blob: 5b7bc97986efadd7575f4a5d700fcd7d834c70e6 [file] [log] [blame]
Evan Cheng148b6a42007-07-05 21:15:40 +00001//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Evan Cheng148b6a42007-07-05 21:15:40 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
Evan Cheng0f282432008-10-29 23:55:43 +000015#define DEBUG_TYPE "jit"
Evan Cheng7602e112008-09-02 06:52:38 +000016#include "ARM.h"
17#include "ARMAddressingModes.h"
Evan Cheng0f282432008-10-29 23:55:43 +000018#include "ARMConstantPoolValue.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000019#include "ARMInstrInfo.h"
Evan Cheng7602e112008-09-02 06:52:38 +000020#include "ARMRelocations.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000021#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
Jim Grosbachbc6d8762008-10-28 18:25:49 +000023#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
Evan Cheng42d5ee062008-09-13 01:15:21 +000025#include "llvm/Function.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000026#include "llvm/PassManager.h"
27#include "llvm/CodeGen/MachineCodeEmitter.h"
Evan Cheng057d0c32008-09-18 07:28:19 +000028#include "llvm/CodeGen/MachineConstantPool.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000029#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
Evan Cheng4df60f52008-11-07 09:06:08 +000031#include "llvm/CodeGen/MachineJumpTableInfo.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000032#include "llvm/CodeGen/Passes.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/Support/Compiler.h"
Evan Cheng42d5ee062008-09-13 01:15:21 +000035#include "llvm/Support/Debug.h"
Evan Cheng4df60f52008-11-07 09:06:08 +000036#ifndef NDEBUG
37#include <iomanip>
38#endif
Evan Cheng148b6a42007-07-05 21:15:40 +000039using namespace llvm;
40
41STATISTIC(NumEmitted, "Number of machine instructions emitted");
42
43namespace {
Evan Cheng7602e112008-09-02 06:52:38 +000044 class VISIBILITY_HIDDEN ARMCodeEmitter : public MachineFunctionPass {
Evan Cheng057d0c32008-09-18 07:28:19 +000045 ARMJITInfo *JTI;
46 const ARMInstrInfo *II;
47 const TargetData *TD;
48 TargetMachine &TM;
49 MachineCodeEmitter &MCE;
Evan Cheng938b9d82008-10-31 19:55:13 +000050 const std::vector<MachineConstantPoolEntry> *MCPEs;
Evan Cheng4df60f52008-11-07 09:06:08 +000051 const std::vector<MachineJumpTableEntry> *MJTEs;
52 bool IsPIC;
53
Evan Cheng148b6a42007-07-05 21:15:40 +000054 public:
55 static char ID;
Evan Cheng7602e112008-09-02 06:52:38 +000056 explicit ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce)
Evan Cheng057d0c32008-09-18 07:28:19 +000057 : MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm),
Evan Cheng4df60f52008-11-07 09:06:08 +000058 MCE(mce), MCPEs(0), MJTEs(0),
59 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
Evan Cheng7602e112008-09-02 06:52:38 +000060 ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce,
Evan Cheng148b6a42007-07-05 21:15:40 +000061 const ARMInstrInfo &ii, const TargetData &td)
Evan Cheng057d0c32008-09-18 07:28:19 +000062 : MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm),
Evan Cheng4df60f52008-11-07 09:06:08 +000063 MCE(mce), MCPEs(0), MJTEs(0),
64 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
Evan Cheng148b6a42007-07-05 21:15:40 +000065
66 bool runOnMachineFunction(MachineFunction &MF);
67
68 virtual const char *getPassName() const {
69 return "ARM Machine Code Emitter";
70 }
71
72 void emitInstruction(const MachineInstr &MI);
Evan Cheng7602e112008-09-02 06:52:38 +000073
74 private:
Evan Cheng057d0c32008-09-18 07:28:19 +000075
Evan Cheng83b5cf02008-11-05 23:22:34 +000076 void emitWordLE(unsigned Binary);
77
Evan Chengcb5201f2008-11-11 22:19:31 +000078 void emitDWordLE(uint64_t Binary);
79
Evan Cheng057d0c32008-09-18 07:28:19 +000080 void emitConstPoolInstruction(const MachineInstr &MI);
81
Evan Cheng90922132008-11-06 02:25:39 +000082 void emitMOVi2piecesInstruction(const MachineInstr &MI);
83
Evan Cheng4df60f52008-11-07 09:06:08 +000084 void emitLEApcrelJTInstruction(const MachineInstr &MI);
85
Evan Cheng83b5cf02008-11-05 23:22:34 +000086 void addPCLabel(unsigned LabelID);
87
Evan Cheng057d0c32008-09-18 07:28:19 +000088 void emitPseudoInstruction(const MachineInstr &MI);
89
Evan Cheng5f1db7b2008-09-12 22:01:15 +000090 unsigned getMachineSoRegOpValue(const MachineInstr &MI,
Evan Cheng49a9f292008-09-12 22:45:55 +000091 const TargetInstrDesc &TID,
Evan Chengeb4ed4b2008-10-31 19:10:44 +000092 const MachineOperand &MO,
Evan Cheng5f1db7b2008-09-12 22:01:15 +000093 unsigned OpIdx);
94
Evan Cheng90922132008-11-06 02:25:39 +000095 unsigned getMachineSoImmOpValue(unsigned SoImm);
Evan Chengeb4ed4b2008-10-31 19:10:44 +000096
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +000097 unsigned getAddrModeSBit(const MachineInstr &MI,
98 const TargetInstrDesc &TID) const;
Evan Cheng49a9f292008-09-12 22:45:55 +000099
Evan Cheng83b5cf02008-11-05 23:22:34 +0000100 void emitDataProcessingInstruction(const MachineInstr &MI,
Evan Cheng437c1732008-11-07 22:30:53 +0000101 unsigned ImplicitRd = 0,
Evan Cheng83b5cf02008-11-05 23:22:34 +0000102 unsigned ImplicitRn = 0);
Evan Cheng7602e112008-09-02 06:52:38 +0000103
Evan Cheng83b5cf02008-11-05 23:22:34 +0000104 void emitLoadStoreInstruction(const MachineInstr &MI,
Evan Cheng4df60f52008-11-07 09:06:08 +0000105 unsigned ImplicitRd = 0,
Evan Cheng83b5cf02008-11-05 23:22:34 +0000106 unsigned ImplicitRn = 0);
Evan Chengedda31c2008-11-05 18:35:52 +0000107
Evan Cheng83b5cf02008-11-05 23:22:34 +0000108 void emitMiscLoadStoreInstruction(const MachineInstr &MI,
109 unsigned ImplicitRn = 0);
Evan Chengedda31c2008-11-05 18:35:52 +0000110
111 void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
112
Evan Chengfbc9d412008-11-06 01:21:28 +0000113 void emitMulFrmInstruction(const MachineInstr &MI);
Evan Chengedda31c2008-11-05 18:35:52 +0000114
Evan Cheng97f48c32008-11-06 22:15:19 +0000115 void emitExtendInstruction(const MachineInstr &MI);
116
Evan Cheng8b59db32008-11-07 01:41:35 +0000117 void emitMiscArithInstruction(const MachineInstr &MI);
118
Evan Chengedda31c2008-11-05 18:35:52 +0000119 void emitBranchInstruction(const MachineInstr &MI);
120
Evan Cheng437c1732008-11-07 22:30:53 +0000121 void emitInlineJumpTable(unsigned JTIndex);
Evan Cheng4df60f52008-11-07 09:06:08 +0000122
Evan Chengedda31c2008-11-05 18:35:52 +0000123 void emitMiscBranchInstruction(const MachineInstr &MI);
Evan Cheng7602e112008-09-02 06:52:38 +0000124
Evan Cheng96581d32008-11-11 02:11:05 +0000125 void emitVFPArithInstruction(const MachineInstr &MI);
126
Evan Cheng78be83d2008-11-11 19:40:26 +0000127 void emitVFPConversionInstruction(const MachineInstr &MI);
128
Evan Chengcd8e66a2008-11-11 21:48:44 +0000129 void emitVFPLoadStoreInstruction(const MachineInstr &MI);
130
131 void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
132
133 void emitMiscInstruction(const MachineInstr &MI);
134
Evan Cheng7602e112008-09-02 06:52:38 +0000135 /// getBinaryCodeForInstr - This function, generated by the
136 /// CodeEmitterGenerator using TableGen, produces the binary encoding for
137 /// machine instructions.
