blob: 77b57901e01b6ec2c7939461ffe237bd9830624e [file] [log] [blame]
Dan Gohman6277eb22009-11-23 17:16:22 +00001//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating functions from LLVM IR into
11// Machine IR.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "function-lowering-info"
16#include "FunctionLoweringInfo.h"
17#include "llvm/CallingConv.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Function.h"
20#include "llvm/Instructions.h"
Dan Gohman5fca8b12009-11-23 18:12:11 +000021#include "llvm/IntrinsicInst.h"
Dan Gohman6277eb22009-11-23 17:16:22 +000022#include "llvm/LLVMContext.h"
23#include "llvm/Module.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/Analysis/DebugInfo.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetIntrinsicInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Support/Compiler.h"
Dan Gohman6277eb22009-11-23 17:16:22 +000038#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include <algorithm>
43using namespace llvm;
44
45/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
46/// of insertvalue or extractvalue indices that identify a member, return
47/// the linearized index of the start of the member.
48///
49unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
50 const unsigned *Indices,
51 const unsigned *IndicesEnd,
52 unsigned CurIndex) {
53 // Base case: We're done.
54 if (Indices && Indices == IndicesEnd)
55 return CurIndex;
56
57 // Given a struct type, recursively traverse the elements.
58 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
59 for (StructType::element_iterator EB = STy->element_begin(),
60 EI = EB,
61 EE = STy->element_end();
62 EI != EE; ++EI) {
63 if (Indices && *Indices == unsigned(EI - EB))
64 return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
65 CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
66 }
67 return CurIndex;
68 }
69 // Given an array type, recursively traverse the elements.
70 else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
71 const Type *EltTy = ATy->getElementType();
72 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
73 if (Indices && *Indices == i)
74 return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
75 CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
76 }
77 return CurIndex;
78 }
79 // We haven't found the type we're looking for, so keep searching.
80 return CurIndex + 1;
81}
82
83/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
84/// EVTs that represent all the individual underlying
85/// non-aggregate types that comprise it.
86///
87/// If Offsets is non-null, it points to a vector to be filled in
88/// with the in-memory offsets of each of the individual values.
89///
90void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
91 SmallVectorImpl<EVT> &ValueVTs,
92 SmallVectorImpl<uint64_t> *Offsets,
93 uint64_t StartingOffset) {
94 // Given a struct type, recursively traverse the elements.
95 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
96 const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
97 for (StructType::element_iterator EB = STy->element_begin(),
98 EI = EB,
99 EE = STy->element_end();
100 EI != EE; ++EI)
101 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
102 StartingOffset + SL->getElementOffset(EI - EB));
103 return;
104 }
105 // Given an array type, recursively traverse the elements.
106 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
107 const Type *EltTy = ATy->getElementType();
108 uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
109 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
110 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
111 StartingOffset + i * EltSize);
112 return;
113 }
114 // Interpret void as zero return values.
Benjamin Kramerf0127052010-01-05 13:12:22 +0000115 if (Ty->isVoidTy())
Dan Gohman6277eb22009-11-23 17:16:22 +0000116 return;
117 // Base case: we can get an EVT for this LLVM IR type.
118 ValueVTs.push_back(TLI.getValueType(Ty));
119 if (Offsets)
120 Offsets->push_back(StartingOffset);
121}
122
123/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
124/// PHI nodes or outside of the basic block that defines it, or used by a
125/// switch or atomic instruction, which may expand to multiple basic blocks.
126static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
127 if (isa<PHINode>(I)) return true;
128 BasicBlock *BB = I->getParent();
129 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
130 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
131 return true;
132 return false;
133}
134
135/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
136/// entry block, return true. This includes arguments used by switches, since
137/// the switch may expand into multiple basic blocks.
138static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
139 // With FastISel active, we may be splitting blocks, so force creation
140 // of virtual registers for all non-dead arguments.
141 // Don't force virtual registers for byval arguments though, because
142 // fast-isel can't handle those in all cases.
143 if (EnableFastISel && !A->hasByValAttr())
144 return A->use_empty();
145
146 BasicBlock *Entry = A->getParent()->begin();
147 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
148 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
149 return false; // Use not in entry block.
150 return true;
151}
152
153FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
154 : TLI(tli) {
155}
156
157void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
158 bool EnableFastISel) {
159 Fn = &fn;
160 MF = &mf;
161 RegInfo = &MF->getRegInfo();
162
163 // Create a vreg for each argument register that is not dead and is used
164 // outside of the entry block for the function.
165 for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
166 AI != E; ++AI)
167 if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
168 InitializeRegForValue(AI);
169
170 // Initialize the mapping of values to registers. This is only set up for
171 // instruction values that are used outside of the block that defines
172 // them.
