invalid digit in string for given radix");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002051 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00002052 llvm_unreachable("Invalid character in digit string");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002053 }
2054
2055 // Shift or multiply the value by the radix
Chris Lattner981440e2009-04-25 18:34:04 +00002056 if (slen > 1) {
2057 if (shift)
2058 *this <<= shift;
2059 else
2060 *this *= apradix;
2061 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002062
2063 // Add in the digit we just interpreted
2064 if (apdigit.isSingleWord())
2065 apdigit.VAL = digit;
2066 else
2067 apdigit.pVal[0] = digit;
2068 *this += apdigit;
2069 }
2070 // If its negative, put it in two's complement form
2071 if (isNeg) {
2072 (*this)--;
2073 this->flip();
2074 }
2075}
2076
Chris Lattner89b36582008-08-17 07:19:36 +00002077void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2078 bool Signed) const {
2079 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002080 "Radix should be 2, 8, 10, or 16!");
Chris Lattner89b36582008-08-17 07:19:36 +00002081
2082 // First, check for a zero value and just short circuit the logic below.
2083 if (*this == 0) {
2084 Str.push_back('0');
2085 return;
2086 }
2087
2088 static const char Digits[] = "0123456789ABCDEF";
2089
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002090 if (isSingleWord()) {
Chris Lattner89b36582008-08-17 07:19:36 +00002091 char Buffer[65];
2092 char *BufPtr = Buffer+65;
2093
2094 uint64_t N;
2095 if (Signed) {
2096 int64_t I = getSExtValue();
2097 if (I < 0) {
2098 Str.push_back('-');
2099 I = -I;
2100 }
2101 N = I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002102 } else {
Chris Lattner89b36582008-08-17 07:19:36 +00002103 N = getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002104 }
Chris Lattner89b36582008-08-17 07:19:36 +00002105
2106 while (N) {
2107 *--BufPtr = Digits[N % Radix];
2108 N /= Radix;
2109 }
2110 Str.append(BufPtr, Buffer+65);
2111 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002112 }
2113
Chris Lattner89b36582008-08-17 07:19:36 +00002114 APInt Tmp(*this);
2115
2116 if (Signed && isNegative()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002117 // They want to print the signed version and it is a negative value
2118 // Flip the bits and add one to turn it into the equivalent positive
2119 // value and put a '-' in the result.
Chris Lattner89b36582008-08-17 07:19:36 +00002120 Tmp.flip();
2121 Tmp++;
2122 Str.push_back('-');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002123 }
Chris Lattner89b36582008-08-17 07:19:36 +00002124
2125 // We insert the digits backward, then reverse them to get the right order.
2126 unsigned StartDig = Str.size();
2127
2128 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2129 // because the number of bits per digit (1, 3 and 4 respectively) divides
2130 // equaly. We just shift until the value is zero.
2131 if (Radix != 10) {
2132 // Just shift tmp right for each digit width until it becomes zero
2133 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2134 unsigned MaskAmt = Radix - 1;
2135
2136 while (Tmp != 0) {
2137 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2138 Str.push_back(Digits[Digit]);
2139 Tmp = Tmp.lshr(ShiftAmt);
2140 }
2141 } else {
2142 APInt divisor(4, 10);
2143 while (Tmp != 0) {
2144 APInt APdigit(1, 0);
2145 APInt tmp2(Tmp.getBitWidth(), 0);
2146 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2147 &APdigit);
Chris Lattneree5417c2009-01-21 18:09:24 +00002148 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner89b36582008-08-17 07:19:36 +00002149 assert(Digit < Radix && "divide failed");
2150 Str.push_back(Digits[Digit]);
2151 Tmp = tmp2;
2152 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002153 }
Chris Lattner89b36582008-08-17 07:19:36 +00002154
2155 // Reverse the digits before returning.
2156 std::reverse(Str.begin()+StartDig, Str.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002157}
2158
Chris Lattner89b36582008-08-17 07:19:36 +00002159/// toString - This returns the APInt as a std::string. Note that this is an
2160/// inefficient method. It is better to pass in a SmallVector/SmallString
2161/// to the methods above.