138 ///
Raul Herbster9c1a3822007-08-30 23:29:26 +0000139 unsigned getBinaryCodeForInstr(const MachineInstr &MI);
Evan Cheng0ff94f72007-08-07 01:37:15 +0000140
Evan Cheng7602e112008-09-02 06:52:38 +0000141 /// getMachineOpValue - Return binary encoding of operand. If the machine
142 /// operand requires relocation, record the relocation and return zero.
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000143 unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
Evan Cheng7602e112008-09-02 06:52:38 +0000144 unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
145 return getMachineOpValue(MI, MI.getOperand(OpIdx));
146 }
Evan Cheng7602e112008-09-02 06:52:38 +0000147
Evan Cheng83b5cf02008-11-05 23:22:34 +0000148 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
Evan Cheng7602e112008-09-02 06:52:38 +0000149 ///
Evan Cheng83b5cf02008-11-05 23:22:34 +0000150 unsigned getShiftOp(unsigned Imm) const ;
Evan Cheng7602e112008-09-02 06:52:38 +0000151
152 /// Routines that handle operands which add machine relocations which are
Evan Cheng437c1732008-11-07 22:30:53 +0000153 /// fixed up by the relocation stage.
Evan Cheng057d0c32008-09-18 07:28:19 +0000154 void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
Evan Cheng413a89f2008-11-07 22:57:53 +0000155 bool NeedStub, intptr_t ACPV = 0);
Evan Cheng0ff94f72007-08-07 01:37:15 +0000156 void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
Evan Cheng437c1732008-11-07 22:30:53 +0000157 void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
158 void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
159 void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
160 intptr_t JTBase = 0);
Evan Cheng148b6a42007-07-05 21:15:40 +0000161 };
Evan Cheng7602e112008-09-02 06:52:38 +0000162 char ARMCodeEmitter::ID = 0;
Evan Cheng148b6a42007-07-05 21:15:40 +0000163}
164
165/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
166/// to the specified MCE object.
167FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM,
168 MachineCodeEmitter &MCE) {
Evan Cheng7602e112008-09-02 06:52:38 +0000169 return new ARMCodeEmitter(TM, MCE);
Evan Cheng148b6a42007-07-05 21:15:40 +0000170}
171
Evan Cheng7602e112008-09-02 06:52:38 +0000172bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
Evan Cheng148b6a42007-07-05 21:15:40 +0000173 assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
174 MF.getTarget().getRelocationModel() != Reloc::Static) &&
175 "JIT relocation model must be set to static or default!");
176 II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
177 TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
Evan Cheng057d0c32008-09-18 07:28:19 +0000178 JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
Evan Cheng938b9d82008-10-31 19:55:13 +0000179 MCPEs = &MF.getConstantPool()->getConstants();
Evan Cheng4df60f52008-11-07 09:06:08 +0000180 MJTEs = &MF.getJumpTableInfo()->getJumpTables();
181 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
Evan Cheng3cc82232008-11-08 07:38:22 +0000182 JTI->Initialize(MF, IsPIC);
Evan Cheng148b6a42007-07-05 21:15:40 +0000183
184 do {
Evan Cheng42d5ee062008-09-13 01:15:21 +0000185 DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
Evan Cheng148b6a42007-07-05 21:15:40 +0000186 MCE.startFunction(MF);
187 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
188 MBB != E; ++MBB) {
189 MCE.StartMachineBasicBlock(MBB);
190 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
191 I != E; ++I)
192 emitInstruction(*I);
193 }
194 } while (MCE.finishFunction(MF));
195
196 return false;
197}
198
Evan Cheng83b5cf02008-11-05 23:22:34 +0000199/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
Evan Cheng7602e112008-09-02 06:52:38 +0000200///
Evan Cheng83b5cf02008-11-05 23:22:34 +0000201unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
202 switch (ARM_AM::getAM2ShiftOpc(Imm)) {
Evan Cheng0ff94f72007-08-07 01:37:15 +0000203 default: assert(0 && "Unknown shift opc!");
Evan Cheng7602e112008-09-02 06:52:38 +0000204 case ARM_AM::asr: return 2;
205 case ARM_AM::lsl: return 0;
206 case ARM_AM::lsr: return 1;
Evan Cheng0ff94f72007-08-07 01:37:15 +0000207 case ARM_AM::ror:
Evan Cheng7602e112008-09-02 06:52:38 +0000208 case ARM_AM::rrx: return 3;
Evan Cheng0ff94f72007-08-07 01:37:15 +0000209 }
Evan Cheng7602e112008-09-02 06:52:38 +0000210 return 0;
Evan Cheng0ff94f72007-08-07 01:37:15 +0000211}
212
Evan Cheng7602e112008-09-02 06:52:38 +0000213/// getMachineOpValue - Return binary encoding of operand. If the machine
214/// operand requires relocation, record the relocation and return zero.
215unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
216 const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000217 if (MO.isReg())
Evan Cheng7602e112008-09-02 06:52:38 +0000218 return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
Dan Gohmand735b802008-10-03 15:45:36 +0000219 else if (MO.isImm())
Evan Cheng7602e112008-09-02 06:52:38 +0000220 return static_cast<unsigned>(MO.getImm());
Dan Gohmand735b802008-10-03 15:45:36 +0000221 else if (MO.isGlobal())
Jim Grosbach016d34c2008-10-03 15:52:42 +0000222 emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
Dan Gohmand735b802008-10-03 15:45:36 +0000223 else if (MO.isSymbol())
Evan Cheng10332512008-11-08 07:22:33 +0000224 emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
Evan Cheng580c0df2008-11-12 01:02:24 +0000225 else if (MO.isCPI()) {
226 const TargetInstrDesc &TID = MI.getDesc();
227 // For VFP load, the immediate offset is multiplied by 4.
228 unsigned Reloc = ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
229 ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
230 emitConstPoolAddress(MO.getIndex(), Reloc);
231 } else if (MO.isJTI())
Chris Lattner8aa797a2007-12-30 23:10:15 +0000232 emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
Dan Gohmand735b802008-10-03 15:45:36 +0000233 else if (MO.isMBB())
Evan Cheng4df60f52008-11-07 09:06:08 +0000234 emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
Evan Cheng2aa0e642008-09-13 01:55:59 +0000235 else {
236 cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
237 abort();
238 }
Evan Cheng7602e112008-09-02 06:52:38 +0000239 return 0;
Evan Cheng0ff94f72007-08-07 01:37:15 +0000240}
241
Evan Cheng057d0c32008-09-18 07:28:19 +0000242/// emitGlobalAddress - Emit the specified address to the code stream.
Evan Cheng0ff94f72007-08-07 01:37:15 +0000243///
Evan Cheng413a89f2008-11-07 22:57:53 +0000244void ARMCodeEmitter::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
245 bool NeedStub, intptr_t ACPV) {
Evan Cheng0ff94f72007-08-07 01:37:15 +0000246 MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
Evan Cheng413a89f2008-11-07 22:57:53 +0000247 Reloc, GV, ACPV, NeedStub));
Evan Cheng0ff94f72007-08-07 01:37:15 +0000248}
249
250/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
251/// be emitted to the current location in the function, and allow it to be PC
252/// relative.
