blob: 679abb388c45d3ce2e2ccc9aeef6e68da8f63cff [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
22namespace {
23class X86MCCodeEmitter : public MCCodeEmitter {
24 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
25 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000026 const TargetMachine &TM;
27 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000028 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000029public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000030 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000031 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000032 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000033 }
34
35 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000036
37 unsigned getNumFixupKinds() const {
38 return 5;
39 }
40
41 MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
42 static MCFixupKindInfo Infos[] = {
43 { "reloc_pcrel_word", 0, 4 * 8 },
44 { "reloc_picrel_word", 0, 4 * 8 },
45 { "reloc_absolute_word", 0, 4 * 8 },
46 { "reloc_absolute_word_sext", 0, 4 * 8 },
47 { "reloc_absolute_dword", 0, 8 * 8 }
48 };
49
50 assert(Kind >= FirstTargetFixupKind && Kind < MaxTargetFixupKind &&
51 "Invalid kind!");
52 return Infos[Kind - FirstTargetFixupKind];
53 }
Chris Lattner45762472010-02-03 21:24:49 +000054
Chris Lattner28249d92010-02-05 01:53:19 +000055 static unsigned GetX86RegNum(const MCOperand &MO) {
56 return X86RegisterInfo::getX86RegNum(MO.getReg());
57 }
58
Chris Lattner92b1dfe2010-02-03 21:43:43 +000059 void EmitByte(unsigned char C, raw_ostream &OS) const {
60 OS << (char)C;
Chris Lattner45762472010-02-03 21:24:49 +000061 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000062
Chris Lattner28249d92010-02-05 01:53:19 +000063 void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
64 // Output the constant in little endian byte order.
65 for (unsigned i = 0; i != Size; ++i) {
66 EmitByte(Val & 255, OS);
67 Val >>= 8;
68 }
69 }
Chris Lattner0e73c392010-02-05 06:16:07 +000070
71 void EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
72 int64_t Adj, bool IsPCRel, raw_ostream &OS) const;
Chris Lattner28249d92010-02-05 01:53:19 +000073
74 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
75 unsigned RM) {
76 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
77 return RM | (RegOpcode << 3) | (Mod << 6);
78 }
79
80 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
81 raw_ostream &OS) const {
82 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
83 }
84
Chris Lattner0e73c392010-02-05 06:16:07 +000085 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
86 raw_ostream &OS) const {
87 // SIB byte is in the same format as the ModRMByte...
88 EmitByte(ModRMByte(SS, Index, Base), OS);
89 }
90
91
Chris Lattner1ac23b12010-02-05 02:18:40 +000092 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
93 unsigned RegOpcodeField, intptr_t PCAdj,
94 raw_ostream &OS) const;
Chris Lattner28249d92010-02-05 01:53:19 +000095
Daniel Dunbar73c55742010-02-09 22:59:55 +000096 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
97 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +000098
Chris Lattner45762472010-02-03 21:24:49 +000099};
100
101} // end anonymous namespace
102
103
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000104MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
105 TargetMachine &TM) {
106 return new X86MCCodeEmitter(TM, false);
107}
108
109MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
110 TargetMachine &TM) {
111 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000112}
113
114
Chris Lattner1ac23b12010-02-05 02:18:40 +0000115/// isDisp8 - Return true if this signed displacement fits in a 8-bit
116/// sign-extended field.
117static bool isDisp8(int Value) {
118 return Value == (signed char)Value;
119}
120
Chris Lattner0e73c392010-02-05 06:16:07 +0000121void X86MCCodeEmitter::
122EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
123 int64_t Adj, bool IsPCRel, raw_ostream &OS) const {
124 // If this is a simple integer displacement that doesn't require a relocation,
125 // emit it now.
126 if (!RelocOp) {
127 EmitConstant(DispVal, 4, OS);
128 return;
129 }
130
131 assert(0 && "Reloc not handled yet");
132#if 0
133 // Otherwise, this is something that requires a relocation. Emit it as such
134 // now.
135 unsigned RelocType = Is64BitMode ?
136 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
137 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
138 if (RelocOp->isGlobal()) {
139 // In 64-bit static small code model, we could potentially emit absolute.
140 // But it's probably not beneficial. If the MCE supports using RIP directly
141 // do it, otherwise fallback to absolute (this is determined by IsPCRel).
