blob: f55ef77cc3acfa9504f63c591a032af2d8e9902a [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
22namespace {
23class X86MCCodeEmitter : public MCCodeEmitter {
24 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
25 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000026 const TargetMachine &TM;
27 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000028 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000029public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000030 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000031 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000032 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000033 }
34
35 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000036
37 unsigned getNumFixupKinds() const {
38 return 5;
39 }
40
41 MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
42 static MCFixupKindInfo Infos[] = {
43 { "reloc_pcrel_word", 0, 4 * 8 },
44 { "reloc_picrel_word", 0, 4 * 8 },
45 { "reloc_absolute_word", 0, 4 * 8 },
46 { "reloc_absolute_word_sext", 0, 4 * 8 },
47 { "reloc_absolute_dword", 0, 8 * 8 }
48 };
49
50 assert(Kind >= FirstTargetFixupKind && Kind < MaxTargetFixupKind &&
51 "Invalid kind!");
52 return Infos[Kind - FirstTargetFixupKind];
53 }
Chris Lattner45762472010-02-03 21:24:49 +000054
Chris Lattner28249d92010-02-05 01:53:19 +000055 static unsigned GetX86RegNum(const MCOperand &MO) {
56 return X86RegisterInfo::getX86RegNum(MO.getReg());
57 }
58
Chris Lattner92b1dfe2010-02-03 21:43:43 +000059 void EmitByte(unsigned char C, raw_ostream &OS) const {
60 OS << (char)C;
Chris Lattner45762472010-02-03 21:24:49 +000061 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000062
Chris Lattner28249d92010-02-05 01:53:19 +000063 void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
64 // Output the constant in little endian byte order.
65 for (unsigned i = 0; i != Size; ++i) {
66 EmitByte(Val & 255, OS);
67 Val >>= 8;
68 }
69 }
Chris Lattner0e73c392010-02-05 06:16:07 +000070
Chris Lattner8496a262010-02-10 06:30:00 +000071 void EmitDisplacementField(const MCOperand &Disp, int64_t Adj, bool IsPCRel,
72 raw_ostream &OS) const;
Chris Lattner28249d92010-02-05 01:53:19 +000073
74 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
75 unsigned RM) {
76 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
77 return RM | (RegOpcode << 3) | (Mod << 6);
78 }
79
80 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
81 raw_ostream &OS) const {
82 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
83 }
84
Chris Lattner0e73c392010-02-05 06:16:07 +000085 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
86 raw_ostream &OS) const {
87 // SIB byte is in the same format as the ModRMByte...
88 EmitByte(ModRMByte(SS, Index, Base), OS);
89 }
90
91
Chris Lattner1ac23b12010-02-05 02:18:40 +000092 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
93 unsigned RegOpcodeField, intptr_t PCAdj,
94 raw_ostream &OS) const;
Chris Lattner28249d92010-02-05 01:53:19 +000095
Daniel Dunbar73c55742010-02-09 22:59:55 +000096 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
97 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +000098
Chris Lattner45762472010-02-03 21:24:49 +000099};
100
101} // end anonymous namespace
102
103
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000104MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
105 TargetMachine &TM) {
106 return new X86MCCodeEmitter(TM, false);
107}
108
109MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
110 TargetMachine &TM) {
111 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000112}
113
114
Chris Lattner1ac23b12010-02-05 02:18:40 +0000115/// isDisp8 - Return true if this signed displacement fits in a 8-bit
116/// sign-extended field.
117static bool isDisp8(int Value) {
118 return Value == (signed char)Value;
119}
120
Chris Lattner0e73c392010-02-05 06:16:07 +0000121void X86MCCodeEmitter::
Chris Lattner8496a262010-02-10 06:30:00 +0000122EmitDisplacementField(const MCOperand &DispOp, int64_t Adj, bool IsPCRel,
123 raw_ostream &OS) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000124 // If this is a simple integer displacement that doesn't require a relocation,
125 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000126 if (DispOp.isImm()) {
127 EmitConstant(DispOp.getImm(), 4, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000128 return;
129 }
130
131 assert(0 && "Reloc not handled yet");
132#if 0
133 // Otherwise, this is something that requires a relocation. Emit it as such
134 // now.
135 unsigned RelocType = Is64BitMode ?
136 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
137 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
138 if (RelocOp->isGlobal()) {
139 // In 64-bit static small code model, we could potentially emit absolute.
