blob: 4a206653d511cbd913a16b050b372e76fb4bea00 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
Owen Anderson1636de92007-09-07 04:06:50 +000019#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Support/CommandLine.h"
34using namespace llvm;
35
36static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
37cl::desc("enable preincrement load/store generation on PPC (experimental)"),
38 cl::Hidden);
39
40PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
41 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
42
43 setPow2DivIsCheap();
44
45 // Use _setjmp/_longjmp instead of setjmp/longjmp.
46 setUseUnderscoreSetJmp(true);
47 setUseUnderscoreLongJmp(true);
48
49 // Set up the register classes.
50 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
51 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
52 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
53
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58 // PowerPC does not have truncstore for i1.
59 setStoreXAction(MVT::i1, Promote);
60
61 // PowerPC has pre-inc load and store's.
62 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
74 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
75
Dale Johannesen472d15d2007-10-06 01:24:11 +000076 // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
77 setConvertAction(MVT::ppcf128, MVT::f64, Expand);
78 setConvertAction(MVT::ppcf128, MVT::f32, Expand);
Dale Johannesen3d8578b2007-10-10 01:01:31 +000079 // This is used in the ppcf128->int sequence. Note it has different semantics
80 // from FP_ROUND: that rounds to nearest, this rounds to zero.
81 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
Dale Johannesen472d15d2007-10-06 01:24:11 +000082
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083 // PowerPC has no intrinsics for these particular operations
84 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
85 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
86 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
87
88 // PowerPC has no SREM/UREM instructions
89 setOperationAction(ISD::SREM, MVT::i32, Expand);
90 setOperationAction(ISD::UREM, MVT::i32, Expand);
91 setOperationAction(ISD::SREM, MVT::i64, Expand);
92 setOperationAction(ISD::UREM, MVT::i64, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +000093
94 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
95 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
96 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
97 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
98 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
99 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
100 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
101 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
102 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103
104 // We don't support sin/cos/sqrt/fmod
105 setOperationAction(ISD::FSIN , MVT::f64, Expand);
106 setOperationAction(ISD::FCOS , MVT::f64, Expand);
107 setOperationAction(ISD::FREM , MVT::f64, Expand);
108 setOperationAction(ISD::FSIN , MVT::f32, Expand);
109 setOperationAction(ISD::FCOS , MVT::f32, Expand);
110 setOperationAction(ISD::FREM , MVT::f32, Expand);
111
112 // If we're enabling GP optimizations, use hardware square root
113 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
114 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
115 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
116 }
117
118 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
119 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
120
121 // PowerPC does not have BSWAP, CTPOP or CTTZ
122 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
123 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
124 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
125 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
126 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
127 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
128
129 // PowerPC does not have ROTR
130 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
131
132 // PowerPC does not have Select
133 setOperationAction(ISD::SELECT, MVT::i32, Expand);
134 setOperationAction(ISD::SELECT, MVT::i64, Expand);
135 setOperationAction(ISD::SELECT, MVT::f32, Expand);
136 setOperationAction(ISD::SELECT, MVT::f64, Expand);
137
138 // PowerPC wants to turn select_cc of FP into fsel when possible.
139 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
140 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
141
142 // PowerPC wants to optimize integer setcc a bit
143 setOperationAction(ISD::SETCC, MVT::i32, Custom);
144
145 // PowerPC does not have BRCOND which requires SetCC
146 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
147
148 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
149
150 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
151 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
152
153 // PowerPC does not have [U|S]INT_TO_FP
154 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
155 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
156
157 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
158 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
159 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
160 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
161
162 // We cannot sextinreg(i1). Expand to shifts.
163 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
164
165 // Support label based line numbers.
166 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
167 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
168 if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
169 setOperationAction(ISD::LABEL, MVT::Other, Expand);
170 } else {
171 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
172 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
173 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
174 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
175 }
176
177 // We want to legalize GlobalAddress and ConstantPool nodes into the
178 // appropriate instructions to materialize the address.
179 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
181 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
182 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
183 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
184 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
185 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
186 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
187
188 // RET must be custom lowered, to meet ABI requirements
189 setOperationAction(ISD::RET , MVT::Other, Custom);
Duncan Sands38947cd2007-07-27 12:58:54 +0000190
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
192 setOperationAction(ISD::VASTART , MVT::Other, Custom);
193
194 // VAARG is custom lowered with ELF 32 ABI
195 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
196 setOperationAction(ISD::VAARG, MVT::Other, Custom);
197 else
198 setOperationAction(ISD::VAARG, MVT::Other, Expand);
199
200 // Use the default implementation.
201 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
202 setOperationAction(ISD::VAEND , MVT::Other, Expand);
203 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
204 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
205 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
206 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
207
208 // We want to custom lower some of our intrinsics.
209 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
210
211 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
212 // They also have instructions for converting between i64 and fp.
213 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
214 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
215 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
216 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
217 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
218
219 // FIXME: disable this lowered code. This generates 64-bit register values,
220 // and we don't model the fact that the top part is clobbered by calls. We
221 // need to flag these together so that the value isn't live across a call.
222 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
223
224 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
225 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
226 } else {
227 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
228 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
229 }
230
231 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
232 // 64 bit PowerPC implementations can support i64 types directly
233 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
234 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
235 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
236 } else {
237 // 32 bit PowerPC wants to expand i64 shifts itself.
238 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
239 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
240 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
241 }
242
243 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
244 // First set operation action for all vector types to expand. Then we
245 // will selectively turn on ones that can be effectively codegen'd.
246 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
247 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
248 // add/sub are legal for all supported vector VT's.
249 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
250 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
251
252 // We promote all shuffles to v16i8.
253 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
254 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
255
256 // We promote all non-typed operations to v4i32.
257 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
258 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
259 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
260 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
261 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
262 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
263 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
264 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
265 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
266 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
267 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
268 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
269
270 // No other operations are legal.
271 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
272 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
273 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
274 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
275 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
276 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
Evan Chengc5912e32007-07-30 07:51:22 +0000277 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
279 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
280 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +0000281 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
282 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
283 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
284 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000285
286 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
287 }
288
289 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
290 // with merges, splats, etc.
291 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
292
293 setOperationAction(ISD::AND , MVT::v4i32, Legal);
294 setOperationAction(ISD::OR , MVT::v4i32, Legal);
295 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
296 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
297 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
298 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
299
300 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
301 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
302 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
303 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
304
305 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
306 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
307 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
308 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
309
310 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
311 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
312
313 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
314 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
315 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
316 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
317 }
318
319 setSetCCResultType(MVT::i32);
320 setShiftAmountType(MVT::i32);
321 setSetCCResultContents(ZeroOrOneSetCCResult);
322
323 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
324 setStackPointerRegisterToSaveRestore(PPC::X1);
325 setExceptionPointerRegister(PPC::X3);
326 setExceptionSelectorRegister(PPC::X4);
327 } else {
328 setStackPointerRegisterToSaveRestore(PPC::R1);
329 setExceptionPointerRegister(PPC::R3);
330 setExceptionSelectorRegister(PPC::R4);
331 }
332
333 // We have target-specific dag combine patterns for the following nodes:
334 setTargetDAGCombine(ISD::SINT_TO_FP);
335 setTargetDAGCombine(ISD::STORE);
336 setTargetDAGCombine(ISD::BR_CC);
337 setTargetDAGCombine(ISD::BSWAP);
338
339 computeRegisterProperties();
340}
341
342const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
343 switch (Opcode) {
344 default: return 0;
345 case PPCISD::FSEL: return "PPCISD::FSEL";
346 case PPCISD::FCFID: return "PPCISD::FCFID";
347 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
348 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
349 case PPCISD::STFIWX: return "PPCISD::STFIWX";
350 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
351 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
352 case PPCISD::VPERM: return "PPCISD::VPERM";
353 case PPCISD::Hi: return "PPCISD::Hi";
354 case PPCISD::Lo: return "PPCISD::Lo";
355 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
356 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
357 case PPCISD::SRL: return "PPCISD::SRL";
358 case PPCISD::SRA: return "PPCISD::SRA";
359 case PPCISD::SHL: return "PPCISD::SHL";
360 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
361 case PPCISD::STD_32: return "PPCISD::STD_32";
362 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
363 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
364 case PPCISD::MTCTR: return "PPCISD::MTCTR";
365 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
366 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
367 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
368 case PPCISD::MFCR: return "PPCISD::MFCR";
369 case PPCISD::VCMP: return "PPCISD::VCMP";
370 case PPCISD::VCMPo: return "PPCISD::VCMPo";
371 case PPCISD::LBRX: return "PPCISD::LBRX";
372 case PPCISD::STBRX: return "PPCISD::STBRX";
373 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
374 }
375}
376
377//===----------------------------------------------------------------------===//
378// Node matching predicates, for use by the tblgen matching code.
379//===----------------------------------------------------------------------===//
380
381/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
382static bool isFloatingPointZero(SDOperand Op) {
383 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000384 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000385 else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
386 // Maybe this has already been legalized into the constant pool?
387 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
388 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000389 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000390 }
391 return false;
392}
393
394/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
395/// true if Op is undef or if it matches the specified value.
396static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
397 return Op.getOpcode() == ISD::UNDEF ||
398 cast<ConstantSDNode>(Op)->getValue() == Val;
399}
400
401/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
402/// VPKUHUM instruction.
403bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
404 if (!isUnary) {
405 for (unsigned i = 0; i != 16; ++i)
406 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
407 return false;
408 } else {
409 for (unsigned i = 0; i != 8; ++i)
410 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
411 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
412 return false;
413 }
414 return true;
415}
416
417/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
418/// VPKUWUM instruction.
419bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
420 if (!isUnary) {
421 for (unsigned i = 0; i != 16; i += 2)
422 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
423 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
424 return false;
425 } else {
426 for (unsigned i = 0; i != 8; i += 2)
427 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
428 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
429 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
430 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
431 return false;
432 }
433 return true;
434}
435
436/// isVMerge - Common function, used to match vmrg* shuffles.
437///
438static bool isVMerge(SDNode *N, unsigned UnitSize,
439 unsigned LHSStart, unsigned RHSStart) {
440 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
441 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
442 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
443 "Unsupported merge size!");
444
445 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
446 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
447 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
448 LHSStart+j+i*UnitSize) ||
449 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
450 RHSStart+j+i*UnitSize))
451 return false;
452 }
453 return true;
454}
455
456/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
457/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
458bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
459 if (!isUnary)
460 return isVMerge(N, UnitSize, 8, 24);
461 return isVMerge(N, UnitSize, 8, 8);
462}
463
464/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
465/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
466bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
467 if (!isUnary)
468 return isVMerge(N, UnitSize, 0, 16);
469 return isVMerge(N, UnitSize, 0, 0);
470}
471
472
473/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
474/// amount, otherwise return -1.
475int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
476 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
477 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
478 // Find the first non-undef value in the shuffle mask.
479 unsigned i;
480 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
481 /*search*/;
482
483 if (i == 16) return -1; // all undef.
484
485 // Otherwise, check to see if the rest of the elements are consequtively
486 // numbered from this value.
487 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
488 if (ShiftAmt < i) return -1;
489 ShiftAmt -= i;
490
491 if (!isUnary) {
492 // Check the rest of the elements to see if they are consequtive.
493 for (++i; i != 16; ++i)
494 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
495 return -1;
496 } else {
497 // Check the rest of the elements to see if they are consequtive.
498 for (++i; i != 16; ++i)
499 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
500 return -1;
501 }
502
503 return ShiftAmt;
504}
505
506/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
507/// specifies a splat of a single element that is suitable for input to
508/// VSPLTB/VSPLTH/VSPLTW.
509bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
510 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
511 N->getNumOperands() == 16 &&
512 (EltSize == 1 || EltSize == 2 || EltSize == 4));
513
514 // This is a splat operation if each element of the permute is the same, and
515 // if the value doesn't reference the second vector.
516 unsigned ElementBase = 0;
517 SDOperand Elt = N->getOperand(0);
518 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
519 ElementBase = EltV->getValue();
520 else
521 return false; // FIXME: Handle UNDEF elements too!
522
523 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
524 return false;
525
526 // Check that they are consequtive.
527 for (unsigned i = 1; i != EltSize; ++i) {
528 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
529 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
530 return false;
531 }
532
533 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
534 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
535 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
536 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
537 "Invalid VECTOR_SHUFFLE mask!");
538 for (unsigned j = 0; j != EltSize; ++j)
539 if (N->getOperand(i+j) != N->getOperand(j))
540 return false;
541 }
542
543 return true;
544}
545
Evan Chengc5912e32007-07-30 07:51:22 +0000546/// isAllNegativeZeroVector - Returns true if all elements of build_vector
547/// are -0.0.