173 Function::iterator BB = Fn->begin(), EB = Fn->end();
174 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
175 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
176 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
177 const Type *Ty = AI->getAllocatedType();
178 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
179 unsigned Align =
180 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
181 AI->getAlignment());
182
183 TySize *= CUI->getZExtValue(); // Get total allocated size.
184 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
185 StaticAllocaMap[AI] =
186 MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
187 }
188
189 for (; BB != EB; ++BB)
190 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
191 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
192 if (!isa<AllocaInst>(I) ||
193 !StaticAllocaMap.count(cast<AllocaInst>(I)))
194 InitializeRegForValue(I);
195
196 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
197 // also creates the initial PHI MachineInstrs, though none of the input
198 // operands are populated.
Dan Gohmand0d82752010-04-14 16:30:40 +0000199 for (BB = Fn->begin(); BB != EB; ++BB) {
Dan Gohman6277eb22009-11-23 17:16:22 +0000200 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
201 MBBMap[BB] = MBB;
202 MF->push_back(MBB);
203
204 // Transfer the address-taken flag. This is necessary because there could
205 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
206 // the first one should be marked.
207 if (BB->hasAddressTaken())
208 MBB->setHasAddressTaken();
209
210 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
211 // appropriate.
212 PHINode *PN;
213 DebugLoc DL;
214 for (BasicBlock::iterator
215 I = BB->begin(), E = BB->end(); I != E; ++I) {
216
217 PN = dyn_cast<PHINode>(I);
218 if (!PN || PN->use_empty()) continue;
219
220 unsigned PHIReg = ValueMap[PN];
221 assert(PHIReg && "PHI node does not have an assigned virtual register!");
222
223 SmallVector<EVT, 4> ValueVTs;
224 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
225 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
226 EVT VT = ValueVTs[vti];
227 unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
228 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
229 for (unsigned i = 0; i != NumRegisters; ++i)
Chris Lattner518bb532010-02-09 19:54:29 +0000230 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
Dan Gohman6277eb22009-11-23 17:16:22 +0000231 PHIReg += NumRegisters;
232 }
233 }
234 }
Dan Gohmande4c0a72010-04-14 16:32:56 +0000235
236 // Mark landing pad blocks.
237 for (BB = Fn->begin(); BB != EB; ++BB)
238 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
239 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
Dan Gohman6277eb22009-11-23 17:16:22 +0000240}
241
242/// clear - Clear out all the function-specific state. This returns this
243/// FunctionLoweringInfo to an empty state, ready to be used for a
244/// different function.
245void FunctionLoweringInfo::clear() {
Dan Gohman0e026722010-04-14 17:11:23 +0000246 assert(CatchInfoFound.size() == CatchInfoLost.size() &&
247 "Not all catch info was assigned to a landing pad!");
248
Dan Gohman6277eb22009-11-23 17:16:22 +0000249 MBBMap.clear();
250 ValueMap.clear();
251 StaticAllocaMap.clear();
252#ifndef NDEBUG
253 CatchInfoLost.clear();
254 CatchInfoFound.clear();
255#endif
256 LiveOutRegInfo.clear();
257}
258
259unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
260 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
261}
262
263/// CreateRegForValue - Allocate the appropriate number of virtual registers of
264/// the correctly promoted or expanded types. Assign these registers
265/// consecutive vreg numbers and return the first assigned number.
266///
267/// In the case that the given value has struct or array type, this function
268/// will assign registers for each member or element.
269///
270unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
271 SmallVector<EVT, 4> ValueVTs;
272 ComputeValueVTs(TLI, V->getType(), ValueVTs);
273
274 unsigned FirstReg = 0;
275 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
276 EVT ValueVT = ValueVTs[Value];
277 EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
278
279 unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
280 for (unsigned i = 0; i != NumRegs; ++i) {
281 unsigned R = MakeReg(RegisterVT);
282 if (!FirstReg) FirstReg = R;
283 }
284 }
285 return FirstReg;
286}
Dan Gohman66336ed2009-11-23 17:42:46 +0000287
288/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
289GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
290 V = V->stripPointerCasts();
291 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Bill Wendlinge6b293b2010-03-27 01:24:30 +0000292
293 if (GV && GV->getName() == ".llvm.eh.catch.all.value") {
294 assert(GV->hasInitializer() &&
295 "The EH catch-all value must have an initializer");
296 Value *Init = GV->getInitializer();
297 GV = dyn_cast<GlobalVariable>(Init);
298 if (!GV) V = cast<ConstantPointerNull>(Init);
299 }
300
301 assert((GV || isa<ConstantPointerNull>(V)) &&
302 "TypeInfo must be a global variable or NULL");
Dan Gohman66336ed2009-11-23 17:42:46 +0000303 return GV;
304}
305
306/// AddCatchInfo - Extract the personality and type infos from an eh.selector
307/// call, and add them to the specified machine basic block.
Dan Gohman25208642010-04-14 19:53:31 +0000308void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
Dan Gohman66336ed2009-11-23 17:42:46 +0000309 MachineBasicBlock *MBB) {
310 // Inform the MachineModuleInfo of the personality for this landing pad.
