blob: 7adabe54d24ae2c1d83aedbc1a1e4c49bc637ca1 [file] [log] [blame]
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
Duncan Sands4cd2ad12010-11-23 10:50:08 +000011// that do not require creating new instructions. This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
Duncan Sandsee9a2e32010-12-20 14:47:04 +000014// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
Chris Lattner9f3c25a2009-11-09 22:57:59 +000017//
18//===----------------------------------------------------------------------===//
19
Duncan Sandsa3c44a52010-12-22 09:40:51 +000020#define DEBUG_TYPE "instsimplify"
21#include "llvm/ADT/Statistic.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000022#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/ConstantFolding.h"
Duncan Sands18450092010-11-16 12:16:38 +000024#include "llvm/Analysis/Dominators.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000025#include "llvm/Analysis/ValueTracking.h"
Chris Lattnerd06094f2009-11-10 00:55:12 +000026#include "llvm/Support/PatternMatch.h"
Duncan Sands18450092010-11-16 12:16:38 +000027#include "llvm/Support/ValueHandle.h"
Duncan Sandse60d79f2010-11-21 13:53:09 +000028#include "llvm/Target/TargetData.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000029using namespace llvm;
Chris Lattnerd06094f2009-11-10 00:55:12 +000030using namespace llvm::PatternMatch;
Chris Lattner9f3c25a2009-11-09 22:57:59 +000031
Chris Lattner81a0dc92011-02-09 17:15:04 +000032enum { RecursionLimit = 3 };
Duncan Sandsa74a58c2010-11-10 18:23:01 +000033
Duncan Sandsa3c44a52010-12-22 09:40:51 +000034STATISTIC(NumExpand, "Number of expansions");
35STATISTIC(NumFactor , "Number of factorizations");
36STATISTIC(NumReassoc, "Number of reassociations");
37
Duncan Sands82fdab32010-12-21 14:00:22 +000038static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
39 const DominatorTree *, unsigned);
Duncan Sandsa74a58c2010-11-10 18:23:01 +000040static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
Duncan Sands18450092010-11-16 12:16:38 +000041 const DominatorTree *, unsigned);
Duncan Sandsa74a58c2010-11-10 18:23:01 +000042static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
Duncan Sands18450092010-11-16 12:16:38 +000043 const DominatorTree *, unsigned);
Duncan Sands82fdab32010-12-21 14:00:22 +000044static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
45 const DominatorTree *, unsigned);
46static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
47 const DominatorTree *, unsigned);
Duncan Sands18450092010-11-16 12:16:38 +000048
49/// ValueDominatesPHI - Does the given value dominate the specified phi node?
50static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
51 Instruction *I = dyn_cast<Instruction>(V);
52 if (!I)
53 // Arguments and constants dominate all instructions.
54 return true;
55
56 // If we have a DominatorTree then do a precise test.
57 if (DT)
58 return DT->dominates(I, P);
59
60 // Otherwise, if the instruction is in the entry block, and is not an invoke,
61 // then it obviously dominates all phi nodes.
62 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
63 !isa<InvokeInst>(I))
64 return true;
65
66 return false;
67}
Duncan Sandsa74a58c2010-11-10 18:23:01 +000068
Duncan Sands3421d902010-12-21 13:32:22 +000069/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
70/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
71/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
72/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
73/// Returns the simplified value, or null if no simplification was performed.
74static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Benjamin Kramere21083a2010-12-28 13:52:52 +000075 unsigned OpcToExpand, const TargetData *TD,
Duncan Sands3421d902010-12-21 13:32:22 +000076 const DominatorTree *DT, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +000077 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
Duncan Sands3421d902010-12-21 13:32:22 +000078 // Recursion is always used, so bail out at once if we already hit the limit.
79 if (!MaxRecurse--)
80 return 0;
81
82 // Check whether the expression has the form "(A op' B) op C".
83 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
84 if (Op0->getOpcode() == OpcodeToExpand) {
85 // It does! Try turning it into "(A op C) op' (B op C)".
86 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
87 // Do "A op C" and "B op C" both simplify?
88 if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
89 if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
90 // They do! Return "L op' R" if it simplifies or is already available.
91 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +000092 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
93 && L == B && R == A)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +000094 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +000095 return LHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +000096 }
Duncan Sands3421d902010-12-21 13:32:22 +000097 // Otherwise return "L op' R" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +000098 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
99 MaxRecurse)) {
100 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000101 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000102 }
Duncan Sands3421d902010-12-21 13:32:22 +0000103 }
104 }
105
106 // Check whether the expression has the form "A op (B op' C)".
107 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
108 if (Op1->getOpcode() == OpcodeToExpand) {
109 // It does! Try turning it into "(A op B) op' (A op C)".
110 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
111 // Do "A op B" and "A op C" both simplify?
112 if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
113 if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
114 // They do! Return "L op' R" if it simplifies or is already available.
115 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000116 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
117 && L == C && R == B)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000118 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000119 return RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000120 }
Duncan Sands3421d902010-12-21 13:32:22 +0000121 // Otherwise return "L op' R" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000122 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
123 MaxRecurse)) {
124 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000125 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000126 }
Duncan Sands3421d902010-12-21 13:32:22 +0000127 }
128 }
129
130 return 0;
131}
132
133/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
134/// using the operation OpCodeToExtract. For example, when Opcode is Add and
135/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
136/// Returns the simplified value, or null if no simplification was performed.