548bool PPC::isAllNegativeZeroVector(SDNode *N) {
549 assert(N->getOpcode() == ISD::BUILD_VECTOR);
550 if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
551 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000552 return CFP->getValueAPF().isNegZero();
Evan Chengc5912e32007-07-30 07:51:22 +0000553 return false;
554}
555
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000556/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
557/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
558unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
559 assert(isSplatShuffleMask(N, EltSize));
560 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
561}
562
563/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
564/// by using a vspltis[bhw] instruction of the specified element size, return
565/// the constant being splatted. The ByteSize field indicates the number of
566/// bytes of each element [124] -> [bhw].
567SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
568 SDOperand OpVal(0, 0);
569
570 // If ByteSize of the splat is bigger than the element size of the
571 // build_vector, then we have a case where we are checking for a splat where
572 // multiple elements of the buildvector are folded together into a single
573 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
574 unsigned EltSize = 16/N->getNumOperands();
575 if (EltSize < ByteSize) {
576 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
577 SDOperand UniquedVals[4];
578 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
579
580 // See if all of the elements in the buildvector agree across.
581 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
582 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
583 // If the element isn't a constant, bail fully out.
584 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
585
586
587 if (UniquedVals[i&(Multiple-1)].Val == 0)
588 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
589 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
590 return SDOperand(); // no match.
591 }
592
593 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
594 // either constant or undef values that are identical for each chunk. See
595 // if these chunks can form into a larger vspltis*.
596
597 // Check to see if all of the leading entries are either 0 or -1. If
598 // neither, then this won't fit into the immediate field.
599 bool LeadingZero = true;
600 bool LeadingOnes = true;
601 for (unsigned i = 0; i != Multiple-1; ++i) {
602 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
603
604 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
605 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
606 }
607 // Finally, check the least significant entry.
608 if (LeadingZero) {
609 if (UniquedVals[Multiple-1].Val == 0)
610 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
611 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
612 if (Val < 16)
613 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
614 }
615 if (LeadingOnes) {
616 if (UniquedVals[Multiple-1].Val == 0)
617 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
618 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
619 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
620 return DAG.getTargetConstant(Val, MVT::i32);
621 }
622
623 return SDOperand();
624 }
625
626 // Check to see if this buildvec has a single non-undef value in its elements.
627 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
628 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
629 if (OpVal.Val == 0)
630 OpVal = N->getOperand(i);
631 else if (OpVal != N->getOperand(i))
632 return SDOperand();
633 }
634
635 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
636
637 unsigned ValSizeInBytes = 0;
638 uint64_t Value = 0;
639 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
640 Value = CN->getValue();
641 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
642 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
643 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +0000644 Value = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000645 ValSizeInBytes = 4;
646 }
647
648 // If the splat value is larger than the element value, then we can never do
649 // this splat. The only case that we could fit the replicated bits into our
650 // immediate field for would be zero, and we prefer to use vxor for it.
651 if (ValSizeInBytes < ByteSize) return SDOperand();
652
653 // If the element value is larger than the splat value, cut it in half and
654 // check to see if the two halves are equal. Continue doing this until we
655 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
656 while (ValSizeInBytes > ByteSize) {
657 ValSizeInBytes >>= 1;
658
659 // If the top half equals the bottom half, we're still ok.
660 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
661 (Value & ((1 << (8*ValSizeInBytes))-1)))
662 return SDOperand();
663 }
664
665 // Properly sign extend the value.
666 int ShAmt = (4-ByteSize)*8;
667 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
668
669 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
670 if (MaskVal == 0) return SDOperand();
671
672 // Finally, if this value fits in a 5 bit sext field, return it
673 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
674 return DAG.getTargetConstant(MaskVal, MVT::i32);
675 return SDOperand();
676}
677
678//===----------------------------------------------------------------------===//
679// Addressing Mode Selection
680//===----------------------------------------------------------------------===//
681
682/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
683/// or 64-bit immediate, and if the value can be accurately represented as a
684/// sign extension from a 16-bit value. If so, this returns true and the
685/// immediate.
686static bool isIntS16Immediate(SDNode *N, short &Imm) {
687 if (N->getOpcode() != ISD::Constant)
688 return false;
689
690 Imm = (short)cast<ConstantSDNode>(N)->getValue();
691 if (N->getValueType(0) == MVT::i32)
692 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
693 else
694 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
695}
696static bool isIntS16Immediate(SDOperand Op, short &Imm) {
697 return isIntS16Immediate(Op.Val, Imm);
698}
699
700
701/// SelectAddressRegReg - Given the specified addressed, check to see if it
702/// can be represented as an indexed [r+r] operation. Returns false if it
703/// can be more efficiently represented with [r+imm].
704bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
705 SDOperand &Index,
706 SelectionDAG &DAG) {
707 short imm = 0;
708 if (N.getOpcode() == ISD::ADD) {
709 if (isIntS16Immediate(N.getOperand(1), imm))
710 return false; // r+i
711 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
712 return false; // r+i
713
714 Base = N.getOperand(0);
715 Index = N.getOperand(1);
716 return true;
717 } else if (N.getOpcode() == ISD::OR) {
718 if (isIntS16Immediate(N.getOperand(1), imm))
719 return false; // r+i can fold it if we can.
720
721 // If this is an or of disjoint bitfields, we can codegen this as an add
722 // (for better address arithmetic) if the LHS and RHS of the OR are provably
723 // disjoint.
724 uint64_t LHSKnownZero, LHSKnownOne;
725 uint64_t RHSKnownZero, RHSKnownOne;
726 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
727
728 if (LHSKnownZero) {
729 DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
730 // If all of the bits are known zero on the LHS or RHS, the add won't
731 // carry.
732 if ((LHSKnownZero | RHSKnownZero) == ~0U) {
733 Base = N.getOperand(0);
734 Index = N.getOperand(1);
735 return true;
736 }
737 }
738 }
739
740 return false;
741}
742
743/// Returns true if the address N can be represented by a base register plus
744/// a signed 16-bit displacement [r+imm], and if it is not better
745/// represented as reg+reg.
746bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
747 SDOperand &Base, SelectionDAG &DAG){
748 // If this can be more profitably realized as r+r, fail.
749 if (SelectAddressRegReg(N, Disp, Base, DAG))
750 return false;
751
752 if (N.getOpcode() == ISD::ADD) {
753 short imm = 0;
754 if (isIntS16Immediate(N.getOperand(1), imm)) {
755 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
756 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
757 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
758 } else {
759 Base = N.getOperand(0);
760 }
761 return true; // [r+i]
762 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
763 // Match LOAD (ADD (X, Lo(G))).
764 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
765 && "Cannot handle constant offsets yet!");
766 Disp = N.getOperand(1).getOperand(0); // The global address.
767 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
768 Disp.getOpcode() == ISD::TargetConstantPool ||
769 Disp.getOpcode() == ISD::TargetJumpTable);
770 Base = N.getOperand(0);
771 return true; // [&g+r]
772 }
773 } else if (N.getOpcode() == ISD::OR) {
774 short imm = 0;
775 if (isIntS16Immediate(N.getOperand(1), imm)) {
776 // If this is an or of disjoint bitfields, we can codegen this as an add
777 // (for better address arithmetic) if the LHS and RHS of the OR are
778 // provably disjoint.
779 uint64_t LHSKnownZero, LHSKnownOne;
780 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
781 if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
782 // If all of the bits are known zero on the LHS or RHS, the add won't
783 // carry.
784 Base = N.getOperand(0);
785 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
786 return true;
787 }
788 }
789 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
790 // Loading from a constant address.
791
792 // If this address fits entirely in a 16-bit sext immediate field, codegen
793 // this as "d, 0"
794 short Imm;
795 if (isIntS16Immediate(CN, Imm)) {
796 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
797 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
798 return true;
799 }
800
801 // Handle 32-bit sext immediates with LIS + addr mode.
802 if (CN->getValueType(0) == MVT::i32 ||
803 (int64_t)CN->getValue() == (int)CN->getValue()) {
804 int Addr = (int)CN->getValue();
805
806 // Otherwise, break this down into an LIS + disp.
807 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
808
809 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
810 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
811 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
812 return true;
813 }
814 }
815
816 Disp = DAG.getTargetConstant(0, getPointerTy());
817 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
818 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
819 else
820 Base = N;
821 return true; // [r+0]
822}
823
824/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
825/// represented as an indexed [r+r] operation.
826bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
827 SDOperand &Index,
828 SelectionDAG &DAG) {
829 // Check to see if we can easily represent this as an [r+r] address. This
830 // will fail if it thinks that the address is more profitably represented as
831 // reg+imm, e.g. where imm = 0.
832 if (SelectAddressRegReg(N, Base, Index, DAG))
833 return true;
834
835 // If the operand is an addition, always emit this as [r+r], since this is
836 // better (for code size, and execution, as the memop does the add for free)
837 // than emitting an explicit add.
838 if (N.getOpcode() == ISD::ADD) {
839 Base = N.getOperand(0);
840 Index = N.getOperand(1);
841 return true;
842 }
843
844 // Otherwise, do it the hard way, using R0 as the base register.
845 Base = DAG.getRegister(PPC::R0, N.getValueType());
846 Index = N;
847 return true;
848}
849
850/// SelectAddressRegImmShift - Returns true if the address N can be
851/// represented by a base register plus a signed 14-bit displacement
852/// [r+imm*4]. Suitable for use by STD and friends.
853bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
854 SDOperand &Base,
855 SelectionDAG &DAG) {
856 // If this can be more profitably realized as r+r, fail.
857 if (SelectAddressRegReg(N, Disp, Base, DAG))
858 return false;
859
860 if (N.getOpcode() == ISD::ADD) {
861 short imm = 0;
862 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
863 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
864 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
865 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
866 } else {
867 Base = N.getOperand(0);
868 }
869 return true; // [r+i]
870 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
871 // Match LOAD (ADD (X, Lo(G))).
872 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
873 && "Cannot handle constant offsets yet!");
874 Disp = N.getOperand(1).getOperand(0); // The global address.
875 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
876 Disp.getOpcode() == ISD::TargetConstantPool ||
877 Disp.getOpcode() == ISD::TargetJumpTable);
878 Base = N.getOperand(0);
879 return true; // [&g+r]
880 }
881 } else if (N.getOpcode() == ISD::OR) {
882 short imm = 0;
883 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
884 // If this is an or of disjoint bitfields, we can codegen this as an add
885 // (for better address arithmetic) if the LHS and RHS of the OR are
886 // provably disjoint.
887 uint64_t LHSKnownZero, LHSKnownOne;
888 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
889 if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
890 // If all of the bits are known zero on the LHS or RHS, the add won't
891 // carry.
892 Base = N.getOperand(0);
893 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
894 return true;
895 }
896 }
897 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
898 // Loading from a constant address. Verify low two bits are clear.
899 if ((CN->getValue() & 3) == 0) {
900 // If this address fits entirely in a 14-bit sext immediate field, codegen
901 // this as "d, 0"
902 short Imm;
903 if (isIntS16Immediate(CN, Imm)) {
904 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
905 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
906 return true;
907 }
908
909 // Fold the low-part of 32-bit absolute addresses into addr mode.
910 if (CN->getValueType(0) == MVT::i32 ||
911 (int64_t)CN->getValue() == (int)CN->getValue()) {
912 int Addr = (int)CN->getValue();
913
914 // Otherwise, break this down into an LIS + disp.
915 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
916
917 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
918 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
919 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
920 return true;
921 }
922 }
923 }
924
925 Disp = DAG.getTargetConstant(0, getPointerTy());
926 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
927 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
928 else
929 Base = N;
930 return true; // [r+0]
931}
932
933
934/// getPreIndexedAddressParts - returns true by value, base pointer and
935/// offset pointer and addressing mode by reference if the node's address
936/// can be legally represented as pre-indexed load / store address.
937bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
938 SDOperand &Offset,
939 ISD::MemIndexedMode &AM,
940 SelectionDAG &DAG) {
941 // Disabled by default for now.
