blob: 833868a458561e89f73eebdf6bfd2fc789a9c088 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Target/MRegisterInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <cmath>
36using namespace llvm;
37
Evan Chengafc07f82007-08-16 07:24:22 +000038namespace {
39 // Hidden options for help debugging.
40 cl::opt<bool> DisableReMat("disable-rematerialization",
41 cl::init(false), cl::Hidden);
42}
43
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044STATISTIC(numIntervals, "Number of original intervals");
45STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
46STATISTIC(numFolded , "Number of loads/stores folded into instructions");
47
48char LiveIntervals::ID = 0;
49namespace {
50 RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
51}
52
53void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
54 AU.addPreserved<LiveVariables>();
55 AU.addRequired<LiveVariables>();
56 AU.addPreservedID(PHIEliminationID);
57 AU.addRequiredID(PHIEliminationID);
58 AU.addRequiredID(TwoAddressInstructionPassID);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000059 MachineFunctionPass::getAnalysisUsage(AU);
60}
61
62void LiveIntervals::releaseMemory() {
Evan Cheng94262e42007-10-17 02:10:22 +000063 Idx2MBBMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000064 mi2iMap_.clear();
65 i2miMap_.clear();
66 r2iMap_.clear();
Evan Cheng27344d42007-09-06 01:07:24 +000067 // Release VNInfo memroy regions after all VNInfo objects are dtor'd.
68 VNInfoAllocator.Reset();
Evan Cheng1204d172007-08-13 23:45:17 +000069 for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i)
70 delete ClonedMIs[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071}
72
Evan Cheng94262e42007-10-17 02:10:22 +000073namespace llvm {
74 inline bool operator<(unsigned V, const IdxMBBPair &IM) {
75 return V < IM.first;
76 }
77
78 inline bool operator<(const IdxMBBPair &IM, unsigned V) {
79 return IM.first < V;
80 }
81
82 struct Idx2MBBCompare {
83 bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
84 return LHS.first < RHS.first;
85 }
86 };
87}
88
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089/// runOnMachineFunction - Register allocate the whole function
90///
91bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
92 mf_ = &fn;
93 tm_ = &fn.getTarget();
94 mri_ = tm_->getRegisterInfo();
95 tii_ = tm_->getInstrInfo();
96 lv_ = &getAnalysis<LiveVariables>();
97 allocatableRegs_ = mri_->getAllocatableSet(fn);
98
99 // Number MachineInstrs and MachineBasicBlocks.
100 // Initialize MBB indexes to a sentinal.
Evan Cheng1204d172007-08-13 23:45:17 +0000101 MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000102
103 unsigned MIIndex = 0;
104 for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
105 MBB != E; ++MBB) {
Evan Cheng1204d172007-08-13 23:45:17 +0000106 unsigned StartIdx = MIIndex;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107
108 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
109 I != E; ++I) {
110 bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
111 assert(inserted && "multiple MachineInstr -> index mappings");
112 i2miMap_.push_back(I);
113 MIIndex += InstrSlots::NUM;
114 }
Evan Cheng1204d172007-08-13 23:45:17 +0000115
116 // Set the MBB2IdxMap entry for this MBB.
117 MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
Evan Cheng94262e42007-10-17 02:10:22 +0000118 Idx2MBBMap.push_back(std::make_pair(StartIdx, MBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119 }
Evan Cheng94262e42007-10-17 02:10:22 +0000120 std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121
122 computeIntervals();
123
124 numIntervals += getNumIntervals();
125
126 DOUT << "********** INTERVALS **********\n";
127 for (iterator I = begin(), E = end(); I != E; ++I) {
128 I->second.print(DOUT, mri_);
129 DOUT << "\n";
130 }
131
132 numIntervalsAfter += getNumIntervals();
133 DEBUG(dump());
134 return true;
135}
136
137/// print - Implement the dump method.
138void LiveIntervals::print(std::ostream &O, const Module* ) const {
139 O << "********** INTERVALS **********\n";
140 for (const_iterator I = begin(), E = end(); I != E; ++I) {
141 I->second.print(DOUT, mri_);
142 DOUT << "\n";
143 }
144
145 O << "********** MACHINEINSTRS **********\n";
146 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
147 mbbi != mbbe; ++mbbi) {
148 O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
149 for (MachineBasicBlock::iterator mii = mbbi->begin(),
150 mie = mbbi->end(); mii != mie; ++mii) {
151 O << getInstructionIndex(mii) << '\t' << *mii;
152 }
153 }
154}
155
Evan Chengc4c75f52007-11-03 07:20:12 +0000156/// conflictsWithPhysRegDef - Returns true if the specified register
157/// is defined during the duration of the specified interval.