137static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Benjamin Kramere21083a2010-12-28 13:52:52 +0000138 unsigned OpcToExtract, const TargetData *TD,
Duncan Sands3421d902010-12-21 13:32:22 +0000139 const DominatorTree *DT, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000140 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
Duncan Sands3421d902010-12-21 13:32:22 +0000141 // Recursion is always used, so bail out at once if we already hit the limit.
142 if (!MaxRecurse--)
143 return 0;
144
145 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
146 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
147
148 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
149 !Op1 || Op1->getOpcode() != OpcodeToExtract)
150 return 0;
151
152 // The expression has the form "(A op' B) op (C op' D)".
Duncan Sands82fdab32010-12-21 14:00:22 +0000153 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
154 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Duncan Sands3421d902010-12-21 13:32:22 +0000155
156 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
157 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
158 // commutative case, "(A op' B) op (C op' A)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000159 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
160 Value *DD = A == C ? D : C;
Duncan Sands3421d902010-12-21 13:32:22 +0000161 // Form "A op' (B op DD)" if it simplifies completely.
162 // Does "B op DD" simplify?
163 if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
164 // It does! Return "A op' V" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000165 // If V equals B then "A op' V" is just the LHS. If V equals DD then
166 // "A op' V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000167 if (V == B || V == DD) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000168 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000169 return V == B ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000170 }
Duncan Sands3421d902010-12-21 13:32:22 +0000171 // Otherwise return "A op' V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000172 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
173 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000174 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000175 }
Duncan Sands3421d902010-12-21 13:32:22 +0000176 }
177 }
178
179 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
180 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
181 // commutative case, "(A op' B) op (B op' D)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000182 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
183 Value *CC = B == D ? C : D;
Duncan Sands3421d902010-12-21 13:32:22 +0000184 // Form "(A op CC) op' B" if it simplifies completely..
185 // Does "A op CC" simplify?
186 if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
187 // It does! Return "V op' B" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000188 // If V equals A then "V op' B" is just the LHS. If V equals CC then
189 // "V op' B" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000190 if (V == A || V == CC) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000191 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000192 return V == A ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000193 }
Duncan Sands3421d902010-12-21 13:32:22 +0000194 // Otherwise return "V op' B" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000195 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
196 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000197 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000198 }
Duncan Sands3421d902010-12-21 13:32:22 +0000199 }
200 }
201
202 return 0;
203}
204
205/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
206/// operations. Returns the simpler value, or null if none was found.
Benjamin Kramere21083a2010-12-28 13:52:52 +0000207static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
Duncan Sands566edb02010-12-21 08:49:00 +0000208 const TargetData *TD,
209 const DominatorTree *DT,
210 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000211 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
Duncan Sands566edb02010-12-21 08:49:00 +0000212 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
213
214 // Recursion is always used, so bail out at once if we already hit the limit.
215 if (!MaxRecurse--)
216 return 0;
217
218 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
219 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
220
221 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
222 if (Op0 && Op0->getOpcode() == Opcode) {
223 Value *A = Op0->getOperand(0);
224 Value *B = Op0->getOperand(1);
225 Value *C = RHS;
226
227 // Does "B op C" simplify?
228 if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
229 // It does! Return "A op V" if it simplifies or is already available.
230 // If V equals B then "A op V" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000231 if (V == B) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000232 // Otherwise return "A op V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000233 if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
234 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000235 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000236 }
Duncan Sands566edb02010-12-21 08:49:00 +0000237 }
238 }
239
240 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
241 if (Op1 && Op1->getOpcode() == Opcode) {
242 Value *A = LHS;
243 Value *B = Op1->getOperand(0);
244 Value *C = Op1->getOperand(1);
245
246 // Does "A op B" simplify?
247 if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
248 // It does! Return "V op C" if it simplifies or is already available.
249 // If V equals B then "V op C" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000250 if (V == B) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000251 // Otherwise return "V op C" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000252 if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
253 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000254 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000255 }
Duncan Sands566edb02010-12-21 08:49:00 +0000256 }
257 }
258
259 // The remaining transforms require commutativity as well as associativity.
260 if (!Instruction::isCommutative(Opcode))
261 return 0;
262
263 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
264 if (Op0 && Op0->getOpcode() == Opcode) {
265 Value *A = Op0->getOperand(0);
266 Value *B = Op0->getOperand(1);
267 Value *C = RHS;
268
269 // Does "C op A" simplify?
270 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
271 // It does! Return "V op B" if it simplifies or is already available.
272 // If V equals A then "V op B" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000273 if (V == A) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000274 // Otherwise return "V op B" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000275 if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
276 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000277 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000278 }
Duncan Sands566edb02010-12-21 08:49:00 +0000279 }
280 }
281
282 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
283 if (Op1 && Op1->getOpcode() == Opcode) {
284 Value *A = LHS;
285 Value *B = Op1->getOperand(0);
286 Value *C = Op1->getOperand(1);
287
288 // Does "C op A" simplify?