942 if (!EnablePPCPreinc) return false;
943
944 SDOperand Ptr;
945 MVT::ValueType VT;
946 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
947 Ptr = LD->getBasePtr();
948 VT = LD->getLoadedVT();
949
950 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
951 ST = ST;
952 Ptr = ST->getBasePtr();
953 VT = ST->getStoredVT();
954 } else
955 return false;
956
957 // PowerPC doesn't have preinc load/store instructions for vectors.
958 if (MVT::isVector(VT))
959 return false;
960
961 // TODO: Check reg+reg first.
962
963 // LDU/STU use reg+imm*4, others use reg+imm.
964 if (VT != MVT::i64) {
965 // reg + imm
966 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
967 return false;
968 } else {
969 // reg + imm * 4.
970 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
971 return false;
972 }
973
974 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
975 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
976 // sext i32 to i64 when addr mode is r+i.
977 if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
978 LD->getExtensionType() == ISD::SEXTLOAD &&
979 isa<ConstantSDNode>(Offset))
980 return false;
981 }
982
983 AM = ISD::PRE_INC;
984 return true;
985}
986
987//===----------------------------------------------------------------------===//
988// LowerOperation implementation
989//===----------------------------------------------------------------------===//
990
991static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
992 MVT::ValueType PtrVT = Op.getValueType();
993 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
994 Constant *C = CP->getConstVal();
995 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
996 SDOperand Zero = DAG.getConstant(0, PtrVT);
997
998 const TargetMachine &TM = DAG.getTarget();
999
1000 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1001 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1002
1003 // If this is a non-darwin platform, we don't support non-static relo models
1004 // yet.
1005 if (TM.getRelocationModel() == Reloc::Static ||
1006 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1007 // Generate non-pic code that has direct accesses to the constant pool.
1008 // The address of the global is just (hi(&g)+lo(&g)).
1009 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1010 }
1011
1012 if (TM.getRelocationModel() == Reloc::PIC_) {
1013 // With PIC, the first instruction is actually "GR+hi(&G)".
1014 Hi = DAG.getNode(ISD::ADD, PtrVT,
1015 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1016 }
1017
1018 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1019 return Lo;
1020}
1021
1022static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1023 MVT::ValueType PtrVT = Op.getValueType();
1024 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1025 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1026 SDOperand Zero = DAG.getConstant(0, PtrVT);
1027
1028 const TargetMachine &TM = DAG.getTarget();
1029
1030 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1031 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1032
1033 // If this is a non-darwin platform, we don't support non-static relo models
1034 // yet.
1035 if (TM.getRelocationModel() == Reloc::Static ||
1036 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1037 // Generate non-pic code that has direct accesses to the constant pool.
1038 // The address of the global is just (hi(&g)+lo(&g)).
1039 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1040 }
1041
1042 if (TM.getRelocationModel() == Reloc::PIC_) {
1043 // With PIC, the first instruction is actually "GR+hi(&G)".
1044 Hi = DAG.getNode(ISD::ADD, PtrVT,
1045 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1046 }
1047
1048 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1049 return Lo;
1050}
1051
1052static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1053 assert(0 && "TLS not implemented for PPC.");
1054}
1055
1056static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1057 MVT::ValueType PtrVT = Op.getValueType();
1058 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1059 GlobalValue *GV = GSDN->getGlobal();
1060 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1061 SDOperand Zero = DAG.getConstant(0, PtrVT);
1062
1063 const TargetMachine &TM = DAG.getTarget();
1064
1065 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1066 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1067
1068 // If this is a non-darwin platform, we don't support non-static relo models
1069 // yet.
1070 if (TM.getRelocationModel() == Reloc::Static ||
1071 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1072 // Generate non-pic code that has direct accesses to globals.
1073 // The address of the global is just (hi(&g)+lo(&g)).
1074 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1075 }
1076
1077 if (TM.getRelocationModel() == Reloc::PIC_) {
1078 // With PIC, the first instruction is actually "GR+hi(&G)".
1079 Hi = DAG.getNode(ISD::ADD, PtrVT,
1080 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1081 }
1082
1083 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1084
1085 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1086 return Lo;
1087
1088 // If the global is weak or external, we have to go through the lazy
1089 // resolution stub.
1090 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1091}
1092
1093static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1094 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1095
1096 // If we're comparing for equality to zero, expose the fact that this is
1097 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1098 // fold the new nodes.
1099 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1100 if (C->isNullValue() && CC == ISD::SETEQ) {
1101 MVT::ValueType VT = Op.getOperand(0).getValueType();
1102 SDOperand Zext = Op.getOperand(0);
1103 if (VT < MVT::i32) {
1104 VT = MVT::i32;
1105 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1106 }
1107 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1108 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1109 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1110 DAG.getConstant(Log2b, MVT::i32));
1111 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1112 }
1113 // Leave comparisons against 0 and -1 alone for now, since they're usually
1114 // optimized. FIXME: revisit this when we can custom lower all setcc
1115 // optimizations.
1116 if (C->isAllOnesValue() || C->isNullValue())
1117 return SDOperand();
1118 }
1119
1120 // If we have an integer seteq/setne, turn it into a compare against zero
1121 // by xor'ing the rhs with the lhs, which is faster than setting a
1122 // condition register, reading it back out, and masking the correct bit. The
1123 // normal approach here uses sub to do this instead of xor. Using xor exposes
1124 // the result to other bit-twiddling opportunities.
1125 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1126 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1127 MVT::ValueType VT = Op.getValueType();
1128 SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1129 Op.getOperand(1));
1130 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1131 }
1132 return SDOperand();
1133}
1134
1135static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1136 int VarArgsFrameIndex,
1137 int VarArgsStackOffset,
1138 unsigned VarArgsNumGPR,
1139 unsigned VarArgsNumFPR,
1140 const PPCSubtarget &Subtarget) {
1141
1142 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1143}
1144
1145static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1146 int VarArgsFrameIndex,
1147 int VarArgsStackOffset,
1148 unsigned VarArgsNumGPR,
1149 unsigned VarArgsNumFPR,
1150 const PPCSubtarget &Subtarget) {
1151
1152 if (Subtarget.isMachoABI()) {
1153 // vastart just stores the address of the VarArgsFrameIndex slot into the
1154 // memory location argument.
1155 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1156 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1157 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1158 return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1159 SV->getOffset());
1160 }
1161
1162 // For ELF 32 ABI we follow the layout of the va_list struct.
1163 // We suppose the given va_list is already allocated.
1164 //
1165 // typedef struct {
1166 // char gpr; /* index into the array of 8 GPRs
1167 // * stored in the register save area
1168 // * gpr=0 corresponds to r3,
1169 // * gpr=1 to r4, etc.
1170 // */
1171 // char fpr; /* index into the array of 8 FPRs
1172 // * stored in the register save area
1173 // * fpr=0 corresponds to f1,
1174 // * fpr=1 to f2, etc.
1175 // */
1176 // char *overflow_arg_area;
1177 // /* location on stack that holds
1178 // * the next overflow argument
1179 // */
1180 // char *reg_save_area;
1181 // /* where r3:r10 and f1:f8 (if saved)
1182 // * are stored
1183 // */
1184 // } va_list[1];
1185
1186
1187 SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1188 SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1189
1190
1191 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1192
1193 SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1194 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1195
1196 SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1197 PtrVT);
1198 SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1199 PtrVT);
1200 SDOperand ConstFPROffset = DAG.getConstant(1, PtrVT);
1201
1202 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1203
1204 // Store first byte : number of int regs
1205 SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1206 Op.getOperand(1), SV->getValue(),
1207 SV->getOffset());
1208 SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1209 ConstFPROffset);
1210
1211 // Store second byte : number of float regs
1212 SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1213 SV->getValue(), SV->getOffset());
1214 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1215
1216 // Store second word : arguments given on stack
1217 SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1218 SV->getValue(), SV->getOffset());
1219 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1220
1221 // Store third word : arguments given in registers
1222 return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1223 SV->getOffset());
1224
1225}
1226
1227#include "PPCGenCallingConv.inc"
1228
1229/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1230/// depending on which subtarget is selected.
1231static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1232 if (Subtarget.isMachoABI()) {
1233 static const unsigned FPR[] = {
1234 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1235 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1236 };
1237 return FPR;
1238 }
1239
1240
1241 static const unsigned FPR[] = {
1242 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1243 PPC::F8
1244 };
1245 return FPR;
1246}
1247
1248static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1249 int &VarArgsFrameIndex,
1250 int &VarArgsStackOffset,
1251 unsigned &VarArgsNumGPR,
1252 unsigned &VarArgsNumFPR,
1253 const PPCSubtarget &Subtarget) {
1254 // TODO: add description of PPC stack frame format, or at least some docs.
1255 //
1256 MachineFunction &MF = DAG.getMachineFunction();
1257 MachineFrameInfo *MFI = MF.getFrameInfo();
1258 SSARegMap *RegMap = MF.getSSARegMap();
1259 SmallVector<SDOperand, 8> ArgValues;
1260 SDOperand Root = Op.getOperand(0);
1261
1262 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1263 bool isPPC64 = PtrVT == MVT::i64;
1264 bool isMachoABI = Subtarget.isMachoABI();
1265 bool isELF32_ABI = Subtarget.isELF32_ABI();
1266 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1267
1268 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1269
1270 static const unsigned GPR_32[] = { // 32-bit registers.
1271 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1272 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1273 };
1274 static const unsigned GPR_64[] = { // 64-bit registers.
1275 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1276 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1277 };
1278
1279 static const unsigned *FPR = GetFPR(Subtarget);
1280
1281 static const unsigned VR[] = {
1282 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1283 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1284 };
1285
Owen Anderson1636de92007-09-07 04:06:50 +00001286 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001287 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001288 const unsigned Num_VR_Regs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001289
1290 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1291
1292 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1293
1294 // Add DAG nodes to load the arguments or copy them out of registers. On
1295 // entry to a function on PPC, the arguments start after the linkage area,
1296 // although the first ones are often in registers.
1297 //
1298 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1299 // represented with two words (long long or double) must be copied to an
1300 // even GPR_idx value or to an even ArgOffset value.
1301
1302 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1303 SDOperand ArgVal;
1304 bool needsLoad = false;
1305 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1306 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1307 unsigned ArgSize = ObjSize;
1308 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1309 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1310 // See if next argument requires stack alignment in ELF
1311 bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1312 (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1313 (!(Flags & AlignFlag)));
1314
1315 unsigned CurArgOffset = ArgOffset;
1316 switch (ObjectVT) {
1317 default: assert(0 && "Unhandled argument type!");
1318 case MVT::i32:
1319 // Double word align in ELF
1320 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1321 if (GPR_idx != Num_GPR_Regs) {
1322 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1323 MF.addLiveIn(GPR[GPR_idx], VReg);
1324 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1325 ++GPR_idx;
1326 } else {
1327 needsLoad = true;
1328 ArgSize = PtrByteSize;
1329 }
1330 // Stack align in ELF
1331 if (needsLoad && Expand && isELF32_ABI)
1332 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1333 // All int arguments reserve stack space in Macho ABI.
1334 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1335 break;
1336
1337 case MVT::i64: // PPC64
1338 if (GPR_idx != Num_GPR_Regs) {
1339 unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1340 MF.addLiveIn(GPR[GPR_idx], VReg);
1341 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1342 ++GPR_idx;
1343 } else {
1344 needsLoad = true;
1345 }
1346 // All int arguments reserve stack space in Macho ABI.
1347 if (isMachoABI || needsLoad) ArgOffset += 8;
1348 break;
1349
1350 case MVT::f32:
1351 case MVT::f64:
1352 // Every 4 bytes of argument space consumes one of the GPRs available for
1353 // argument passing.
1354 if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1355 ++GPR_idx;
1356 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1357 ++GPR_idx;
1358 }
1359 if (FPR_idx != Num_FPR_Regs) {
1360 unsigned VReg;
1361 if (ObjectVT == MVT::f32)
1362 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1363 else
1364 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1365 MF.addLiveIn(FPR[FPR_idx], VReg);
1366 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1367 ++FPR_idx;
1368 } else {
1369 needsLoad = true;
1370 }
1371
1372 // Stack align in ELF
1373 if (needsLoad && Expand && isELF32_ABI)
1374 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1375 // All FP arguments reserve stack space in Macho ABI.
1376 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1377 break;
1378 case MVT::v4f32:
1379 case MVT::v4i32:
1380 case MVT::v8i16:
1381 case MVT::v16i8:
1382 // Note that vector arguments in registers don't reserve stack space.