140 // But it's probably not beneficial. If the MCE supports using RIP directly
141 // do it, otherwise fallback to absolute (this is determined by IsPCRel).
142 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
143 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
144 bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
145 emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
146 Adj, Indirect);
147 } else if (RelocOp->isSymbol()) {
148 emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
149 } else if (RelocOp->isCPI()) {
150 emitConstPoolAddress(RelocOp->getIndex(), RelocType,
151 RelocOp->getOffset(), Adj);
152 } else {
153 assert(RelocOp->isJTI() && "Unexpected machine operand!");
154 emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
155 }
156#endif
157}
158
159
Chris Lattner1ac23b12010-02-05 02:18:40 +0000160void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
161 unsigned RegOpcodeField,
Chris Lattner8496a262010-02-10 06:30:00 +0000162 intptr_t PCAdj, raw_ostream &OS) const {
163 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000164 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000165 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000166 const MCOperand &IndexReg = MI.getOperand(Op+2);
167 unsigned BaseReg = Base.getReg();
168
Chris Lattner0e73c392010-02-05 06:16:07 +0000169 // FIXME: Eliminate!
170 bool IsPCRel = false;
Chris Lattnera8168ec2010-02-09 21:57:34 +0000171
172 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000173 // If no BaseReg, issue a RIP relative instruction only if the MCE can
174 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
175 // 2-7) and absolute references.
Chris Lattnera8168ec2010-02-09 21:57:34 +0000176 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000177 IndexReg.getReg() == 0 &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000178 // The SIB byte must be used if the base is ESP/RSP.
179 BaseReg != X86::ESP && BaseReg != X86::RSP &&
180 // If there is no base register and we're in 64-bit mode, we need a SIB
181 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
182 (!Is64BitMode || BaseReg != 0)) {
183
184 if (BaseReg == 0 || // [disp32] in X86-32 mode
185 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Chris Lattner1ac23b12010-02-05 02:18:40 +0000186 EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000187 EmitDisplacementField(Disp, PCAdj, true, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000188 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000189 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000190
191 unsigned BaseRegNo = GetX86RegNum(Base);
192
193 // If the base is not EBP/ESP and there is no displacement, use simple
194 // indirect register encoding, this handles addresses like [EAX]. The
195 // encoding for [EBP] with no displacement means [disp32] so we handle it
196 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000197 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattnera8168ec2010-02-09 21:57:34 +0000198 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS);
199 return;
200 }
201
202 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000203 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattnera8168ec2010-02-09 21:57:34 +0000204 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000205 EmitConstant(Disp.getImm(), 1, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000206 return;
207 }
208
209 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
210 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000211 EmitDisplacementField(Disp, PCAdj, IsPCRel, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000212 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000213 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000214
215 // We need a SIB byte, so start by outputting the ModR/M byte first
216 assert(IndexReg.getReg() != X86::ESP &&
217 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
218
219 bool ForceDisp32 = false;
220 bool ForceDisp8 = false;
221 if (BaseReg == 0) {
222 // If there is no base register, we emit the special case SIB byte with
223 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
224 EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
225 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000226 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000227 // Emit the normal disp32 encoding.
228 EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
229 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000230 } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000231 // Emit no displacement ModR/M byte
232 EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000233 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000234 // Emit the disp8 encoding.
235 EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
236 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
237 } else {
238 // Emit the normal disp32 encoding.
239 EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
240 }
241
242 // Calculate what the SS field value should be...
243 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
244 unsigned SS = SSTable[Scale.getImm()];
245
246 if (BaseReg == 0) {
247 // Handle the SIB byte for the case where there is no base, see Intel
248 // Manual 2A, table 2-7. The displacement has already been output.
249 unsigned IndexRegNo;
250 if (IndexReg.getReg())
251 IndexRegNo = GetX86RegNum(IndexReg);
252 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
253 IndexRegNo = 4;
254 EmitSIBByte(SS, IndexRegNo, 5, OS);
255 } else {
256 unsigned IndexRegNo;
257 if (IndexReg.getReg())
258 IndexRegNo = GetX86RegNum(IndexReg);
259 else
260 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
261 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), OS);
262 }
263
264 // Do we need to output a displacement?