289 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
290 // It does! Return "B op V" if it simplifies or is already available.
291 // If V equals C then "B op V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000292 if (V == C) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000293 // Otherwise return "B op V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000294 if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
295 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000296 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000297 }
Duncan Sands566edb02010-12-21 08:49:00 +0000298 }
299 }
300
301 return 0;
302}
303
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000304/// ThreadBinOpOverSelect - In the case of a binary operation with a select
305/// instruction as an operand, try to simplify the binop by seeing whether
306/// evaluating it on both branches of the select results in the same value.
307/// Returns the common value if so, otherwise returns null.
308static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000309 const TargetData *TD,
310 const DominatorTree *DT,
311 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000312 // Recursion is always used, so bail out at once if we already hit the limit.
313 if (!MaxRecurse--)
314 return 0;
315
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000316 SelectInst *SI;
317 if (isa<SelectInst>(LHS)) {
318 SI = cast<SelectInst>(LHS);
319 } else {
320 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
321 SI = cast<SelectInst>(RHS);
322 }
323
324 // Evaluate the BinOp on the true and false branches of the select.
325 Value *TV;
326 Value *FV;
327 if (SI == LHS) {
Duncan Sands18450092010-11-16 12:16:38 +0000328 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
329 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000330 } else {
Duncan Sands18450092010-11-16 12:16:38 +0000331 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
332 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000333 }
334
Duncan Sands7cf85e72011-01-01 16:12:09 +0000335 // If they simplified to the same value, then return the common value.
Duncan Sands124708d2011-01-01 20:08:02 +0000336 // If they both failed to simplify then return null.
337 if (TV == FV)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000338 return TV;
339
340 // If one branch simplified to undef, return the other one.
341 if (TV && isa<UndefValue>(TV))
342 return FV;
343 if (FV && isa<UndefValue>(FV))
344 return TV;
345
346 // If applying the operation did not change the true and false select values,
347 // then the result of the binop is the select itself.
Duncan Sands124708d2011-01-01 20:08:02 +0000348 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000349 return SI;
350
351 // If one branch simplified and the other did not, and the simplified
352 // value is equal to the unsimplified one, return the simplified value.
353 // For example, select (cond, X, X & Z) & Z -> X & Z.
354 if ((FV && !TV) || (TV && !FV)) {
355 // Check that the simplified value has the form "X op Y" where "op" is the
356 // same as the original operation.
357 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
358 if (Simplified && Simplified->getOpcode() == Opcode) {
359 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
360 // We already know that "op" is the same as for the simplified value. See
361 // if the operands match too. If so, return the simplified value.
362 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
363 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
364 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
Duncan Sands124708d2011-01-01 20:08:02 +0000365 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
366 Simplified->getOperand(1) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000367 return Simplified;
368 if (Simplified->isCommutative() &&
Duncan Sands124708d2011-01-01 20:08:02 +0000369 Simplified->getOperand(1) == UnsimplifiedLHS &&
370 Simplified->getOperand(0) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000371 return Simplified;
372 }
373 }
374
375 return 0;
376}
377
378/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
379/// try to simplify the comparison by seeing whether both branches of the select
380/// result in the same value. Returns the common value if so, otherwise returns
381/// null.
382static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000383 Value *RHS, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000384 const DominatorTree *DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000385 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000386 // Recursion is always used, so bail out at once if we already hit the limit.
387 if (!MaxRecurse--)
388 return 0;
389
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000390 // Make sure the select is on the LHS.
391 if (!isa<SelectInst>(LHS)) {
392 std::swap(LHS, RHS);
393 Pred = CmpInst::getSwappedPredicate(Pred);
394 }
395 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
396 SelectInst *SI = cast<SelectInst>(LHS);
397
Duncan Sands50ca4d32011-02-03 09:37:39 +0000398 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000399 // Does "cmp TV, RHS" simplify?
Duncan Sands18450092010-11-16 12:16:38 +0000400 if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
Duncan Sands50ca4d32011-02-03 09:37:39 +0000401 MaxRecurse)) {
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000402 // It does! Does "cmp FV, RHS" simplify?
Duncan Sands18450092010-11-16 12:16:38 +0000403 if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
Duncan Sands50ca4d32011-02-03 09:37:39 +0000404 MaxRecurse)) {
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000405 // It does! If they simplified to the same value, then use it as the
406 // result of the original comparison.
Duncan Sands124708d2011-01-01 20:08:02 +0000407 if (TCmp == FCmp)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000408 return TCmp;
Duncan Sands50ca4d32011-02-03 09:37:39 +0000409 Value *Cond = SI->getCondition();
410 // If the false value simplified to false, then the result of the compare
411 // is equal to "Cond && TCmp". This also catches the case when the false
412 // value simplified to false and the true value to true, returning "Cond".
413 if (match(FCmp, m_Zero()))
414 if (Value *V = SimplifyAndInst(Cond, TCmp, TD, DT, MaxRecurse))
415 return V;
416 // If the true value simplified to true, then the result of the compare
417 // is equal to "Cond || FCmp".
418 if (match(TCmp, m_One()))
419 if (Value *V = SimplifyOrInst(Cond, FCmp, TD, DT, MaxRecurse))
420 return V;
421 // Finally, if the false value simplified to true and the true value to
422 // false, then the result of the compare is equal to "!Cond".
