blob: e36f0e1cb785b7ab1875fa7772e3e1b4fbf153fc [file] [log] [blame]
Evan Cheng148b6a42007-07-05 21:15:40 +00001//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Evan Cheng148b6a42007-07-05 21:15:40 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
Evan Cheng0f282432008-10-29 23:55:43 +000015#define DEBUG_TYPE "jit"
Evan Cheng7602e112008-09-02 06:52:38 +000016#include "ARM.h"
17#include "ARMAddressingModes.h"
Evan Cheng0f282432008-10-29 23:55:43 +000018#include "ARMConstantPoolValue.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000019#include "ARMInstrInfo.h"
Evan Cheng7602e112008-09-02 06:52:38 +000020#include "ARMRelocations.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000021#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
Jim Grosbachbc6d8762008-10-28 18:25:49 +000023#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
Evan Cheng42d5ee062008-09-13 01:15:21 +000025#include "llvm/Function.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000026#include "llvm/PassManager.h"
27#include "llvm/CodeGen/MachineCodeEmitter.h"
Evan Cheng057d0c32008-09-18 07:28:19 +000028#include "llvm/CodeGen/MachineConstantPool.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000029#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
Evan Cheng4df60f52008-11-07 09:06:08 +000031#include "llvm/CodeGen/MachineJumpTableInfo.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000032#include "llvm/CodeGen/Passes.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/Support/Compiler.h"
Evan Cheng42d5ee062008-09-13 01:15:21 +000035#include "llvm/Support/Debug.h"
Evan Cheng4df60f52008-11-07 09:06:08 +000036#ifndef NDEBUG
37#include <iomanip>
38#endif
Evan Cheng148b6a42007-07-05 21:15:40 +000039using namespace llvm;
40
41STATISTIC(NumEmitted, "Number of machine instructions emitted");
42
43namespace {
Evan Cheng7602e112008-09-02 06:52:38 +000044 class VISIBILITY_HIDDEN ARMCodeEmitter : public MachineFunctionPass {
Evan Cheng057d0c32008-09-18 07:28:19 +000045 ARMJITInfo *JTI;
46 const ARMInstrInfo *II;
47 const TargetData *TD;
48 TargetMachine &TM;
49 MachineCodeEmitter &MCE;
Evan Cheng938b9d82008-10-31 19:55:13 +000050 const std::vector<MachineConstantPoolEntry> *MCPEs;
Evan Cheng4df60f52008-11-07 09:06:08 +000051 const std::vector<MachineJumpTableEntry> *MJTEs;
52 bool IsPIC;
53
Evan Cheng148b6a42007-07-05 21:15:40 +000054 public:
55 static char ID;
Evan Cheng7602e112008-09-02 06:52:38 +000056 explicit ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce)
Evan Cheng057d0c32008-09-18 07:28:19 +000057 : MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm),
Evan Cheng4df60f52008-11-07 09:06:08 +000058 MCE(mce), MCPEs(0), MJTEs(0),
59 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
Evan Cheng7602e112008-09-02 06:52:38 +000060 ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce,
Evan Cheng148b6a42007-07-05 21:15:40 +000061 const ARMInstrInfo &ii, const TargetData &td)
Evan Cheng057d0c32008-09-18 07:28:19 +000062 : MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm),
Evan Cheng4df60f52008-11-07 09:06:08 +000063 MCE(mce), MCPEs(0), MJTEs(0),
64 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
Evan Cheng148b6a42007-07-05 21:15:40 +000065
66 bool runOnMachineFunction(MachineFunction &MF);
67
68 virtual const char *getPassName() const {
69 return "ARM Machine Code Emitter";
70 }
71
72 void emitInstruction(const MachineInstr &MI);
Evan Cheng7602e112008-09-02 06:52:38 +000073
74 private:
Evan Cheng057d0c32008-09-18 07:28:19 +000075
Evan Cheng83b5cf02008-11-05 23:22:34 +000076 void emitWordLE(unsigned Binary);
77
Evan Chengcb5201f2008-11-11 22:19:31 +000078 void emitDWordLE(uint64_t Binary);
79
Evan Cheng057d0c32008-09-18 07:28:19 +000080 void emitConstPoolInstruction(const MachineInstr &MI);
81
Evan Cheng90922132008-11-06 02:25:39 +000082 void emitMOVi2piecesInstruction(const MachineInstr &MI);
83
Evan Cheng4df60f52008-11-07 09:06:08 +000084 void emitLEApcrelJTInstruction(const MachineInstr &MI);
85
Evan Cheng83b5cf02008-11-05 23:22:34 +000086 void addPCLabel(unsigned LabelID);
87
Evan Cheng057d0c32008-09-18 07:28:19 +000088 void emitPseudoInstruction(const MachineInstr &MI);
89
Evan Cheng5f1db7b2008-09-12 22:01:15 +000090 unsigned getMachineSoRegOpValue(const MachineInstr &MI,
Evan Cheng49a9f292008-09-12 22:45:55 +000091 const TargetInstrDesc &TID,
Evan Chengeb4ed4b2008-10-31 19:10:44 +000092 const MachineOperand &MO,
Evan Cheng5f1db7b2008-09-12 22:01:15 +000093 unsigned OpIdx);
94
Evan Cheng90922132008-11-06 02:25:39 +000095 unsigned getMachineSoImmOpValue(unsigned SoImm);
Evan Chengeb4ed4b2008-10-31 19:10:44 +000096
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +000097 unsigned getAddrModeSBit(const MachineInstr &MI,
98 const TargetInstrDesc &TID) const;
Evan Cheng49a9f292008-09-12 22:45:55 +000099
Evan Cheng83b5cf02008-11-05 23:22:34 +0000100 void emitDataProcessingInstruction(const MachineInstr &MI,
Evan Cheng437c1732008-11-07 22:30:53 +0000101 unsigned ImplicitRd = 0,
Evan Cheng83b5cf02008-11-05 23:22:34 +0000102 unsigned ImplicitRn = 0);
Evan Cheng7602e112008-09-02 06:52:38 +0000103
Evan Cheng83b5cf02008-11-05 23:22:34 +0000104 void emitLoadStoreInstruction(const MachineInstr &MI,
Evan Cheng4df60f52008-11-07 09:06:08 +0000105 unsigned ImplicitRd = 0,
Evan Cheng83b5cf02008-11-05 23:22:34 +0000106 unsigned ImplicitRn = 0);
Evan Chengedda31c2008-11-05 18:35:52 +0000107
Evan Cheng83b5cf02008-11-05 23:22:34 +0000108 void emitMiscLoadStoreInstruction(const MachineInstr &MI,
109 unsigned ImplicitRn = 0);
Evan Chengedda31c2008-11-05 18:35:52 +0000110
111 void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
112
Evan Chengfbc9d412008-11-06 01:21:28 +0000113 void emitMulFrmInstruction(const MachineInstr &MI);
Evan Chengedda31c2008-11-05 18:35:52 +0000114
Evan Cheng97f48c32008-11-06 22:15:19 +0000115 void emitExtendInstruction(const MachineInstr &MI);
116
Evan Cheng8b59db32008-11-07 01:41:35 +0000117 void emitMiscArithInstruction(const MachineInstr &MI);
118
Evan Chengedda31c2008-11-05 18:35:52 +0000119 void emitBranchInstruction(const MachineInstr &MI);
120
Evan Cheng437c1732008-11-07 22:30:53 +0000121 void emitInlineJumpTable(unsigned JTIndex);
Evan Cheng4df60f52008-11-07 09:06:08 +0000122
Evan Chengedda31c2008-11-05 18:35:52 +0000123 void emitMiscBranchInstruction(const MachineInstr &MI);
Evan Cheng7602e112008-09-02 06:52:38 +0000124
Evan Cheng96581d32008-11-11 02:11:05 +0000125 void emitVFPArithInstruction(const MachineInstr &MI);
126
Evan Cheng78be83d2008-11-11 19:40:26 +0000127 void emitVFPConversionInstruction(const MachineInstr &MI);
128
Evan Chengcd8e66a2008-11-11 21:48:44 +0000129 void emitVFPLoadStoreInstruction(const MachineInstr &MI);
130
131 void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
132
133 void emitMiscInstruction(const MachineInstr &MI);
134
Evan Cheng7602e112008-09-02 06:52:38 +0000135 /// getBinaryCodeForInstr - This function, generated by the
136 /// CodeEmitterGenerator using TableGen, produces the binary encoding for
137 /// machine instructions.