158bool LiveIntervals::conflictsWithPhysRegDef(const LiveInterval &li,
159 VirtRegMap &vrm, unsigned reg) {
160 for (LiveInterval::Ranges::const_iterator
161 I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
162 for (unsigned index = getBaseIndex(I->start),
163 end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end;
164 index += InstrSlots::NUM) {
165 // skip deleted instructions
166 while (index != end && !getInstructionFromIndex(index))
167 index += InstrSlots::NUM;
168 if (index == end) break;
169
170 MachineInstr *MI = getInstructionFromIndex(index);
171 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
172 MachineOperand& mop = MI->getOperand(i);
173 if (!mop.isRegister() || !mop.isDef())
174 continue;
175 unsigned PhysReg = mop.getReg();
176 if (PhysReg == 0)
177 continue;
178 if (MRegisterInfo::isVirtualRegister(PhysReg))
179 PhysReg = vrm.getPhys(PhysReg);
Evan Chengccfa6922007-11-05 00:59:10 +0000180 if (PhysReg && mri_->regsOverlap(PhysReg, reg))
Evan Chengc4c75f52007-11-03 07:20:12 +0000181 return true;
182 }
183 }
184 }
185
186 return false;
187}
188
Evan Cheng1204d172007-08-13 23:45:17 +0000189void LiveIntervals::printRegName(unsigned reg) const {
190 if (MRegisterInfo::isPhysicalRegister(reg))
191 cerr << mri_->getName(reg);
192 else
193 cerr << "%reg" << reg;
194}
195
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
197 MachineBasicBlock::iterator mi,
198 unsigned MIIdx,
199 LiveInterval &interval) {
200 DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
201 LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
202
203 // Virtual registers may be defined multiple times (due to phi
204 // elimination and 2-addr elimination). Much of what we do only has to be
205 // done once for the vreg. We use an empty interval to detect the first
206 // time we see a vreg.
207 if (interval.empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208 // Get the Idx of the defining instructions.
209 unsigned defIndex = getDefIndex(MIIdx);
Evan Cheng983b81d2007-08-29 20:45:00 +0000210 VNInfo *ValNo;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000211 unsigned SrcReg, DstReg;
Evan Cheng687d1082007-10-12 08:50:34 +0000212 if (tii_->isMoveInstr(*mi, SrcReg, DstReg))
Evan Cheng319802c2007-09-05 21:46:51 +0000213 ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
Evan Cheng982f2512007-10-12 17:16:50 +0000214 else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
Evan Cheng687d1082007-10-12 08:50:34 +0000215 ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(),
216 VNInfoAllocator);
217 else
218 ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
Evan Cheng983b81d2007-08-29 20:45:00 +0000219
220 assert(ValNo->id == 0 && "First value in interval is not 0?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000221
222 // Loop over all of the blocks that the vreg is defined in. There are
223 // two cases we have to handle here. The most common case is a vreg
224 // whose lifetime is contained within a basic block. In this case there
225 // will be a single kill, in MBB, which comes after the definition.
226 if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
227 // FIXME: what about dead vars?
228 unsigned killIdx;
229 if (vi.Kills[0] != mi)
230 killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
231 else
232 killIdx = defIndex+1;
233
234 // If the kill happens after the definition, we have an intra-block
235 // live range.
236 if (killIdx > defIndex) {
237 assert(vi.AliveBlocks.none() &&
238 "Shouldn't be alive across any blocks!");
Evan Cheng983b81d2007-08-29 20:45:00 +0000239 LiveRange LR(defIndex, killIdx, ValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240 interval.addRange(LR);
241 DOUT << " +" << LR << "\n";
Evan Cheng319802c2007-09-05 21:46:51 +0000242 interval.addKill(ValNo, killIdx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 return;
244 }
245 }
246
247 // The other case we handle is when a virtual register lives to the end
248 // of the defining block, potentially live across some blocks, then is
249 // live into some number of blocks, but gets killed. Start by adding a
250 // range that goes from this definition to the end of the defining block.
251 LiveRange NewLR(defIndex,
252 getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
Evan Cheng983b81d2007-08-29 20:45:00 +0000253 ValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000254 DOUT << " +" << NewLR;
255 interval.addRange(NewLR);
256
257 // Iterate over all of the blocks that the variable is completely
258 // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
259 // live interval.