2162std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2163 SmallString<40> S;
2164 toString(S, Radix, Signed);
2165 return S.c_str();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002166}
Chris Lattner73cde982007-08-16 15:56:55 +00002167
Chris Lattner89b36582008-08-17 07:19:36 +00002168
2169void APInt::dump() const {
2170 SmallString<40> S, U;
2171 this->toStringUnsigned(U);
2172 this->toStringSigned(S);
2173 fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
2174}
2175
Chris Lattner1fefaac2008-08-23 22:23:09 +00002176void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner89b36582008-08-17 07:19:36 +00002177 SmallString<40> S;
2178 this->toString(S, 10, isSigned);
2179 OS << S.c_str();
2180}
2181
Dan Gohman5d84bee2009-06-30 20:10:56 +00002182std::ostream &llvm::operator<<(std::ostream &o, const APInt &I) {
2183 raw_os_ostream OS(o);
2184 OS << I;
2185 return o;
2186}
2187
Chris Lattner73cde982007-08-16 15:56:55 +00002188// This implements a variety of operations on a representation of
2189// arbitrary precision, two's-complement, bignum integer values.
2190
2191/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2192 and unrestricting assumption. */
Chris Lattner12e44312008-08-17 04:58:58 +00002193#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerdb80e212007-08-20 22:49:32 +00002194COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002195
2196/* Some handy functions local to this file. */
2197namespace {
2198
Chris Lattnerdb80e212007-08-20 22:49:32 +00002199 /* Returns the integer part with the least significant BITS set.
2200 BITS cannot be zero. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002201 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002202 lowBitMask(unsigned int bits)
2203 {
2204 assert (bits != 0 && bits <= integerPartWidth);
2205
2206 return ~(integerPart) 0 >> (integerPartWidth - bits);
2207 }
2208
Neil Booth58ffb232007-10-06 00:43:45 +00002209 /* Returns the value of the lower half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002210 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002211 lowHalf(integerPart part)
2212 {
2213 return part & lowBitMask(integerPartWidth / 2);
2214 }
2215
Neil Booth58ffb232007-10-06 00:43:45 +00002216 /* Returns the value of the upper half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002217 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002218 highHalf(integerPart part)
2219 {
2220 return part >> (integerPartWidth / 2);
2221 }
2222
Neil Booth58ffb232007-10-06 00:43:45 +00002223 /* Returns the bit number of the most significant set bit of a part.
2224 If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002225 static unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002226 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002227 {
2228 unsigned int n, msb;
2229
2230 if (value == 0)
2231 return -1U;
2232
2233 n = integerPartWidth / 2;
2234
2235 msb = 0;
2236 do {
2237 if (value >> n) {
2238 value >>= n;
2239 msb += n;
2240 }
2241
2242 n >>= 1;
2243 } while (n);
2244
2245 return msb;
2246 }
2247
Neil Booth58ffb232007-10-06 00:43:45 +00002248 /* Returns the bit number of the least significant set bit of a
2249 part. If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002250 static unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002251 partLSB(integerPart value)
2252 {
2253 unsigned int n, lsb;
2254
2255 if (value == 0)
2256 return -1U;
2257
2258 lsb = integerPartWidth - 1;
2259 n = integerPartWidth / 2;
2260
2261 do {
2262 if (value << n) {
2263 value <<= n;
2264 lsb -= n;
2265 }
2266
2267 n >>= 1;
2268 } while (n);
2269
2270 return lsb;
2271 }
2272}
2273
2274/* Sets the least significant part of a bignum to the input value, and
2275 zeroes out higher parts. */
2276void
2277APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2278{
2279 unsigned int i;
2280
Neil Bootha0f524a2007-10-08 13:47:12 +00002281 assert (parts > 0);
2282
Chris Lattner73cde982007-08-16 15:56:55 +00002283 dst[0] = part;
2284 for(i = 1; i < parts; i++)
2285 dst[i] = 0;
2286}
2287
2288/* Assign one bignum to another. */
2289void
2290APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2291{
2292 unsigned int i;
2293
2294 for(i = 0; i < parts; i++)
2295 dst[i] = src[i];
2296}
2297
2298/* Returns true if a bignum is zero, false otherwise. */
2299bool
2300APInt::tcIsZero(const integerPart *src, unsigned int parts)
2301{
2302 unsigned int i;
2303