1383 if (VR_idx != Num_VR_Regs) {
1384 unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1385 MF.addLiveIn(VR[VR_idx], VReg);
1386 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1387 ++VR_idx;
1388 } else {
1389 // This should be simple, but requires getting 16-byte aligned stack
1390 // values.
1391 assert(0 && "Loading VR argument not implemented yet!");
1392 needsLoad = true;
1393 }
1394 break;
1395 }
1396
1397 // We need to load the argument to a virtual register if we determined above
1398 // that we ran out of physical registers of the appropriate type
1399 if (needsLoad) {
1400 // If the argument is actually used, emit a load from the right stack
1401 // slot.
1402 if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1403 int FI = MFI->CreateFixedObject(ObjSize,
1404 CurArgOffset + (ArgSize - ObjSize));
1405 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1406 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1407 } else {
1408 // Don't emit a dead load.
1409 ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1410 }
1411 }
1412
1413 ArgValues.push_back(ArgVal);
1414 }
1415
1416 // If the function takes variable number of arguments, make a frame index for
1417 // the start of the first vararg value... for expansion of llvm.va_start.
1418 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1419 if (isVarArg) {
1420
1421 int depth;
1422 if (isELF32_ABI) {
1423 VarArgsNumGPR = GPR_idx;
1424 VarArgsNumFPR = FPR_idx;
1425
1426 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1427 // pointer.
1428 depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1429 Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1430 MVT::getSizeInBits(PtrVT)/8);
1431
1432 VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1433 ArgOffset);
1434
1435 }
1436 else
1437 depth = ArgOffset;
1438
1439 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1440 depth);
1441 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1442
1443 SmallVector<SDOperand, 8> MemOps;
1444
1445 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1446 // stored to the VarArgsFrameIndex on the stack.
1447 if (isELF32_ABI) {
1448 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1449 SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1450 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1451 MemOps.push_back(Store);
1452 // Increment the address by four for the next argument to store
1453 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1454 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1455 }
1456 }
1457
1458 // If this function is vararg, store any remaining integer argument regs
1459 // to their spots on the stack so that they may be loaded by deferencing the
1460 // result of va_next.
1461 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1462 unsigned VReg;
1463 if (isPPC64)
1464 VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1465 else
1466 VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1467
1468 MF.addLiveIn(GPR[GPR_idx], VReg);
1469 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1470 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1471 MemOps.push_back(Store);
1472 // Increment the address by four for the next argument to store
1473 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1474 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1475 }
1476
1477 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1478 // on the stack.
1479 if (isELF32_ABI) {
1480 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1481 SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1482 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1483 MemOps.push_back(Store);
1484 // Increment the address by eight for the next argument to store
1485 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1486 PtrVT);
1487 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1488 }
1489
1490 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1491 unsigned VReg;
1492 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1493
1494 MF.addLiveIn(FPR[FPR_idx], VReg);
1495 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1496 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1497 MemOps.push_back(Store);
1498 // Increment the address by eight for the next argument to store
1499 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1500 PtrVT);
1501 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1502 }
1503 }
1504
1505 if (!MemOps.empty())
1506 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1507 }
1508
1509 ArgValues.push_back(Root);
1510
1511 // Return the new list of results.
1512 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1513 Op.Val->value_end());
1514 return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1515}
1516
1517/// isCallCompatibleAddress - Return the immediate to use if the specified
1518/// 32-bit value is representable in the immediate field of a BxA instruction.
1519static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1520 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1521 if (!C) return 0;
1522
1523 int Addr = C->getValue();
1524 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
1525 (Addr << 6 >> 6) != Addr)
1526 return 0; // Top 6 bits have to be sext of immediate.
1527
1528 return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1529}
1530
1531
1532static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1533 const PPCSubtarget &Subtarget) {
1534 SDOperand Chain = Op.getOperand(0);
1535 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1536 SDOperand Callee = Op.getOperand(4);
1537 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1538
1539 bool isMachoABI = Subtarget.isMachoABI();
1540 bool isELF32_ABI = Subtarget.isELF32_ABI();
1541
1542 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1543 bool isPPC64 = PtrVT == MVT::i64;
1544 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1545
1546 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1547 // SelectExpr to use to put the arguments in the appropriate registers.
1548 std::vector<SDOperand> args_to_use;
1549
1550 // Count how many bytes are to be pushed on the stack, including the linkage
1551 // area, and parameter passing area. We start with 24/48 bytes, which is
1552 // prereserved space for [SP][CR][LR][3 x unused].
1553 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1554
1555 // Add up all the space actually used.
1556 for (unsigned i = 0; i != NumOps; ++i) {
1557 unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1558 ArgSize = std::max(ArgSize, PtrByteSize);
1559 NumBytes += ArgSize;
1560 }
1561
1562 // The prolog code of the callee may store up to 8 GPR argument registers to
1563 // the stack, allowing va_start to index over them in memory if its varargs.
1564 // Because we cannot tell if this is needed on the caller side, we have to
1565 // conservatively assume that it is needed. As such, make sure we have at
1566 // least enough stack space for the caller to store the 8 GPRs.
1567 NumBytes = std::max(NumBytes,
1568 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1569
1570 // Adjust the stack pointer for the new arguments...
1571 // These operations are automatically eliminated by the prolog/epilog pass
1572 Chain = DAG.getCALLSEQ_START(Chain,
1573 DAG.getConstant(NumBytes, PtrVT));
1574
1575 // Set up a copy of the stack pointer for use loading and storing any
1576 // arguments that may not fit in the registers available for argument
1577 // passing.
1578 SDOperand StackPtr;
1579 if (isPPC64)
1580 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1581 else
1582 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1583
1584 // Figure out which arguments are going to go in registers, and which in
1585 // memory. Also, if this is a vararg function, floating point operations
1586 // must be stored to our stack, and loaded into integer regs as well, if
1587 // any integer regs are available for argument passing.
1588 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1589 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1590
1591 static const unsigned GPR_32[] = { // 32-bit registers.
1592 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1593 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1594 };
1595 static const unsigned GPR_64[] = { // 64-bit registers.
1596 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1597 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1598 };
1599 static const unsigned *FPR = GetFPR(Subtarget);
1600
1601 static const unsigned VR[] = {
1602 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1603 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1604 };
Owen Anderson1636de92007-09-07 04:06:50 +00001605 const unsigned NumGPRs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001606 const unsigned NumFPRs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001607 const unsigned NumVRs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001608
1609 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1610
1611 std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1612 SmallVector<SDOperand, 8> MemOpChains;
1613 for (unsigned i = 0; i != NumOps; ++i) {
1614 bool inMem = false;
1615 SDOperand Arg = Op.getOperand(5+2*i);
1616 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1617 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1618 // See if next argument requires stack alignment in ELF
1619 unsigned next = 5+2*(i+1)+1;
1620 bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1621 (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1622 (!(Flags & AlignFlag)));
1623
1624 // PtrOff will be used to store the current argument to the stack if a
1625 // register cannot be found for it.
1626 SDOperand PtrOff;
1627
1628 // Stack align in ELF 32
1629 if (isELF32_ABI && Expand)
1630 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1631 StackPtr.getValueType());
1632 else
1633 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1634
1635 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1636
1637 // On PPC64, promote integers to 64-bit values.
1638 if (isPPC64 && Arg.getValueType() == MVT::i32) {
1639 unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1640
1641 Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1642 }
1643
1644 switch (Arg.getValueType()) {
1645 default: assert(0 && "Unexpected ValueType for argument!");
1646 case MVT::i32:
1647 case MVT::i64:
1648 // Double word align in ELF
1649 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1650 if (GPR_idx != NumGPRs) {
1651 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1652 } else {
1653 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1654 inMem = true;
1655 }
1656 if (inMem || isMachoABI) {
1657 // Stack align in ELF
1658 if (isELF32_ABI && Expand)
1659 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1660
1661 ArgOffset += PtrByteSize;
1662 }
1663 break;
1664 case MVT::f32:
1665 case MVT::f64:
1666 if (isVarArg) {
1667 // Float varargs need to be promoted to double.
1668 if (Arg.getValueType() == MVT::f32)
1669 Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1670 }
1671
1672 if (FPR_idx != NumFPRs) {
1673 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1674
1675 if (isVarArg) {
1676 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1677 MemOpChains.push_back(Store);
1678
1679 // Float varargs are always shadowed in available integer registers
1680 if (GPR_idx != NumGPRs) {
1681 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1682 MemOpChains.push_back(Load.getValue(1));
1683 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1684 Load));
1685 }
1686 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1687 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1688 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1689 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1690 MemOpChains.push_back(Load.getValue(1));
1691 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1692 Load));
1693 }
1694 } else {
1695 // If we have any FPRs remaining, we may also have GPRs remaining.
1696 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1697 // GPRs.
1698 if (isMachoABI) {
1699 if (GPR_idx != NumGPRs)
1700 ++GPR_idx;
1701 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1702 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
1703 ++GPR_idx;
1704 }
1705 }
1706 } else {
1707 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1708 inMem = true;
1709 }
1710 if (inMem || isMachoABI) {
1711 // Stack align in ELF
1712 if (isELF32_ABI && Expand)
1713 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1714 if (isPPC64)
1715 ArgOffset += 8;
1716 else
1717 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1718 }
1719 break;
1720 case MVT::v4f32:
1721 case MVT::v4i32:
1722 case MVT::v8i16:
1723 case MVT::v16i8:
1724 assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1725 assert(VR_idx != NumVRs &&
1726 "Don't support passing more than 12 vector args yet!");
1727 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1728 break;
1729 }
1730 }
1731 if (!MemOpChains.empty())
1732 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1733 &MemOpChains[0], MemOpChains.size());
1734
1735 // Build a sequence of copy-to-reg nodes chained together with token chain
1736 // and flag operands which copy the outgoing args into the appropriate regs.
1737 SDOperand InFlag;
1738 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1739 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1740 InFlag);
1741 InFlag = Chain.getValue(1);
1742 }
1743
1744 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1745 if (isVarArg && isELF32_ABI) {
1746 SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1747 Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1748 InFlag = Chain.getValue(1);
1749 }
1750
1751 std::vector<MVT::ValueType> NodeTys;
1752 NodeTys.push_back(MVT::Other); // Returns a chain
1753 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
1754
1755 SmallVector<SDOperand, 8> Ops;
1756 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1757
1758 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1759 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1760 // node so that legalize doesn't hack it.
1761 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1762 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1763 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1764 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1765 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1766 // If this is an absolute destination address, use the munged value.
1767 Callee = SDOperand(Dest, 0);
1768 else {
1769 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
1770 // to do the call, we can't use PPCISD::CALL.
1771 SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1772 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1773 InFlag = Chain.getValue(1);
1774
1775 // Copy the callee address into R12 on darwin.
1776 if (isMachoABI) {
1777 Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1778 InFlag = Chain.getValue(1);
1779 }
1780
1781 NodeTys.clear();
1782 NodeTys.push_back(MVT::Other);
1783 NodeTys.push_back(MVT::Flag);
1784 Ops.push_back(Chain);
1785 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1786 Callee.Val = 0;
1787 }
1788
1789 // If this is a direct call, pass the chain and the callee.
1790 if (Callee.Val) {
1791 Ops.push_back(Chain);
1792 Ops.push_back(Callee);
1793 }
1794
1795 // Add argument registers to the end of the list so that they are known live
1796 // into the call.
1797 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1798 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1799 RegsToPass[i].second.getValueType()));
1800
1801 if (InFlag.Val)
1802 Ops.push_back(InFlag);
1803 Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1804 InFlag = Chain.getValue(1);
1805
1806 SDOperand ResultVals[3];
1807 unsigned NumResults = 0;
1808 NodeTys.clear();
1809
1810 // If the call has results, copy the values out of the ret val registers.