260 for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
261 if (vi.AliveBlocks[i]) {
262 MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
263 if (!MBB->empty()) {
264 LiveRange LR(getMBBStartIdx(i),
265 getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
Evan Cheng983b81d2007-08-29 20:45:00 +0000266 ValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267 interval.addRange(LR);
268 DOUT << " +" << LR;
269 }
270 }
271 }
272
273 // Finally, this virtual register is live from the start of any killing
274 // block to the 'use' slot of the killing instruction.
275 for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
276 MachineInstr *Kill = vi.Kills[i];
Evan Cheng58c2b762007-08-08 03:00:28 +0000277 unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278 LiveRange LR(getMBBStartIdx(Kill->getParent()),
Evan Cheng983b81d2007-08-29 20:45:00 +0000279 killIdx, ValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000280 interval.addRange(LR);
Evan Cheng319802c2007-09-05 21:46:51 +0000281 interval.addKill(ValNo, killIdx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000282 DOUT << " +" << LR;
283 }
284
285 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286 // If this is the second time we see a virtual register definition, it
287 // must be due to phi elimination or two addr elimination. If this is
288 // the result of two address elimination, then the vreg is one of the
289 // def-and-use register operand.
Evan Cheng687d1082007-10-12 08:50:34 +0000290 if (mi->isRegReDefinedByTwoAddr(interval.reg)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291 // If this is a two-address definition, then we have already processed
292 // the live range. The only problem is that we didn't realize there
293 // are actually two values in the live interval. Because of this we
294 // need to take the LiveRegion that defines this register and split it
295 // into two values.
296 unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
297 unsigned RedefIndex = getDefIndex(MIIdx);
298
Evan Cheng816a7f32007-08-11 00:59:19 +0000299 const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
Evan Cheng983b81d2007-08-29 20:45:00 +0000300 VNInfo *OldValNo = OldLR->valno;
Evan Cheng816a7f32007-08-11 00:59:19 +0000301 unsigned OldEnd = OldLR->end;
302
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000303 // Delete the initial value, which should be short and continuous,
304 // because the 2-addr copy must be in the same MBB as the redef.
305 interval.removeRange(DefIndex, RedefIndex);
306
307 // Two-address vregs should always only be redefined once. This means
308 // that at this point, there should be exactly one value number in it.
309 assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
310
311 // The new value number (#1) is defined by the instruction we claimed
312 // defined value #0.
Evan Cheng319802c2007-09-05 21:46:51 +0000313 VNInfo *ValNo = interval.getNextValue(0, 0, VNInfoAllocator);
314 interval.copyValNumInfo(ValNo, OldValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000315
316 // Value#0 is now defined by the 2-addr instruction.
Evan Cheng983b81d2007-08-29 20:45:00 +0000317 OldValNo->def = RedefIndex;
318 OldValNo->reg = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000319
320 // Add the new live interval which replaces the range for the input copy.
321 LiveRange LR(DefIndex, RedefIndex, ValNo);
322 DOUT << " replace range with " << LR;
323 interval.addRange(LR);
Evan Cheng319802c2007-09-05 21:46:51 +0000324 interval.addKill(ValNo, RedefIndex);
325 interval.removeKills(ValNo, RedefIndex, OldEnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000326
327 // If this redefinition is dead, we need to add a dummy unit live
328 // range covering the def slot.
329 if (lv_->RegisterDefIsDead(mi, interval.reg))
Evan Cheng983b81d2007-08-29 20:45:00 +0000330 interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331
332 DOUT << " RESULT: ";
333 interval.print(DOUT, mri_);
334
335 } else {
336 // Otherwise, this must be because of phi elimination. If this is the
337 // first redefinition of the vreg that we have seen, go back and change
338 // the live range in the PHI block to be a different value number.
339 if (interval.containsOneValue()) {
340 assert(vi.Kills.size() == 1 &&
341 "PHI elimination vreg should have one kill, the PHI itself!");
342
343 // Remove the old range that we now know has an incorrect number.