Evan Cheng7602e112008-09-02 06:52:38 +0000253void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
Evan Cheng0ff94f72007-08-07 01:37:15 +0000254 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
255 Reloc, ES));
256}
257
258/// emitConstPoolAddress - Arrange for the address of an constant pool
259/// to be emitted to the current location in the function, and allow it to be PC
260/// relative.
Evan Cheng437c1732008-11-07 22:30:53 +0000261void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) {
Evan Cheng0f282432008-10-29 23:55:43 +0000262 // Tell JIT emitter we'll resolve the address.
Evan Cheng0ff94f72007-08-07 01:37:15 +0000263 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
Evan Cheng437c1732008-11-07 22:30:53 +0000264 Reloc, CPI, 0, true));
Evan Cheng0ff94f72007-08-07 01:37:15 +0000265}
266
267/// emitJumpTableAddress - Arrange for the address of a jump table to
268/// be emitted to the current location in the function, and allow it to be PC
269/// relative.
Evan Cheng437c1732008-11-07 22:30:53 +0000270void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) {
Evan Cheng0ff94f72007-08-07 01:37:15 +0000271 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
Evan Cheng437c1732008-11-07 22:30:53 +0000272 Reloc, JTIndex, 0, true));
Evan Cheng0ff94f72007-08-07 01:37:15 +0000273}
274
Raul Herbster9c1a3822007-08-30 23:29:26 +0000275/// emitMachineBasicBlock - Emit the specified address basic block.
Evan Cheng4df60f52008-11-07 09:06:08 +0000276void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
Evan Cheng437c1732008-11-07 22:30:53 +0000277 unsigned Reloc, intptr_t JTBase) {
Raul Herbster9c1a3822007-08-30 23:29:26 +0000278 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
Evan Cheng437c1732008-11-07 22:30:53 +0000279 Reloc, BB, JTBase));
Raul Herbster9c1a3822007-08-30 23:29:26 +0000280}
Evan Cheng0ff94f72007-08-07 01:37:15 +0000281
Evan Cheng83b5cf02008-11-05 23:22:34 +0000282void ARMCodeEmitter::emitWordLE(unsigned Binary) {
Evan Cheng4df60f52008-11-07 09:06:08 +0000283#ifndef NDEBUG
284 DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
285 << Binary << std::dec << "\n";
286#endif
Evan Cheng83b5cf02008-11-05 23:22:34 +0000287 MCE.emitWordLE(Binary);
288}
289
Evan Chengcb5201f2008-11-11 22:19:31 +0000290void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
291#ifndef NDEBUG
292 DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
293 << (unsigned)Binary << std::dec << "\n";
294 DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
295 << (unsigned)(Binary >> 32) << std::dec << "\n";
296#endif
297 MCE.emitDWordLE(Binary);
298}
299
Evan Cheng7602e112008-09-02 06:52:38 +0000300void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
Evan Cheng25e04782008-11-04 00:50:32 +0000301 DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI;
Evan Cheng42d5ee062008-09-13 01:15:21 +0000302
Evan Cheng148b6a42007-07-05 21:15:40 +0000303 NumEmitted++; // Keep track of the # of mi's emitted
Evan Chengedda31c2008-11-05 18:35:52 +0000304 switch (MI.getDesc().TSFlags & ARMII::FormMask) {
305 default:
306 assert(0 && "Unhandled instruction encoding format!");
307 break;
308 case ARMII::Pseudo:
Evan Cheng057d0c32008-09-18 07:28:19 +0000309 emitPseudoInstruction(MI);
Evan Chengedda31c2008-11-05 18:35:52 +0000310 break;
311 case ARMII::DPFrm:
312 case ARMII::DPSoRegFrm:
313 emitDataProcessingInstruction(MI);
314 break;
315 case ARMII::LdFrm:
316 case ARMII::StFrm:
317 emitLoadStoreInstruction(MI);
318 break;
319 case ARMII::LdMiscFrm:
320 case ARMII::StMiscFrm:
321 emitMiscLoadStoreInstruction(MI);
322 break;
323 case ARMII::LdMulFrm:
324 case ARMII::StMulFrm:
325 emitLoadStoreMultipleInstruction(MI);
326 break;
Evan Chengfbc9d412008-11-06 01:21:28 +0000327 case ARMII::MulFrm:
328 emitMulFrmInstruction(MI);
Evan Chengedda31c2008-11-05 18:35:52 +0000329 break;
Evan Cheng97f48c32008-11-06 22:15:19 +0000330 case ARMII::ExtFrm:
331 emitExtendInstruction(MI);
332 break;
Evan Cheng8b59db32008-11-07 01:41:35 +0000333 case ARMII::ArithMiscFrm:
334 emitMiscArithInstruction(MI);
335 break;
Evan Cheng12c3a532008-11-06 17:48:05 +0000336 case ARMII::BrFrm:
Evan Chengedda31c2008-11-05 18:35:52 +0000337 emitBranchInstruction(MI);
338 break;
Evan Cheng12c3a532008-11-06 17:48:05 +0000339 case ARMII::BrMiscFrm:
Evan Chengedda31c2008-11-05 18:35:52 +0000340 emitMiscBranchInstruction(MI);
341 break;
Evan Cheng96581d32008-11-11 02:11:05 +0000342 // VFP instructions.
343 case ARMII::VFPUnaryFrm:
344 case ARMII::VFPBinaryFrm:
345 emitVFPArithInstruction(MI);
346 break;
Evan Cheng78be83d2008-11-11 19:40:26 +0000347 case ARMII::VFPConv1Frm:
348 case ARMII::VFPConv2Frm:
Evan Cheng0a0ab132008-11-11 22:46:12 +0000349 case ARMII::VFPConv3Frm:
Evan Cheng78be83d2008-11-11 19:40:26 +0000350 emitVFPConversionInstruction(MI);
351 break;
Evan Chengcd8e66a2008-11-11 21:48:44 +0000352 case ARMII::VFPLdStFrm:
353 emitVFPLoadStoreInstruction(MI);
354 break;
355 case ARMII::VFPLdStMulFrm:
356 emitVFPLoadStoreMultipleInstruction(MI);
357 break;
358 case ARMII::VFPMiscFrm:
359 emitMiscInstruction(MI);
360 break;
Evan Chengedda31c2008-11-05 18:35:52 +0000361 }
Evan Cheng0ff94f72007-08-07 01:37:15 +0000362}
363
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000364void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
Evan Cheng437c1732008-11-07 22:30:53 +0000365 unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
366 unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
Evan Cheng938b9d82008-10-31 19:55:13 +0000367 const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000368
369 // Remember the CONSTPOOL_ENTRY address for later relocation.
370 JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
371
372 // Emit constpool island entry. In most cases, the actual values will be
373 // resolved and relocated after code emission.