142 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
143 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
144 bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
145 emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
146 Adj, Indirect);
147 } else if (RelocOp->isSymbol()) {
148 emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
149 } else if (RelocOp->isCPI()) {
150 emitConstPoolAddress(RelocOp->getIndex(), RelocType,
151 RelocOp->getOffset(), Adj);
152 } else {
153 assert(RelocOp->isJTI() && "Unexpected machine operand!");
154 emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
155 }
156#endif
157}
158
159
Chris Lattner1ac23b12010-02-05 02:18:40 +0000160void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
161 unsigned RegOpcodeField,
162 intptr_t PCAdj,
163 raw_ostream &OS) const {
164 const MCOperand &Op3 = MI.getOperand(Op+3);
165 int DispVal = 0;
166 const MCOperand *DispForReloc = 0;
167
168 // Figure out what sort of displacement we have to handle here.
169 if (Op3.isImm()) {
170 DispVal = Op3.getImm();
171 } else {
Chris Lattnerdaa45552010-02-05 19:04:37 +0000172 assert(0 && "relocatable operand");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000173#if 0
174 if (Op3.isGlobal()) {
175 DispForReloc = &Op3;
176 } else if (Op3.isSymbol()) {
177 DispForReloc = &Op3;
178 } else if (Op3.isCPI()) {
179 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
180 DispForReloc = &Op3;
181 } else {
182 DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
183 DispVal += Op3.getOffset();
184 }
185 } else {
186 assert(Op3.isJTI());
187 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
188 DispForReloc = &Op3;
189 } else {
190 DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
191 }
192#endif
193 }
194
195 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000196 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000197 const MCOperand &IndexReg = MI.getOperand(Op+2);
198 unsigned BaseReg = Base.getReg();
199
Chris Lattner0e73c392010-02-05 06:16:07 +0000200 // FIXME: Eliminate!
201 bool IsPCRel = false;
Chris Lattnera8168ec2010-02-09 21:57:34 +0000202
203 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000204 // If no BaseReg, issue a RIP relative instruction only if the MCE can
205 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
206 // 2-7) and absolute references.
Chris Lattnera8168ec2010-02-09 21:57:34 +0000207 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000208 IndexReg.getReg() == 0 &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000209 // The SIB byte must be used if the base is ESP/RSP.
210 BaseReg != X86::ESP && BaseReg != X86::RSP &&
211 // If there is no base register and we're in 64-bit mode, we need a SIB
212 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
213 (!Is64BitMode || BaseReg != 0)) {
214
215 if (BaseReg == 0 || // [disp32] in X86-32 mode
216 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Chris Lattner1ac23b12010-02-05 02:18:40 +0000217 EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000218 EmitDisplacementField(DispForReloc, DispVal, PCAdj, true, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000219 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000220 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000221
222 unsigned BaseRegNo = GetX86RegNum(Base);
223
224 // If the base is not EBP/ESP and there is no displacement, use simple
225 // indirect register encoding, this handles addresses like [EAX]. The
226 // encoding for [EBP] with no displacement means [disp32] so we handle it
227 // by emitting a displacement of 0 below.
228 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
229 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS);
230 return;
231 }
232
233 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
234 if (!DispForReloc && isDisp8(DispVal)) {
235 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS);
236 EmitConstant(DispVal, 1, OS);
237 return;
238 }
239
240 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
241 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
242 EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000243 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000244 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000245
246 // We need a SIB byte, so start by outputting the ModR/M byte first
247 assert(IndexReg.getReg() != X86::ESP &&
248 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
249
250 bool ForceDisp32 = false;
251 bool ForceDisp8 = false;
252 if (BaseReg == 0) {
253 // If there is no base register, we emit the special case SIB byte with
254 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
255 EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
256 ForceDisp32 = true;
257 } else if (DispForReloc) {
258 // Emit the normal disp32 encoding.
259 EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
260 ForceDisp32 = true;
261 } else if (DispVal == 0 && BaseReg != X86::EBP) {
262 // Emit no displacement ModR/M byte
263 EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
264 } else if (isDisp8(DispVal)) {
265 // Emit the disp8 encoding.
266 EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
267 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
268 } else {
269 // Emit the normal disp32 encoding.
270 EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
271 }
272
273 // Calculate what the SS field value should be...
274 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
275 unsigned SS = SSTable[Scale.getImm()];
276
277 if (BaseReg == 0) {
278 // Handle the SIB byte for the case where there is no base, see Intel
279 // Manual 2A, table 2-7. The displacement has already been output.