2304 for(i = 0; i < parts; i++)
2305 if (src[i])
2306 return false;
2307
2308 return true;
2309}
2310
2311/* Extract the given bit of a bignum; returns 0 or 1. */
2312int
2313APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2314{
2315 return(parts[bit / integerPartWidth]
2316 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2317}
2318
2319/* Set the given bit of a bignum. */
2320void
2321APInt::tcSetBit(integerPart *parts, unsigned int bit)
2322{
2323 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2324}
2325
Neil Booth58ffb232007-10-06 00:43:45 +00002326/* Returns the bit number of the least significant set bit of a
2327 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002328unsigned int
2329APInt::tcLSB(const integerPart *parts, unsigned int n)
2330{
2331 unsigned int i, lsb;
2332
2333 for(i = 0; i < n; i++) {
2334 if (parts[i] != 0) {
2335 lsb = partLSB(parts[i]);
2336
2337 return lsb + i * integerPartWidth;
2338 }
2339 }
2340
2341 return -1U;
2342}
2343
Neil Booth58ffb232007-10-06 00:43:45 +00002344/* Returns the bit number of the most significant set bit of a number.
2345 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002346unsigned int
2347APInt::tcMSB(const integerPart *parts, unsigned int n)
2348{
2349 unsigned int msb;
2350
2351 do {
2352 --n;
2353
2354 if (parts[n] != 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002355 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002356
2357 return msb + n * integerPartWidth;
2358 }
2359 } while (n);
2360
2361 return -1U;
2362}
2363
Neil Bootha0f524a2007-10-08 13:47:12 +00002364/* Copy the bit vector of width srcBITS from SRC, starting at bit
2365 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2366 the least significant bit of DST. All high bits above srcBITS in
2367 DST are zero-filled. */
2368void
Evan Chengc257df32009-05-21 23:47:47 +00002369APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Bootha0f524a2007-10-08 13:47:12 +00002370 unsigned int srcBits, unsigned int srcLSB)
2371{
2372 unsigned int firstSrcPart, dstParts, shift, n;
2373
2374 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2375 assert (dstParts <= dstCount);
2376
2377 firstSrcPart = srcLSB / integerPartWidth;
2378 tcAssign (dst, src + firstSrcPart, dstParts);
2379
2380 shift = srcLSB % integerPartWidth;
2381 tcShiftRight (dst, dstParts, shift);
2382
2383 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2384 in DST. If this is less that srcBits, append the rest, else
2385 clear the high bits. */
2386 n = dstParts * integerPartWidth - shift;
2387 if (n < srcBits) {
2388 integerPart mask = lowBitMask (srcBits - n);
2389 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2390 << n % integerPartWidth);
2391 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002392 if (srcBits % integerPartWidth)
2393 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002394 }
2395
2396 /* Clear high parts. */
2397 while (dstParts < dstCount)
2398 dst[dstParts++] = 0;
2399}
2400
Chris Lattner73cde982007-08-16 15:56:55 +00002401/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2402integerPart
2403APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2404 integerPart c, unsigned int parts)
2405{
2406 unsigned int i;
2407
2408 assert(c <= 1);
2409
2410 for(i = 0; i < parts; i++) {
2411 integerPart l;
2412
2413 l = dst[i];
2414 if (c) {
2415 dst[i] += rhs[i] + 1;
2416 c = (dst[i] <= l);
2417 } else {
2418 dst[i] += rhs[i];
2419 c = (dst[i] < l);
2420 }
2421 }
2422
2423 return c;
2424}
2425
2426/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2427integerPart
2428APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2429 integerPart c, unsigned int parts)
2430{
2431 unsigned int i;
2432
2433 assert(c <= 1);
2434
2435 for(i = 0; i < parts; i++) {
2436 integerPart l;
2437
2438 l = dst[i];
2439 if (c) {
2440 dst[i] -= rhs[i] + 1;
2441 c = (dst[i] >= l);
2442 } else {
2443 dst[i] -= rhs[i];
2444 c = (dst[i] > l);
2445 }
2446 }
2447
2448 return c;
2449}
2450
2451/* Negate a bignum in-place. */
2452void
2453APInt::tcNegate(integerPart *dst, unsigned int parts)
2454{
2455 tcComplement(dst, parts);
2456 tcIncrement(dst, parts);
2457}
2458
Neil Booth58ffb232007-10-06 00:43:45 +00002459/* DST += SRC * MULTIPLIER + CARRY if add is true
2460 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002461
2462 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2463 they must start at the same point, i.e. DST == SRC.