138 ///
Raul Herbster9c1a3822007-08-30 23:29:26 +0000139 unsigned getBinaryCodeForInstr(const MachineInstr &MI);
Evan Cheng0ff94f72007-08-07 01:37:15 +0000140
Evan Cheng7602e112008-09-02 06:52:38 +0000141 /// getMachineOpValue - Return binary encoding of operand. If the machine
142 /// operand requires relocation, record the relocation and return zero.
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000143 unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
Evan Cheng7602e112008-09-02 06:52:38 +0000144 unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
145 return getMachineOpValue(MI, MI.getOperand(OpIdx));
146 }
Evan Cheng7602e112008-09-02 06:52:38 +0000147
Evan Cheng83b5cf02008-11-05 23:22:34 +0000148 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
Evan Cheng7602e112008-09-02 06:52:38 +0000149 ///
Evan Cheng83b5cf02008-11-05 23:22:34 +0000150 unsigned getShiftOp(unsigned Imm) const ;
Evan Cheng7602e112008-09-02 06:52:38 +0000151
152 /// Routines that handle operands which add machine relocations which are
Evan Cheng437c1732008-11-07 22:30:53 +0000153 /// fixed up by the relocation stage.
Evan Cheng057d0c32008-09-18 07:28:19 +0000154 void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
Evan Cheng413a89f2008-11-07 22:57:53 +0000155 bool NeedStub, intptr_t ACPV = 0);
Evan Cheng0ff94f72007-08-07 01:37:15 +0000156 void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
Evan Cheng437c1732008-11-07 22:30:53 +0000157 void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
158 void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
159 void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
160 intptr_t JTBase = 0);
Evan Cheng148b6a42007-07-05 21:15:40 +0000161 };
Evan Cheng7602e112008-09-02 06:52:38 +0000162 char ARMCodeEmitter::ID = 0;
Evan Cheng148b6a42007-07-05 21:15:40 +0000163}
164
165/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
166/// to the specified MCE object.
167FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM,
168 MachineCodeEmitter &MCE) {
Evan Cheng7602e112008-09-02 06:52:38 +0000169 return new ARMCodeEmitter(TM, MCE);
Evan Cheng148b6a42007-07-05 21:15:40 +0000170}
171
Evan Cheng7602e112008-09-02 06:52:38 +0000172bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
Evan Cheng148b6a42007-07-05 21:15:40 +0000173 assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
174 MF.getTarget().getRelocationModel() != Reloc::Static) &&
175 "JIT relocation model must be set to static or default!");
176 II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
177 TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
Evan Cheng057d0c32008-09-18 07:28:19 +0000178 JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
Evan Cheng938b9d82008-10-31 19:55:13 +0000179 MCPEs = &MF.getConstantPool()->getConstants();
Evan Cheng4df60f52008-11-07 09:06:08 +0000180 MJTEs = &MF.getJumpTableInfo()->getJumpTables();
181 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
Evan Cheng3cc82232008-11-08 07:38:22 +0000182 JTI->Initialize(MF, IsPIC);
Evan Cheng148b6a42007-07-05 21:15:40 +0000183
184 do {
Evan Cheng42d5ee062008-09-13 01:15:21 +0000185 DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
Evan Cheng148b6a42007-07-05 21:15:40 +0000186 MCE.startFunction(MF);
187 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
188 MBB != E; ++MBB) {
189 MCE.StartMachineBasicBlock(MBB);
190 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
191 I != E; ++I)
192 emitInstruction(*I);
193 }
194 } while (MCE.finishFunction(MF));
195
196 return false;
197}
198
Evan Cheng83b5cf02008-11-05 23:22:34 +0000199/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
Evan Cheng7602e112008-09-02 06:52:38 +0000200///
Evan Cheng83b5cf02008-11-05 23:22:34 +0000201unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
202 switch (ARM_AM::getAM2ShiftOpc(Imm)) {
Evan Cheng0ff94f72007-08-07 01:37:15 +0000203 default: assert(0 && "Unknown shift opc!");
Evan Cheng7602e112008-09-02 06:52:38 +0000204 case ARM_AM::asr: return 2;
205 case ARM_AM::lsl: return 0;
206 case ARM_AM::lsr: return 1;
Evan Cheng0ff94f72007-08-07 01:37:15 +0000207 case ARM_AM::ror:
Evan Cheng7602e112008-09-02 06:52:38 +0000208 case ARM_AM::rrx: return 3;
Evan Cheng0ff94f72007-08-07 01:37:15 +0000209 }
Evan Cheng7602e112008-09-02 06:52:38 +0000210 return 0;
Evan Cheng0ff94f72007-08-07 01:37:15 +0000211}
212
Evan Cheng7602e112008-09-02 06:52:38 +0000213/// getMachineOpValue - Return binary encoding of operand. If the machine
214/// operand requires relocation, record the relocation and return zero.
215unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
216 const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000217 if (MO.isReg())
Evan Cheng7602e112008-09-02 06:52:38 +0000218 return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
Dan Gohmand735b802008-10-03 15:45:36 +0000219 else if (MO.isImm())
Evan Cheng7602e112008-09-02 06:52:38 +0000220 return static_cast<unsigned>(MO.getImm());
Dan Gohmand735b802008-10-03 15:45:36 +0000221 else if (MO.isGlobal())
Jim Grosbach016d34c2008-10-03 15:52:42 +0000222 emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
Dan Gohmand735b802008-10-03 15:45:36 +0000223 else if (MO.isSymbol())
Evan Cheng10332512008-11-08 07:22:33 +0000224 emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
Evan Cheng580c0df2008-11-12 01:02:24 +0000225 else if (MO.isCPI()) {
226 const TargetInstrDesc &TID = MI.getDesc();
227 // For VFP load, the immediate offset is multiplied by 4.
228 unsigned Reloc = ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
229 ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
230 emitConstPoolAddress(MO.getIndex(), Reloc);
231 } else if (MO.isJTI())
Chris Lattner8aa797a2007-12-30 23:10:15 +0000232 emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
Dan Gohmand735b802008-10-03 15:45:36 +0000233 else if (MO.isMBB())
Evan Cheng4df60f52008-11-07 09:06:08 +0000234 emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
Evan Cheng2aa0e642008-09-13 01:55:59 +0000235 else {
236 cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
237 abort();
238 }
Evan Cheng7602e112008-09-02 06:52:38 +0000239 return 0;
Evan Cheng0ff94f72007-08-07 01:37:15 +0000240}
241
Evan Cheng057d0c32008-09-18 07:28:19 +0000242/// emitGlobalAddress - Emit the specified address to the code stream.
Evan Cheng0ff94f72007-08-07 01:37:15 +0000243///
Evan Cheng413a89f2008-11-07 22:57:53 +0000244void ARMCodeEmitter::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
245 bool NeedStub, intptr_t ACPV) {
Evan Cheng0ff94f72007-08-07 01:37:15 +0000246 MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
Evan Cheng413a89f2008-11-07 22:57:53 +0000247 Reloc, GV, ACPV, NeedStub));
Evan Cheng0ff94f72007-08-07 01:37:15 +0000248}
249
250/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
251/// be emitted to the current location in the function, and allow it to be PC
252/// relative.
Evan Cheng7602e112008-09-02 06:52:38 +0000253void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
Evan Cheng0ff94f72007-08-07 01:37:15 +0000254 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
255 Reloc, ES));
256}
257
258/// emitConstPoolAddress - Arrange for the address of an constant pool
259/// to be emitted to the current location in the function, and allow it to be PC
260/// relative.