423 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
424 if (Value *V =
425 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
426 TD, DT, MaxRecurse))
427 return V;
428 }
429 }
430
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000431 return 0;
432}
433
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000434/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
435/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
436/// it on the incoming phi values yields the same result for every value. If so
437/// returns the common value, otherwise returns null.
438static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000439 const TargetData *TD, const DominatorTree *DT,
440 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000441 // Recursion is always used, so bail out at once if we already hit the limit.
442 if (!MaxRecurse--)
443 return 0;
444
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000445 PHINode *PI;
446 if (isa<PHINode>(LHS)) {
447 PI = cast<PHINode>(LHS);
Duncan Sands18450092010-11-16 12:16:38 +0000448 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
449 if (!ValueDominatesPHI(RHS, PI, DT))
450 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000451 } else {
452 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
453 PI = cast<PHINode>(RHS);
Duncan Sands18450092010-11-16 12:16:38 +0000454 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
455 if (!ValueDominatesPHI(LHS, PI, DT))
456 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000457 }
458
459 // Evaluate the BinOp on the incoming phi values.
460 Value *CommonValue = 0;
461 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000462 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000463 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000464 if (Incoming == PI) continue;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000465 Value *V = PI == LHS ?
Duncan Sands18450092010-11-16 12:16:38 +0000466 SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
467 SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000468 // If the operation failed to simplify, or simplified to a different value
469 // to previously, then give up.
470 if (!V || (CommonValue && V != CommonValue))
471 return 0;
472 CommonValue = V;
473 }
474
475 return CommonValue;
476}
477
478/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
479/// try to simplify the comparison by seeing whether comparing with all of the
480/// incoming phi values yields the same result every time. If so returns the
481/// common result, otherwise returns null.
482static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000483 const TargetData *TD, const DominatorTree *DT,
484 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000485 // Recursion is always used, so bail out at once if we already hit the limit.
486 if (!MaxRecurse--)
487 return 0;
488
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000489 // Make sure the phi is on the LHS.
490 if (!isa<PHINode>(LHS)) {
491 std::swap(LHS, RHS);
492 Pred = CmpInst::getSwappedPredicate(Pred);
493 }
494 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
495 PHINode *PI = cast<PHINode>(LHS);
496
Duncan Sands18450092010-11-16 12:16:38 +0000497 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
498 if (!ValueDominatesPHI(RHS, PI, DT))
499 return 0;
500
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000501 // Evaluate the BinOp on the incoming phi values.
502 Value *CommonValue = 0;
503 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000504 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000505 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000506 if (Incoming == PI) continue;
Duncan Sands18450092010-11-16 12:16:38 +0000507 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000508 // If the operation failed to simplify, or simplified to a different value
509 // to previously, then give up.
510 if (!V || (CommonValue && V != CommonValue))
511 return 0;
512 CommonValue = V;
513 }
514
515 return CommonValue;
516}
517
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000518/// SimplifyAddInst - Given operands for an Add, see if we can
519/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000520static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
521 const TargetData *TD, const DominatorTree *DT,
522 unsigned MaxRecurse) {
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000523 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
524 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
525 Constant *Ops[] = { CLHS, CRHS };
526 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
527 Ops, 2, TD);
528 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000529
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000530 // Canonicalize the constant to the RHS.
531 std::swap(Op0, Op1);
532 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000533
Duncan Sandsfea3b212010-12-15 14:07:39 +0000534 // X + undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000535 if (match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000536 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000537
Duncan Sandsfea3b212010-12-15 14:07:39 +0000538 // X + 0 -> X
539 if (match(Op1, m_Zero()))
540 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000541
Duncan Sandsfea3b212010-12-15 14:07:39 +0000542 // X + (Y - X) -> Y
543 // (Y - X) + X -> Y
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000544 // Eg: X + -X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000545 Value *Y = 0;
546 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
547 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000548 return Y;
549
550 // X + ~X -> -1 since ~X = -X-1
Duncan Sands124708d2011-01-01 20:08:02 +0000551 if (match(Op0, m_Not(m_Specific(Op1))) ||
552 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000553 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands87689cf2010-11-19 09:20:39 +0000554
Duncan Sands82fdab32010-12-21 14:00:22 +0000555 /// i1 add -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000556 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000557 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
558 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000559
Duncan Sands566edb02010-12-21 08:49:00 +0000560 // Try some generic simplifications for associative operations.
561 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
562 MaxRecurse))
563 return V;
564
Duncan Sands3421d902010-12-21 13:32:22 +0000565 // Mul distributes over Add. Try some generic simplifications based on this.
566 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
567 TD, DT, MaxRecurse))
568 return V;
569
Duncan Sands87689cf2010-11-19 09:20:39 +0000570 // Threading Add over selects and phi nodes is pointless, so don't bother.
571 // Threading over the select in "A + select(cond, B, C)" means evaluating
572 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
573 // only if B and C are equal. If B and C are equal then (since we assume
574 // that operands have already been simplified) "select(cond, B, C)" should
575 // have been simplified to the common value of B and C already. Analysing
576 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
577 // for threading over phi nodes.