374 if (MCPE.isMachineConstantPoolEntry()) {
375 ARMConstantPoolValue *ACPV =
376 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
377
Evan Cheng12c3a532008-11-06 17:48:05 +0000378 DOUT << " ** ARM constant pool #" << CPI << " @ "
Evan Cheng437c1732008-11-07 22:30:53 +0000379 << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n';
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000380
381 GlobalValue *GV = ACPV->getGV();
382 if (GV) {
383 assert(!ACPV->isStub() && "Don't know how to deal this yet!");
Evan Chenge96a4902008-11-08 01:31:27 +0000384 if (ACPV->isNonLazyPointer())
Evan Cheng9ed2f802008-11-10 01:08:07 +0000385 MCE.addRelocation(MachineRelocation::getIndirectSymbol(
Evan Chenge96a4902008-11-08 01:31:27 +0000386 MCE.getCurrentPCOffset(), ARM::reloc_arm_machine_cp_entry, GV,
387 (intptr_t)ACPV, false));
388 else
389 emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
390 ACPV->isStub(), (intptr_t)ACPV);
Evan Cheng25e04782008-11-04 00:50:32 +0000391 } else {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000392 assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!");
393 emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
394 }
Evan Cheng83b5cf02008-11-05 23:22:34 +0000395 emitWordLE(0);
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000396 } else {
397 Constant *CV = MCPE.Val.ConstVal;
398
Evan Cheng12c3a532008-11-06 17:48:05 +0000399 DOUT << " ** Constant pool #" << CPI << " @ "
Evan Cheng437c1732008-11-07 22:30:53 +0000400 << (void*)MCE.getCurrentPCValue() << " " << *CV << '\n';
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000401
402 if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
403 emitGlobalAddress(GV, ARM::reloc_arm_absolute, false);
Evan Cheng83b5cf02008-11-05 23:22:34 +0000404 emitWordLE(0);
Evan Chengcb5201f2008-11-11 22:19:31 +0000405 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000406 uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
Evan Cheng83b5cf02008-11-05 23:22:34 +0000407 emitWordLE(Val);
Evan Chengcb5201f2008-11-11 22:19:31 +0000408 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
409 if (CFP->getType() == Type::FloatTy)
410 emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
411 else if (CFP->getType() == Type::DoubleTy)
412 emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
413 else {
414 assert(0 && "Unable to handle this constantpool entry!");
415 abort();
416 }
417 } else {
418 assert(0 && "Unable to handle this constantpool entry!");
419 abort();
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000420 }
421 }
422}
423
Evan Cheng90922132008-11-06 02:25:39 +0000424void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
425 const MachineOperand &MO0 = MI.getOperand(0);
426 const MachineOperand &MO1 = MI.getOperand(1);
427 assert(MO1.isImm() && "Not a valid so_imm value!");
428 unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
429 unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
430
431 // Emit the 'mov' instruction.
432 unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
433
434 // Set the conditional execution predicate.
Evan Cheng97f48c32008-11-06 22:15:19 +0000435 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng90922132008-11-06 02:25:39 +0000436
437 // Encode Rd.
438 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
439
440 // Encode so_imm.
441 // Set bit I(25) to identify this is the immediate form of <shifter_op>
442 Binary |= 1 << ARMII::I_BitShift;
443 Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V1));
444 emitWordLE(Binary);
445
446 // Now the 'orr' instruction.
447 Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
448
449 // Set the conditional execution predicate.
Evan Cheng97f48c32008-11-06 22:15:19 +0000450 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng90922132008-11-06 02:25:39 +0000451
452 // Encode Rd.
453 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
454
455 // Encode Rn.
456 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
457
458 // Encode so_imm.
459 // Set bit I(25) to identify this is the immediate form of <shifter_op>
460 Binary |= 1 << ARMII::I_BitShift;
461 Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V2));
462 emitWordLE(Binary);
463}
464
Evan Cheng4df60f52008-11-07 09:06:08 +0000465void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
466 // It's basically add r, pc, (LJTI - $+8)
467
468 const TargetInstrDesc &TID = MI.getDesc();
469
470 // Emit the 'add' instruction.
471 unsigned Binary = 0x4 << 21; // add: Insts{24-31} = 0b0100
472
473 // Set the conditional execution predicate
474 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
475
476 // Encode S bit if MI modifies CPSR.
477 Binary |= getAddrModeSBit(MI, TID);
478
479 // Encode Rd.
480 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
481
482 // Encode Rn which is PC.
483 Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
484
485 // Encode the displacement.
486 // Set bit I(25) to identify this is the immediate form of <shifter_op>.
487 Binary |= 1 << ARMII::I_BitShift;
488 emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
489
490 emitWordLE(Binary);
491}
492
Evan Cheng83b5cf02008-11-05 23:22:34 +0000493void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
Evan Cheng12c3a532008-11-06 17:48:05 +0000494 DOUT << " ** LPC" << LabelID << " @ "
Evan Cheng83b5cf02008-11-05 23:22:34 +0000495 << (void*)MCE.getCurrentPCValue() << '\n';
496 JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
497}
498
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000499void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
500 unsigned Opcode = MI.getDesc().Opcode;
501 switch (Opcode) {
502 default:
503 abort(); // FIXME:
504 case ARM::CONSTPOOL_ENTRY:
505 emitConstPoolInstruction(MI);
506 break;
507 case ARM::PICADD: {
Evan Cheng25e04782008-11-04 00:50:32 +0000508 // Remember of the address of the PC label for relocation later.
Evan Cheng83b5cf02008-11-05 23:22:34 +0000509 addPCLabel(MI.getOperand(2).getImm());
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000510 // PICADD is just an add instruction that implicitly read pc.
Evan Cheng437c1732008-11-07 22:30:53 +0000511 emitDataProcessingInstruction(MI, 0, ARM::PC);
Evan Cheng83b5cf02008-11-05 23:22:34 +0000512 break;
513 }
514 case ARM::PICLDR:
515 case ARM::PICLDRB:
516 case ARM::PICSTR:
517 case ARM::PICSTRB: {
518 // Remember of the address of the PC label for relocation later.
519 addPCLabel(MI.getOperand(2).getImm());
520 // These are just load / store instructions that implicitly read pc.
Evan Cheng4df60f52008-11-07 09:06:08 +0000521 emitLoadStoreInstruction(MI, 0, ARM::PC);
Evan Cheng83b5cf02008-11-05 23:22:34 +0000522 break;
523 }
524 case ARM::PICLDRH:
525 case ARM::PICLDRSH:
526 case ARM::PICLDRSB:
527 case ARM::PICSTRH: {
528 // Remember of the address of the PC label for relocation later.
529 addPCLabel(MI.getOperand(2).getImm());
530 // These are just load / store instructions that implicitly read pc.
531 emitMiscLoadStoreInstruction(MI, ARM::PC);
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000532 break;
533 }
Evan Cheng90922132008-11-06 02:25:39 +0000534 case ARM::MOVi2pieces:
535 // Two instructions to materialize a constant.
536 emitMOVi2piecesInstruction(MI);
537 break;
Evan Cheng4df60f52008-11-07 09:06:08 +0000538 case ARM::LEApcrelJT:
539 // Materialize jumptable address.
540 emitLEApcrelJTInstruction(MI);
541 break;
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000542 }
543}
544
545
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000546unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
Evan Cheng49a9f292008-09-12 22:45:55 +0000547 const TargetInstrDesc &TID,
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000548 const MachineOperand &MO,
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000549 unsigned OpIdx) {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000550 unsigned Binary = getMachineOpValue(MI, MO);
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000551
552 const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
553 const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
554 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
555
556 // Encode the shift opcode.
557 unsigned SBits = 0;
558 unsigned Rs = MO1.getReg();
559 if (Rs) {
560 // Set shift operand (bit[7:4]).
561 // LSL - 0001
562 // LSR - 0011
563 // ASR - 0101
564 // ROR - 0111
565 // RRX - 0110 and bit[11:8] clear.
566 switch (SOpc) {
567 default: assert(0 && "Unknown shift opc!");
568 case ARM_AM::lsl: SBits = 0x1; break;
569 case ARM_AM::lsr: SBits = 0x3; break;
570 case ARM_AM::asr: SBits = 0x5; break;
571 case ARM_AM::ror: SBits = 0x7; break;
572 case ARM_AM::rrx: SBits = 0x6; break;
573 }
574 } else {
575 // Set shift operand (bit[6:4]).