Evan Cheng437c1732008-11-07 22:30:53 +0000261void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) {
Evan Cheng0f282432008-10-29 23:55:43 +0000262 // Tell JIT emitter we'll resolve the address.
Evan Cheng0ff94f72007-08-07 01:37:15 +0000263 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
Evan Cheng437c1732008-11-07 22:30:53 +0000264 Reloc, CPI, 0, true));
Evan Cheng0ff94f72007-08-07 01:37:15 +0000265}
266
267/// emitJumpTableAddress - Arrange for the address of a jump table to
268/// be emitted to the current location in the function, and allow it to be PC
269/// relative.
Evan Cheng437c1732008-11-07 22:30:53 +0000270void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) {
Evan Cheng0ff94f72007-08-07 01:37:15 +0000271 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
Evan Cheng437c1732008-11-07 22:30:53 +0000272 Reloc, JTIndex, 0, true));
Evan Cheng0ff94f72007-08-07 01:37:15 +0000273}
274
Raul Herbster9c1a3822007-08-30 23:29:26 +0000275/// emitMachineBasicBlock - Emit the specified address basic block.
Evan Cheng4df60f52008-11-07 09:06:08 +0000276void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
Evan Cheng437c1732008-11-07 22:30:53 +0000277 unsigned Reloc, intptr_t JTBase) {
Raul Herbster9c1a3822007-08-30 23:29:26 +0000278 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
Evan Cheng437c1732008-11-07 22:30:53 +0000279 Reloc, BB, JTBase));
Raul Herbster9c1a3822007-08-30 23:29:26 +0000280}
Evan Cheng0ff94f72007-08-07 01:37:15 +0000281
Evan Cheng83b5cf02008-11-05 23:22:34 +0000282void ARMCodeEmitter::emitWordLE(unsigned Binary) {
Evan Cheng4df60f52008-11-07 09:06:08 +0000283#ifndef NDEBUG
284 DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
285 << Binary << std::dec << "\n";
286#endif
Evan Cheng83b5cf02008-11-05 23:22:34 +0000287 MCE.emitWordLE(Binary);
288}
289
Evan Chengcb5201f2008-11-11 22:19:31 +0000290void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
291#ifndef NDEBUG
292 DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
293 << (unsigned)Binary << std::dec << "\n";
294 DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
295 << (unsigned)(Binary >> 32) << std::dec << "\n";
296#endif
297 MCE.emitDWordLE(Binary);
298}
299
Evan Cheng7602e112008-09-02 06:52:38 +0000300void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
Evan Cheng25e04782008-11-04 00:50:32 +0000301 DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI;
Evan Cheng42d5ee062008-09-13 01:15:21 +0000302
Evan Cheng148b6a42007-07-05 21:15:40 +0000303 NumEmitted++; // Keep track of the # of mi's emitted
Evan Chengedda31c2008-11-05 18:35:52 +0000304 switch (MI.getDesc().TSFlags & ARMII::FormMask) {
305 default:
306 assert(0 && "Unhandled instruction encoding format!");
307 break;
308 case ARMII::Pseudo:
Evan Cheng057d0c32008-09-18 07:28:19 +0000309 emitPseudoInstruction(MI);
Evan Chengedda31c2008-11-05 18:35:52 +0000310 break;
311 case ARMII::DPFrm:
312 case ARMII::DPSoRegFrm:
313 emitDataProcessingInstruction(MI);
314 break;
315 case ARMII::LdFrm:
316 case ARMII::StFrm:
317 emitLoadStoreInstruction(MI);
318 break;
319 case ARMII::LdMiscFrm:
320 case ARMII::StMiscFrm:
321 emitMiscLoadStoreInstruction(MI);
322 break;
323 case ARMII::LdMulFrm:
324 case ARMII::StMulFrm:
325 emitLoadStoreMultipleInstruction(MI);
326 break;
Evan Chengfbc9d412008-11-06 01:21:28 +0000327 case ARMII::MulFrm:
328 emitMulFrmInstruction(MI);
Evan Chengedda31c2008-11-05 18:35:52 +0000329 break;
Evan Cheng97f48c32008-11-06 22:15:19 +0000330 case ARMII::ExtFrm:
331 emitExtendInstruction(MI);
332 break;
Evan Cheng8b59db32008-11-07 01:41:35 +0000333 case ARMII::ArithMiscFrm:
334 emitMiscArithInstruction(MI);
335 break;
Evan Cheng12c3a532008-11-06 17:48:05 +0000336 case ARMII::BrFrm:
Evan Chengedda31c2008-11-05 18:35:52 +0000337 emitBranchInstruction(MI);
338 break;
Evan Cheng12c3a532008-11-06 17:48:05 +0000339 case ARMII::BrMiscFrm:
Evan Chengedda31c2008-11-05 18:35:52 +0000340 emitMiscBranchInstruction(MI);
341 break;
Evan Cheng96581d32008-11-11 02:11:05 +0000342 // VFP instructions.
343 case ARMII::VFPUnaryFrm:
344 case ARMII::VFPBinaryFrm:
345 emitVFPArithInstruction(MI);
346 break;
Evan Cheng78be83d2008-11-11 19:40:26 +0000347 case ARMII::VFPConv1Frm:
348 case ARMII::VFPConv2Frm:
Evan Cheng0a0ab132008-11-11 22:46:12 +0000349 case ARMII::VFPConv3Frm:
Evan Cheng80a11982008-11-12 06:41:41 +0000350 case ARMII::VFPConv4Frm:
351 case ARMII::VFPConv5Frm:
Evan Cheng78be83d2008-11-11 19:40:26 +0000352 emitVFPConversionInstruction(MI);
353 break;
Evan Chengcd8e66a2008-11-11 21:48:44 +0000354 case ARMII::VFPLdStFrm:
355 emitVFPLoadStoreInstruction(MI);
356 break;
357 case ARMII::VFPLdStMulFrm:
358 emitVFPLoadStoreMultipleInstruction(MI);
359 break;
360 case ARMII::VFPMiscFrm:
361 emitMiscInstruction(MI);
362 break;
Evan Chengedda31c2008-11-05 18:35:52 +0000363 }
Evan Cheng0ff94f72007-08-07 01:37:15 +0000364}
365
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000366void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
Evan Cheng437c1732008-11-07 22:30:53 +0000367 unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
368 unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
Evan Cheng938b9d82008-10-31 19:55:13 +0000369 const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000370
371 // Remember the CONSTPOOL_ENTRY address for later relocation.
372 JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
373
374 // Emit constpool island entry. In most cases, the actual values will be
375 // resolved and relocated after code emission.
376 if (MCPE.isMachineConstantPoolEntry()) {
377 ARMConstantPoolValue *ACPV =
378 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
379
Evan Cheng12c3a532008-11-06 17:48:05 +0000380 DOUT << " ** ARM constant pool #" << CPI << " @ "
Evan Cheng437c1732008-11-07 22:30:53 +0000381 << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n';
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000382
383 GlobalValue *GV = ACPV->getGV();
384 if (GV) {
385 assert(!ACPV->isStub() && "Don't know how to deal this yet!");
Evan Chenge96a4902008-11-08 01:31:27 +0000386 if (ACPV->isNonLazyPointer())
Evan Cheng9ed2f802008-11-10 01:08:07 +0000387 MCE.addRelocation(MachineRelocation::getIndirectSymbol(
Evan Chenge96a4902008-11-08 01:31:27 +0000388 MCE.getCurrentPCOffset(), ARM::reloc_arm_machine_cp_entry, GV,
389 (intptr_t)ACPV, false));
390 else
391 emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
392 ACPV->isStub(), (intptr_t)ACPV);
Evan Cheng25e04782008-11-04 00:50:32 +0000393 } else {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000394 assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!");
395 emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
396 }
Evan Cheng83b5cf02008-11-05 23:22:34 +0000397 emitWordLE(0);
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000398 } else {
399 Constant *CV = MCPE.Val.ConstVal;
400
Evan Cheng12c3a532008-11-06 17:48:05 +0000401 DOUT << " ** Constant pool #" << CPI << " @ "
Evan Cheng437c1732008-11-07 22:30:53 +0000402 << (void*)MCE.getCurrentPCValue() << " " << *CV << '\n';
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000403
404 if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
405 emitGlobalAddress(GV, ARM::reloc_arm_absolute, false);
Evan Cheng83b5cf02008-11-05 23:22:34 +0000406 emitWordLE(0);
Evan Chengcb5201f2008-11-11 22:19:31 +0000407 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000408 uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
Evan Cheng83b5cf02008-11-05 23:22:34 +0000409 emitWordLE(Val);
Evan Chengcb5201f2008-11-11 22:19:31 +0000410 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
411 if (CFP->getType() == Type::FloatTy)
412 emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
413 else if (CFP->getType() == Type::DoubleTy)
414 emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
415 else {
416 assert(0 && "Unable to handle this constantpool entry!");
417 abort();
418 }
419 } else {
420 assert(0 && "Unable to handle this constantpool entry!");
421 abort();
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000422 }
423 }
424}
425
Evan Cheng90922132008-11-06 02:25:39 +0000426void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
427 const MachineOperand &MO0 = MI.getOperand(0);
428 const MachineOperand &MO1 = MI.getOperand(1);
429 assert(MO1.isImm() && "Not a valid so_imm value!");
430 unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
431 unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
432
433 // Emit the 'mov' instruction.