578
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000579 return 0;
580}
581
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000582Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
583 const TargetData *TD, const DominatorTree *DT) {
584 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
585}
586
Duncan Sandsfea3b212010-12-15 14:07:39 +0000587/// SimplifySubInst - Given operands for a Sub, see if we can
588/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000589static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands3421d902010-12-21 13:32:22 +0000590 const TargetData *TD, const DominatorTree *DT,
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000591 unsigned MaxRecurse) {
Duncan Sandsfea3b212010-12-15 14:07:39 +0000592 if (Constant *CLHS = dyn_cast<Constant>(Op0))
593 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
594 Constant *Ops[] = { CLHS, CRHS };
595 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
596 Ops, 2, TD);
597 }
598
599 // X - undef -> undef
600 // undef - X -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000601 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000602 return UndefValue::get(Op0->getType());
603
604 // X - 0 -> X
605 if (match(Op1, m_Zero()))
606 return Op0;
607
608 // X - X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000609 if (Op0 == Op1)
Duncan Sandsfea3b212010-12-15 14:07:39 +0000610 return Constant::getNullValue(Op0->getType());
611
Duncan Sandsfe02c692011-01-18 09:24:58 +0000612 // (X*2) - X -> X
613 // (X<<1) - X -> X
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000614 Value *X = 0;
Duncan Sandsfe02c692011-01-18 09:24:58 +0000615 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
616 match(Op0, m_Shl(m_Specific(Op1), m_One())))
617 return Op1;
618
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000619 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
620 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
621 Value *Y = 0, *Z = Op1;
622 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
623 // See if "V === Y - Z" simplifies.
624 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
625 // It does! Now see if "X + V" simplifies.
626 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
627 MaxRecurse-1)) {
628 // It does, we successfully reassociated!
629 ++NumReassoc;
630 return W;
631 }
632 // See if "V === X - Z" simplifies.
633 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
634 // It does! Now see if "Y + V" simplifies.
635 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
636 MaxRecurse-1)) {
637 // It does, we successfully reassociated!
638 ++NumReassoc;
639 return W;
640 }
641 }
Duncan Sands82fdab32010-12-21 14:00:22 +0000642
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000643 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
644 // For example, X - (X + 1) -> -1
645 X = Op0;
646 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
647 // See if "V === X - Y" simplifies.
648 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
649 // It does! Now see if "V - Z" simplifies.
650 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
651 MaxRecurse-1)) {
652 // It does, we successfully reassociated!
653 ++NumReassoc;
654 return W;
655 }
656 // See if "V === X - Z" simplifies.
657 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
658 // It does! Now see if "V - Y" simplifies.
659 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
660 MaxRecurse-1)) {
661 // It does, we successfully reassociated!
662 ++NumReassoc;
663 return W;
664 }
665 }
666
667 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
668 // For example, X - (X - Y) -> Y.
669 Z = Op0;
Duncan Sandsc087e202011-01-14 15:26:10 +0000670 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
671 // See if "V === Z - X" simplifies.
672 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000673 // It does! Now see if "V + Y" simplifies.
Duncan Sandsc087e202011-01-14 15:26:10 +0000674 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
675 MaxRecurse-1)) {
676 // It does, we successfully reassociated!
677 ++NumReassoc;
678 return W;
679 }
680
Duncan Sands3421d902010-12-21 13:32:22 +0000681 // Mul distributes over Sub. Try some generic simplifications based on this.
682 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
683 TD, DT, MaxRecurse))
684 return V;
685
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000686 // i1 sub -> xor.
687 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
688 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
689 return V;
690
Duncan Sandsfea3b212010-12-15 14:07:39 +0000691 // Threading Sub over selects and phi nodes is pointless, so don't bother.
692 // Threading over the select in "A - select(cond, B, C)" means evaluating
693 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
694 // only if B and C are equal. If B and C are equal then (since we assume
695 // that operands have already been simplified) "select(cond, B, C)" should
696 // have been simplified to the common value of B and C already. Analysing
697 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
698 // for threading over phi nodes.
699
700 return 0;
701}
702
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000703Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
704 const TargetData *TD, const DominatorTree *DT) {
705 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
706}
707
Duncan Sands82fdab32010-12-21 14:00:22 +0000708/// SimplifyMulInst - Given operands for a Mul, see if we can
709/// fold the result. If not, this returns null.
710static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
711 const DominatorTree *DT, unsigned MaxRecurse) {
712 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
713 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
714 Constant *Ops[] = { CLHS, CRHS };
715 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
716 Ops, 2, TD);
717 }
718
719 // Canonicalize the constant to the RHS.
720 std::swap(Op0, Op1);
721 }
722
723 // X * undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000724 if (match(Op1, m_Undef()))
Duncan Sands82fdab32010-12-21 14:00:22 +0000725 return Constant::getNullValue(Op0->getType());
726
727 // X * 0 -> 0
728 if (match(Op1, m_Zero()))
729 return Op1;
730
731 // X * 1 -> X
732 if (match(Op1, m_One()))
733 return Op0;
734
Duncan Sands1895e982011-01-30 18:03:50 +0000735 // (X / Y) * Y -> X if the division is exact.