280 unsigned IndexRegNo;
281 if (IndexReg.getReg())
282 IndexRegNo = GetX86RegNum(IndexReg);
283 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
284 IndexRegNo = 4;
285 EmitSIBByte(SS, IndexRegNo, 5, OS);
286 } else {
287 unsigned IndexRegNo;
288 if (IndexReg.getReg())
289 IndexRegNo = GetX86RegNum(IndexReg);
290 else
291 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
292 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), OS);
293 }
294
295 // Do we need to output a displacement?
296 if (ForceDisp8)
297 EmitConstant(DispVal, 1, OS);
298 else if (DispVal != 0 || ForceDisp32)
299 EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000300}
301
Chris Lattner39a612e2010-02-05 22:10:22 +0000302/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
303/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
304/// size, and 3) use of X86-64 extended registers.
305static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
306 const TargetInstrDesc &Desc) {
307 unsigned REX = 0;
308
309 // Pseudo instructions do not need REX prefix byte.
310 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
311 return 0;
312 if (TSFlags & X86II::REX_W)
313 REX |= 1 << 3;
314
315 if (MI.getNumOperands() == 0) return REX;
316
317 unsigned NumOps = MI.getNumOperands();
318 // FIXME: MCInst should explicitize the two-addrness.
319 bool isTwoAddr = NumOps > 1 &&
320 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
321
322 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
323 unsigned i = isTwoAddr ? 1 : 0;
324 for (; i != NumOps; ++i) {
325 const MCOperand &MO = MI.getOperand(i);
326 if (!MO.isReg()) continue;
327 unsigned Reg = MO.getReg();
328 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000329 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
330 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000331 REX |= 0x40;
332 break;
333 }
334
335 switch (TSFlags & X86II::FormMask) {
336 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
337 case X86II::MRMSrcReg:
338 if (MI.getOperand(0).isReg() &&
339 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
340 REX |= 1 << 2;
341 i = isTwoAddr ? 2 : 1;
342 for (; i != NumOps; ++i) {
343 const MCOperand &MO = MI.getOperand(i);
344 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
345 REX |= 1 << 0;
346 }
347 break;
348 case X86II::MRMSrcMem: {
349 if (MI.getOperand(0).isReg() &&
350 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
351 REX |= 1 << 2;
352 unsigned Bit = 0;
353 i = isTwoAddr ? 2 : 1;
354 for (; i != NumOps; ++i) {
355 const MCOperand &MO = MI.getOperand(i);
356 if (MO.isReg()) {
357 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
358 REX |= 1 << Bit;
359 Bit++;
360 }
361 }
362 break;
363 }
364 case X86II::MRM0m: case X86II::MRM1m:
365 case X86II::MRM2m: case X86II::MRM3m:
366 case X86II::MRM4m: case X86II::MRM5m:
367 case X86II::MRM6m: case X86II::MRM7m:
368 case X86II::MRMDestMem: {
369 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
370 i = isTwoAddr ? 1 : 0;
371 if (NumOps > e && MI.getOperand(e).isReg() &&
372 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
373 REX |= 1 << 2;
374 unsigned Bit = 0;
375 for (; i != e; ++i) {
376 const MCOperand &MO = MI.getOperand(i);
377 if (MO.isReg()) {
378 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
379 REX |= 1 << Bit;
380 Bit++;
381 }
382 }
383 break;
384 }
385 default:
386 if (MI.getOperand(0).isReg() &&
387 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
388 REX |= 1 << 0;
389 i = isTwoAddr ? 2 : 1;
390 for (unsigned e = NumOps; i != e; ++i) {
391 const MCOperand &MO = MI.getOperand(i);
392 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
393 REX |= 1 << 2;
394 }
395 break;
396 }
397 return REX;
398}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000399
400void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000401EncodeInstruction(const MCInst &MI, raw_ostream &OS,
402 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000403 unsigned Opcode = MI.getOpcode();
404 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000405 unsigned TSFlags = Desc.TSFlags;
406
407 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
408 // in order to provide diffability.
409
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000410 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000411 if (TSFlags & X86II::LOCK)
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000412 EmitByte(0xF0, OS);
413
414 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000415 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000416 default: assert(0 && "Invalid segment!");
417 case 0: break; // No segment override!
418 case X86II::FS:
419 EmitByte(0x64, OS);
420 break;
421 case X86II::GS:
422 EmitByte(0x65, OS);
423 break;
424 }
425
Chris Lattner1e80f402010-02-03 21:57:59 +0000426 // Emit the repeat opcode prefix as needed.
427 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
428 EmitByte(0xF3, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000429
Chris Lattner1e80f402010-02-03 21:57:59 +0000430 // Emit the operand size opcode prefix as needed.