2464
2465 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2466 returned. Otherwise DST is filled with the least significant
2467 DSTPARTS parts of the result, and if all of the omitted higher
2468 parts were zero return zero, otherwise overflow occurred and
2469 return one. */
2470int
2471APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2472 integerPart multiplier, integerPart carry,
2473 unsigned int srcParts, unsigned int dstParts,
2474 bool add)
2475{
2476 unsigned int i, n;
2477
2478 /* Otherwise our writes of DST kill our later reads of SRC. */
2479 assert(dst <= src || dst >= src + srcParts);
2480 assert(dstParts <= srcParts + 1);
2481
2482 /* N loops; minimum of dstParts and srcParts. */
2483 n = dstParts < srcParts ? dstParts: srcParts;
2484
2485 for(i = 0; i < n; i++) {
2486 integerPart low, mid, high, srcPart;
2487
2488 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2489
2490 This cannot overflow, because
2491
2492 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2493
2494 which is less than n^2. */
2495
2496 srcPart = src[i];
2497
2498 if (multiplier == 0 || srcPart == 0) {
2499 low = carry;
2500 high = 0;
2501 } else {
2502 low = lowHalf(srcPart) * lowHalf(multiplier);
2503 high = highHalf(srcPart) * highHalf(multiplier);
2504
2505 mid = lowHalf(srcPart) * highHalf(multiplier);
2506 high += highHalf(mid);
2507 mid <<= integerPartWidth / 2;
2508 if (low + mid < low)
2509 high++;
2510 low += mid;
2511
2512 mid = highHalf(srcPart) * lowHalf(multiplier);
2513 high += highHalf(mid);
2514 mid <<= integerPartWidth / 2;
2515 if (low + mid < low)
2516 high++;
2517 low += mid;
2518
2519 /* Now add carry. */
2520 if (low + carry < low)
2521 high++;
2522 low += carry;
2523 }
2524
2525 if (add) {
2526 /* And now DST[i], and store the new low part there. */
2527 if (low + dst[i] < low)
2528 high++;
2529 dst[i] += low;
2530 } else
2531 dst[i] = low;
2532
2533 carry = high;
2534 }
2535
2536 if (i < dstParts) {
2537 /* Full multiplication, there is no overflow. */
2538 assert(i + 1 == dstParts);
2539 dst[i] = carry;
2540 return 0;
2541 } else {
2542 /* We overflowed if there is carry. */
2543 if (carry)
2544 return 1;
2545
2546 /* We would overflow if any significant unwritten parts would be
2547 non-zero. This is true if any remaining src parts are non-zero
2548 and the multiplier is non-zero. */
2549 if (multiplier)
2550 for(; i < srcParts; i++)
2551 if (src[i])
2552 return 1;
2553
2554 /* We fitted in the narrow destination. */
2555 return 0;
2556 }
2557}
2558
2559/* DST = LHS * RHS, where DST has the same width as the operands and
2560 is filled with the least significant parts of the result. Returns
2561 one if overflow occurred, otherwise zero. DST must be disjoint
2562 from both operands. */
2563int
2564APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2565 const integerPart *rhs, unsigned int parts)
2566{
2567 unsigned int i;
2568 int overflow;
2569
2570 assert(dst != lhs && dst != rhs);
2571
2572 overflow = 0;
2573 tcSet(dst, 0, parts);
2574
2575 for(i = 0; i < parts; i++)
2576 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2577 parts - i, true);
2578
2579 return overflow;
2580}
2581
Neil Booth004e9f42007-10-06 00:24:48 +00002582/* DST = LHS * RHS, where DST has width the sum of the widths of the
2583 operands. No overflow occurs. DST must be disjoint from both
2584 operands. Returns the number of parts required to hold the
2585 result. */
2586unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002587APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002588 const integerPart *rhs, unsigned int lhsParts,