736 Value *X = 0, *Y = 0;
Chris Lattneraeaf3d42011-02-09 17:00:45 +0000737 if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
738 (match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
Chris Lattnerc6ee9182011-02-06 22:05:31 +0000739 BinaryOperator *Div = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
740 if (Div->isExact())
Duncan Sands1895e982011-01-30 18:03:50 +0000741 return X;
742 }
743
Nick Lewycky54138802011-01-29 19:55:23 +0000744 // i1 mul -> and.
Duncan Sands75d289e2010-12-21 14:48:48 +0000745 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000746 if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
747 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000748
749 // Try some generic simplifications for associative operations.
750 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
751 MaxRecurse))
752 return V;
753
754 // Mul distributes over Add. Try some generic simplifications based on this.
755 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
756 TD, DT, MaxRecurse))
757 return V;
758
759 // If the operation is with the result of a select instruction, check whether
760 // operating on either branch of the select always yields the same value.
761 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
762 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
763 MaxRecurse))
764 return V;
765
766 // If the operation is with the result of a phi instruction, check whether
767 // operating on all incoming values of the phi always yields the same value.
768 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
769 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
770 MaxRecurse))
771 return V;
772
773 return 0;
774}
775
776Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
777 const DominatorTree *DT) {
778 return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
779}
780
Duncan Sands593faa52011-01-28 16:51:11 +0000781/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
782/// fold the result. If not, this returns null.
Anders Carlsson479b4b92011-02-05 18:33:43 +0000783static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands593faa52011-01-28 16:51:11 +0000784 const TargetData *TD, const DominatorTree *DT,
785 unsigned MaxRecurse) {
786 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
787 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
788 Constant *Ops[] = { C0, C1 };
789 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
790 }
791 }
792
Duncan Sandsa3e292c2011-01-28 18:50:50 +0000793 bool isSigned = Opcode == Instruction::SDiv;
794
Duncan Sands593faa52011-01-28 16:51:11 +0000795 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000796 if (match(Op1, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +0000797 return Op1;
798
799 // undef / X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000800 if (match(Op0, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +0000801 return Constant::getNullValue(Op0->getType());
802
803 // 0 / X -> 0, we don't need to preserve faults!
804 if (match(Op0, m_Zero()))
805 return Op0;
806
807 // X / 1 -> X
808 if (match(Op1, m_One()))
809 return Op0;
Duncan Sands593faa52011-01-28 16:51:11 +0000810
811 if (Op0->getType()->isIntegerTy(1))
812 // It can't be division by zero, hence it must be division by one.
813 return Op0;
814
815 // X / X -> 1
816 if (Op0 == Op1)
817 return ConstantInt::get(Op0->getType(), 1);
818
819 // (X * Y) / Y -> X if the multiplication does not overflow.
820 Value *X = 0, *Y = 0;
821 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
822 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
Duncan Sands4b720712011-02-02 20:52:00 +0000823 BinaryOperator *Mul = cast<BinaryOperator>(Op0);
824 // If the Mul knows it does not overflow, then we are good to go.
825 if ((isSigned && Mul->hasNoSignedWrap()) ||
826 (!isSigned && Mul->hasNoUnsignedWrap()))
827 return X;
Duncan Sands593faa52011-01-28 16:51:11 +0000828 // If X has the form X = A / Y then X * Y cannot overflow.
829 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
830 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
831 return X;
832 }
833
Duncan Sandsa3e292c2011-01-28 18:50:50 +0000834 // (X rem Y) / Y -> 0
835 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
836 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
837 return Constant::getNullValue(Op0->getType());
838
839 // If the operation is with the result of a select instruction, check whether
840 // operating on either branch of the select always yields the same value.
841 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
842 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
843 return V;
844
845 // If the operation is with the result of a phi instruction, check whether
846 // operating on all incoming values of the phi always yields the same value.
847 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
848 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
849 return V;
850
Duncan Sands593faa52011-01-28 16:51:11 +0000851 return 0;
852}
853
854/// SimplifySDivInst - Given operands for an SDiv, see if we can
855/// fold the result. If not, this returns null.
856static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
857 const DominatorTree *DT, unsigned MaxRecurse) {
858 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
859 return V;
860
Duncan Sands593faa52011-01-28 16:51:11 +0000861 return 0;
862}
863
864Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
Frits van Bommel1fca2c32011-01-29 15:26:31 +0000865 const DominatorTree *DT) {
Duncan Sands593faa52011-01-28 16:51:11 +0000866 return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
867}
868
869/// SimplifyUDivInst - Given operands for a UDiv, see if we can
870/// fold the result. If not, this returns null.
871static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
872 const DominatorTree *DT, unsigned MaxRecurse) {
873 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
874 return V;
875
Duncan Sands593faa52011-01-28 16:51:11 +0000876 return 0;
877}
878
879Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
Frits van Bommel1fca2c32011-01-29 15:26:31 +0000880 const DominatorTree *DT) {
Duncan Sands593faa52011-01-28 16:51:11 +0000881 return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
882}
883
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000884static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *,
885 const DominatorTree *, unsigned) {
Frits van Bommel1fca2c32011-01-29 15:26:31 +0000886 // undef / X -> undef (the undef could be a snan).