576 // LSL - 000
577 // LSR - 010
578 // ASR - 100
579 // ROR - 110
580 switch (SOpc) {
581 default: assert(0 && "Unknown shift opc!");
582 case ARM_AM::lsl: SBits = 0x0; break;
583 case ARM_AM::lsr: SBits = 0x2; break;
584 case ARM_AM::asr: SBits = 0x4; break;
585 case ARM_AM::ror: SBits = 0x6; break;
586 }
587 }
588 Binary |= SBits << 4;
589 if (SOpc == ARM_AM::rrx)
590 return Binary;
591
592 // Encode the shift operation Rs or shift_imm (except rrx).
593 if (Rs) {
594 // Encode Rs bit[11:8].
595 assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
596 return Binary |
597 (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
598 }
599
600 // Encode shift_imm bit[11:7].
601 return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
602}
603
Evan Cheng90922132008-11-06 02:25:39 +0000604unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000605 // Encode rotate_imm.
Evan Cheng97f48c32008-11-06 22:15:19 +0000606 unsigned Binary = (ARM_AM::getSOImmValRot(SoImm) >> 1)
607 << ARMII::SoRotImmShift;
608
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000609 // Encode immed_8.
Evan Cheng90922132008-11-06 02:25:39 +0000610 Binary |= ARM_AM::getSOImmValImm(SoImm);
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000611 return Binary;
612}
613
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000614unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
615 const TargetInstrDesc &TID) const {
Evan Cheng49a9f292008-09-12 22:45:55 +0000616 for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
617 const MachineOperand &MO = MI.getOperand(i-1);
Dan Gohmand735b802008-10-03 15:45:36 +0000618 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
Evan Cheng49a9f292008-09-12 22:45:55 +0000619 return 1 << ARMII::S_BitShift;
620 }
621 return 0;
622}
623
Evan Cheng83b5cf02008-11-05 23:22:34 +0000624void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
Evan Cheng437c1732008-11-07 22:30:53 +0000625 unsigned ImplicitRd,
Evan Cheng83b5cf02008-11-05 23:22:34 +0000626 unsigned ImplicitRn) {
Evan Chengedda31c2008-11-05 18:35:52 +0000627 const TargetInstrDesc &TID = MI.getDesc();
Evan Chengedda31c2008-11-05 18:35:52 +0000628
629 // Part of binary is determined by TableGn.
630 unsigned Binary = getBinaryCodeForInstr(MI);
631
Jim Grosbach33412622008-10-07 19:05:35 +0000632 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000633 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000634
Evan Cheng49a9f292008-09-12 22:45:55 +0000635 // Encode S bit if MI modifies CPSR.
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000636 Binary |= getAddrModeSBit(MI, TID);
Evan Cheng49a9f292008-09-12 22:45:55 +0000637
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000638 // Encode register def if there is one.
Evan Cheng49a9f292008-09-12 22:45:55 +0000639 unsigned NumDefs = TID.getNumDefs();
Evan Chenga964b7d2008-09-12 23:15:39 +0000640 unsigned OpIdx = 0;
Evan Cheng437c1732008-11-07 22:30:53 +0000641 if (NumDefs)
642 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
643 else if (ImplicitRd)
644 // Special handling for implicit use (e.g. PC).
645 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
646 << ARMII::RegRdShift);
Evan Cheng7602e112008-09-02 06:52:38 +0000647
Evan Chengd87293c2008-11-06 08:47:38 +0000648 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
649 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
650 ++OpIdx;
651
Jim Grosbachefd30ba2008-10-01 18:16:49 +0000652 // Encode first non-shifter register operand if there is one.
Evan Chengedda31c2008-11-05 18:35:52 +0000653 bool isUnary = TID.TSFlags & ARMII::UnaryDP;
654 if (!isUnary) {
Evan Cheng83b5cf02008-11-05 23:22:34 +0000655 if (ImplicitRn)
656 // Special handling for implicit use (e.g. PC).
657 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
Evan Chengedda31c2008-11-05 18:35:52 +0000658 << ARMII::RegRnShift);
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000659 else {
660 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
661 ++OpIdx;
662 }
Evan Cheng7602e112008-09-02 06:52:38 +0000663 }
664
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000665 // Encode shifter operand.
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000666 const MachineOperand &MO = MI.getOperand(OpIdx);
Evan Chengedda31c2008-11-05 18:35:52 +0000667 if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000668 // Encode SoReg.
Evan Cheng83b5cf02008-11-05 23:22:34 +0000669 emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
Evan Chengedda31c2008-11-05 18:35:52 +0000670 return;
671 }
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000672
Evan Chengedda31c2008-11-05 18:35:52 +0000673 if (MO.isReg()) {
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000674 // Encode register Rm.
Evan Cheng83b5cf02008-11-05 23:22:34 +0000675 emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
Evan Chengedda31c2008-11-05 18:35:52 +0000676 return;
677 }
Evan Cheng7602e112008-09-02 06:52:38 +0000678
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000679 // Encode so_imm.
Evan Cheng4df60f52008-11-07 09:06:08 +0000680 // Set bit I(25) to identify this is the immediate form of <shifter_op>.
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000681 Binary |= 1 << ARMII::I_BitShift;
Evan Cheng90922132008-11-06 02:25:39 +0000682 Binary |= getMachineSoImmOpValue(MO.getImm());
Evan Chengedda31c2008-11-05 18:35:52 +0000683
Evan Cheng83b5cf02008-11-05 23:22:34 +0000684 emitWordLE(Binary);
Evan Cheng7602e112008-09-02 06:52:38 +0000685}
686
Evan Cheng83b5cf02008-11-05 23:22:34 +0000687void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
Evan Cheng4df60f52008-11-07 09:06:08 +0000688 unsigned ImplicitRd,
Evan Cheng83b5cf02008-11-05 23:22:34 +0000689 unsigned ImplicitRn) {
Evan Cheng05c356e2008-11-08 01:44:13 +0000690 const TargetInstrDesc &TID = MI.getDesc();
691
Evan Chengedda31c2008-11-05 18:35:52 +0000692 // Part of binary is determined by TableGn.
693 unsigned Binary = getBinaryCodeForInstr(MI);
694
Jim Grosbach33412622008-10-07 19:05:35 +0000695 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000696 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng057d0c32008-09-18 07:28:19 +0000697
Evan Cheng7602e112008-09-02 06:52:38 +0000698 // Set first operand
Evan Cheng4df60f52008-11-07 09:06:08 +0000699 unsigned OpIdx = 0;
700 if (ImplicitRd)
701 // Special handling for implicit use (e.g. PC).
702 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
703 << ARMII::RegRdShift);
704 else
705 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000706
707 // Set second operand
Evan Cheng83b5cf02008-11-05 23:22:34 +0000708 if (ImplicitRn)
709 // Special handling for implicit use (e.g. PC).
710 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
711 << ARMII::RegRnShift);
Evan Cheng4df60f52008-11-07 09:06:08 +0000712 else
713 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000714
Evan Cheng05c356e2008-11-08 01:44:13 +0000715 // If this is a two-address operand, skip it. e.g. LDR_PRE.
716 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
717 ++OpIdx;
718
Evan Cheng83b5cf02008-11-05 23:22:34 +0000719 const MachineOperand &MO2 = MI.getOperand(OpIdx);
Evan Chengd87293c2008-11-06 08:47:38 +0000720 unsigned AM2Opc = (ImplicitRn == ARM::PC)
Evan Cheng83b5cf02008-11-05 23:22:34 +0000721 ? 0 : MI.getOperand(OpIdx+1).getImm();
Evan Cheng7602e112008-09-02 06:52:38 +0000722
Evan Chenge7de7e32008-09-13 01:44:01 +0000723 // Set bit U(23) according to sign of immed value (positive or negative).