434 unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
435
436 // Set the conditional execution predicate.
Evan Cheng97f48c32008-11-06 22:15:19 +0000437 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng90922132008-11-06 02:25:39 +0000438
439 // Encode Rd.
440 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
441
442 // Encode so_imm.
443 // Set bit I(25) to identify this is the immediate form of <shifter_op>
444 Binary |= 1 << ARMII::I_BitShift;
445 Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V1));
446 emitWordLE(Binary);
447
448 // Now the 'orr' instruction.
449 Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
450
451 // Set the conditional execution predicate.
Evan Cheng97f48c32008-11-06 22:15:19 +0000452 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng90922132008-11-06 02:25:39 +0000453
454 // Encode Rd.
455 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
456
457 // Encode Rn.
458 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
459
460 // Encode so_imm.
461 // Set bit I(25) to identify this is the immediate form of <shifter_op>
462 Binary |= 1 << ARMII::I_BitShift;
463 Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V2));
464 emitWordLE(Binary);
465}
466
Evan Cheng4df60f52008-11-07 09:06:08 +0000467void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
468 // It's basically add r, pc, (LJTI - $+8)
469
470 const TargetInstrDesc &TID = MI.getDesc();
471
472 // Emit the 'add' instruction.
473 unsigned Binary = 0x4 << 21; // add: Insts{24-31} = 0b0100
474
475 // Set the conditional execution predicate
476 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
477
478 // Encode S bit if MI modifies CPSR.
479 Binary |= getAddrModeSBit(MI, TID);
480
481 // Encode Rd.
482 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
483
484 // Encode Rn which is PC.
485 Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
486
487 // Encode the displacement.
488 // Set bit I(25) to identify this is the immediate form of <shifter_op>.
489 Binary |= 1 << ARMII::I_BitShift;
490 emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
491
492 emitWordLE(Binary);
493}
494
Evan Cheng83b5cf02008-11-05 23:22:34 +0000495void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
Evan Cheng12c3a532008-11-06 17:48:05 +0000496 DOUT << " ** LPC" << LabelID << " @ "
Evan Cheng83b5cf02008-11-05 23:22:34 +0000497 << (void*)MCE.getCurrentPCValue() << '\n';
498 JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
499}
500
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000501void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
502 unsigned Opcode = MI.getDesc().Opcode;
503 switch (Opcode) {
504 default:
505 abort(); // FIXME:
506 case ARM::CONSTPOOL_ENTRY:
507 emitConstPoolInstruction(MI);
508 break;
509 case ARM::PICADD: {
Evan Cheng25e04782008-11-04 00:50:32 +0000510 // Remember of the address of the PC label for relocation later.
Evan Cheng83b5cf02008-11-05 23:22:34 +0000511 addPCLabel(MI.getOperand(2).getImm());
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000512 // PICADD is just an add instruction that implicitly read pc.
Evan Cheng437c1732008-11-07 22:30:53 +0000513 emitDataProcessingInstruction(MI, 0, ARM::PC);
Evan Cheng83b5cf02008-11-05 23:22:34 +0000514 break;
515 }
516 case ARM::PICLDR:
517 case ARM::PICLDRB:
518 case ARM::PICSTR:
519 case ARM::PICSTRB: {
520 // Remember of the address of the PC label for relocation later.
521 addPCLabel(MI.getOperand(2).getImm());
522 // These are just load / store instructions that implicitly read pc.
Evan Cheng4df60f52008-11-07 09:06:08 +0000523 emitLoadStoreInstruction(MI, 0, ARM::PC);
Evan Cheng83b5cf02008-11-05 23:22:34 +0000524 break;
525 }
526 case ARM::PICLDRH:
527 case ARM::PICLDRSH:
528 case ARM::PICLDRSB:
529 case ARM::PICSTRH: {
530 // Remember of the address of the PC label for relocation later.
531 addPCLabel(MI.getOperand(2).getImm());
532 // These are just load / store instructions that implicitly read pc.
533 emitMiscLoadStoreInstruction(MI, ARM::PC);
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000534 break;
535 }
Evan Cheng90922132008-11-06 02:25:39 +0000536 case ARM::MOVi2pieces:
537 // Two instructions to materialize a constant.
538 emitMOVi2piecesInstruction(MI);
539 break;
Evan Cheng4df60f52008-11-07 09:06:08 +0000540 case ARM::LEApcrelJT:
541 // Materialize jumptable address.
542 emitLEApcrelJTInstruction(MI);
543 break;
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000544 }
545}
546
547
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000548unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
Evan Cheng49a9f292008-09-12 22:45:55 +0000549 const TargetInstrDesc &TID,
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000550 const MachineOperand &MO,
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000551 unsigned OpIdx) {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000552 unsigned Binary = getMachineOpValue(MI, MO);
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000553
554 const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
555 const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
556 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
557
558 // Encode the shift opcode.
559 unsigned SBits = 0;
560 unsigned Rs = MO1.getReg();
561 if (Rs) {
562 // Set shift operand (bit[7:4]).
563 // LSL - 0001
564 // LSR - 0011
565 // ASR - 0101
566 // ROR - 0111
567 // RRX - 0110 and bit[11:8] clear.
568 switch (SOpc) {
569 default: assert(0 && "Unknown shift opc!");
570 case ARM_AM::lsl: SBits = 0x1; break;
571 case ARM_AM::lsr: SBits = 0x3; break;
572 case ARM_AM::asr: SBits = 0x5; break;
573 case ARM_AM::ror: SBits = 0x7; break;
574 case ARM_AM::rrx: SBits = 0x6; break;
575 }
576 } else {
577 // Set shift operand (bit[6:4]).
578 // LSL - 000
579 // LSR - 010
580 // ASR - 100
581 // ROR - 110
582 switch (SOpc) {
583 default: assert(0 && "Unknown shift opc!");
584 case ARM_AM::lsl: SBits = 0x0; break;
585 case ARM_AM::lsr: SBits = 0x2; break;
586 case ARM_AM::asr: SBits = 0x4; break;
587 case ARM_AM::ror: SBits = 0x6; break;
588 }
589 }
590 Binary |= SBits << 4;
591 if (SOpc == ARM_AM::rrx)
592 return Binary;
593
594 // Encode the shift operation Rs or shift_imm (except rrx).
595 if (Rs) {
596 // Encode Rs bit[11:8].
597 assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
598 return Binary |
599 (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
600 }
601
602 // Encode shift_imm bit[11:7].
603 return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
604}
605
Evan Cheng90922132008-11-06 02:25:39 +0000606unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000607 // Encode rotate_imm.
Evan Cheng97f48c32008-11-06 22:15:19 +0000608 unsigned Binary = (ARM_AM::getSOImmValRot(SoImm) >> 1)
609 << ARMII::SoRotImmShift;
610
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000611 // Encode immed_8.