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000887 if (match(Op0, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +0000888 return Op0;
889
890 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000891 if (match(Op1, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +0000892 return Op1;
893
894 return 0;
895}
896
897Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
898 const DominatorTree *DT) {
899 return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
900}
901
Duncan Sandscf80bc12011-01-14 14:44:12 +0000902/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
Duncan Sandsc43cee32011-01-14 00:37:45 +0000903/// fold the result. If not, this returns null.
Duncan Sandscf80bc12011-01-14 14:44:12 +0000904static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
905 const TargetData *TD, const DominatorTree *DT,
906 unsigned MaxRecurse) {
Duncan Sandsc43cee32011-01-14 00:37:45 +0000907 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
908 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
909 Constant *Ops[] = { C0, C1 };
Duncan Sandscf80bc12011-01-14 14:44:12 +0000910 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
Duncan Sandsc43cee32011-01-14 00:37:45 +0000911 }
912 }
913
Duncan Sandscf80bc12011-01-14 14:44:12 +0000914 // 0 shift by X -> 0
Duncan Sandsc43cee32011-01-14 00:37:45 +0000915 if (match(Op0, m_Zero()))
916 return Op0;
917
Duncan Sandscf80bc12011-01-14 14:44:12 +0000918 // X shift by 0 -> X
Duncan Sandsc43cee32011-01-14 00:37:45 +0000919 if (match(Op1, m_Zero()))
920 return Op0;
921
Duncan Sandscf80bc12011-01-14 14:44:12 +0000922 // X shift by undef -> undef because it may shift by the bitwidth.
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000923 if (match(Op1, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +0000924 return Op1;
925
926 // Shifting by the bitwidth or more is undefined.
927 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
928 if (CI->getValue().getLimitedValue() >=
929 Op0->getType()->getScalarSizeInBits())
930 return UndefValue::get(Op0->getType());
931
Duncan Sandscf80bc12011-01-14 14:44:12 +0000932 // If the operation is with the result of a select instruction, check whether
933 // operating on either branch of the select always yields the same value.
934 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
935 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
936 return V;
937
938 // If the operation is with the result of a phi instruction, check whether
939 // operating on all incoming values of the phi always yields the same value.
940 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
941 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
942 return V;
943
944 return 0;
945}
946
947/// SimplifyShlInst - Given operands for an Shl, see if we can
948/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +0000949static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
950 const TargetData *TD, const DominatorTree *DT,
951 unsigned MaxRecurse) {
Duncan Sandscf80bc12011-01-14 14:44:12 +0000952 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
953 return V;
954
955 // undef << X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000956 if (match(Op0, m_Undef()))
Duncan Sandscf80bc12011-01-14 14:44:12 +0000957 return Constant::getNullValue(Op0->getType());
958
Chris Lattner81a0dc92011-02-09 17:15:04 +0000959 // (X >> A) << A -> X
960 Value *X;
961 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1))) &&
962 cast<PossiblyExactOperator>(Op0)->isExact())
963 return X;
Duncan Sandsc43cee32011-01-14 00:37:45 +0000964 return 0;
965}
966
Chris Lattner81a0dc92011-02-09 17:15:04 +0000967Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
968 const TargetData *TD, const DominatorTree *DT) {
969 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +0000970}
971
972/// SimplifyLShrInst - Given operands for an LShr, see if we can
973/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +0000974static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
975 const TargetData *TD, const DominatorTree *DT,
976 unsigned MaxRecurse) {
Duncan Sandscf80bc12011-01-14 14:44:12 +0000977 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
978 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +0000979
980 // undef >>l X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000981 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +0000982 return Constant::getNullValue(Op0->getType());
983
Chris Lattner81a0dc92011-02-09 17:15:04 +0000984 // (X << A) >> A -> X
985 Value *X;
986 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
987 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
988 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +0000989
Duncan Sandsc43cee32011-01-14 00:37:45 +0000990 return 0;
991}
992
Chris Lattner81a0dc92011-02-09 17:15:04 +0000993Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
994 const TargetData *TD, const DominatorTree *DT) {
995 return ::SimplifyLShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +0000996}
997
998/// SimplifyAShrInst - Given operands for an AShr, see if we can
999/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001000static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1001 const TargetData *TD, const DominatorTree *DT,
1002 unsigned MaxRecurse) {
Duncan Sandscf80bc12011-01-14 14:44:12 +00001003 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
1004 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001005
1006 // all ones >>a X -> all ones
1007 if (match(Op0, m_AllOnes()))
1008 return Op0;
1009
1010 // undef >>a X -> all ones
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001011 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001012 return Constant::getAllOnesValue(Op0->getType());
1013
Chris Lattner81a0dc92011-02-09 17:15:04 +00001014 // (X << A) >> A -> X
1015 Value *X;
1016 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1017 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1018 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001019
Duncan Sandsc43cee32011-01-14 00:37:45 +00001020 return 0;
1021}
1022
Chris Lattner81a0dc92011-02-09 17:15:04 +00001023Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1024 const TargetData *TD, const DominatorTree *DT) {
1025 return ::SimplifyAShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001026}
1027
Chris Lattnerd06094f2009-11-10 00:55:12 +00001028/// SimplifyAndInst - Given operands for an And, see if we can
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001029/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001030static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +00001031 const DominatorTree *DT, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001032 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1033 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1034 Constant *Ops[] = { CLHS, CRHS };
1035 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1036 Ops, 2, TD);
1037 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001038
Chris Lattnerd06094f2009-11-10 00:55:12 +00001039 // Canonicalize the constant to the RHS.