2589 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002590{
Neil Booth004e9f42007-10-06 00:24:48 +00002591 /* Put the narrower number on the LHS for less loops below. */
2592 if (lhsParts > rhsParts) {
2593 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2594 } else {
2595 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002596
Neil Booth004e9f42007-10-06 00:24:48 +00002597 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002598
Neil Booth004e9f42007-10-06 00:24:48 +00002599 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002600
Neil Booth004e9f42007-10-06 00:24:48 +00002601 for(n = 0; n < lhsParts; n++)
2602 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002603
Neil Booth004e9f42007-10-06 00:24:48 +00002604 n = lhsParts + rhsParts;
2605
2606 return n - (dst[n - 1] == 0);
2607 }
Chris Lattner73cde982007-08-16 15:56:55 +00002608}
2609
2610/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2611 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2612 set REMAINDER to the remainder, return zero. i.e.
2613
2614 OLD_LHS = RHS * LHS + REMAINDER
2615
2616 SCRATCH is a bignum of the same size as the operands and result for
2617 use by the routine; its contents need not be initialized and are
2618 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2619*/
2620int
2621APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2622 integerPart *remainder, integerPart *srhs,
2623 unsigned int parts)
2624{
2625 unsigned int n, shiftCount;
2626 integerPart mask;
2627
2628 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2629
Chris Lattnerdb80e212007-08-20 22:49:32 +00002630 shiftCount = tcMSB(rhs, parts) + 1;
2631 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002632 return true;
2633
Chris Lattnerdb80e212007-08-20 22:49:32 +00002634 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002635 n = shiftCount / integerPartWidth;
2636 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2637
2638 tcAssign(srhs, rhs, parts);
2639 tcShiftLeft(srhs, parts, shiftCount);
2640 tcAssign(remainder, lhs, parts);
2641 tcSet(lhs, 0, parts);
2642
2643 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2644 the total. */
2645 for(;;) {
2646 int compare;
2647
2648 compare = tcCompare(remainder, srhs, parts);
2649 if (compare >= 0) {
2650 tcSubtract(remainder, srhs, 0, parts);
2651 lhs[n] |= mask;
2652 }
2653
2654 if (shiftCount == 0)
2655 break;
2656 shiftCount--;
2657 tcShiftRight(srhs, parts, 1);
2658 if ((mask >>= 1) == 0)
2659 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2660 }
2661
2662 return false;
2663}
2664
2665/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2666 There are no restrictions on COUNT. */
2667void
2668APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2669{
Neil Bootha0f524a2007-10-08 13:47:12 +00002670 if (count) {
2671 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002672
Neil Bootha0f524a2007-10-08 13:47:12 +00002673 /* Jump is the inter-part jump; shift is is intra-part shift. */
2674 jump = count / integerPartWidth;
2675 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002676
Neil Bootha0f524a2007-10-08 13:47:12 +00002677 while (parts > jump) {
2678 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002679
Neil Bootha0f524a2007-10-08 13:47:12 +00002680 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002681
Neil Bootha0f524a2007-10-08 13:47:12 +00002682 /* dst[i] comes from the two parts src[i - jump] and, if we have
2683 an intra-part shift, src[i - jump - 1]. */
2684 part = dst[parts - jump];
2685 if (shift) {