Evan Cheng90922132008-11-06 02:25:39 +0000612 Binary |= ARM_AM::getSOImmValImm(SoImm);
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000613 return Binary;
614}
615
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000616unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
617 const TargetInstrDesc &TID) const {
Evan Cheng49a9f292008-09-12 22:45:55 +0000618 for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
619 const MachineOperand &MO = MI.getOperand(i-1);
Dan Gohmand735b802008-10-03 15:45:36 +0000620 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
Evan Cheng49a9f292008-09-12 22:45:55 +0000621 return 1 << ARMII::S_BitShift;
622 }
623 return 0;
624}
625
Evan Cheng83b5cf02008-11-05 23:22:34 +0000626void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
Evan Cheng437c1732008-11-07 22:30:53 +0000627 unsigned ImplicitRd,
Evan Cheng83b5cf02008-11-05 23:22:34 +0000628 unsigned ImplicitRn) {
Evan Chengedda31c2008-11-05 18:35:52 +0000629 const TargetInstrDesc &TID = MI.getDesc();
Evan Chengedda31c2008-11-05 18:35:52 +0000630
631 // Part of binary is determined by TableGn.
632 unsigned Binary = getBinaryCodeForInstr(MI);
633
Jim Grosbach33412622008-10-07 19:05:35 +0000634 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000635 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000636
Evan Cheng49a9f292008-09-12 22:45:55 +0000637 // Encode S bit if MI modifies CPSR.
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000638 Binary |= getAddrModeSBit(MI, TID);
Evan Cheng49a9f292008-09-12 22:45:55 +0000639
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000640 // Encode register def if there is one.
Evan Cheng49a9f292008-09-12 22:45:55 +0000641 unsigned NumDefs = TID.getNumDefs();
Evan Chenga964b7d2008-09-12 23:15:39 +0000642 unsigned OpIdx = 0;
Evan Cheng437c1732008-11-07 22:30:53 +0000643 if (NumDefs)
644 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
645 else if (ImplicitRd)
646 // Special handling for implicit use (e.g. PC).
647 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
648 << ARMII::RegRdShift);
Evan Cheng7602e112008-09-02 06:52:38 +0000649
Evan Chengd87293c2008-11-06 08:47:38 +0000650 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
651 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
652 ++OpIdx;
653
Jim Grosbachefd30ba2008-10-01 18:16:49 +0000654 // Encode first non-shifter register operand if there is one.
Evan Chengedda31c2008-11-05 18:35:52 +0000655 bool isUnary = TID.TSFlags & ARMII::UnaryDP;
656 if (!isUnary) {
Evan Cheng83b5cf02008-11-05 23:22:34 +0000657 if (ImplicitRn)
658 // Special handling for implicit use (e.g. PC).
659 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
Evan Chengedda31c2008-11-05 18:35:52 +0000660 << ARMII::RegRnShift);
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000661 else {
662 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
663 ++OpIdx;
664 }
Evan Cheng7602e112008-09-02 06:52:38 +0000665 }
666
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000667 // Encode shifter operand.
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000668 const MachineOperand &MO = MI.getOperand(OpIdx);
Evan Chengedda31c2008-11-05 18:35:52 +0000669 if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000670 // Encode SoReg.
Evan Cheng83b5cf02008-11-05 23:22:34 +0000671 emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
Evan Chengedda31c2008-11-05 18:35:52 +0000672 return;
673 }
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000674
Evan Chengedda31c2008-11-05 18:35:52 +0000675 if (MO.isReg()) {
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000676 // Encode register Rm.
Evan Cheng83b5cf02008-11-05 23:22:34 +0000677 emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
Evan Chengedda31c2008-11-05 18:35:52 +0000678 return;
679 }
Evan Cheng7602e112008-09-02 06:52:38 +0000680
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000681 // Encode so_imm.
Evan Cheng4df60f52008-11-07 09:06:08 +0000682 // Set bit I(25) to identify this is the immediate form of <shifter_op>.
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000683 Binary |= 1 << ARMII::I_BitShift;
Evan Cheng90922132008-11-06 02:25:39 +0000684 Binary |= getMachineSoImmOpValue(MO.getImm());
Evan Chengedda31c2008-11-05 18:35:52 +0000685
Evan Cheng83b5cf02008-11-05 23:22:34 +0000686 emitWordLE(Binary);
Evan Cheng7602e112008-09-02 06:52:38 +0000687}
688
Evan Cheng83b5cf02008-11-05 23:22:34 +0000689void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
Evan Cheng4df60f52008-11-07 09:06:08 +0000690 unsigned ImplicitRd,
Evan Cheng83b5cf02008-11-05 23:22:34 +0000691 unsigned ImplicitRn) {
Evan Cheng05c356e2008-11-08 01:44:13 +0000692 const TargetInstrDesc &TID = MI.getDesc();
693
Evan Chengedda31c2008-11-05 18:35:52 +0000694 // Part of binary is determined by TableGn.
695 unsigned Binary = getBinaryCodeForInstr(MI);
696
Jim Grosbach33412622008-10-07 19:05:35 +0000697 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000698 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng057d0c32008-09-18 07:28:19 +0000699
Evan Cheng7602e112008-09-02 06:52:38 +0000700 // Set first operand
Evan Cheng4df60f52008-11-07 09:06:08 +0000701 unsigned OpIdx = 0;
702 if (ImplicitRd)
703 // Special handling for implicit use (e.g. PC).
704 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
705 << ARMII::RegRdShift);
706 else
707 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000708
709 // Set second operand
Evan Cheng83b5cf02008-11-05 23:22:34 +0000710 if (ImplicitRn)
711 // Special handling for implicit use (e.g. PC).
712 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
713 << ARMII::RegRnShift);
Evan Cheng4df60f52008-11-07 09:06:08 +0000714 else
715 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000716
Evan Cheng05c356e2008-11-08 01:44:13 +0000717 // If this is a two-address operand, skip it. e.g. LDR_PRE.
718 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
719 ++OpIdx;
720
Evan Cheng83b5cf02008-11-05 23:22:34 +0000721 const MachineOperand &MO2 = MI.getOperand(OpIdx);
Evan Chengd87293c2008-11-06 08:47:38 +0000722 unsigned AM2Opc = (ImplicitRn == ARM::PC)
Evan Cheng83b5cf02008-11-05 23:22:34 +0000723 ? 0 : MI.getOperand(OpIdx+1).getImm();
Evan Cheng7602e112008-09-02 06:52:38 +0000724
Evan Chenge7de7e32008-09-13 01:44:01 +0000725 // Set bit U(23) according to sign of immed value (positive or negative).
Evan Cheng83b5cf02008-11-05 23:22:34 +0000726 Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
Evan Chenge7de7e32008-09-13 01:44:01 +0000727 ARMII::U_BitShift);
Evan Cheng7602e112008-09-02 06:52:38 +0000728 if (!MO2.getReg()) { // is immediate
Evan Cheng83b5cf02008-11-05 23:22:34 +0000729 if (ARM_AM::getAM2Offset(AM2Opc))
Evan Cheng7602e112008-09-02 06:52:38 +0000730 // Set the value of offset_12 field
Evan Cheng83b5cf02008-11-05 23:22:34 +0000731 Binary |= ARM_AM::getAM2Offset(AM2Opc);
732 emitWordLE(Binary);
Evan Chengedda31c2008-11-05 18:35:52 +0000733 return;
Evan Cheng7602e112008-09-02 06:52:38 +0000734 }
735
736 // Set bit I(25), because this is not in immediate enconding.