431 if (TSFlags & X86II::OpSize)
432 EmitByte(0x66, OS);
433
434 // Emit the address size opcode prefix as needed.
435 if (TSFlags & X86II::AdSize)
436 EmitByte(0x67, OS);
437
438 bool Need0FPrefix = false;
439 switch (TSFlags & X86II::Op0Mask) {
440 default: assert(0 && "Invalid prefix!");
441 case 0: break; // No prefix!
442 case X86II::REP: break; // already handled.
443 case X86II::TB: // Two-byte opcode prefix
444 case X86II::T8: // 0F 38
445 case X86II::TA: // 0F 3A
446 Need0FPrefix = true;
447 break;
448 case X86II::TF: // F2 0F 38
449 EmitByte(0xF2, OS);
450 Need0FPrefix = true;
451 break;
452 case X86II::XS: // F3 0F
453 EmitByte(0xF3, OS);
454 Need0FPrefix = true;
455 break;
456 case X86II::XD: // F2 0F
457 EmitByte(0xF2, OS);
458 Need0FPrefix = true;
459 break;
460 case X86II::D8: EmitByte(0xD8, OS); break;
461 case X86II::D9: EmitByte(0xD9, OS); break;
462 case X86II::DA: EmitByte(0xDA, OS); break;
463 case X86II::DB: EmitByte(0xDB, OS); break;
464 case X86II::DC: EmitByte(0xDC, OS); break;
465 case X86II::DD: EmitByte(0xDD, OS); break;
466 case X86II::DE: EmitByte(0xDE, OS); break;
467 case X86II::DF: EmitByte(0xDF, OS); break;
468 }
469
470 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000471 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000472 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000473 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner1e80f402010-02-03 21:57:59 +0000474 EmitByte(0x40 | REX, OS);
475 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000476
477 // 0x0F escape code must be emitted just before the opcode.
478 if (Need0FPrefix)
479 EmitByte(0x0F, OS);
480
481 // FIXME: Pull this up into previous switch if REX can be moved earlier.
482 switch (TSFlags & X86II::Op0Mask) {
483 case X86II::TF: // F2 0F 38
484 case X86II::T8: // 0F 38
485 EmitByte(0x38, OS);
486 break;
487 case X86II::TA: // 0F 3A
488 EmitByte(0x3A, OS);
489 break;
490 }
491
492 // If this is a two-address instruction, skip one of the register operands.
493 unsigned NumOps = Desc.getNumOperands();
494 unsigned CurOp = 0;
495 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
496 ++CurOp;
497 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
498 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
499 --NumOps;
500
Chris Lattner74a21512010-02-05 19:24:13 +0000501 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000502 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000503 case X86II::MRMInitReg:
504 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000505 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
506 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1e80f402010-02-03 21:57:59 +0000507 case X86II::RawFrm: {
508 EmitByte(BaseOpcode, OS);
509
510 if (CurOp == NumOps)
511 break;
512
Chris Lattner28249d92010-02-05 01:53:19 +0000513 assert(0 && "Unimpl RawFrm expr");
Chris Lattner1e80f402010-02-03 21:57:59 +0000514 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000515 }
Chris Lattner28249d92010-02-05 01:53:19 +0000516
517 case X86II::AddRegFrm: {
518 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS);
519 if (CurOp == NumOps)
520 break;
521
522 const MCOperand &MO1 = MI.getOperand(CurOp++);
523 if (MO1.isImm()) {
Chris Lattner74a21512010-02-05 19:24:13 +0000524 unsigned Size = X86II::getSizeOfImm(TSFlags);
Chris Lattner28249d92010-02-05 01:53:19 +0000525 EmitConstant(MO1.getImm(), Size, OS);
526 break;
527 }
528
529 assert(0 && "Unimpl AddRegFrm expr");
530 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000531 }
Chris Lattner28249d92010-02-05 01:53:19 +0000532
533 case X86II::MRMDestReg:
534 EmitByte(BaseOpcode, OS);
535 EmitRegModRMByte(MI.getOperand(CurOp),
536 GetX86RegNum(MI.getOperand(CurOp+1)), OS);
537 CurOp += 2;
538 if (CurOp != NumOps)
539 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000540 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000541 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000542
543 case X86II::MRMDestMem:
544 EmitByte(BaseOpcode, OS);
545 EmitMemModRMByte(MI, CurOp,
546 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
547 0, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000548 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000549 if (CurOp != NumOps)
550 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000551 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000552 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000553
554 case X86II::MRMSrcReg:
555 EmitByte(BaseOpcode, OS);
556 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
557 OS);
558 CurOp += 2;
559 if (CurOp != NumOps)
560 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000561 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000562 break;
563
564 case X86II::MRMSrcMem: {
565 EmitByte(BaseOpcode, OS);
566
567 // FIXME: Maybe lea should have its own form? This is a horrible hack.