1811 switch (Op.Val->getValueType(0)) {
1812 default: assert(0 && "Unexpected ret value!");
1813 case MVT::Other: break;
1814 case MVT::i32:
1815 if (Op.Val->getValueType(1) == MVT::i32) {
1816 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1817 ResultVals[0] = Chain.getValue(0);
1818 Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1819 Chain.getValue(2)).getValue(1);
1820 ResultVals[1] = Chain.getValue(0);
1821 NumResults = 2;
1822 NodeTys.push_back(MVT::i32);
1823 } else {
1824 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1825 ResultVals[0] = Chain.getValue(0);
1826 NumResults = 1;
1827 }
1828 NodeTys.push_back(MVT::i32);
1829 break;
1830 case MVT::i64:
1831 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1832 ResultVals[0] = Chain.getValue(0);
1833 NumResults = 1;
1834 NodeTys.push_back(MVT::i64);
1835 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001836 case MVT::f64:
Dale Johannesenac77b272007-10-05 20:04:43 +00001837 if (Op.Val->getValueType(1) == MVT::f64) {
1838 Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1839 ResultVals[0] = Chain.getValue(0);
1840 Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1841 Chain.getValue(2)).getValue(1);
1842 ResultVals[1] = Chain.getValue(0);
1843 NumResults = 2;
1844 NodeTys.push_back(MVT::f64);
1845 NodeTys.push_back(MVT::f64);
1846 break;
1847 }
1848 // else fall through
1849 case MVT::f32:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001850 Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1851 InFlag).getValue(1);
1852 ResultVals[0] = Chain.getValue(0);
1853 NumResults = 1;
1854 NodeTys.push_back(Op.Val->getValueType(0));
1855 break;
1856 case MVT::v4f32:
1857 case MVT::v4i32:
1858 case MVT::v8i16:
1859 case MVT::v16i8:
1860 Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1861 InFlag).getValue(1);
1862 ResultVals[0] = Chain.getValue(0);
1863 NumResults = 1;
1864 NodeTys.push_back(Op.Val->getValueType(0));
1865 break;
1866 }
1867
1868 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1869 DAG.getConstant(NumBytes, PtrVT));
1870 NodeTys.push_back(MVT::Other);
1871
1872 // If the function returns void, just return the chain.
1873 if (NumResults == 0)
1874 return Chain;
1875
1876 // Otherwise, merge everything together with a MERGE_VALUES node.
1877 ResultVals[NumResults++] = Chain;
1878 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1879 ResultVals, NumResults);
1880 return Res.getValue(Op.ResNo);
1881}
1882
1883static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1884 SmallVector<CCValAssign, 16> RVLocs;
1885 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1886 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1887 CCState CCInfo(CC, isVarArg, TM, RVLocs);
1888 CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1889
1890 // If this is the first return lowered for this function, add the regs to the
1891 // liveout set for the function.
1892 if (DAG.getMachineFunction().liveout_empty()) {
1893 for (unsigned i = 0; i != RVLocs.size(); ++i)
1894 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
1895 }
1896
1897 SDOperand Chain = Op.getOperand(0);
1898 SDOperand Flag;
1899
1900 // Copy the result values into the output registers.
1901 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1902 CCValAssign &VA = RVLocs[i];
1903 assert(VA.isRegLoc() && "Can only return in registers!");
1904 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1905 Flag = Chain.getValue(1);
1906 }
1907
1908 if (Flag.Val)
1909 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1910 else
1911 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1912}
1913
1914static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1915 const PPCSubtarget &Subtarget) {
1916 // When we pop the dynamic allocation we need to restore the SP link.
1917
1918 // Get the corect type for pointers.
1919 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1920
1921 // Construct the stack pointer operand.
1922 bool IsPPC64 = Subtarget.isPPC64();
1923 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1924 SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1925
1926 // Get the operands for the STACKRESTORE.
1927 SDOperand Chain = Op.getOperand(0);
1928 SDOperand SaveSP = Op.getOperand(1);
1929
1930 // Load the old link SP.
1931 SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1932
1933 // Restore the stack pointer.
1934 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1935
1936 // Store the old link SP.
1937 return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1938}
1939
1940static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1941 const PPCSubtarget &Subtarget) {
1942 MachineFunction &MF = DAG.getMachineFunction();
1943 bool IsPPC64 = Subtarget.isPPC64();
1944 bool isMachoABI = Subtarget.isMachoABI();
1945
1946 // Get current frame pointer save index. The users of this index will be
1947 // primarily DYNALLOC instructions.
1948 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1949 int FPSI = FI->getFramePointerSaveIndex();
1950
1951 // If the frame pointer save index hasn't been defined yet.
1952 if (!FPSI) {
1953 // Find out what the fix offset of the frame pointer save area.
1954 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1955
1956 // Allocate the frame index for frame pointer save area.
1957 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1958 // Save the result.
1959 FI->setFramePointerSaveIndex(FPSI);
1960 }
1961
1962 // Get the inputs.
1963 SDOperand Chain = Op.getOperand(0);
1964 SDOperand Size = Op.getOperand(1);
1965
1966 // Get the corect type for pointers.
1967 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1968 // Negate the size.
1969 SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1970 DAG.getConstant(0, PtrVT), Size);
1971 // Construct a node for the frame pointer save index.
1972 SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1973 // Build a DYNALLOC node.
1974 SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1975 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1976 return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1977}
1978
1979
1980/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1981/// possible.
1982static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1983 // Not FP? Not a fsel.
1984 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1985 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1986 return SDOperand();
1987
1988 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1989
1990 // Cannot handle SETEQ/SETNE.
1991 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1992
1993 MVT::ValueType ResVT = Op.getValueType();
1994 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1995 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1996 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
1997
1998 // If the RHS of the comparison is a 0.0, we don't need to do the
1999 // subtraction at all.
2000 if (isFloatingPointZero(RHS))
2001 switch (CC) {
2002 default: break; // SETUO etc aren't handled by fsel.
2003 case ISD::SETULT:
2004 case ISD::SETOLT:
2005 case ISD::SETLT:
2006 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2007 case ISD::SETUGE:
2008 case ISD::SETOGE:
2009 case ISD::SETGE:
2010 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2011 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2012 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2013 case ISD::SETUGT:
2014 case ISD::SETOGT:
2015 case ISD::SETGT:
2016 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2017 case ISD::SETULE:
2018 case ISD::SETOLE:
2019 case ISD::SETLE:
2020 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2021 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2022 return DAG.getNode(PPCISD::FSEL, ResVT,
2023 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2024 }
2025
2026 SDOperand Cmp;
2027 switch (CC) {
2028 default: break; // SETUO etc aren't handled by fsel.
2029 case ISD::SETULT:
2030 case ISD::SETOLT:
2031 case ISD::SETLT:
2032 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2033 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2034 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2035 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2036 case ISD::SETUGE:
2037 case ISD::SETOGE:
2038 case ISD::SETGE:
2039 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2040 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2041 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2042 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2043 case ISD::SETUGT:
2044 case ISD::SETOGT:
2045 case ISD::SETGT:
2046 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2047 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2048 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2049 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2050 case ISD::SETULE:
2051 case ISD::SETOLE:
2052 case ISD::SETLE:
2053 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2054 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2055 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2056 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2057 }
2058 return SDOperand();
2059}
2060
2061static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2062 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2063 SDOperand Src = Op.getOperand(0);
2064 if (Src.getValueType() == MVT::f32)
2065 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2066
2067 SDOperand Tmp;
2068 switch (Op.getValueType()) {
2069 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2070 case MVT::i32:
2071 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2072 break;
2073 case MVT::i64:
2074 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2075 break;
2076 }
2077
2078 // Convert the FP value to an int value through memory.
2079 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
2080 if (Op.getValueType() == MVT::i32)
2081 Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
2082 return Bits;
2083}
2084
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002085static SDOperand LowerFP_ROUND_INREG(SDOperand Op, SelectionDAG &DAG) {
2086 assert(Op.getValueType() == MVT::ppcf128);
2087 SDNode *Node = Op.Val;
2088 assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2089 assert(Node->getOperand(0).Val->getOpcode()==ISD::BUILD_PAIR);
2090 SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2091 SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2092
2093 // This sequence changes FPSCR to do round-to-zero, adds the two halves
2094 // of the long double, and puts FPSCR back the way it was. We do not
2095 // actually model FPSCR.
2096 std::vector<MVT::ValueType> NodeTys;
2097 SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2098
2099 NodeTys.push_back(MVT::f64); // Return register
2100 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
2101 Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2102 MFFSreg = Result.getValue(0);
2103 InFlag = Result.getValue(1);
2104
2105 NodeTys.clear();
2106 NodeTys.push_back(MVT::Flag); // Returns a flag
2107 Ops[0] = DAG.getConstant(31, MVT::i32);
2108 Ops[1] = InFlag;
2109 Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2110 InFlag = Result.getValue(0);
2111
2112 NodeTys.clear();
2113 NodeTys.push_back(MVT::Flag); // Returns a flag
2114 Ops[0] = DAG.getConstant(30, MVT::i32);
2115 Ops[1] = InFlag;
2116 Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2117 InFlag = Result.getValue(0);
2118
2119 NodeTys.clear();
2120 NodeTys.push_back(MVT::f64); // result of add
2121 NodeTys.push_back(MVT::Flag); // Returns a flag
2122 Ops[0] = Lo;
2123 Ops[1] = Hi;
2124 Ops[2] = InFlag;
2125 Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2126 FPreg = Result.getValue(0);
2127 InFlag = Result.getValue(1);
2128
2129 NodeTys.clear();
2130 NodeTys.push_back(MVT::f64);
2131 Ops[0] = DAG.getConstant(1, MVT::i32);
2132 Ops[1] = MFFSreg;
2133 Ops[2] = FPreg;
2134 Ops[3] = InFlag;
2135 Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2136 FPreg = Result.getValue(0);
2137
2138 // We know the low half is about to be thrown away, so just use something
2139 // convenient.
2140 return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2141}
2142
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002143static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2144 if (Op.getOperand(0).getValueType() == MVT::i64) {
2145 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2146 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2147 if (Op.getValueType() == MVT::f32)
2148 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2149 return FP;
2150 }
2151
2152 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2153 "Unhandled SINT_TO_FP type in custom expander!");
2154 // Since we only generate this in 64-bit mode, we can take advantage of
2155 // 64-bit registers. In particular, sign extend the input value into the
2156 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2157 // then lfd it and fcfid it.
2158 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2159 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2160 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2161 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2162
2163 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2164 Op.getOperand(0));
2165
2166 // STD the extended value into the stack slot.
2167 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2168 DAG.getEntryNode(), Ext64, FIdx,
2169 DAG.getSrcValue(NULL));
2170 // Load the value as a double.
2171 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2172
2173 // FCFID it and return it.
2174 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2175 if (Op.getValueType() == MVT::f32)
2176 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2177 return FP;
2178}
2179
2180static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2181 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2182 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2183
2184 // Expand into a bunch of logical ops. Note that these ops
2185 // depend on the PPC behavior for oversized shift amounts.
2186 SDOperand Lo = Op.getOperand(0);
2187 SDOperand Hi = Op.getOperand(1);
2188 SDOperand Amt = Op.getOperand(2);
2189
2190 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2191 DAG.getConstant(32, MVT::i32), Amt);
2192 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2193 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2194 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2195 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2196 DAG.getConstant(-32U, MVT::i32));
2197 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2198 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2199 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2200 SDOperand OutOps[] = { OutLo, OutHi };
2201 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2202 OutOps, 2);
2203}
2204
2205static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2206 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2207 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2208
2209 // Otherwise, expand into a bunch of logical ops. Note that these ops
2210 // depend on the PPC behavior for oversized shift amounts.
2211 SDOperand Lo = Op.getOperand(0);
2212 SDOperand Hi = Op.getOperand(1);
2213 SDOperand Amt = Op.getOperand(2);
2214
2215 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2216 DAG.getConstant(32, MVT::i32), Amt);
2217 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2218 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2219 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2220 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2221 DAG.getConstant(-32U, MVT::i32));
2222 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2223 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2224 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2225 SDOperand OutOps[] = { OutLo, OutHi };
2226 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2227 OutOps, 2);
2228}
2229
2230static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2231 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2232 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2233
2234 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2235 SDOperand Lo = Op.getOperand(0);
2236 SDOperand Hi = Op.getOperand(1);
2237 SDOperand Amt = Op.getOperand(2);
2238
2239 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2240 DAG.getConstant(32, MVT::i32), Amt);
2241 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2242 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2243 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2244 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2245 DAG.getConstant(-32U, MVT::i32));
2246 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2247 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2248 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2249 Tmp4, Tmp6, ISD::SETLE);
2250 SDOperand OutOps[] = { OutLo, OutHi };
2251 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2252 OutOps, 2);
2253}
2254
2255//===----------------------------------------------------------------------===//
2256// Vector related lowering.
2257//
2258
2259// If this is a vector of constants or undefs, get the bits. A bit in
2260// UndefBits is set if the corresponding element of the vector is an
2261// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2262// zero. Return true if this is not an array of constants, false if it is.
2263//
2264static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2265 uint64_t UndefBits[2]) {
2266 // Start with zero'd results.