737 Binary |= 1 << ARMII::I_BitShift;
738 assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
739 // Set bit[3:0] to the corresponding Rm register
740 Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
741
742 // if this instr is in scaled register offset/index instruction, set
743 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
Evan Cheng83b5cf02008-11-05 23:22:34 +0000744 if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
745 Binary |= getShiftOp(AM2Opc) << 5; // shift
746 Binary |= ShImm << 7; // shift_immed
Evan Cheng7602e112008-09-02 06:52:38 +0000747 }
748
Evan Cheng83b5cf02008-11-05 23:22:34 +0000749 emitWordLE(Binary);
Evan Cheng7602e112008-09-02 06:52:38 +0000750}
751
Evan Cheng83b5cf02008-11-05 23:22:34 +0000752void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
753 unsigned ImplicitRn) {
Evan Cheng05c356e2008-11-08 01:44:13 +0000754 const TargetInstrDesc &TID = MI.getDesc();
755
Evan Chengedda31c2008-11-05 18:35:52 +0000756 // Part of binary is determined by TableGn.
757 unsigned Binary = getBinaryCodeForInstr(MI);
758
Jim Grosbach33412622008-10-07 19:05:35 +0000759 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000760 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng057d0c32008-09-18 07:28:19 +0000761
Evan Cheng7602e112008-09-02 06:52:38 +0000762 // Set first operand
763 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
764
765 // Set second operand
Evan Cheng83b5cf02008-11-05 23:22:34 +0000766 unsigned OpIdx = 1;
767 if (ImplicitRn)
768 // Special handling for implicit use (e.g. PC).
769 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
770 << ARMII::RegRnShift);
Evan Cheng4df60f52008-11-07 09:06:08 +0000771 else
772 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000773
Evan Cheng05c356e2008-11-08 01:44:13 +0000774 // If this is a two-address operand, skip it. e.g. LDRH_POST.
775 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
776 ++OpIdx;
777
Evan Cheng83b5cf02008-11-05 23:22:34 +0000778 const MachineOperand &MO2 = MI.getOperand(OpIdx);
Evan Chengd87293c2008-11-06 08:47:38 +0000779 unsigned AM3Opc = (ImplicitRn == ARM::PC)
Evan Cheng83b5cf02008-11-05 23:22:34 +0000780 ? 0 : MI.getOperand(OpIdx+1).getImm();
Evan Cheng7602e112008-09-02 06:52:38 +0000781
Evan Chenge7de7e32008-09-13 01:44:01 +0000782 // Set bit U(23) according to sign of immed value (positive or negative)
Evan Cheng83b5cf02008-11-05 23:22:34 +0000783 Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
Evan Cheng7602e112008-09-02 06:52:38 +0000784 ARMII::U_BitShift);
785
786 // If this instr is in register offset/index encoding, set bit[3:0]
787 // to the corresponding Rm register.
788 if (MO2.getReg()) {
789 Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
Evan Cheng83b5cf02008-11-05 23:22:34 +0000790 emitWordLE(Binary);
Evan Chengedda31c2008-11-05 18:35:52 +0000791 return;
Evan Cheng7602e112008-09-02 06:52:38 +0000792 }
793
Evan Chengd87293c2008-11-06 08:47:38 +0000794 // This instr is in immediate offset/index encoding, set bit 22 to 1.
Evan Cheng97f48c32008-11-06 22:15:19 +0000795 Binary |= 1 << ARMII::AM3_I_BitShift;
Evan Cheng83b5cf02008-11-05 23:22:34 +0000796 if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
Evan Cheng7602e112008-09-02 06:52:38 +0000797 // Set operands
798 Binary |= (ImmOffs >> 4) << 8; // immedH
799 Binary |= (ImmOffs & ~0xF); // immedL
800 }
801
Evan Cheng83b5cf02008-11-05 23:22:34 +0000802 emitWordLE(Binary);
Evan Cheng7602e112008-09-02 06:52:38 +0000803}
804
Evan Chengcd8e66a2008-11-11 21:48:44 +0000805static unsigned getAddrModeUPBits(unsigned Mode) {
806 unsigned Binary = 0;
Evan Cheng7602e112008-09-02 06:52:38 +0000807
808 // Set addressing mode by modifying bits U(23) and P(24)
809 // IA - Increment after - bit U = 1 and bit P = 0
810 // IB - Increment before - bit U = 1 and bit P = 1
811 // DA - Decrement after - bit U = 0 and bit P = 0
812 // DB - Decrement before - bit U = 0 and bit P = 1
Evan Cheng7602e112008-09-02 06:52:38 +0000813 switch (Mode) {
814 default: assert(0 && "Unknown addressing sub-mode!");
815 case ARM_AM::da: break;
Evan Cheng97f48c32008-11-06 22:15:19 +0000816 case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
817 case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
818 case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
Evan Cheng7602e112008-09-02 06:52:38 +0000819 }
820
Evan Chengcd8e66a2008-11-11 21:48:44 +0000821 return Binary;
822}
823
824void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
825 // Part of binary is determined by TableGn.
826 unsigned Binary = getBinaryCodeForInstr(MI);
827
828 // Set the conditional execution predicate
829 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
830
831 // Set base address operand
832 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
833
834 // Set addressing mode by modifying bits U(23) and P(24)
835 const MachineOperand &MO = MI.getOperand(1);
836 Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
837
Evan Cheng7602e112008-09-02 06:52:38 +0000838 // Set bit W(21)
839 if (ARM_AM::getAM4WBFlag(MO.getImm()))
Evan Cheng97f48c32008-11-06 22:15:19 +0000840 Binary |= 0x1 << ARMII::W_BitShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000841
842 // Set registers
843 for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
844 const MachineOperand &MO = MI.getOperand(i);
Evan Chengcd8e66a2008-11-11 21:48:44 +0000845 if (!MO.isReg() || MO.isImplicit())
846 break;
Evan Cheng7602e112008-09-02 06:52:38 +0000847 unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
848 assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
849 RegNum < 16);
850 Binary |= 0x1 << RegNum;
851 }
852
Evan Cheng83b5cf02008-11-05 23:22:34 +0000853 emitWordLE(Binary);
Evan Cheng7602e112008-09-02 06:52:38 +0000854}
855
Evan Chengfbc9d412008-11-06 01:21:28 +0000856void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
Evan Chengedda31c2008-11-05 18:35:52 +0000857 const TargetInstrDesc &TID = MI.getDesc();
858
859 // Part of binary is determined by TableGn.
860 unsigned Binary = getBinaryCodeForInstr(MI);
861
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000862 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000863 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000864
865 // Encode S bit if MI modifies CPSR.
866 Binary |= getAddrModeSBit(MI, TID);
867
868 // 32x32->64bit operations have two destination registers. The number
869 // of register definitions will tell us if that's what we're dealing with.
Evan Cheng97f48c32008-11-06 22:15:19 +0000870 unsigned OpIdx = 0;
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000871 if (TID.getNumDefs() == 2)
872 Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
873
874 // Encode Rd
875 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
876
877 // Encode Rm
878 Binary |= getMachineOpValue(MI, OpIdx++);
879
880 // Encode Rs
881 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
882
Evan Chengfbc9d412008-11-06 01:21:28 +0000883 // Many multiple instructions (e.g. MLA) have three src operands. Encode
884 // it as Rn (for multiply, that's in the same offset as RdLo.
Evan Cheng97f48c32008-11-06 22:15:19 +0000885 if (TID.getNumOperands() > OpIdx &&
886 !TID.OpInfo[OpIdx].isPredicate() &&
887 !TID.OpInfo[OpIdx].isOptionalDef())
888 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
889
890 emitWordLE(Binary);
891}
892
893void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
894 const TargetInstrDesc &TID = MI.getDesc();
895
896 // Part of binary is determined by TableGn.
897 unsigned Binary = getBinaryCodeForInstr(MI);
898
899 // Set the conditional execution predicate
900 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
901
902 unsigned OpIdx = 0;
903
904 // Encode Rd
905 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
906
907 const MachineOperand &MO1 = MI.getOperand(OpIdx++);
908 const MachineOperand &MO2 = MI.getOperand(OpIdx);
909 if (MO2.isReg()) {
910 // Two register operand form.
911 // Encode Rn.
912 Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
913
914 // Encode Rm.