568 int AddrOperands;
569 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
570 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
571 AddrOperands = X86AddrNumOperands - 1; // No segment register
572 else
573 AddrOperands = X86AddrNumOperands;
574
575 // FIXME: What is this actually doing?
576 intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
Chris Lattner74a21512010-02-05 19:24:13 +0000577 X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000578
579 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
580 PCAdj, OS);
581 CurOp += AddrOperands + 1;
582 if (CurOp != NumOps)
583 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000584 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000585 break;
586 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000587
588 case X86II::MRM0r: case X86II::MRM1r:
589 case X86II::MRM2r: case X86II::MRM3r:
590 case X86II::MRM4r: case X86II::MRM5r:
591 case X86II::MRM6r: case X86II::MRM7r: {
592 EmitByte(BaseOpcode, OS);
593
594 // Special handling of lfence, mfence, monitor, and mwait.
595 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
596 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
597 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
598 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0), OS);
599
600 switch (Opcode) {
601 default: break;
602 case X86::MONITOR: EmitByte(0xC8, OS); break;
603 case X86::MWAIT: EmitByte(0xC9, OS); break;
604 }
605 } else {
606 EmitRegModRMByte(MI.getOperand(CurOp++),
607 (TSFlags & X86II::FormMask)-X86II::MRM0r,
608 OS);
609 }
610
611 if (CurOp == NumOps)
612 break;
613
614 const MCOperand &MO1 = MI.getOperand(CurOp++);
615 if (MO1.isImm()) {
616 EmitConstant(MO1.getImm(), X86II::getSizeOfImm(TSFlags), OS);
617 break;
618 }
619
620 assert(0 && "relo unimpl");
621#if 0
622 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
623 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
624 if (Opcode == X86::MOV64ri32)
625 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
626 if (MO1.isGlobal()) {
627 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
628 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
629 Indirect);
630 } else if (MO1.isSymbol())
631 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
632 else if (MO1.isCPI())
633 emitConstPoolAddress(MO1.getIndex(), rt);
634 else if (MO1.isJTI())
635 emitJumpTableAddress(MO1.getIndex(), rt);
636 break;
637#endif
638 }
639 case X86II::MRM0m: case X86II::MRM1m:
640 case X86II::MRM2m: case X86II::MRM3m:
641 case X86II::MRM4m: case X86II::MRM5m:
642 case X86II::MRM6m: case X86II::MRM7m: {
643 intptr_t PCAdj = 0;
644 if (CurOp + X86AddrNumOperands != NumOps) {
645 if (MI.getOperand(CurOp+X86AddrNumOperands).isImm())
646 PCAdj = X86II::getSizeOfImm(TSFlags);
647 else
648 PCAdj = 4;
649 }
650
651 EmitByte(BaseOpcode, OS);
652 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
653 PCAdj, OS);
654 CurOp += X86AddrNumOperands;
655
656 if (CurOp == NumOps)
657 break;
658
659 const MCOperand &MO = MI.getOperand(CurOp++);
660 if (MO.isImm()) {
661 EmitConstant(MO.getImm(), X86II::getSizeOfImm(TSFlags), OS);
662 break;
663 }
664
665 assert(0 && "relo not handled");
666#if 0
667 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
668 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
669 if (Opcode == X86::MOV64mi32)
670 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
671 if (MO.isGlobal()) {
672 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
673 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
674 Indirect);
675 } else if (MO.isSymbol())
676 emitExternalSymbolAddress(MO.getSymbolName(), rt);
677 else if (MO.isCPI())
678 emitConstPoolAddress(MO.getIndex(), rt);
679 else if (MO.isJTI())
680 emitJumpTableAddress(MO.getIndex(), rt);
681#endif
682 break;
683 }
Chris Lattner28249d92010-02-05 01:53:19 +0000684 }
685
686#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000687 // FIXME: Verify.
688 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000689 errs() << "Cannot encode all operands of: ";
690 MI.dump();
691 errs() << '\n';
692 abort();
693 }
694#endif
Chris Lattner45762472010-02-03 21:24:49 +0000695}