Evan Cheng319802c2007-09-05 21:46:51 +0000344 VNInfo *VNI = interval.getValNumInfo(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000345 MachineInstr *Killer = vi.Kills[0];
346 unsigned Start = getMBBStartIdx(Killer->getParent());
347 unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
348 DOUT << " Removing [" << Start << "," << End << "] from: ";
349 interval.print(DOUT, mri_); DOUT << "\n";
350 interval.removeRange(Start, End);
Evan Cheng319802c2007-09-05 21:46:51 +0000351 interval.addKill(VNI, Start+1); // odd # means phi node
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000352 DOUT << " RESULT: "; interval.print(DOUT, mri_);
353
354 // Replace the interval with one of a NEW value number. Note that this
355 // value number isn't actually defined by an instruction, weird huh? :)
Evan Cheng319802c2007-09-05 21:46:51 +0000356 LiveRange LR(Start, End, interval.getNextValue(~0, 0, VNInfoAllocator));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000357 DOUT << " replace range with " << LR;
358 interval.addRange(LR);
Evan Cheng319802c2007-09-05 21:46:51 +0000359 interval.addKill(LR.valno, End);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000360 DOUT << " RESULT: "; interval.print(DOUT, mri_);
361 }
362
363 // In the case of PHI elimination, each variable definition is only
364 // live until the end of the block. We've already taken care of the
365 // rest of the live range.
366 unsigned defIndex = getDefIndex(MIIdx);
367
Evan Cheng983b81d2007-08-29 20:45:00 +0000368 VNInfo *ValNo;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000369 unsigned SrcReg, DstReg;
Evan Cheng687d1082007-10-12 08:50:34 +0000370 if (tii_->isMoveInstr(*mi, SrcReg, DstReg))
Evan Cheng319802c2007-09-05 21:46:51 +0000371 ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
Evan Cheng687d1082007-10-12 08:50:34 +0000372 else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
373 ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(),
374 VNInfoAllocator);
375 else
376 ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000377
Evan Cheng0f727342007-08-08 07:03:29 +0000378 unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
Evan Cheng983b81d2007-08-29 20:45:00 +0000379 LiveRange LR(defIndex, killIndex, ValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000380 interval.addRange(LR);
Evan Cheng319802c2007-09-05 21:46:51 +0000381 interval.addKill(ValNo, killIndex-1); // odd # means phi node
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000382 DOUT << " +" << LR;
383 }
384 }
385
386 DOUT << '\n';
387}
388
389void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
390 MachineBasicBlock::iterator mi,
391 unsigned MIIdx,
392 LiveInterval &interval,
393 unsigned SrcReg) {
394 // A physical register cannot be live across basic block, so its
395 // lifetime must end somewhere in its defining basic block.
396 DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
397
398 unsigned baseIndex = MIIdx;
399 unsigned start = getDefIndex(baseIndex);
400 unsigned end = start;
401
402 // If it is not used after definition, it is considered dead at
403 // the instruction defining it. Hence its interval is:
404 // [defSlot(def), defSlot(def)+1)
405 if (lv_->RegisterDefIsDead(mi, interval.reg)) {
406 DOUT << " dead";
407 end = getDefIndex(start) + 1;
408 goto exit;
409 }
410
411 // If it is not dead on definition, it must be killed by a
412 // subsequent instruction. Hence its interval is:
413 // [defSlot(def), useSlot(kill)+1)
414 while (++mi != MBB->end()) {
415 baseIndex += InstrSlots::NUM;
416 if (lv_->KillsRegister(mi, interval.reg)) {
417 DOUT << " killed";
418 end = getUseIndex(baseIndex) + 1;
419 goto exit;
420 } else if (lv_->ModifiesRegister(mi, interval.reg)) {
421 // Another instruction redefines the register before it is ever read.
422 // Then the register is essentially dead at the instruction that defines
423 // it. Hence its interval is:
424 // [defSlot(def), defSlot(def)+1)
425 DOUT << " dead";
426 end = getDefIndex(start) + 1;
427 goto exit;
428 }
429 }
430
431 // The only case we should have a dead physreg here without a killing or
432 // instruction where we know it's dead is if it is live-in to the function
433 // and never used.
434 assert(!SrcReg && "physreg was not killed in defining block!");
435 end = getDefIndex(start) + 1; // It's dead.
436
437exit:
438 assert(start < end && "did not find end of interval?");
439
440 // Already exists? Extend old live interval.
441 LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
Evan Cheng983b81d2007-08-29 20:45:00 +0000442 VNInfo *ValNo = (OldLR != interval.end())
Evan Cheng319802c2007-09-05 21:46:51 +0000443 ? OldLR->valno : interval.getNextValue(start, SrcReg, VNInfoAllocator);
Evan Cheng983b81d2007-08-29 20:45:00 +0000444 LiveRange LR(start, end, ValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 interval.addRange(LR);
Evan Cheng319802c2007-09-05 21:46:51 +0000446 interval.addKill(LR.valno, end);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000447 DOUT << " +" << LR << '\n';
448}
449
450void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
451 MachineBasicBlock::iterator MI,
452 unsigned MIIdx,
453 unsigned reg) {
454 if (MRegisterInfo::isVirtualRegister(reg))
455 handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
456 else if (allocatableRegs_[reg]) {
457 unsigned SrcReg, DstReg;
Evan Cheng687d1082007-10-12 08:50:34 +0000458 if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
459 SrcReg = MI->getOperand(1).getReg();
460 else if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000461 SrcReg = 0;
462 handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
463 // Def of a register also defines its sub-registers.