915 Binary |= getMachineOpValue(MI, MO2);
916 ++OpIdx;
917 } else {
918 Binary |= getMachineOpValue(MI, MO1);
919 }
920
921 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
922 if (MI.getOperand(OpIdx).isImm() &&
923 !TID.OpInfo[OpIdx].isPredicate() &&
924 !TID.OpInfo[OpIdx].isOptionalDef())
925 Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
Evan Chengfbc9d412008-11-06 01:21:28 +0000926
Evan Cheng83b5cf02008-11-05 23:22:34 +0000927 emitWordLE(Binary);
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000928}
929
Evan Cheng8b59db32008-11-07 01:41:35 +0000930void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
931 const TargetInstrDesc &TID = MI.getDesc();
932
933 // Part of binary is determined by TableGn.
934 unsigned Binary = getBinaryCodeForInstr(MI);
935
936 // Set the conditional execution predicate
937 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
938
939 unsigned OpIdx = 0;
940
941 // Encode Rd
942 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
943
944 const MachineOperand &MO = MI.getOperand(OpIdx++);
945 if (OpIdx == TID.getNumOperands() ||
946 TID.OpInfo[OpIdx].isPredicate() ||
947 TID.OpInfo[OpIdx].isOptionalDef()) {
948 // Encode Rm and it's done.
949 Binary |= getMachineOpValue(MI, MO);
950 emitWordLE(Binary);
951 return;
952 }
953
954 // Encode Rn.
955 Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
956
957 // Encode Rm.
958 Binary |= getMachineOpValue(MI, OpIdx++);
959
960 // Encode shift_imm.
961 unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
962 assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
963 Binary |= ShiftAmt << ARMII::ShiftShift;
964
965 emitWordLE(Binary);
966}
967
Evan Chengedda31c2008-11-05 18:35:52 +0000968void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
969 const TargetInstrDesc &TID = MI.getDesc();
970
Evan Cheng12c3a532008-11-06 17:48:05 +0000971 if (TID.Opcode == ARM::TPsoft)
972 abort(); // FIXME
973
Evan Cheng7602e112008-09-02 06:52:38 +0000974 // Part of binary is determined by TableGn.
975 unsigned Binary = getBinaryCodeForInstr(MI);
976
Evan Chengedda31c2008-11-05 18:35:52 +0000977 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000978 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Chengedda31c2008-11-05 18:35:52 +0000979
980 // Set signed_immed_24 field
981 Binary |= getMachineOpValue(MI, 0);
982
Evan Cheng83b5cf02008-11-05 23:22:34 +0000983 emitWordLE(Binary);
Evan Chengedda31c2008-11-05 18:35:52 +0000984}
985
Evan Cheng437c1732008-11-07 22:30:53 +0000986void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
Evan Cheng4df60f52008-11-07 09:06:08 +0000987 // Remember the base address of the inline jump table.
Evan Cheng437c1732008-11-07 22:30:53 +0000988 intptr_t JTBase = MCE.getCurrentPCValue();
989 JTI->addJumpTableBaseAddr(JTIndex, JTBase);
990 DOUT << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase << '\n';
Evan Cheng4df60f52008-11-07 09:06:08 +0000991
992 // Now emit the jump table entries.
993 const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
994 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
995 if (IsPIC)
996 // DestBB address - JT base.
Evan Cheng437c1732008-11-07 22:30:53 +0000997 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
Evan Cheng4df60f52008-11-07 09:06:08 +0000998 else
999 // Absolute DestBB address.
1000 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1001 emitWordLE(0);
1002 }
1003}
1004
Evan Chengedda31c2008-11-05 18:35:52 +00001005void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1006 const TargetInstrDesc &TID = MI.getDesc();
Evan Chengedda31c2008-11-05 18:35:52 +00001007
Evan Cheng437c1732008-11-07 22:30:53 +00001008 // Handle jump tables.
1009 if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1010 // First emit a ldr pc, [] instruction.
1011 emitDataProcessingInstruction(MI, ARM::PC);
1012
1013 // Then emit the inline jump table.
1014 unsigned JTIndex = (TID.Opcode == ARM::BR_JTr)
1015 ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1016 emitInlineJumpTable(JTIndex);
1017 return;
1018 } else if (TID.Opcode == ARM::BR_JTm) {
Evan Cheng4df60f52008-11-07 09:06:08 +00001019 // First emit a ldr pc, [] instruction.
1020 emitLoadStoreInstruction(MI, ARM::PC);
1021
1022 // Then emit the inline jump table.
Evan Cheng437c1732008-11-07 22:30:53 +00001023 emitInlineJumpTable(MI.getOperand(3).getIndex());
Evan Cheng4df60f52008-11-07 09:06:08 +00001024 return;
1025 }
1026
Evan Chengedda31c2008-11-05 18:35:52 +00001027 // Part of binary is determined by TableGn.
1028 unsigned Binary = getBinaryCodeForInstr(MI);
1029
1030 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +00001031 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Chengedda31c2008-11-05 18:35:52 +00001032
1033 if (TID.Opcode == ARM::BX_RET)
1034 // The return register is LR.
1035 Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
1036 else
1037 // otherwise, set the return register
1038 Binary |= getMachineOpValue(MI, 0);
1039
Evan Cheng83b5cf02008-11-05 23:22:34 +00001040 emitWordLE(Binary);
Evan Cheng148b6a42007-07-05 21:15:40 +00001041}
Evan Cheng7602e112008-09-02 06:52:38 +00001042
Evan Cheng96581d32008-11-11 02:11:05 +00001043void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1044 const TargetInstrDesc &TID = MI.getDesc();
1045
1046 // Part of binary is determined by TableGn.
1047 unsigned Binary = getBinaryCodeForInstr(MI);
1048
1049 // Set the conditional execution predicate
1050 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1051
1052 unsigned OpIdx = 0;
1053 assert((Binary & ARMII::D_BitShift) == 0 &&
1054 (Binary & ARMII::N_BitShift) == 0 &&
1055 (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1056
1057 // Encode Dd / Sd.
Evan Chengd06d48d2008-11-12 02:19:38 +00001058 unsigned RegD = MI.getOperand(OpIdx++).getReg();
1059 bool isSPVFP = false;
1060 RegD = ARMRegisterInfo::getRegisterNumbering(RegD, isSPVFP);
1061 if (!isSPVFP)
1062 Binary |= RegD << ARMII::RegRdShift;
1063 else {
1064 Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1065 Binary |= (RegD & 0x01) << ARMII::D_BitShift;
1066 }
1067
Evan Cheng96581d32008-11-11 02:11:05 +00001068
1069 // If this is a two-address operand, skip it, e.g. FMACD.
1070 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1071 ++OpIdx;
1072
1073 // Encode Dn / Sn.
1074 if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm) {
Evan Chengd06d48d2008-11-12 02:19:38 +00001075 unsigned RegN = MI.getOperand(OpIdx++).getReg();
1076 isSPVFP = false;
1077 RegN = ARMRegisterInfo::getRegisterNumbering(RegN, isSPVFP);
1078 if (!isSPVFP)
1079 Binary |= RegN << ARMII::RegRnShift;
1080 else {
1081 Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1082 Binary |= (RegN & 0x01) << ARMII::N_BitShift;
1083 }
Evan Cheng96581d32008-11-11 02:11:05 +00001084 }
1085
1086 // Encode Dm / Sm.