Dan Gohman25208642010-04-14 19:53:31 +0000311 const ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
Dan Gohman66336ed2009-11-23 17:42:46 +0000312 assert(CE->getOpcode() == Instruction::BitCast &&
313 isa<Function>(CE->getOperand(0)) &&
314 "Personality should be a function");
315 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
316
317 // Gather all the type infos for this landing pad and pass them along to
318 // MachineModuleInfo.
Dan Gohman46510a72010-04-15 01:51:59 +0000319 std::vector<const GlobalVariable *> TyInfo;
Dan Gohman66336ed2009-11-23 17:42:46 +0000320 unsigned N = I.getNumOperands();
321
322 for (unsigned i = N - 1; i > 2; --i) {
Dan Gohman25208642010-04-14 19:53:31 +0000323 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
Dan Gohman66336ed2009-11-23 17:42:46 +0000324 unsigned FilterLength = CI->getZExtValue();
325 unsigned FirstCatch = i + FilterLength + !FilterLength;
326 assert (FirstCatch <= N && "Invalid filter length");
327
328 if (FirstCatch < N) {
329 TyInfo.reserve(N - FirstCatch);
330 for (unsigned j = FirstCatch; j < N; ++j)
331 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
332 MMI->addCatchTypeInfo(MBB, TyInfo);
333 TyInfo.clear();
334 }
335
336 if (!FilterLength) {
337 // Cleanup.
338 MMI->addCleanup(MBB);
339 } else {
340 // Filter.
341 TyInfo.reserve(FilterLength - 1);
342 for (unsigned j = i + 1; j < FirstCatch; ++j)
343 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
344 MMI->addFilterTypeInfo(MBB, TyInfo);
345 TyInfo.clear();
346 }
347
348 N = i;
349 }
350 }
351
352 if (N > 3) {
353 TyInfo.reserve(N - 3);
354 for (unsigned j = 3; j < N; ++j)
355 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
356 MMI->addCatchTypeInfo(MBB, TyInfo);
357 }
358}
359
Dan Gohman25208642010-04-14 19:53:31 +0000360void llvm::CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB,
Dan Gohman5fca8b12009-11-23 18:12:11 +0000361 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
Dan Gohman25208642010-04-14 19:53:31 +0000362 for (BasicBlock::const_iterator I = SrcBB->begin(), E = --SrcBB->end();
363 I != E; ++I)
364 if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
Dan Gohman5fca8b12009-11-23 18:12:11 +0000365 // Apply the catch info to DestBB.
366 AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
367#ifndef NDEBUG
368 if (!FLI.MBBMap[SrcBB]->isLandingPad())
369 FLI.CatchInfoFound.insert(EHSel);
370#endif
371 }
372}
Dan Gohmanfe85e762010-04-14 18:31:02 +0000373
374/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
375/// processed uses a memory 'm' constraint.
376bool
377llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
378 const TargetLowering &TLI) {
379 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
380 InlineAsm::ConstraintInfo &CI = CInfos[i];
381 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
382 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
383 if (CType == TargetLowering::C_Memory)
384 return true;
385 }
386
387 // Indirect operand accesses access memory.
388 if (CI.isIndirect)
389 return true;
390 }
391
392 return false;
393}
394
395/// getFCmpCondCode - Return the ISD condition code corresponding to
396/// the given LLVM IR floating-point condition code. This includes
397/// consideration of global floating-point math flags.
398///
399ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
400 ISD::CondCode FPC, FOC;
401 switch (Pred) {
402 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
403 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
404 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
405 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
406 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
407 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
408 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
409 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
410 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
411 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
412 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
413 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
414 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
415 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
416 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
417 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
418 default:
419 llvm_unreachable("Invalid FCmp predicate opcode!");
420 FOC = FPC = ISD::SETFALSE;
421 break;
422 }
423 if (FiniteOnlyFPMath())
424 return FOC;
425 else
426 return FPC;
427}
428
429/// getICmpCondCode - Return the ISD condition code corresponding to
430/// the given LLVM IR integer condition code.
431///
432ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
433 switch (Pred) {
434 case ICmpInst::ICMP_EQ: return ISD::SETEQ;
435 case ICmpInst::ICMP_NE: return ISD::SETNE;
436 case ICmpInst::ICMP_SLE: return ISD::SETLE;
437 case ICmpInst::ICMP_ULE: return ISD::SETULE;
438 case ICmpInst::ICMP_SGE: return ISD::SETGE;
439 case ICmpInst::ICMP_UGE: return ISD::SETUGE;
440 case ICmpInst::ICMP_SLT: return ISD::SETLT;
441 case ICmpInst::ICMP_ULT: return ISD::SETULT;
442 case ICmpInst::ICMP_SGT: return ISD::SETGT;
443 case ICmpInst::ICMP_UGT: return ISD::SETUGT;
444 default:
445 llvm_unreachable("Invalid ICmp predicate opcode!");
446 return ISD::SETNE;
447 }
448}