464 for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
465 // Avoid processing some defs more than once.
466 if (!MI->findRegisterDefOperand(*AS))
467 handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
468 }
469}
470
471void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
472 unsigned MIIdx,
473 LiveInterval &interval, bool isAlias) {
474 DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
475
476 // Look for kills, if it reaches a def before it's killed, then it shouldn't
477 // be considered a livein.
478 MachineBasicBlock::iterator mi = MBB->begin();
479 unsigned baseIndex = MIIdx;
480 unsigned start = baseIndex;
481 unsigned end = start;
482 while (mi != MBB->end()) {
483 if (lv_->KillsRegister(mi, interval.reg)) {
484 DOUT << " killed";
485 end = getUseIndex(baseIndex) + 1;
486 goto exit;
487 } else if (lv_->ModifiesRegister(mi, interval.reg)) {
488 // Another instruction redefines the register before it is ever read.
489 // Then the register is essentially dead at the instruction that defines
490 // it. Hence its interval is:
491 // [defSlot(def), defSlot(def)+1)
492 DOUT << " dead";
493 end = getDefIndex(start) + 1;
494 goto exit;
495 }
496
497 baseIndex += InstrSlots::NUM;
498 ++mi;
499 }
500
501exit:
502 // Live-in register might not be used at all.
503 if (end == MIIdx) {
504 if (isAlias) {
505 DOUT << " dead";
506 end = getDefIndex(MIIdx) + 1;
507 } else {
508 DOUT << " live through";
509 end = baseIndex;
510 }
511 }
512
Evan Cheng319802c2007-09-05 21:46:51 +0000513 LiveRange LR(start, end, interval.getNextValue(start, 0, VNInfoAllocator));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000514 interval.addRange(LR);
Evan Cheng319802c2007-09-05 21:46:51 +0000515 interval.addKill(LR.valno, end);
Evan Cheng0f727342007-08-08 07:03:29 +0000516 DOUT << " +" << LR << '\n';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000517}
518
519/// computeIntervals - computes the live intervals for virtual
520/// registers. for some ordering of the machine instructions [1,N] a
521/// live interval is an interval [i, j) where 1 <= i <= j < N for
522/// which a variable is live
523void LiveIntervals::computeIntervals() {
524 DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
525 << "********** Function: "
526 << ((Value*)mf_->getFunction())->getName() << '\n';
527 // Track the index of the current machine instr.
528 unsigned MIIndex = 0;
529 for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
530 MBBI != E; ++MBBI) {
531 MachineBasicBlock *MBB = MBBI;
532 DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
533
534 MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
535
Dan Gohman3f7d94b2007-10-03 19:26:29 +0000536 // Create intervals for live-ins to this BB first.
537 for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
538 LE = MBB->livein_end(); LI != LE; ++LI) {
539 handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
540 // Multiple live-ins can alias the same register.
541 for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
542 if (!hasInterval(*AS))
543 handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
544 true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000545 }
546
547 for (; MI != miEnd; ++MI) {
548 DOUT << MIIndex << "\t" << *MI;
549
550 // Handle defs.
551 for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
552 MachineOperand &MO = MI->getOperand(i);
553 // handle register defs - build intervals
554 if (MO.isRegister() && MO.getReg() && MO.isDef())
555 handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
556 }
557
558 MIIndex += InstrSlots::NUM;
559 }
560 }
561}
562
Evan Cheng94262e42007-10-17 02:10:22 +0000563bool LiveIntervals::findLiveInMBBs(const LiveRange &LR,
Evan Cheng12d6fcb2007-10-17 06:53:44 +0000564 SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
Evan Cheng94262e42007-10-17 02:10:22 +0000565 std::vector<IdxMBBPair>::const_iterator I =
566 std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), LR.start);
567
568 bool ResVal = false;
569 while (I != Idx2MBBMap.end()) {
570 if (LR.end <= I->first)
571 break;
572 MBBs.push_back(I->second);
573 ResVal = true;
574 ++I;
575 }
576 return ResVal;
577}
578
579
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000580LiveInterval LiveIntervals::createInterval(unsigned reg) {
581 float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
582 HUGE_VALF : 0.0F;
583 return LiveInterval(reg, Weight);
584}
Evan Cheng9b741602007-11-12 06:35:08 +0000585
586
587//===----------------------------------------------------------------------===//
588// Register allocator hooks.