Evan Cheng83b5cf02008-11-05 23:22:34 +0000724 Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
Evan Chenge7de7e32008-09-13 01:44:01 +0000725 ARMII::U_BitShift);
Evan Cheng7602e112008-09-02 06:52:38 +0000726 if (!MO2.getReg()) { // is immediate
Evan Cheng83b5cf02008-11-05 23:22:34 +0000727 if (ARM_AM::getAM2Offset(AM2Opc))
Evan Cheng7602e112008-09-02 06:52:38 +0000728 // Set the value of offset_12 field
Evan Cheng83b5cf02008-11-05 23:22:34 +0000729 Binary |= ARM_AM::getAM2Offset(AM2Opc);
730 emitWordLE(Binary);
Evan Chengedda31c2008-11-05 18:35:52 +0000731 return;
Evan Cheng7602e112008-09-02 06:52:38 +0000732 }
733
734 // Set bit I(25), because this is not in immediate enconding.
735 Binary |= 1 << ARMII::I_BitShift;
736 assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
737 // Set bit[3:0] to the corresponding Rm register
738 Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
739
740 // if this instr is in scaled register offset/index instruction, set
741 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
Evan Cheng83b5cf02008-11-05 23:22:34 +0000742 if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
743 Binary |= getShiftOp(AM2Opc) << 5; // shift
744 Binary |= ShImm << 7; // shift_immed
Evan Cheng7602e112008-09-02 06:52:38 +0000745 }
746
Evan Cheng83b5cf02008-11-05 23:22:34 +0000747 emitWordLE(Binary);
Evan Cheng7602e112008-09-02 06:52:38 +0000748}
749
Evan Cheng83b5cf02008-11-05 23:22:34 +0000750void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
751 unsigned ImplicitRn) {
Evan Cheng05c356e2008-11-08 01:44:13 +0000752 const TargetInstrDesc &TID = MI.getDesc();
753
Evan Chengedda31c2008-11-05 18:35:52 +0000754 // Part of binary is determined by TableGn.
755 unsigned Binary = getBinaryCodeForInstr(MI);
756
Jim Grosbach33412622008-10-07 19:05:35 +0000757 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000758 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng057d0c32008-09-18 07:28:19 +0000759
Evan Cheng7602e112008-09-02 06:52:38 +0000760 // Set first operand
761 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
762
763 // Set second operand
Evan Cheng83b5cf02008-11-05 23:22:34 +0000764 unsigned OpIdx = 1;
765 if (ImplicitRn)
766 // Special handling for implicit use (e.g. PC).
767 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
768 << ARMII::RegRnShift);
Evan Cheng4df60f52008-11-07 09:06:08 +0000769 else
770 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000771
Evan Cheng05c356e2008-11-08 01:44:13 +0000772 // If this is a two-address operand, skip it. e.g. LDRH_POST.
773 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
774 ++OpIdx;
775
Evan Cheng83b5cf02008-11-05 23:22:34 +0000776 const MachineOperand &MO2 = MI.getOperand(OpIdx);
Evan Chengd87293c2008-11-06 08:47:38 +0000777 unsigned AM3Opc = (ImplicitRn == ARM::PC)
Evan Cheng83b5cf02008-11-05 23:22:34 +0000778 ? 0 : MI.getOperand(OpIdx+1).getImm();
Evan Cheng7602e112008-09-02 06:52:38 +0000779
Evan Chenge7de7e32008-09-13 01:44:01 +0000780 // Set bit U(23) according to sign of immed value (positive or negative)
Evan Cheng83b5cf02008-11-05 23:22:34 +0000781 Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
Evan Cheng7602e112008-09-02 06:52:38 +0000782 ARMII::U_BitShift);
783
784 // If this instr is in register offset/index encoding, set bit[3:0]
785 // to the corresponding Rm register.
786 if (MO2.getReg()) {
787 Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
Evan Cheng83b5cf02008-11-05 23:22:34 +0000788 emitWordLE(Binary);
Evan Chengedda31c2008-11-05 18:35:52 +0000789 return;
Evan Cheng7602e112008-09-02 06:52:38 +0000790 }
791
Evan Chengd87293c2008-11-06 08:47:38 +0000792 // This instr is in immediate offset/index encoding, set bit 22 to 1.
Evan Cheng97f48c32008-11-06 22:15:19 +0000793 Binary |= 1 << ARMII::AM3_I_BitShift;
Evan Cheng83b5cf02008-11-05 23:22:34 +0000794 if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
Evan Cheng7602e112008-09-02 06:52:38 +0000795 // Set operands
796 Binary |= (ImmOffs >> 4) << 8; // immedH
797 Binary |= (ImmOffs & ~0xF); // immedL
798 }
799
Evan Cheng83b5cf02008-11-05 23:22:34 +0000800 emitWordLE(Binary);
Evan Cheng7602e112008-09-02 06:52:38 +0000801}
802
Evan Chengcd8e66a2008-11-11 21:48:44 +0000803static unsigned getAddrModeUPBits(unsigned Mode) {
804 unsigned Binary = 0;
Evan Cheng7602e112008-09-02 06:52:38 +0000805
806 // Set addressing mode by modifying bits U(23) and P(24)
807 // IA - Increment after - bit U = 1 and bit P = 0
808 // IB - Increment before - bit U = 1 and bit P = 1
809 // DA - Decrement after - bit U = 0 and bit P = 0
810 // DB - Decrement before - bit U = 0 and bit P = 1
Evan Cheng7602e112008-09-02 06:52:38 +0000811 switch (Mode) {
812 default: assert(0 && "Unknown addressing sub-mode!");
813 case ARM_AM::da: break;
Evan Cheng97f48c32008-11-06 22:15:19 +0000814 case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
815 case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
816 case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
Evan Cheng7602e112008-09-02 06:52:38 +0000817 }
818
Evan Chengcd8e66a2008-11-11 21:48:44 +0000819 return Binary;
820}
821
822void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
823 // Part of binary is determined by TableGn.
824 unsigned Binary = getBinaryCodeForInstr(MI);
825
826 // Set the conditional execution predicate
827 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
828
829 // Set base address operand
830 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
831
832 // Set addressing mode by modifying bits U(23) and P(24)
833 const MachineOperand &MO = MI.getOperand(1);
834 Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
835
Evan Cheng7602e112008-09-02 06:52:38 +0000836 // Set bit W(21)
837 if (ARM_AM::getAM4WBFlag(MO.getImm()))
Evan Cheng97f48c32008-11-06 22:15:19 +0000838 Binary |= 0x1 << ARMII::W_BitShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000839
840 // Set registers
841 for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
842 const MachineOperand &MO = MI.getOperand(i);
Evan Chengcd8e66a2008-11-11 21:48:44 +0000843 if (!MO.isReg() || MO.isImplicit())
844 break;
Evan Cheng7602e112008-09-02 06:52:38 +0000845 unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
846 assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
847 RegNum < 16);
848 Binary |= 0x1 << RegNum;
849 }
850
Evan Cheng83b5cf02008-11-05 23:22:34 +0000851 emitWordLE(Binary);
Evan Cheng7602e112008-09-02 06:52:38 +0000852}
853
Evan Chengfbc9d412008-11-06 01:21:28 +0000854void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
Evan Chengedda31c2008-11-05 18:35:52 +0000855 const TargetInstrDesc &TID = MI.getDesc();
856
857 // Part of binary is determined by TableGn.
858 unsigned Binary = getBinaryCodeForInstr(MI);
859
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000860 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000861 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000862
863 // Encode S bit if MI modifies CPSR.