2267 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2268
2269 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2270 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2271 SDOperand OpVal = BV->getOperand(i);
2272
2273 unsigned PartNo = i >= e/2; // In the upper 128 bits?
2274 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
2275
2276 uint64_t EltBits = 0;
2277 if (OpVal.getOpcode() == ISD::UNDEF) {
2278 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2279 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2280 continue;
2281 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2282 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2283 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2284 assert(CN->getValueType(0) == MVT::f32 &&
2285 "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +00002286 EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002287 } else {
2288 // Nonconstant element.
2289 return true;
2290 }
2291
2292 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2293 }
2294
2295 //printf("%llx %llx %llx %llx\n",
2296 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2297 return false;
2298}
2299
2300// If this is a splat (repetition) of a value across the whole vector, return
2301// the smallest size that splats it. For example, "0x01010101010101..." is a
2302// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2303// SplatSize = 1 byte.
2304static bool isConstantSplat(const uint64_t Bits128[2],
2305 const uint64_t Undef128[2],
2306 unsigned &SplatBits, unsigned &SplatUndef,
2307 unsigned &SplatSize) {
2308
2309 // Don't let undefs prevent splats from matching. See if the top 64-bits are
2310 // the same as the lower 64-bits, ignoring undefs.
2311 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2312 return false; // Can't be a splat if two pieces don't match.
2313
2314 uint64_t Bits64 = Bits128[0] | Bits128[1];
2315 uint64_t Undef64 = Undef128[0] & Undef128[1];
2316
2317 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2318 // undefs.
2319 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2320 return false; // Can't be a splat if two pieces don't match.
2321
2322 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2323 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2324
2325 // If the top 16-bits are different than the lower 16-bits, ignoring
2326 // undefs, we have an i32 splat.
2327 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2328 SplatBits = Bits32;
2329 SplatUndef = Undef32;
2330 SplatSize = 4;
2331 return true;
2332 }
2333
2334 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
2335 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2336
2337 // If the top 8-bits are different than the lower 8-bits, ignoring
2338 // undefs, we have an i16 splat.
2339 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2340 SplatBits = Bits16;
2341 SplatUndef = Undef16;
2342 SplatSize = 2;
2343 return true;
2344 }
2345
2346 // Otherwise, we have an 8-bit splat.
2347 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
2348 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2349 SplatSize = 1;
2350 return true;
2351}
2352
2353/// BuildSplatI - Build a canonical splati of Val with an element size of
2354/// SplatSize. Cast the result to VT.
2355static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2356 SelectionDAG &DAG) {
2357 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2358
2359 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2360 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2361 };
2362
2363 MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2364
2365 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2366 if (Val == -1)
2367 SplatSize = 1;
2368
2369 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2370
2371 // Build a canonical splat for this value.
2372 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2373 SmallVector<SDOperand, 8> Ops;
2374 Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2375 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2376 &Ops[0], Ops.size());
2377 return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2378}
2379
2380/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2381/// specified intrinsic ID.
2382static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2383 SelectionDAG &DAG,
2384 MVT::ValueType DestVT = MVT::Other) {
2385 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2386 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2387 DAG.getConstant(IID, MVT::i32), LHS, RHS);
2388}
2389
2390/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2391/// specified intrinsic ID.
2392static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2393 SDOperand Op2, SelectionDAG &DAG,
2394 MVT::ValueType DestVT = MVT::Other) {
2395 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2396 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2397 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2398}
2399
2400
2401/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2402/// amount. The result has the specified value type.
2403static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2404 MVT::ValueType VT, SelectionDAG &DAG) {
2405 // Force LHS/RHS to be the right type.
2406 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2407 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2408
2409 SDOperand Ops[16];
2410 for (unsigned i = 0; i != 16; ++i)
2411 Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2412 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2413 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2414 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2415}
2416
2417// If this is a case we can't handle, return null and let the default
2418// expansion code take care of it. If we CAN select this case, and if it
2419// selects to a single instruction, return Op. Otherwise, if we can codegen
2420// this case more efficiently than a constant pool load, lower it to the
2421// sequence of ops that should be used.
2422static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2423 // If this is a vector of constants or undefs, get the bits. A bit in
2424 // UndefBits is set if the corresponding element of the vector is an
2425 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2426 // zero.
2427 uint64_t VectorBits[2];
2428 uint64_t UndefBits[2];
2429 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2430 return SDOperand(); // Not a constant vector.
2431
2432 // If this is a splat (repetition) of a value across the whole vector, return
2433 // the smallest size that splats it. For example, "0x01010101010101..." is a
2434 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2435 // SplatSize = 1 byte.
2436 unsigned SplatBits, SplatUndef, SplatSize;
2437 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2438 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2439
2440 // First, handle single instruction cases.
2441
2442 // All zeros?
2443 if (SplatBits == 0) {
2444 // Canonicalize all zero vectors to be v4i32.
2445 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2446 SDOperand Z = DAG.getConstant(0, MVT::i32);
2447 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2448 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2449 }
2450 return Op;
2451 }
2452
2453 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2454 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2455 if (SextVal >= -16 && SextVal <= 15)
2456 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2457
2458
2459 // Two instruction sequences.
2460
2461 // If this value is in the range [-32,30] and is even, use:
2462 // tmp = VSPLTI[bhw], result = add tmp, tmp
2463 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2464 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2465 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2466 }
2467
2468 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
2469 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
2470 // for fneg/fabs.
2471 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2472 // Make -1 and vspltisw -1:
2473 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2474
2475 // Make the VSLW intrinsic, computing 0x8000_0000.
2476 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2477 OnesV, DAG);
2478
2479 // xor by OnesV to invert it.
2480 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2481 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2482 }
2483
2484 // Check to see if this is a wide variety of vsplti*, binop self cases.
2485 unsigned SplatBitSize = SplatSize*8;
2486 static const signed char SplatCsts[] = {
2487 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2488 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2489 };
2490
Owen Anderson1636de92007-09-07 04:06:50 +00002491 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002492 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2493 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
2494 int i = SplatCsts[idx];
2495
2496 // Figure out what shift amount will be used by altivec if shifted by i in
2497 // this splat size.
2498 unsigned TypeShiftAmt = i & (SplatBitSize-1);
2499
2500 // vsplti + shl self.
2501 if (SextVal == (i << (int)TypeShiftAmt)) {
2502 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2503 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2504 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2505 Intrinsic::ppc_altivec_vslw
2506 };
2507 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2508 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2509 }
2510
2511 // vsplti + srl self.
2512 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2513 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2514 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2515 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2516 Intrinsic::ppc_altivec_vsrw
2517 };
2518 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2519 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2520 }
2521
2522 // vsplti + sra self.
2523 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2524 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2525 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2526 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2527 Intrinsic::ppc_altivec_vsraw
2528 };
2529 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2530 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2531 }
2532
2533 // vsplti + rol self.
2534 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2535 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2536 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2537 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2538 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2539 Intrinsic::ppc_altivec_vrlw
2540 };
2541 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2542 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2543 }
2544
2545 // t = vsplti c, result = vsldoi t, t, 1
2546 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2547 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2548 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2549 }
2550 // t = vsplti c, result = vsldoi t, t, 2
2551 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2552 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2553 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2554 }
2555 // t = vsplti c, result = vsldoi t, t, 3
2556 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2557 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2558 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2559 }
2560 }
2561
2562 // Three instruction sequences.
2563
2564 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
2565 if (SextVal >= 0 && SextVal <= 31) {
2566 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2567 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2568 LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2569 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2570 }
2571 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
2572 if (SextVal >= -31 && SextVal <= 0) {
2573 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2574 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2575 LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2576 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2577 }
2578 }
2579
2580 return SDOperand();
2581}
2582
2583/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2584/// the specified operations to build the shuffle.
2585static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2586 SDOperand RHS, SelectionDAG &DAG) {
2587 unsigned OpNum = (PFEntry >> 26) & 0x0F;
2588 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2589 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
2590
2591 enum {
2592 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2593 OP_VMRGHW,
2594 OP_VMRGLW,
2595 OP_VSPLTISW0,
2596 OP_VSPLTISW1,
2597 OP_VSPLTISW2,
2598 OP_VSPLTISW3,
2599 OP_VSLDOI4,
2600 OP_VSLDOI8,
2601 OP_VSLDOI12
2602 };
2603
2604 if (OpNum == OP_COPY) {
2605 if (LHSID == (1*9+2)*9+3) return LHS;
2606 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2607 return RHS;
2608 }
2609
2610 SDOperand OpLHS, OpRHS;
2611 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2612 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2613
2614 unsigned ShufIdxs[16];
2615 switch (OpNum) {
2616 default: assert(0 && "Unknown i32 permute!");
2617 case OP_VMRGHW:
2618 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
2619 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2620 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
2621 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2622 break;
2623 case OP_VMRGLW:
2624 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2625 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2626 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2627 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2628 break;
2629 case OP_VSPLTISW0:
2630 for (unsigned i = 0; i != 16; ++i)
2631 ShufIdxs[i] = (i&3)+0;
2632 break;
2633 case OP_VSPLTISW1:
2634 for (unsigned i = 0; i != 16; ++i)
2635 ShufIdxs[i] = (i&3)+4;
2636 break;
2637 case OP_VSPLTISW2:
2638 for (unsigned i = 0; i != 16; ++i)
2639 ShufIdxs[i] = (i&3)+8;
2640 break;
2641 case OP_VSPLTISW3:
2642 for (unsigned i = 0; i != 16; ++i)
2643 ShufIdxs[i] = (i&3)+12;
2644 break;
2645 case OP_VSLDOI4:
2646 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2647 case OP_VSLDOI8:
2648 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2649 case OP_VSLDOI12:
2650 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2651 }
2652 SDOperand Ops[16];
2653 for (unsigned i = 0; i != 16; ++i)
2654 Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2655
2656 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2657 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2658}
2659
2660/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
2661/// is a shuffle we can handle in a single instruction, return it. Otherwise,
2662/// return the code it can be lowered into. Worst case, it can always be
2663/// lowered into a vperm.
2664static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2665 SDOperand V1 = Op.getOperand(0);
2666 SDOperand V2 = Op.getOperand(1);
2667 SDOperand PermMask = Op.getOperand(2);
2668
2669 // Cases that are handled by instructions that take permute immediates
2670 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2671 // selected by the instruction selector.
2672 if (V2.getOpcode() == ISD::UNDEF) {
2673 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2674 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2675 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2676 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2677 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2678 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2679 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2680 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2681 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2682 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2683 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2684 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2685 return Op;
2686 }
2687 }
2688
2689 // Altivec has a variety of "shuffle immediates" that take two vector inputs
2690 // and produce a fixed permutation. If any of these match, do not lower to
2691 // VPERM.
2692 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2693 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2694 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2695 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2696 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2697 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2698 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2699 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2700 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2701 return Op;
2702
2703 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
2704 // perfect shuffle table to emit an optimal matching sequence.
2705 unsigned PFIndexes[4];
2706 bool isFourElementShuffle = true;
2707 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2708 unsigned EltNo = 8; // Start out undef.
2709 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
2710 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2711 continue; // Undef, ignore it.
2712
2713 unsigned ByteSource =
2714 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2715 if ((ByteSource & 3) != j) {
2716 isFourElementShuffle = false;
2717 break;
2718 }
2719
2720 if (EltNo == 8) {
2721 EltNo = ByteSource/4;
2722 } else if (EltNo != ByteSource/4) {
2723 isFourElementShuffle = false;
2724 break;
2725 }
2726 }
2727 PFIndexes[i] = EltNo;
2728 }
2729
2730 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2731 // perfect shuffle vector to determine if it is cost effective to do this as
2732 // discrete instructions, or whether we should use a vperm.
2733 if (isFourElementShuffle) {
2734 // Compute the index in the perfect shuffle table.
2735 unsigned PFTableIndex =
2736 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2737
2738 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2739 unsigned Cost = (PFEntry >> 30);
2740
2741 // Determining when to avoid vperm is tricky. Many things affect the cost
2742 // of vperm, particularly how many times the perm mask needs to be computed.
2743 // For example, if the perm mask can be hoisted out of a loop or is already
2744 // used (perhaps because there are multiple permutes with the same shuffle
2745 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
2746 // the loop requires an extra register.
2747 //
2748 // As a compromise, we only emit discrete instructions if the shuffle can be
2749 // generated in 3 or fewer operations. When we have loop information
2750 // available, if this block is within a loop, we should avoid using vperm
2751 // for 3-operation perms and use a constant pool load instead.