Evan Chengd06d48d2008-11-12 02:19:38 +00001087 unsigned RegM = MI.getOperand(OpIdx++).getReg();
1088 isSPVFP = false;
1089 RegM = ARMRegisterInfo::getRegisterNumbering(RegM, isSPVFP);
1090 if (!isSPVFP)
1091 Binary |= RegM;
1092 else {
1093 Binary |= ((RegM & 0x1E) >> 1);
1094 Binary |= (RegM & 0x01) << ARMII::M_BitShift;
1095 }
Evan Cheng96581d32008-11-11 02:11:05 +00001096
1097 emitWordLE(Binary);
1098}
1099
Evan Cheng80a11982008-11-12 06:41:41 +00001100static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
Evan Chengd06d48d2008-11-12 02:19:38 +00001101 unsigned RegD = MI.getOperand(OpIdx).getReg();
Evan Cheng80a11982008-11-12 06:41:41 +00001102 unsigned Binary = 0;
Evan Chengd06d48d2008-11-12 02:19:38 +00001103 bool isSPVFP = false;
1104 RegD = ARMRegisterInfo::getRegisterNumbering(RegD, isSPVFP);
1105 if (!isSPVFP)
1106 Binary |= RegD << ARMII::RegRdShift;
1107 else {
1108 Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1109 Binary |= (RegD & 0x01) << ARMII::D_BitShift;
1110 }
Evan Cheng80a11982008-11-12 06:41:41 +00001111 return Binary;
1112}
Evan Cheng78be83d2008-11-11 19:40:26 +00001113
Evan Cheng80a11982008-11-12 06:41:41 +00001114static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
Evan Chengd06d48d2008-11-12 02:19:38 +00001115 unsigned RegN = MI.getOperand(OpIdx).getReg();
Evan Cheng80a11982008-11-12 06:41:41 +00001116 unsigned Binary = 0;
1117 bool isSPVFP = false;
Evan Chengd06d48d2008-11-12 02:19:38 +00001118 RegN = ARMRegisterInfo::getRegisterNumbering(RegN, isSPVFP);
1119 if (!isSPVFP)
1120 Binary |= RegN << ARMII::RegRnShift;
1121 else {
1122 Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1123 Binary |= (RegN & 0x01) << ARMII::N_BitShift;
1124 }
Evan Cheng80a11982008-11-12 06:41:41 +00001125 return Binary;
1126}
Evan Chengd06d48d2008-11-12 02:19:38 +00001127
Evan Cheng80a11982008-11-12 06:41:41 +00001128static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1129 unsigned RegM = MI.getOperand(OpIdx).getReg();
1130 unsigned Binary = 0;
1131 bool isSPVFP = false;
1132 RegM = ARMRegisterInfo::getRegisterNumbering(RegM, isSPVFP);
1133 if (!isSPVFP)
1134 Binary |= RegM;
1135 else {
1136 Binary |= ((RegM & 0x1E) >> 1);
1137 Binary |= (RegM & 0x01) << ARMII::M_BitShift;
Evan Cheng78be83d2008-11-11 19:40:26 +00001138 }
Evan Cheng80a11982008-11-12 06:41:41 +00001139 return Binary;
1140}
1141
1142void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1143 const TargetInstrDesc &TID = MI.getDesc();
1144 unsigned Form = TID.TSFlags & ARMII::FormMask;
1145
1146 // Part of binary is determined by TableGn.
1147 unsigned Binary = getBinaryCodeForInstr(MI);
1148
1149 // Set the conditional execution predicate
1150 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1151
1152 switch (Form) {
1153 default: break;
1154 case ARMII::VFPConv1Frm:
1155 case ARMII::VFPConv2Frm:
1156 case ARMII::VFPConv3Frm:
1157 // Encode Dd / Sd.
1158 Binary |= encodeVFPRd(MI, 0);
1159 break;
1160 case ARMII::VFPConv4Frm:
1161 // Encode Dn / Sn.
1162 Binary |= encodeVFPRn(MI, 0);
1163 break;
1164 case ARMII::VFPConv5Frm:
1165 // Encode Dm / Sm.
1166 Binary |= encodeVFPRm(MI, 0);
1167 break;
1168 }
1169
1170 switch (Form) {
1171 default: break;
1172 case ARMII::VFPConv1Frm:
1173 // Encode Dm / Sm.
1174 Binary |= encodeVFPRm(MI, 1);
1175 case ARMII::VFPConv2Frm:
1176 case ARMII::VFPConv3Frm:
1177 // Encode Dn / Sn.
1178 Binary |= encodeVFPRn(MI, 1);
1179 break;
1180 case ARMII::VFPConv4Frm:
1181 case ARMII::VFPConv5Frm:
1182 // Encode Dd / Sd.
1183 Binary |= encodeVFPRd(MI, 1);
1184 break;
1185 }
1186
1187 if (Form == ARMII::VFPConv5Frm)
1188 // Encode Dn / Sn.
1189 Binary |= encodeVFPRn(MI, 2);
1190 else if (Form == ARMII::VFPConv3Frm)
1191 // Encode Dm / Sm.
1192 Binary |= encodeVFPRm(MI, 2);
Evan Cheng78be83d2008-11-11 19:40:26 +00001193
1194 emitWordLE(Binary);
1195}
1196
Evan Chengcd8e66a2008-11-11 21:48:44 +00001197void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1198 // Part of binary is determined by TableGn.
1199 unsigned Binary = getBinaryCodeForInstr(MI);
1200
1201 // Set the conditional execution predicate
1202 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1203
1204 unsigned OpIdx = 0;
1205
1206 // Encode Dd / Sd.
Evan Chengd06d48d2008-11-12 02:19:38 +00001207 unsigned RegD = MI.getOperand(OpIdx++).getReg();
1208 bool isSPVFP = false;
1209 RegD = ARMRegisterInfo::getRegisterNumbering(RegD, isSPVFP);
1210 if (!isSPVFP)
1211 Binary |= RegD << ARMII::RegRdShift;
1212 else {
1213 Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1214 Binary |= (RegD & 0x01) << ARMII::D_BitShift;
1215 }
Evan Chengcd8e66a2008-11-11 21:48:44 +00001216
1217 // Encode address base.
1218 const MachineOperand &Base = MI.getOperand(OpIdx++);
1219 Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1220
1221 // If there is a non-zero immediate offset, encode it.
1222 if (Base.isReg()) {
1223 const MachineOperand &Offset = MI.getOperand(OpIdx);
1224 if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1225 if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1226 Binary |= 1 << ARMII::U_BitShift;
1227 // Immediate offset is multiplied by 4.
1228 Binary |= ImmOffs >> 2;
1229 emitWordLE(Binary);
1230 return;
1231 }
1232 }
1233
1234 // If immediate offset is omitted, default to +0.
1235 Binary |= 1 << ARMII::U_BitShift;
1236
1237 emitWordLE(Binary);
1238}
1239
1240void
1241ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1242 // Part of binary is determined by TableGn.
1243 unsigned Binary = getBinaryCodeForInstr(MI);
1244
1245 // Set the conditional execution predicate
1246 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1247
1248 // Set base address operand
1249 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
1250
1251 // Set addressing mode by modifying bits U(23) and P(24)
1252 const MachineOperand &MO = MI.getOperand(1);
1253 Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm()));
1254
1255 // Set bit W(21)
1256 if (ARM_AM::getAM5WBFlag(MO.getImm()))
1257 Binary |= 0x1 << ARMII::W_BitShift;
1258
1259 // First register is encoded in Dd.
Evan Chengd06d48d2008-11-12 02:19:38 +00001260 unsigned RegD = MI.getOperand(4).getReg();
1261 bool isSPVFP = false;
1262 RegD = ARMRegisterInfo::getRegisterNumbering(RegD, isSPVFP);
1263 if (!isSPVFP)
1264 Binary |= RegD << ARMII::RegRdShift;
1265 else {
1266 Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1267 Binary |= (RegD & 0x01) << ARMII::D_BitShift;
1268 }
Evan Chengcd8e66a2008-11-11 21:48:44 +00001269
1270 // Number of registers are encoded in offset field.
1271 unsigned NumRegs = 1;
1272 for (unsigned i = 5, e = MI.getNumOperands(); i != e; ++i) {
1273 const MachineOperand &MO = MI.getOperand(i);
1274 if (!MO.isReg() || MO.isImplicit())
1275 break;
1276 ++NumRegs;
1277 }
1278 Binary |= NumRegs * 2;
1279
1280 emitWordLE(Binary);
1281}
1282
1283void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
1284 // Part of binary is determined by TableGn.
1285 unsigned Binary = getBinaryCodeForInstr(MI);
1286
1287 // Set the conditional execution predicate
1288 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1289
1290 emitWordLE(Binary);
1291}
1292
Evan Cheng7602e112008-09-02 06:52:38 +00001293#include "ARMGenCodeEmitter.inc"