864 Binary |= getAddrModeSBit(MI, TID);
865
866 // 32x32->64bit operations have two destination registers. The number
867 // of register definitions will tell us if that's what we're dealing with.
Evan Cheng97f48c32008-11-06 22:15:19 +0000868 unsigned OpIdx = 0;
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000869 if (TID.getNumDefs() == 2)
870 Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
871
872 // Encode Rd
873 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
874
875 // Encode Rm
876 Binary |= getMachineOpValue(MI, OpIdx++);
877
878 // Encode Rs
879 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
880
Evan Chengfbc9d412008-11-06 01:21:28 +0000881 // Many multiple instructions (e.g. MLA) have three src operands. Encode
882 // it as Rn (for multiply, that's in the same offset as RdLo.
Evan Cheng97f48c32008-11-06 22:15:19 +0000883 if (TID.getNumOperands() > OpIdx &&
884 !TID.OpInfo[OpIdx].isPredicate() &&
885 !TID.OpInfo[OpIdx].isOptionalDef())
886 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
887
888 emitWordLE(Binary);
889}
890
891void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
892 const TargetInstrDesc &TID = MI.getDesc();
893
894 // Part of binary is determined by TableGn.
895 unsigned Binary = getBinaryCodeForInstr(MI);
896
897 // Set the conditional execution predicate
898 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
899
900 unsigned OpIdx = 0;
901
902 // Encode Rd
903 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
904
905 const MachineOperand &MO1 = MI.getOperand(OpIdx++);
906 const MachineOperand &MO2 = MI.getOperand(OpIdx);
907 if (MO2.isReg()) {
908 // Two register operand form.
909 // Encode Rn.
910 Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
911
912 // Encode Rm.
913 Binary |= getMachineOpValue(MI, MO2);
914 ++OpIdx;
915 } else {
916 Binary |= getMachineOpValue(MI, MO1);
917 }
918
919 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
920 if (MI.getOperand(OpIdx).isImm() &&
921 !TID.OpInfo[OpIdx].isPredicate() &&
922 !TID.OpInfo[OpIdx].isOptionalDef())
923 Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
Evan Chengfbc9d412008-11-06 01:21:28 +0000924
Evan Cheng83b5cf02008-11-05 23:22:34 +0000925 emitWordLE(Binary);
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000926}
927
Evan Cheng8b59db32008-11-07 01:41:35 +0000928void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
929 const TargetInstrDesc &TID = MI.getDesc();
930
931 // Part of binary is determined by TableGn.
932 unsigned Binary = getBinaryCodeForInstr(MI);
933
934 // Set the conditional execution predicate
935 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
936
937 unsigned OpIdx = 0;
938
939 // Encode Rd
940 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
941
942 const MachineOperand &MO = MI.getOperand(OpIdx++);
943 if (OpIdx == TID.getNumOperands() ||
944 TID.OpInfo[OpIdx].isPredicate() ||
945 TID.OpInfo[OpIdx].isOptionalDef()) {
946 // Encode Rm and it's done.
947 Binary |= getMachineOpValue(MI, MO);
948 emitWordLE(Binary);
949 return;
950 }
951
952 // Encode Rn.
953 Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
954
955 // Encode Rm.
956 Binary |= getMachineOpValue(MI, OpIdx++);
957
958 // Encode shift_imm.
959 unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
960 assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
961 Binary |= ShiftAmt << ARMII::ShiftShift;
962
963 emitWordLE(Binary);
964}
965
Evan Chengedda31c2008-11-05 18:35:52 +0000966void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
967 const TargetInstrDesc &TID = MI.getDesc();
968
Evan Cheng12c3a532008-11-06 17:48:05 +0000969 if (TID.Opcode == ARM::TPsoft)
970 abort(); // FIXME
971
Evan Cheng7602e112008-09-02 06:52:38 +0000972 // Part of binary is determined by TableGn.
973 unsigned Binary = getBinaryCodeForInstr(MI);
974
Evan Chengedda31c2008-11-05 18:35:52 +0000975 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000976 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Chengedda31c2008-11-05 18:35:52 +0000977
978 // Set signed_immed_24 field
979 Binary |= getMachineOpValue(MI, 0);
980
Evan Cheng83b5cf02008-11-05 23:22:34 +0000981 emitWordLE(Binary);
Evan Chengedda31c2008-11-05 18:35:52 +0000982}
983
Evan Cheng437c1732008-11-07 22:30:53 +0000984void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
Evan Cheng4df60f52008-11-07 09:06:08 +0000985 // Remember the base address of the inline jump table.
Evan Cheng437c1732008-11-07 22:30:53 +0000986 intptr_t JTBase = MCE.getCurrentPCValue();
987 JTI->addJumpTableBaseAddr(JTIndex, JTBase);
988 DOUT << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase << '\n';
Evan Cheng4df60f52008-11-07 09:06:08 +0000989
990 // Now emit the jump table entries.
991 const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
992 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
993 if (IsPIC)
994 // DestBB address - JT base.
Evan Cheng437c1732008-11-07 22:30:53 +0000995 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
Evan Cheng4df60f52008-11-07 09:06:08 +0000996 else
997 // Absolute DestBB address.
998 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
999 emitWordLE(0);
1000 }
1001}
1002
Evan Chengedda31c2008-11-05 18:35:52 +00001003void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1004 const TargetInstrDesc &TID = MI.getDesc();
Evan Chengedda31c2008-11-05 18:35:52 +00001005
Evan Cheng437c1732008-11-07 22:30:53 +00001006 // Handle jump tables.
1007 if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1008 // First emit a ldr pc, [] instruction.
1009 emitDataProcessingInstruction(MI, ARM::PC);
1010
1011 // Then emit the inline jump table.
1012 unsigned JTIndex = (TID.Opcode == ARM::BR_JTr)
1013 ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1014 emitInlineJumpTable(JTIndex);
1015 return;
1016 } else if (TID.Opcode == ARM::BR_JTm) {
Evan Cheng4df60f52008-11-07 09:06:08 +00001017 // First emit a ldr pc, [] instruction.
1018 emitLoadStoreInstruction(MI, ARM::PC);
1019
1020 // Then emit the inline jump table.
Evan Cheng437c1732008-11-07 22:30:53 +00001021 emitInlineJumpTable(MI.getOperand(3).getIndex());
Evan Cheng4df60f52008-11-07 09:06:08 +00001022 return;
1023 }
1024
Evan Chengedda31c2008-11-05 18:35:52 +00001025 // Part of binary is determined by TableGn.
1026 unsigned Binary = getBinaryCodeForInstr(MI);
1027
1028 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +00001029 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Chengedda31c2008-11-05 18:35:52 +00001030
1031 if (TID.Opcode == ARM::BX_RET)
1032 // The return register is LR.
1033 Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
1034 else
1035 // otherwise, set the return register
1036 Binary |= getMachineOpValue(MI, 0);
1037
Evan Cheng83b5cf02008-11-05 23:22:34 +00001038 emitWordLE(Binary);
Evan Cheng148b6a42007-07-05 21:15:40 +00001039}
Evan Cheng7602e112008-09-02 06:52:38 +00001040
Evan Cheng96581d32008-11-11 02:11:05 +00001041void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1042 const TargetInstrDesc &TID = MI.getDesc();
1043
1044 // Part of binary is determined by TableGn.
1045 unsigned Binary = getBinaryCodeForInstr(MI);
1046
1047 // Set the conditional execution predicate
1048 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1049
1050 unsigned OpIdx = 0;
1051 assert((Binary & ARMII::D_BitShift) == 0 &&
1052 (Binary & ARMII::N_BitShift) == 0 &&
1053 (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1054
1055 // Encode Dd / Sd.