2752 if (Cost < 3)
2753 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2754 }
2755
2756 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2757 // vector that will get spilled to the constant pool.
2758 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2759
2760 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2761 // that it is in input element units, not in bytes. Convert now.
2762 MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2763 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2764
2765 SmallVector<SDOperand, 16> ResultMask;
2766 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2767 unsigned SrcElt;
2768 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2769 SrcElt = 0;
2770 else
2771 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2772
2773 for (unsigned j = 0; j != BytesPerElement; ++j)
2774 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2775 MVT::i8));
2776 }
2777
2778 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2779 &ResultMask[0], ResultMask.size());
2780 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2781}
2782
2783/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2784/// altivec comparison. If it is, return true and fill in Opc/isDot with
2785/// information about the intrinsic.
2786static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2787 bool &isDot) {
2788 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2789 CompareOpc = -1;
2790 isDot = false;
2791 switch (IntrinsicID) {
2792 default: return false;
2793 // Comparison predicates.
2794 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
2795 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2796 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
2797 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
2798 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2799 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2800 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2801 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2802 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2803 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2804 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2805 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2806 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2807
2808 // Normal Comparisons.
2809 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
2810 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
2811 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
2812 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
2813 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
2814 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
2815 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
2816 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
2817 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
2818 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
2819 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
2820 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
2821 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
2822 }
2823 return true;
2824}
2825
2826/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2827/// lower, do it, otherwise return null.
2828static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2829 // If this is a lowered altivec predicate compare, CompareOpc is set to the
2830 // opcode number of the comparison.
2831 int CompareOpc;
2832 bool isDot;
2833 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2834 return SDOperand(); // Don't custom lower most intrinsics.
2835
2836 // If this is a non-dot comparison, make the VCMP node and we are done.
2837 if (!isDot) {
2838 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2839 Op.getOperand(1), Op.getOperand(2),
2840 DAG.getConstant(CompareOpc, MVT::i32));
2841 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2842 }
2843
2844 // Create the PPCISD altivec 'dot' comparison node.
2845 SDOperand Ops[] = {
2846 Op.getOperand(2), // LHS
2847 Op.getOperand(3), // RHS
2848 DAG.getConstant(CompareOpc, MVT::i32)
2849 };
2850 std::vector<MVT::ValueType> VTs;
2851 VTs.push_back(Op.getOperand(2).getValueType());
2852 VTs.push_back(MVT::Flag);
2853 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2854
2855 // Now that we have the comparison, emit a copy from the CR to a GPR.
2856 // This is flagged to the above dot comparison.
2857 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2858 DAG.getRegister(PPC::CR6, MVT::i32),
2859 CompNode.getValue(1));
2860
2861 // Unpack the result based on how the target uses it.
2862 unsigned BitNo; // Bit # of CR6.
2863 bool InvertBit; // Invert result?
2864 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2865 default: // Can't happen, don't crash on invalid number though.
2866 case 0: // Return the value of the EQ bit of CR6.
2867 BitNo = 0; InvertBit = false;
2868 break;
2869 case 1: // Return the inverted value of the EQ bit of CR6.
2870 BitNo = 0; InvertBit = true;
2871 break;
2872 case 2: // Return the value of the LT bit of CR6.
2873 BitNo = 2; InvertBit = false;
2874 break;
2875 case 3: // Return the inverted value of the LT bit of CR6.
2876 BitNo = 2; InvertBit = true;
2877 break;
2878 }
2879
2880 // Shift the bit into the low position.
2881 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2882 DAG.getConstant(8-(3-BitNo), MVT::i32));
2883 // Isolate the bit.
2884 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2885 DAG.getConstant(1, MVT::i32));
2886
2887 // If we are supposed to, toggle the bit.
2888 if (InvertBit)
2889 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2890 DAG.getConstant(1, MVT::i32));
2891 return Flags;
2892}
2893
2894static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2895 // Create a stack slot that is 16-byte aligned.
2896 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2897 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2898 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2899 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2900
2901 // Store the input value into Value#0 of the stack slot.
2902 SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2903 Op.getOperand(0), FIdx, NULL, 0);
2904 // Load it out.
2905 return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2906}
2907
2908static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2909 if (Op.getValueType() == MVT::v4i32) {
2910 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2911
2912 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
2913 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2914
2915 SDOperand RHSSwap = // = vrlw RHS, 16
2916 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2917
2918 // Shrinkify inputs to v8i16.
2919 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2920 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2921 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2922
2923 // Low parts multiplied together, generating 32-bit results (we ignore the
2924 // top parts).
2925 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2926 LHS, RHS, DAG, MVT::v4i32);
2927
2928 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2929 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2930 // Shift the high parts up 16 bits.
2931 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2932 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2933 } else if (Op.getValueType() == MVT::v8i16) {
2934 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2935
2936 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2937
2938 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2939 LHS, RHS, Zero, DAG);
2940 } else if (Op.getValueType() == MVT::v16i8) {
2941 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2942
2943 // Multiply the even 8-bit parts, producing 16-bit sums.
2944 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2945 LHS, RHS, DAG, MVT::v8i16);
2946 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2947
2948 // Multiply the odd 8-bit parts, producing 16-bit sums.
2949 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2950 LHS, RHS, DAG, MVT::v8i16);
2951 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2952
2953 // Merge the results together.
2954 SDOperand Ops[16];
2955 for (unsigned i = 0; i != 8; ++i) {
2956 Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
2957 Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2958 }
2959 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2960 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2961 } else {
2962 assert(0 && "Unknown mul to lower!");
2963 abort();
2964 }
2965}
2966
2967/// LowerOperation - Provide custom lowering hooks for some operations.
2968///
2969SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2970 switch (Op.getOpcode()) {
2971 default: assert(0 && "Wasn't expecting to be able to lower this!");
2972 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2973 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
2974 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2975 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2976 case ISD::SETCC: return LowerSETCC(Op, DAG);
2977 case ISD::VASTART:
2978 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2979 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2980
2981 case ISD::VAARG:
2982 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2983 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2984
2985 case ISD::FORMAL_ARGUMENTS:
2986 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
2987 VarArgsStackOffset, VarArgsNumGPR,
2988 VarArgsNumFPR, PPCSubTarget);
2989
2990 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget);
2991 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
2992 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
2993 case ISD::DYNAMIC_STACKALLOC:
2994 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
2995
2996 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2997 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
2998 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002999 case ISD::FP_ROUND_INREG: return LowerFP_ROUND_INREG(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003000
3001 // Lower 64-bit shifts.
3002 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
3003 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
3004 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
3005
3006 // Vector-related lowering.
3007 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3008 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3009 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3010 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
3011 case ISD::MUL: return LowerMUL(Op, DAG);
3012
3013 // Frame & Return address. Currently unimplemented
3014 case ISD::RETURNADDR: break;
3015 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3016 }
3017 return SDOperand();
3018}
3019
3020//===----------------------------------------------------------------------===//
3021// Other Lowering Code
3022//===----------------------------------------------------------------------===//
3023
3024MachineBasicBlock *
3025PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3026 MachineBasicBlock *BB) {
3027 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3028 assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3029 MI->getOpcode() == PPC::SELECT_CC_I8 ||
3030 MI->getOpcode() == PPC::SELECT_CC_F4 ||
3031 MI->getOpcode() == PPC::SELECT_CC_F8 ||
3032 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3033 "Unexpected instr type to insert");
3034
3035 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3036 // control-flow pattern. The incoming instruction knows the destination vreg
3037 // to set, the condition code register to branch on, the true/false values to
3038 // select between, and a branch opcode to use.
3039 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3040 ilist<MachineBasicBlock>::iterator It = BB;
3041 ++It;
3042
3043 // thisMBB:
3044 // ...
3045 // TrueVal = ...
3046 // cmpTY ccX, r1, r2
3047 // bCC copy1MBB
3048 // fallthrough --> copy0MBB
3049 MachineBasicBlock *thisMBB = BB;
3050 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3051 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3052 unsigned SelectPred = MI->getOperand(4).getImm();
3053 BuildMI(BB, TII->get(PPC::BCC))
3054 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3055 MachineFunction *F = BB->getParent();
3056 F->getBasicBlockList().insert(It, copy0MBB);
3057 F->getBasicBlockList().insert(It, sinkMBB);
3058 // Update machine-CFG edges by first adding all successors of the current
3059 // block to the new block which will contain the Phi node for the select.
3060 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3061 e = BB->succ_end(); i != e; ++i)
3062 sinkMBB->addSuccessor(*i);
3063 // Next, remove all successors of the current block, and add the true
3064 // and fallthrough blocks as its successors.
3065 while(!BB->succ_empty())
3066 BB->removeSuccessor(BB->succ_begin());
3067 BB->addSuccessor(copy0MBB);
3068 BB->addSuccessor(sinkMBB);
3069
3070 // copy0MBB:
3071 // %FalseValue = ...
3072 // # fallthrough to sinkMBB
3073 BB = copy0MBB;
3074
3075 // Update machine-CFG edges
3076 BB->addSuccessor(sinkMBB);
3077
3078 // sinkMBB:
3079 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3080 // ...
3081 BB = sinkMBB;
3082 BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3083 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3084 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3085
3086 delete MI; // The pseudo instruction is gone now.
3087 return BB;
3088}
3089
3090//===----------------------------------------------------------------------===//
3091// Target Optimization Hooks
3092//===----------------------------------------------------------------------===//
3093
3094SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3095 DAGCombinerInfo &DCI) const {
3096 TargetMachine &TM = getTargetMachine();
3097 SelectionDAG &DAG = DCI.DAG;
3098 switch (N->getOpcode()) {
3099 default: break;
3100 case PPCISD::SHL:
3101 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3102 if (C->getValue() == 0) // 0 << V -> 0.
3103 return N->getOperand(0);
3104 }
3105 break;
3106 case PPCISD::SRL:
3107 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3108 if (C->getValue() == 0) // 0 >>u V -> 0.
3109 return N->getOperand(0);
3110 }
3111 break;
3112 case PPCISD::SRA:
3113 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3114 if (C->getValue() == 0 || // 0 >>s V -> 0.
3115 C->isAllOnesValue()) // -1 >>s V -> -1.
3116 return N->getOperand(0);
3117 }
3118 break;
3119
3120 case ISD::SINT_TO_FP:
3121 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3122 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3123 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3124 // We allow the src/dst to be either f32/f64, but the intermediate
3125 // type must be i64.
3126 if (N->getOperand(0).getValueType() == MVT::i64) {
3127 SDOperand Val = N->getOperand(0).getOperand(0);
3128 if (Val.getValueType() == MVT::f32) {
3129 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3130 DCI.AddToWorklist(Val.Val);
3131 }
3132
3133 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3134 DCI.AddToWorklist(Val.Val);
3135 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3136 DCI.AddToWorklist(Val.Val);
3137 if (N->getValueType(0) == MVT::f32) {
3138 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
3139 DCI.AddToWorklist(Val.Val);
3140 }
3141 return Val;
3142 } else if (N->getOperand(0).getValueType() == MVT::i32) {
3143 // If the intermediate type is i32, we can avoid the load/store here
3144 // too.
3145 }
3146 }
3147 }
3148 break;
3149 case ISD::STORE:
3150 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3151 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3152 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3153 N->getOperand(1).getValueType() == MVT::i32) {
3154 SDOperand Val = N->getOperand(1).getOperand(0);
3155 if (Val.getValueType() == MVT::f32) {
3156 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3157 DCI.AddToWorklist(Val.Val);
3158 }
3159 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3160 DCI.AddToWorklist(Val.Val);
3161
3162 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3163 N->getOperand(2), N->getOperand(3));
3164 DCI.AddToWorklist(Val.Val);
3165 return Val;
3166 }
3167
3168 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3169 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3170 N->getOperand(1).Val->hasOneUse() &&
3171 (N->getOperand(1).getValueType() == MVT::i32 ||
3172 N->getOperand(1).getValueType() == MVT::i16)) {
3173 SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3174 // Do an any-extend to 32-bits if this is a half-word input.
3175 if (BSwapOp.getValueType() == MVT::i16)
3176 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3177
3178 return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3179 N->getOperand(2), N->getOperand(3),
3180 DAG.getValueType(N->getOperand(1).getValueType()));
3181 }
3182 break;
3183 case ISD::BSWAP:
3184 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3185 if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3186 N->getOperand(0).hasOneUse() &&
3187 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3188 SDOperand Load = N->getOperand(0);
3189 LoadSDNode *LD = cast<LoadSDNode>(Load);
3190 // Create the byte-swapping load.