265 if (ForceDisp8)
Chris Lattner8496a262010-02-10 06:30:00 +0000266 EmitConstant(Disp.getImm(), 1, OS);
267 else if (ForceDisp32 || Disp.getImm() != 0)
268 EmitDisplacementField(Disp, PCAdj, IsPCRel, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000269}
270
Chris Lattner39a612e2010-02-05 22:10:22 +0000271/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
272/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
273/// size, and 3) use of X86-64 extended registers.
274static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
275 const TargetInstrDesc &Desc) {
276 unsigned REX = 0;
277
278 // Pseudo instructions do not need REX prefix byte.
279 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
280 return 0;
281 if (TSFlags & X86II::REX_W)
282 REX |= 1 << 3;
283
284 if (MI.getNumOperands() == 0) return REX;
285
286 unsigned NumOps = MI.getNumOperands();
287 // FIXME: MCInst should explicitize the two-addrness.
288 bool isTwoAddr = NumOps > 1 &&
289 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
290
291 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
292 unsigned i = isTwoAddr ? 1 : 0;
293 for (; i != NumOps; ++i) {
294 const MCOperand &MO = MI.getOperand(i);
295 if (!MO.isReg()) continue;
296 unsigned Reg = MO.getReg();
297 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000298 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
299 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000300 REX |= 0x40;
301 break;
302 }
303
304 switch (TSFlags & X86II::FormMask) {
305 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
306 case X86II::MRMSrcReg:
307 if (MI.getOperand(0).isReg() &&
308 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
309 REX |= 1 << 2;
310 i = isTwoAddr ? 2 : 1;
311 for (; i != NumOps; ++i) {
312 const MCOperand &MO = MI.getOperand(i);
313 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
314 REX |= 1 << 0;
315 }
316 break;
317 case X86II::MRMSrcMem: {
318 if (MI.getOperand(0).isReg() &&
319 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
320 REX |= 1 << 2;
321 unsigned Bit = 0;
322 i = isTwoAddr ? 2 : 1;
323 for (; i != NumOps; ++i) {
324 const MCOperand &MO = MI.getOperand(i);
325 if (MO.isReg()) {
326 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
327 REX |= 1 << Bit;
328 Bit++;
329 }
330 }
331 break;
332 }
333 case X86II::MRM0m: case X86II::MRM1m:
334 case X86II::MRM2m: case X86II::MRM3m:
335 case X86II::MRM4m: case X86II::MRM5m:
336 case X86II::MRM6m: case X86II::MRM7m:
337 case X86II::MRMDestMem: {
338 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
339 i = isTwoAddr ? 1 : 0;
340 if (NumOps > e && MI.getOperand(e).isReg() &&
341 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
342 REX |= 1 << 2;
343 unsigned Bit = 0;
344 for (; i != e; ++i) {
345 const MCOperand &MO = MI.getOperand(i);
346 if (MO.isReg()) {
347 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
348 REX |= 1 << Bit;
349 Bit++;
350 }
351 }
352 break;
353 }
354 default:
355 if (MI.getOperand(0).isReg() &&
356 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
357 REX |= 1 << 0;
358 i = isTwoAddr ? 2 : 1;
359 for (unsigned e = NumOps; i != e; ++i) {
360 const MCOperand &MO = MI.getOperand(i);
361 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
362 REX |= 1 << 2;
363 }
364 break;
365 }
366 return REX;
367}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000368
369void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000370EncodeInstruction(const MCInst &MI, raw_ostream &OS,
371 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000372 unsigned Opcode = MI.getOpcode();
373 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000374 unsigned TSFlags = Desc.TSFlags;
375
376 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
377 // in order to provide diffability.
378
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000379 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000380 if (TSFlags & X86II::LOCK)
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000381 EmitByte(0xF0, OS);
382
383 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000384 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000385 default: assert(0 && "Invalid segment!");
386 case 0: break; // No segment override!
387 case X86II::FS:
388 EmitByte(0x64, OS);
389 break;
390 case X86II::GS:
391 EmitByte(0x65, OS);
392 break;
393 }
394
Chris Lattner1e80f402010-02-03 21:57:59 +0000395 // Emit the repeat opcode prefix as needed.
396 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
397 EmitByte(0xF3, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000398
Chris Lattner1e80f402010-02-03 21:57:59 +0000399 // Emit the operand size opcode prefix as needed.
400 if (TSFlags & X86II::OpSize)
401 EmitByte(0x66, OS);
402
403 // Emit the address size opcode prefix as needed.