1056 unsigned RegD = getMachineOpValue(MI, OpIdx++);
Evan Cheng78be83d2008-11-11 19:40:26 +00001057 Binary |= (RegD & 0x0f) << ARMII::RegRdShift;
Evan Cheng96581d32008-11-11 02:11:05 +00001058 Binary |= (RegD & 0x10) << ARMII::D_BitShift;
1059
1060 // If this is a two-address operand, skip it, e.g. FMACD.
1061 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1062 ++OpIdx;
1063
1064 // Encode Dn / Sn.
1065 if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm) {
1066 unsigned RegN = getMachineOpValue(MI, OpIdx++);
Evan Cheng78be83d2008-11-11 19:40:26 +00001067 Binary |= (RegN & 0x0f) << ARMII::RegRnShift;
Evan Cheng96581d32008-11-11 02:11:05 +00001068 Binary |= (RegN & 0x10) << ARMII::N_BitShift;
1069 }
1070
1071 // Encode Dm / Sm.
1072 unsigned RegM = getMachineOpValue(MI, OpIdx++);
1073 Binary |= (RegM & 0x0f);
1074 Binary |= (RegM & 0x10) << ARMII::M_BitShift;
1075
1076 emitWordLE(Binary);
1077}
1078
Evan Cheng78be83d2008-11-11 19:40:26 +00001079void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1080 const TargetInstrDesc &TID = MI.getDesc();
1081
1082 // Part of binary is determined by TableGn.
1083 unsigned Binary = getBinaryCodeForInstr(MI);
1084
1085 // Set the conditional execution predicate
1086 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1087
Evan Cheng0a0ab132008-11-11 22:46:12 +00001088 // FMDRR encodes registers in reverse order.
1089 unsigned Form = TID.TSFlags & ARMII::FormMask;
1090 unsigned OpIdx = (Form == ARMII::VFPConv2Frm) ? 2 : 0;
Evan Cheng78be83d2008-11-11 19:40:26 +00001091
1092 // Encode Dd / Sd.
Evan Cheng0a0ab132008-11-11 22:46:12 +00001093 unsigned RegD = getMachineOpValue(MI, OpIdx);
Evan Cheng78be83d2008-11-11 19:40:26 +00001094 Binary |= (RegD & 0x0f) << ARMII::RegRdShift;
1095 Binary |= (RegD & 0x10) << ARMII::D_BitShift;
Evan Cheng0a0ab132008-11-11 22:46:12 +00001096 if (Form == ARMII::VFPConv2Frm)
1097 --OpIdx;
1098 else
1099 ++OpIdx;
Evan Cheng78be83d2008-11-11 19:40:26 +00001100
1101 // Encode Dn / Sn.
Evan Cheng0a0ab132008-11-11 22:46:12 +00001102 if (Form == ARMII::VFPConv1Frm || Form == ARMII::VFPConv2Frm) {
1103 unsigned RegN = getMachineOpValue(MI, OpIdx);
Evan Cheng78be83d2008-11-11 19:40:26 +00001104 Binary |= (RegN & 0x0f) << ARMII::RegRnShift;
1105 Binary |= (RegN & 0x10) << ARMII::N_BitShift;
Evan Cheng0a0ab132008-11-11 22:46:12 +00001106 if (Form == ARMII::VFPConv2Frm)
1107 --OpIdx;
1108 else
1109 ++OpIdx;
Evan Cheng78be83d2008-11-11 19:40:26 +00001110
1111 // FMRS / FMSR do not have Rm.
Evan Cheng0a0ab132008-11-11 22:46:12 +00001112 if (TID.getNumOperands() > OpIdx && MI.getOperand(OpIdx).isReg()) {
1113 unsigned RegM = getMachineOpValue(MI, OpIdx);
Evan Cheng78be83d2008-11-11 19:40:26 +00001114 Binary |= (RegM & 0x0f);
1115 Binary |= (RegM & 0x10) << ARMII::M_BitShift;
Evan Cheng0a0ab132008-11-11 22:46:12 +00001116 } else if (Form == ARMII::VFPConv2Frm) {
1117 // FMDRR encodes definition register in Dm field.
1118 Binary |= getMachineOpValue(MI, 0);
Evan Cheng78be83d2008-11-11 19:40:26 +00001119 }
1120 } else {
Evan Cheng0a0ab132008-11-11 22:46:12 +00001121 assert(Form == ARMII::VFPConv3Frm && "Unsupported format!");
1122 unsigned RegM = getMachineOpValue(MI, OpIdx);
Evan Cheng78be83d2008-11-11 19:40:26 +00001123 Binary |= (RegM & 0x0f);
1124 Binary |= (RegM & 0x10) << ARMII::M_BitShift;
1125 }
1126
1127 emitWordLE(Binary);
1128}
1129
Evan Chengcd8e66a2008-11-11 21:48:44 +00001130void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1131 // Part of binary is determined by TableGn.
1132 unsigned Binary = getBinaryCodeForInstr(MI);
1133
1134 // Set the conditional execution predicate
1135 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1136
1137 unsigned OpIdx = 0;
1138
1139 // Encode Dd / Sd.
1140 unsigned RegD = getMachineOpValue(MI, OpIdx++);
1141 Binary |= (RegD & 0x0f) << ARMII::RegRdShift;
1142 Binary |= (RegD & 0x10) << ARMII::D_BitShift;
1143
1144 // Encode address base.
1145 const MachineOperand &Base = MI.getOperand(OpIdx++);
1146 Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1147
1148 // If there is a non-zero immediate offset, encode it.
1149 if (Base.isReg()) {
1150 const MachineOperand &Offset = MI.getOperand(OpIdx);
1151 if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1152 if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1153 Binary |= 1 << ARMII::U_BitShift;
1154 // Immediate offset is multiplied by 4.
1155 Binary |= ImmOffs >> 2;
1156 emitWordLE(Binary);
1157 return;
1158 }
1159 }
1160
1161 // If immediate offset is omitted, default to +0.
1162 Binary |= 1 << ARMII::U_BitShift;
1163
1164 emitWordLE(Binary);
1165}
1166
1167void
1168ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1169 // Part of binary is determined by TableGn.
1170 unsigned Binary = getBinaryCodeForInstr(MI);
1171
1172 // Set the conditional execution predicate
1173 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1174
1175 // Set base address operand
1176 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
1177
1178 // Set addressing mode by modifying bits U(23) and P(24)
1179 const MachineOperand &MO = MI.getOperand(1);
1180 Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm()));
1181
1182 // Set bit W(21)
1183 if (ARM_AM::getAM5WBFlag(MO.getImm()))
1184 Binary |= 0x1 << ARMII::W_BitShift;
1185
1186 // First register is encoded in Dd.
1187 unsigned FirstReg = MI.getOperand(4).getReg();
1188 Binary |= ARMRegisterInfo::getRegisterNumbering(FirstReg)<< ARMII::RegRdShift;
1189
1190 // Number of registers are encoded in offset field.
1191 unsigned NumRegs = 1;
1192 for (unsigned i = 5, e = MI.getNumOperands(); i != e; ++i) {
1193 const MachineOperand &MO = MI.getOperand(i);
1194 if (!MO.isReg() || MO.isImplicit())
1195 break;
1196 ++NumRegs;
1197 }
1198 Binary |= NumRegs * 2;
1199
1200 emitWordLE(Binary);
1201}
1202
1203void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
1204 // Part of binary is determined by TableGn.
1205 unsigned Binary = getBinaryCodeForInstr(MI);
1206
1207 // Set the conditional execution predicate
1208 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1209
1210 emitWordLE(Binary);
1211}
1212
Evan Cheng7602e112008-09-02 06:52:38 +00001213#include "ARMGenCodeEmitter.inc"