589//
590
591/// isReMaterializable - Returns true if the definition MI of the specified
592/// val# of the specified interval is re-materializable.
593bool LiveIntervals::isReMaterializable(const LiveInterval &li,
594 const VNInfo *ValNo, MachineInstr *MI) {
595 if (DisableReMat)
596 return false;
597
598 if (tii_->isTriviallyReMaterializable(MI))
599 return true;
600
601 int FrameIdx = 0;
602 if (!tii_->isLoadFromStackSlot(MI, FrameIdx) ||
603 !mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))
604 return false;
605
606 // This is a load from fixed stack slot. It can be rematerialized unless it's
607 // re-defined by a two-address instruction.
608 for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
609 i != e; ++i) {
610 const VNInfo *VNI = *i;
611 if (VNI == ValNo)
612 continue;
613 unsigned DefIdx = VNI->def;
614 if (DefIdx == ~1U)
615 continue; // Dead val#.
616 MachineInstr *DefMI = (DefIdx == ~0u)
617 ? NULL : getInstructionFromIndex(DefIdx);
618 if (DefMI && DefMI->isRegReDefinedByTwoAddr(li.reg))
619 return false;
620 }
621 return true;
622}
623
624/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
625/// slot / to reg or any rematerialized load into ith operand of specified
626/// MI. If it is successul, MI is updated with the newly created MI and
627/// returns true.
628bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
629 MachineInstr *DefMI,
630 unsigned index, unsigned i,
631 bool isSS, int slot, unsigned reg) {
632 MachineInstr *fmi = isSS
633 ? mri_->foldMemoryOperand(MI, i, slot)
634 : mri_->foldMemoryOperand(MI, i, DefMI);
635 if (fmi) {
636 // Attempt to fold the memory reference into the instruction. If
637 // we can do this, we don't need to insert spill code.
638 if (lv_)
639 lv_->instructionChanged(MI, fmi);
640 MachineBasicBlock &MBB = *MI->getParent();
641 vrm.virtFolded(reg, MI, i, fmi);
642 mi2iMap_.erase(MI);
643 i2miMap_[index/InstrSlots::NUM] = fmi;
644 mi2iMap_[fmi] = index;
645 MI = MBB.insert(MBB.erase(MI), fmi);
646 ++numFolded;
647 return true;
648 }
649 return false;
650}
651
652/// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions
653/// for addIntervalsForSpills to rewrite uses / defs for the given live range.
654void LiveIntervals::
655rewriteInstructionForSpills(const LiveInterval &li,
656 unsigned id, unsigned index, unsigned end,
657 MachineInstr *MI, MachineInstr *OrigDefMI, MachineInstr *DefMI,
658 unsigned Slot, int LdSlot,
659 bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
660 VirtRegMap &vrm, SSARegMap *RegMap,
661 const TargetRegisterClass* rc,
662 SmallVector<int, 4> &ReMatIds,
663 std::vector<LiveInterval*> &NewLIs) {
664 RestartInstruction:
665 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
666 MachineOperand& mop = MI->getOperand(i);
667 if (!mop.isRegister())
668 continue;
669 unsigned Reg = mop.getReg();
670 unsigned RegI = Reg;
671 if (Reg == 0 || MRegisterInfo::isPhysicalRegister(Reg))
672 continue;
Evan Cheng4d0fbf32007-11-14 07:59:08 +0000673 unsigned SubIdx = mop.getSubReg();
674 bool isSubReg = SubIdx != 0;
Evan Cheng9b741602007-11-12 06:35:08 +0000675 if (Reg != li.reg)
676 continue;
677
678 bool TryFold = !DefIsReMat;
679 bool FoldSS = true;
680 int FoldSlot = Slot;
681 if (DefIsReMat) {
682 // If this is the rematerializable definition MI itself and
683 // all of its uses are rematerialized, simply delete it.
684 if (MI == OrigDefMI && CanDelete) {
685 RemoveMachineInstrFromMaps(MI);
686 MI->eraseFromParent();
687 break;
688 }
689
690 // If def for this use can't be rematerialized, then try folding.