404 if (TSFlags & X86II::AdSize)
405 EmitByte(0x67, OS);
406
407 bool Need0FPrefix = false;
408 switch (TSFlags & X86II::Op0Mask) {
409 default: assert(0 && "Invalid prefix!");
410 case 0: break; // No prefix!
411 case X86II::REP: break; // already handled.
412 case X86II::TB: // Two-byte opcode prefix
413 case X86II::T8: // 0F 38
414 case X86II::TA: // 0F 3A
415 Need0FPrefix = true;
416 break;
417 case X86II::TF: // F2 0F 38
418 EmitByte(0xF2, OS);
419 Need0FPrefix = true;
420 break;
421 case X86II::XS: // F3 0F
422 EmitByte(0xF3, OS);
423 Need0FPrefix = true;
424 break;
425 case X86II::XD: // F2 0F
426 EmitByte(0xF2, OS);
427 Need0FPrefix = true;
428 break;
429 case X86II::D8: EmitByte(0xD8, OS); break;
430 case X86II::D9: EmitByte(0xD9, OS); break;
431 case X86II::DA: EmitByte(0xDA, OS); break;
432 case X86II::DB: EmitByte(0xDB, OS); break;
433 case X86II::DC: EmitByte(0xDC, OS); break;
434 case X86II::DD: EmitByte(0xDD, OS); break;
435 case X86II::DE: EmitByte(0xDE, OS); break;
436 case X86II::DF: EmitByte(0xDF, OS); break;
437 }
438
439 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000440 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000441 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000442 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner1e80f402010-02-03 21:57:59 +0000443 EmitByte(0x40 | REX, OS);
444 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000445
446 // 0x0F escape code must be emitted just before the opcode.
447 if (Need0FPrefix)
448 EmitByte(0x0F, OS);
449
450 // FIXME: Pull this up into previous switch if REX can be moved earlier.
451 switch (TSFlags & X86II::Op0Mask) {
452 case X86II::TF: // F2 0F 38
453 case X86II::T8: // 0F 38
454 EmitByte(0x38, OS);
455 break;
456 case X86II::TA: // 0F 3A
457 EmitByte(0x3A, OS);
458 break;
459 }
460
461 // If this is a two-address instruction, skip one of the register operands.
462 unsigned NumOps = Desc.getNumOperands();
463 unsigned CurOp = 0;
464 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
465 ++CurOp;
466 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
467 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
468 --NumOps;
469
Chris Lattner74a21512010-02-05 19:24:13 +0000470 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000471 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000472 case X86II::MRMInitReg:
473 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000474 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
475 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1e80f402010-02-03 21:57:59 +0000476 case X86II::RawFrm: {
477 EmitByte(BaseOpcode, OS);
478
479 if (CurOp == NumOps)
480 break;
481
Chris Lattner28249d92010-02-05 01:53:19 +0000482 assert(0 && "Unimpl RawFrm expr");
Chris Lattner1e80f402010-02-03 21:57:59 +0000483 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000484 }
Chris Lattner28249d92010-02-05 01:53:19 +0000485
486 case X86II::AddRegFrm: {
487 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS);
488 if (CurOp == NumOps)
489 break;
490
491 const MCOperand &MO1 = MI.getOperand(CurOp++);
492 if (MO1.isImm()) {
Chris Lattner74a21512010-02-05 19:24:13 +0000493 unsigned Size = X86II::getSizeOfImm(TSFlags);
Chris Lattner28249d92010-02-05 01:53:19 +0000494 EmitConstant(MO1.getImm(), Size, OS);
495 break;
496 }
497
498 assert(0 && "Unimpl AddRegFrm expr");
499 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000500 }
Chris Lattner28249d92010-02-05 01:53:19 +0000501
502 case X86II::MRMDestReg:
503 EmitByte(BaseOpcode, OS);
504 EmitRegModRMByte(MI.getOperand(CurOp),
505 GetX86RegNum(MI.getOperand(CurOp+1)), OS);
506 CurOp += 2;
507 if (CurOp != NumOps)
508 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000509 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000510 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000511
512 case X86II::MRMDestMem:
513 EmitByte(BaseOpcode, OS);
514 EmitMemModRMByte(MI, CurOp,
515 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
516 0, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000517 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000518 if (CurOp != NumOps)
519 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000520 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000521 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000522
523 case X86II::MRMSrcReg:
524 EmitByte(BaseOpcode, OS);
525 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
526 OS);
527 CurOp += 2;
528 if (CurOp != NumOps)
529 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000530 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000531 break;
532
533 case X86II::MRMSrcMem: {
534 EmitByte(BaseOpcode, OS);
535
536 // FIXME: Maybe lea should have its own form? This is a horrible hack.