2686 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002687 if (parts >= jump + 1)
2688 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2689 }
2690
Neil Bootha0f524a2007-10-08 13:47:12 +00002691 dst[parts] = part;
2692 }
Chris Lattner73cde982007-08-16 15:56:55 +00002693
Neil Bootha0f524a2007-10-08 13:47:12 +00002694 while (parts > 0)
2695 dst[--parts] = 0;
2696 }
Chris Lattner73cde982007-08-16 15:56:55 +00002697}
2698
2699/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2700 zero. There are no restrictions on COUNT. */
2701void
2702APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2703{
Neil Bootha0f524a2007-10-08 13:47:12 +00002704 if (count) {
2705 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002706
Neil Bootha0f524a2007-10-08 13:47:12 +00002707 /* Jump is the inter-part jump; shift is is intra-part shift. */
2708 jump = count / integerPartWidth;
2709 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002710
Neil Bootha0f524a2007-10-08 13:47:12 +00002711 /* Perform the shift. This leaves the most significant COUNT bits
2712 of the result at zero. */
2713 for(i = 0; i < parts; i++) {
2714 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002715
Neil Bootha0f524a2007-10-08 13:47:12 +00002716 if (i + jump >= parts) {
2717 part = 0;
2718 } else {
2719 part = dst[i + jump];
2720 if (shift) {
2721 part >>= shift;
2722 if (i + jump + 1 < parts)
2723 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2724 }
Chris Lattner73cde982007-08-16 15:56:55 +00002725 }
Chris Lattner73cde982007-08-16 15:56:55 +00002726
Neil Bootha0f524a2007-10-08 13:47:12 +00002727 dst[i] = part;
2728 }
Chris Lattner73cde982007-08-16 15:56:55 +00002729 }
2730}
2731
2732/* Bitwise and of two bignums. */
2733void
2734APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2735{
2736 unsigned int i;
2737
2738 for(i = 0; i < parts; i++)
2739 dst[i] &= rhs[i];
2740}
2741
2742/* Bitwise inclusive or of two bignums. */
2743void
2744APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2745{
2746 unsigned int i;
2747
2748 for(i = 0; i < parts; i++)
2749 dst[i] |= rhs[i];
2750}
2751
2752/* Bitwise exclusive or of two bignums. */
2753void
2754APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2755{
2756 unsigned int i;
2757
2758 for(i = 0; i < parts; i++)
2759 dst[i] ^= rhs[i];
2760}
2761
2762/* Complement a bignum in-place. */
2763void
2764APInt::tcComplement(integerPart *dst, unsigned int parts)
2765{
2766 unsigned int i;
2767
2768 for(i = 0; i < parts; i++)
2769 dst[i] = ~dst[i];
2770}
2771
2772/* Comparison (unsigned) of two bignums. */
2773int
2774APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2775 unsigned int parts)
2776{
2777 while (parts) {
2778 parts--;
2779 if (lhs[parts] == rhs[parts])
2780 continue;
2781
2782 if (lhs[parts] > rhs[parts])
2783 return 1;
2784 else
2785 return -1;
2786 }
2787
2788 return 0;
2789}
2790
2791/* Increment a bignum in-place, return the carry flag. */
2792integerPart
2793APInt::tcIncrement(integerPart *dst, unsigned int parts)
2794{
2795 unsigned int i;
2796
2797 for(i = 0; i < parts; i++)
2798 if (++dst[i] != 0)
2799 break;
2800
2801 return i == parts;
2802}
2803
2804/* Set the least significant BITS bits of a bignum, clear the
2805 rest. */
2806void
2807APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2808 unsigned int bits)
2809{
2810 unsigned int i;
2811
2812 i = 0;
2813 while (bits > integerPartWidth) {
2814 dst[i++] = ~(integerPart) 0;
2815 bits -= integerPartWidth;
2816 }
2817
2818 if (bits)
2819 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2820
2821 while (i < parts)
2822 dst[i++] = 0;
2823}