691 TryFold = !OrigDefMI || (OrigDefMI && (MI == OrigDefMI || isLoad));
692 if (isLoad) {
693 // Try fold loads (from stack slot, constant pool, etc.) into uses.
694 FoldSS = isLoadSS;
695 FoldSlot = LdSlot;
696 }
697 }
698
699 // FIXME: fold subreg use
700 if (!isSubReg && TryFold &&
701 tryFoldMemoryOperand(MI, vrm, DefMI, index, i, FoldSS, FoldSlot, Reg))
702 // Folding the load/store can completely change the instruction in
703 // unpredictable ways, rescan it from the beginning.
704 goto RestartInstruction;
705
706 // Create a new virtual register for the spill interval.
707 unsigned NewVReg = RegMap->createVirtualRegister(rc);
708 vrm.grow();
Evan Cheng9b741602007-11-12 06:35:08 +0000709
710 // Scan all of the operands of this instruction rewriting operands
711 // to use NewVReg instead of li.reg as appropriate. We do this for
712 // two reasons:
713 //
714 // 1. If the instr reads the same spilled vreg multiple times, we
715 // want to reuse the NewVReg.
716 // 2. If the instr is a two-addr instruction, we are required to
717 // keep the src/dst regs pinned.
718 //
719 // Keep track of whether we replace a use and/or def so that we can
720 // create the spill interval with the appropriate range.
721 mop.setReg(NewVReg);
722
723 bool HasUse = mop.isUse();
724 bool HasDef = mop.isDef();
725 for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
726 if (!MI->getOperand(j).isRegister())
727 continue;
728 unsigned RegJ = MI->getOperand(j).getReg();
729 if (RegJ == 0 || MRegisterInfo::isPhysicalRegister(RegJ))
730 continue;
731 if (RegJ == RegI) {
732 MI->getOperand(j).setReg(NewVReg);
733 HasUse |= MI->getOperand(j).isUse();
734 HasDef |= MI->getOperand(j).isDef();
735 }
736 }
737
738 if (DefIsReMat) {
739 vrm.setVirtIsReMaterialized(NewVReg, DefMI/*, CanDelete*/);
740 if (ReMatIds[id] == VirtRegMap::MAX_STACK_SLOT) {
741 // Each valnum may have its own remat id.
742 ReMatIds[id] = vrm.assignVirtReMatId(NewVReg);
743 } else {
744 vrm.assignVirtReMatId(NewVReg, ReMatIds[id]);
745 }
746 if (!CanDelete || (HasUse && HasDef)) {
747 // If this is a two-addr instruction then its use operands are
748 // rematerializable but its def is not. It should be assigned a
749 // stack slot.
750 vrm.assignVirt2StackSlot(NewVReg, Slot);
751 }
752 } else {
753 vrm.assignVirt2StackSlot(NewVReg, Slot);
754 }
755
756 // create a new register interval for this spill / remat.
757 LiveInterval &nI = getOrCreateInterval(NewVReg);
758 assert(nI.empty());
759 NewLIs.push_back(&nI);
760
761 // the spill weight is now infinity as it
762 // cannot be spilled again
763 nI.weight = HUGE_VALF;
764
765 if (HasUse) {
766 LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
767 nI.getNextValue(~0U, 0, VNInfoAllocator));
768 DOUT << " +" << LR;
769 nI.addRange(LR);
770 }
771 if (HasDef) {
772 LiveRange LR(getDefIndex(index), getStoreIndex(index),
773 nI.getNextValue(~0U, 0, VNInfoAllocator));
774 DOUT << " +" << LR;
775 nI.addRange(LR);
776 }
777
778 // update live variables if it is available
779 if (lv_)
780 lv_->addVirtualRegisterKilled(NewVReg, MI);
781
782 DOUT << "\t\t\t\tAdded new interval: ";
783 nI.print(DOUT, mri_);
784 DOUT << '\n';
785 }
786}
787
788void LiveIntervals::
789rewriteInstructionsForSpills(const LiveInterval &li,
790 LiveInterval::Ranges::const_iterator &I,
791 MachineInstr *OrigDefMI, MachineInstr *DefMI,
792 unsigned Slot, int LdSlot,
793 bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
794 VirtRegMap &vrm, SSARegMap *RegMap,
795 const TargetRegisterClass* rc,
796 SmallVector<int, 4> &ReMatIds,
797 std::vector<LiveInterval*> &NewLIs) {
798 unsigned index = getBaseIndex(I->start);
799 unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
800 for (; index != end; index += InstrSlots::NUM) {