3191 std::vector<MVT::ValueType> VTs;
3192 VTs.push_back(MVT::i32);
3193 VTs.push_back(MVT::Other);
3194 SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3195 SDOperand Ops[] = {
3196 LD->getChain(), // Chain
3197 LD->getBasePtr(), // Ptr
3198 SV, // SrcValue
3199 DAG.getValueType(N->getValueType(0)) // VT
3200 };
3201 SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3202
3203 // If this is an i16 load, insert the truncate.
3204 SDOperand ResVal = BSLoad;
3205 if (N->getValueType(0) == MVT::i16)
3206 ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3207
3208 // First, combine the bswap away. This makes the value produced by the
3209 // load dead.
3210 DCI.CombineTo(N, ResVal);
3211
3212 // Next, combine the load away, we give it a bogus result value but a real
3213 // chain result. The result value is dead because the bswap is dead.
3214 DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3215
3216 // Return N so it doesn't get rechecked!
3217 return SDOperand(N, 0);
3218 }
3219
3220 break;
3221 case PPCISD::VCMP: {
3222 // If a VCMPo node already exists with exactly the same operands as this
3223 // node, use its result instead of this node (VCMPo computes both a CR6 and
3224 // a normal output).
3225 //
3226 if (!N->getOperand(0).hasOneUse() &&
3227 !N->getOperand(1).hasOneUse() &&
3228 !N->getOperand(2).hasOneUse()) {
3229
3230 // Scan all of the users of the LHS, looking for VCMPo's that match.
3231 SDNode *VCMPoNode = 0;
3232
3233 SDNode *LHSN = N->getOperand(0).Val;
3234 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3235 UI != E; ++UI)
3236 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3237 (*UI)->getOperand(1) == N->getOperand(1) &&
3238 (*UI)->getOperand(2) == N->getOperand(2) &&
3239 (*UI)->getOperand(0) == N->getOperand(0)) {
3240 VCMPoNode = *UI;
3241 break;
3242 }
3243
3244 // If there is no VCMPo node, or if the flag value has a single use, don't
3245 // transform this.
3246 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3247 break;
3248
3249 // Look at the (necessarily single) use of the flag value. If it has a
3250 // chain, this transformation is more complex. Note that multiple things
3251 // could use the value result, which we should ignore.
3252 SDNode *FlagUser = 0;
3253 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3254 FlagUser == 0; ++UI) {
3255 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3256 SDNode *User = *UI;
3257 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3258 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3259 FlagUser = User;
3260 break;
3261 }
3262 }
3263 }
3264
3265 // If the user is a MFCR instruction, we know this is safe. Otherwise we
3266 // give up for right now.
3267 if (FlagUser->getOpcode() == PPCISD::MFCR)
3268 return SDOperand(VCMPoNode, 0);
3269 }
3270 break;
3271 }
3272 case ISD::BR_CC: {
3273 // If this is a branch on an altivec predicate comparison, lower this so
3274 // that we don't have to do a MFCR: instead, branch directly on CR6. This
3275 // lowering is done pre-legalize, because the legalizer lowers the predicate
3276 // compare down to code that is difficult to reassemble.
3277 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3278 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3279 int CompareOpc;
3280 bool isDot;
3281
3282 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3283 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3284 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3285 assert(isDot && "Can't compare against a vector result!");
3286
3287 // If this is a comparison against something other than 0/1, then we know
3288 // that the condition is never/always true.
3289 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3290 if (Val != 0 && Val != 1) {
3291 if (CC == ISD::SETEQ) // Cond never true, remove branch.
3292 return N->getOperand(0);
3293 // Always !=, turn it into an unconditional branch.
3294 return DAG.getNode(ISD::BR, MVT::Other,
3295 N->getOperand(0), N->getOperand(4));
3296 }
3297
3298 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3299
3300 // Create the PPCISD altivec 'dot' comparison node.
3301 std::vector<MVT::ValueType> VTs;
3302 SDOperand Ops[] = {
3303 LHS.getOperand(2), // LHS of compare
3304 LHS.getOperand(3), // RHS of compare
3305 DAG.getConstant(CompareOpc, MVT::i32)
3306 };
3307 VTs.push_back(LHS.getOperand(2).getValueType());
3308 VTs.push_back(MVT::Flag);
3309 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3310
3311 // Unpack the result based on how the target uses it.
3312 PPC::Predicate CompOpc;
3313 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3314 default: // Can't happen, don't crash on invalid number though.
3315 case 0: // Branch on the value of the EQ bit of CR6.
3316 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3317 break;
3318 case 1: // Branch on the inverted value of the EQ bit of CR6.
3319 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3320 break;
3321 case 2: // Branch on the value of the LT bit of CR6.
3322 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3323 break;
3324 case 3: // Branch on the inverted value of the LT bit of CR6.
3325 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3326 break;
3327 }
3328
3329 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3330 DAG.getConstant(CompOpc, MVT::i32),
3331 DAG.getRegister(PPC::CR6, MVT::i32),
3332 N->getOperand(4), CompNode.getValue(1));
3333 }
3334 break;
3335 }
3336 }
3337
3338 return SDOperand();
3339}
3340
3341//===----------------------------------------------------------------------===//
3342// Inline Assembly Support
3343//===----------------------------------------------------------------------===//
3344
3345void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3346 uint64_t Mask,
3347 uint64_t &KnownZero,
3348 uint64_t &KnownOne,
3349 const SelectionDAG &DAG,
3350 unsigned Depth) const {
3351 KnownZero = 0;
3352 KnownOne = 0;
3353 switch (Op.getOpcode()) {
3354 default: break;
3355 case PPCISD::LBRX: {
3356 // lhbrx is known to have the top bits cleared out.
3357 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3358 KnownZero = 0xFFFF0000;
3359 break;
3360 }
3361 case ISD::INTRINSIC_WO_CHAIN: {
3362 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3363 default: break;
3364 case Intrinsic::ppc_altivec_vcmpbfp_p:
3365 case Intrinsic::ppc_altivec_vcmpeqfp_p:
3366 case Intrinsic::ppc_altivec_vcmpequb_p:
3367 case Intrinsic::ppc_altivec_vcmpequh_p:
3368 case Intrinsic::ppc_altivec_vcmpequw_p:
3369 case Intrinsic::ppc_altivec_vcmpgefp_p:
3370 case Intrinsic::ppc_altivec_vcmpgtfp_p:
3371 case Intrinsic::ppc_altivec_vcmpgtsb_p:
3372 case Intrinsic::ppc_altivec_vcmpgtsh_p:
3373 case Intrinsic::ppc_altivec_vcmpgtsw_p:
3374 case Intrinsic::ppc_altivec_vcmpgtub_p:
3375 case Intrinsic::ppc_altivec_vcmpgtuh_p:
3376 case Intrinsic::ppc_altivec_vcmpgtuw_p:
3377 KnownZero = ~1U; // All bits but the low one are known to be zero.
3378 break;
3379 }
3380 }
3381 }
3382}
3383
3384
3385/// getConstraintType - Given a constraint, return the type of
3386/// constraint it is for this target.
3387PPCTargetLowering::ConstraintType
3388PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3389 if (Constraint.size() == 1) {
3390 switch (Constraint[0]) {
3391 default: break;
3392 case 'b':
3393 case 'r':
3394 case 'f':
3395 case 'v':
3396 case 'y':
3397 return C_RegisterClass;
3398 }
3399 }
3400 return TargetLowering::getConstraintType(Constraint);
3401}
3402
3403std::pair<unsigned, const TargetRegisterClass*>
3404PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3405 MVT::ValueType VT) const {
3406 if (Constraint.size() == 1) {
3407 // GCC RS6000 Constraint Letters
3408 switch (Constraint[0]) {
3409 case 'b': // R1-R31
3410 case 'r': // R0-R31
3411 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3412 return std::make_pair(0U, PPC::G8RCRegisterClass);
3413 return std::make_pair(0U, PPC::GPRCRegisterClass);
3414 case 'f':
3415 if (VT == MVT::f32)
3416 return std::make_pair(0U, PPC::F4RCRegisterClass);
3417 else if (VT == MVT::f64)
3418 return std::make_pair(0U, PPC::F8RCRegisterClass);
3419 break;
3420 case 'v':
3421 return std::make_pair(0U, PPC::VRRCRegisterClass);
3422 case 'y': // crrc
3423 return std::make_pair(0U, PPC::CRRCRegisterClass);
3424 }
3425 }
3426
3427 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3428}
3429
3430
Chris Lattnera531abc2007-08-25 00:47:38 +00003431/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3432/// vector. If it is invalid, don't add anything to Ops.
3433void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3434 std::vector<SDOperand>&Ops,
3435 SelectionDAG &DAG) {
3436 SDOperand Result(0,0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003437 switch (Letter) {
3438 default: break;
3439 case 'I':
3440 case 'J':
3441 case 'K':
3442 case 'L':
3443 case 'M':
3444 case 'N':
3445 case 'O':
3446 case 'P': {
3447 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
Chris Lattnera531abc2007-08-25 00:47:38 +00003448 if (!CST) return; // Must be an immediate to match.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003449 unsigned Value = CST->getValue();
3450 switch (Letter) {
3451 default: assert(0 && "Unknown constraint letter!");
3452 case 'I': // "I" is a signed 16-bit constant.
3453 if ((short)Value == (int)Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003454 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003455 break;
3456 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
3457 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
3458 if ((short)Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003459 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003460 break;
3461 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
3462 if ((Value >> 16) == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003463 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003464 break;
3465 case 'M': // "M" is a constant that is greater than 31.
3466 if (Value > 31)
Chris Lattnera531abc2007-08-25 00:47:38 +00003467 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003468 break;
3469 case 'N': // "N" is a positive constant that is an exact power of two.
3470 if ((int)Value > 0 && isPowerOf2_32(Value))
Chris Lattnera531abc2007-08-25 00:47:38 +00003471 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003472 break;
3473 case 'O': // "O" is the constant zero.
3474 if (Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003475 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003476 break;
3477 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
3478 if ((short)-Value == (int)-Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003479 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003480 break;
3481 }
3482 break;
3483 }
3484 }
3485
Chris Lattnera531abc2007-08-25 00:47:38 +00003486 if (Result.Val) {
3487 Ops.push_back(Result);
3488 return;
3489 }
3490
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003491 // Handle standard constraint letters.
Chris Lattnera531abc2007-08-25 00:47:38 +00003492 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003493}
3494
3495// isLegalAddressingMode - Return true if the addressing mode represented
3496// by AM is legal for this target, for a load/store of the specified type.
3497bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3498 const Type *Ty) const {
3499 // FIXME: PPC does not allow r+i addressing modes for vectors!
3500
3501 // PPC allows a sign-extended 16-bit immediate field.
3502 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3503 return false;
3504
3505 // No global is ever allowed as a base.
3506 if (AM.BaseGV)
3507 return false;
3508
3509 // PPC only support r+r,
3510 switch (AM.Scale) {
3511 case 0: // "r+i" or just "i", depending on HasBaseReg.
3512 break;
3513 case 1:
3514 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3515 return false;
3516 // Otherwise we have r+r or r+i.
3517 break;
3518 case 2:
3519 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3520 return false;
3521 // Allow 2*r as r+r.
3522 break;
3523 default:
3524 // No other scales are supported.
3525 return false;
3526 }
3527
3528 return true;
3529}
3530
3531/// isLegalAddressImmediate - Return true if the integer value can be used
3532/// as the offset of the target addressing mode for load / store of the
3533/// given type.
3534bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3535 // PPC allows a sign-extended 16-bit immediate field.
3536 return (V > -(1 << 16) && V < (1 << 16)-1);
3537}
3538
3539bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3540 return false;
3541}
3542
3543SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG)
3544{
3545 // Depths > 0 not supported yet!
3546 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3547 return SDOperand();
3548
3549 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3550 bool isPPC64 = PtrVT == MVT::i64;
3551
3552 MachineFunction &MF = DAG.getMachineFunction();
3553 MachineFrameInfo *MFI = MF.getFrameInfo();
3554 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3555 && MFI->getStackSize();
3556
3557 if (isPPC64)
3558 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
Bill Wendling5e28ab12007-08-30 00:59:19 +00003559 MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003560 else
3561 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3562 MVT::i32);
3563}