537 int AddrOperands;
538 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
539 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
540 AddrOperands = X86AddrNumOperands - 1; // No segment register
541 else
542 AddrOperands = X86AddrNumOperands;
543
544 // FIXME: What is this actually doing?
545 intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
Chris Lattner74a21512010-02-05 19:24:13 +0000546 X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000547
548 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
549 PCAdj, OS);
550 CurOp += AddrOperands + 1;
551 if (CurOp != NumOps)
552 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000553 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000554 break;
555 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000556
557 case X86II::MRM0r: case X86II::MRM1r:
558 case X86II::MRM2r: case X86II::MRM3r:
559 case X86II::MRM4r: case X86II::MRM5r:
560 case X86II::MRM6r: case X86II::MRM7r: {
561 EmitByte(BaseOpcode, OS);
562
563 // Special handling of lfence, mfence, monitor, and mwait.
564 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
565 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
566 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
567 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0), OS);
568
569 switch (Opcode) {
570 default: break;
571 case X86::MONITOR: EmitByte(0xC8, OS); break;
572 case X86::MWAIT: EmitByte(0xC9, OS); break;
573 }
574 } else {
575 EmitRegModRMByte(MI.getOperand(CurOp++),
576 (TSFlags & X86II::FormMask)-X86II::MRM0r,
577 OS);
578 }
579
580 if (CurOp == NumOps)
581 break;
582
583 const MCOperand &MO1 = MI.getOperand(CurOp++);
584 if (MO1.isImm()) {
585 EmitConstant(MO1.getImm(), X86II::getSizeOfImm(TSFlags), OS);
586 break;
587 }
588
589 assert(0 && "relo unimpl");
590#if 0
591 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
592 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
593 if (Opcode == X86::MOV64ri32)
594 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
595 if (MO1.isGlobal()) {
596 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
597 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
598 Indirect);
599 } else if (MO1.isSymbol())
600 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
601 else if (MO1.isCPI())
602 emitConstPoolAddress(MO1.getIndex(), rt);
603 else if (MO1.isJTI())
604 emitJumpTableAddress(MO1.getIndex(), rt);
605 break;
606#endif
607 }
608 case X86II::MRM0m: case X86II::MRM1m:
609 case X86II::MRM2m: case X86II::MRM3m:
610 case X86II::MRM4m: case X86II::MRM5m:
611 case X86II::MRM6m: case X86II::MRM7m: {
612 intptr_t PCAdj = 0;
613 if (CurOp + X86AddrNumOperands != NumOps) {
614 if (MI.getOperand(CurOp+X86AddrNumOperands).isImm())
615 PCAdj = X86II::getSizeOfImm(TSFlags);
616 else
617 PCAdj = 4;
618 }
619
620 EmitByte(BaseOpcode, OS);
621 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
622 PCAdj, OS);
623 CurOp += X86AddrNumOperands;
624
625 if (CurOp == NumOps)
626 break;
627
628 const MCOperand &MO = MI.getOperand(CurOp++);
629 if (MO.isImm()) {
630 EmitConstant(MO.getImm(), X86II::getSizeOfImm(TSFlags), OS);
631 break;
632 }
633
634 assert(0 && "relo not handled");
635#if 0
636 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
637 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
638 if (Opcode == X86::MOV64mi32)
639 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
640 if (MO.isGlobal()) {
641 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
642 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
643 Indirect);
644 } else if (MO.isSymbol())
645 emitExternalSymbolAddress(MO.getSymbolName(), rt);
646 else if (MO.isCPI())
647 emitConstPoolAddress(MO.getIndex(), rt);
648 else if (MO.isJTI())
649 emitJumpTableAddress(MO.getIndex(), rt);
650#endif
651 break;
652 }
Chris Lattner28249d92010-02-05 01:53:19 +0000653 }
654
655#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000656 // FIXME: Verify.
657 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000658 errs() << "Cannot encode all operands of: ";
659 MI.dump();
660 errs() << '\n';
661 abort();
662 }
663#endif
Chris Lattner45762472010-02-03 21:24:49 +0000664}