801 // skip deleted instructions
802 while (index != end && !getInstructionFromIndex(index))
803 index += InstrSlots::NUM;
804 if (index == end) break;
805
806 MachineInstr *MI = getInstructionFromIndex(index);
807 rewriteInstructionForSpills(li, I->valno->id, index, end, MI,
808 OrigDefMI, DefMI, Slot, LdSlot, isLoad,
809 isLoadSS, DefIsReMat, CanDelete, vrm,
810 RegMap, rc, ReMatIds, NewLIs);
811 }
812}
813
814std::vector<LiveInterval*> LiveIntervals::
815addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm) {
816 // Since this is called after the analysis is done we don't know if
817 // LiveVariables is available
818 lv_ = getAnalysisToUpdate<LiveVariables>();
819
820 assert(li.weight != HUGE_VALF &&
821 "attempt to spill already spilled interval!");
822
823 DOUT << "\t\t\t\tadding intervals for spills for interval: ";
824 li.print(DOUT, mri_);
825 DOUT << '\n';
826
827 std::vector<LiveInterval*> NewLIs;
828 SSARegMap *RegMap = mf_->getSSARegMap();
829 const TargetRegisterClass* rc = RegMap->getRegClass(li.reg);
830
831 unsigned NumValNums = li.getNumValNums();
832 SmallVector<MachineInstr*, 4> ReMatDefs;
833 ReMatDefs.resize(NumValNums, NULL);
834 SmallVector<MachineInstr*, 4> ReMatOrigDefs;
835 ReMatOrigDefs.resize(NumValNums, NULL);
836 SmallVector<int, 4> ReMatIds;
837 ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
838 BitVector ReMatDelete(NumValNums);
839 unsigned Slot = VirtRegMap::MAX_STACK_SLOT;
840
841 bool NeedStackSlot = false;
842 for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
843 i != e; ++i) {
844 const VNInfo *VNI = *i;
845 unsigned VN = VNI->id;
846 unsigned DefIdx = VNI->def;
847 if (DefIdx == ~1U)
848 continue; // Dead val#.
849 // Is the def for the val# rematerializable?
850 MachineInstr *DefMI = (DefIdx == ~0u) ? 0 : getInstructionFromIndex(DefIdx);
851 if (DefMI && isReMaterializable(li, VNI, DefMI)) {
852 // Remember how to remat the def of this val#.
853 ReMatOrigDefs[VN] = DefMI;
854 // Original def may be modified so we have to make a copy here. vrm must
855 // delete these!
856 ReMatDefs[VN] = DefMI = DefMI->clone();
857 vrm.setVirtIsReMaterialized(li.reg, DefMI);
858
859 bool CanDelete = true;
860 for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
861 unsigned KillIdx = VNI->kills[j];
862 MachineInstr *KillMI = (KillIdx & 1)
863 ? NULL : getInstructionFromIndex(KillIdx);
864 // Kill is a phi node, not all of its uses can be rematerialized.
865 // It must not be deleted.
866 if (!KillMI) {
867 CanDelete = false;
868 // Need a stack slot if there is any live range where uses cannot be
869 // rematerialized.
870 NeedStackSlot = true;
871 break;
872 }
873 }
874
875 if (CanDelete)
876 ReMatDelete.set(VN);
877 } else {
878 // Need a stack slot if there is any live range where uses cannot be
879 // rematerialized.
880 NeedStackSlot = true;
881 }
882 }
883
884 // One stack slot per live interval.
885 if (NeedStackSlot)
886 Slot = vrm.assignVirt2StackSlot(li.reg);
887
888 // Create new intervals and rewrite defs and uses.
889 for (LiveInterval::Ranges::const_iterator
890 I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
891 MachineInstr *DefMI = ReMatDefs[I->valno->id];
892 MachineInstr *OrigDefMI = ReMatOrigDefs[I->valno->id];
893 bool DefIsReMat = DefMI != NULL;
894 bool CanDelete = ReMatDelete[I->valno->id];
895 int LdSlot = 0;
896 bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(DefMI, LdSlot);
897 bool isLoad = isLoadSS ||
898 (DefIsReMat && (DefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG));
899 rewriteInstructionsForSpills(li, I, OrigDefMI, DefMI, Slot, LdSlot,
900 isLoad, isLoadSS, DefIsReMat, CanDelete,
901 vrm, RegMap, rc, ReMatIds, NewLIs);
902 }
903
904 return NewLIs;
905}