1040 std::swap(Op0, Op1);
1041 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001042
Chris Lattnerd06094f2009-11-10 00:55:12 +00001043 // X & undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001044 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001045 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001046
Chris Lattnerd06094f2009-11-10 00:55:12 +00001047 // X & X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001048 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001049 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001050
Duncan Sands2b749872010-11-17 18:52:15 +00001051 // X & 0 = 0
1052 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001053 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001054
Duncan Sands2b749872010-11-17 18:52:15 +00001055 // X & -1 = X
1056 if (match(Op1, m_AllOnes()))
1057 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001058
Chris Lattnerd06094f2009-11-10 00:55:12 +00001059 // A & ~A = ~A & A = 0
Chris Lattner81a0dc92011-02-09 17:15:04 +00001060 if (match(Op0, m_Not(m_Specific(Op1))) ||
1061 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001062 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001063
Chris Lattnerd06094f2009-11-10 00:55:12 +00001064 // (A | ?) & A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001065 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001066 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001067 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001068 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001069
Chris Lattnerd06094f2009-11-10 00:55:12 +00001070 // A & (A | ?) = A
1071 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001072 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001073 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001074
Duncan Sands566edb02010-12-21 08:49:00 +00001075 // Try some generic simplifications for associative operations.
1076 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
1077 MaxRecurse))
1078 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001079
Duncan Sands3421d902010-12-21 13:32:22 +00001080 // And distributes over Or. Try some generic simplifications based on this.
1081 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1082 TD, DT, MaxRecurse))
1083 return V;
1084
1085 // And distributes over Xor. Try some generic simplifications based on this.
1086 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1087 TD, DT, MaxRecurse))
1088 return V;
1089
1090 // Or distributes over And. Try some generic simplifications based on this.
1091 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1092 TD, DT, MaxRecurse))
1093 return V;
1094
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001095 // If the operation is with the result of a select instruction, check whether
1096 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001097 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +00001098 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001099 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001100 return V;
1101
1102 // If the operation is with the result of a phi instruction, check whether
1103 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001104 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +00001105 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001106 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001107 return V;
1108
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001109 return 0;
1110}
1111
Duncan Sands18450092010-11-16 12:16:38 +00001112Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1113 const DominatorTree *DT) {
1114 return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001115}
1116
Chris Lattnerd06094f2009-11-10 00:55:12 +00001117/// SimplifyOrInst - Given operands for an Or, see if we can
1118/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001119static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +00001120 const DominatorTree *DT, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001121 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1122 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1123 Constant *Ops[] = { CLHS, CRHS };
1124 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1125 Ops, 2, TD);
1126 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001127
Chris Lattnerd06094f2009-11-10 00:55:12 +00001128 // Canonicalize the constant to the RHS.
1129 std::swap(Op0, Op1);
1130 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001131
Chris Lattnerd06094f2009-11-10 00:55:12 +00001132 // X | undef -> -1
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001133 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001134 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001135
Chris Lattnerd06094f2009-11-10 00:55:12 +00001136 // X | X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001137 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001138 return Op0;
1139
Duncan Sands2b749872010-11-17 18:52:15 +00001140 // X | 0 = X
1141 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001142 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001143
Duncan Sands2b749872010-11-17 18:52:15 +00001144 // X | -1 = -1
1145 if (match(Op1, m_AllOnes()))
1146 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001147
Chris Lattnerd06094f2009-11-10 00:55:12 +00001148 // A | ~A = ~A | A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001149 if (match(Op0, m_Not(m_Specific(Op1))) ||
1150 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001151 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001152
Chris Lattnerd06094f2009-11-10 00:55:12 +00001153 // (A & ?) | A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001154 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001155 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001156 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001157 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001158
Chris Lattnerd06094f2009-11-10 00:55:12 +00001159 // A | (A & ?) = A
1160 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001161 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001162 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001163
Duncan Sands566edb02010-12-21 08:49:00 +00001164 // Try some generic simplifications for associative operations.
1165 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
1166 MaxRecurse))
1167 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001168
Duncan Sands3421d902010-12-21 13:32:22 +00001169 // Or distributes over And. Try some generic simplifications based on this.
1170 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1171 TD, DT, MaxRecurse))
1172 return V;
1173
1174 // And distributes over Or. Try some generic simplifications based on this.
1175 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1176 TD, DT, MaxRecurse))
1177 return V;
1178
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001179 // If the operation is with the result of a select instruction, check whether
1180 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001181 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +00001182 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001183 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001184 return V;
1185
1186 // If the operation is with the result of a phi instruction, check whether
1187 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001188 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +00001189 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001190 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001191 return V;
1192
Chris Lattnerd06094f2009-11-10 00:55:12 +00001193 return 0;
1194}
1195
Duncan Sands18450092010-11-16 12:16:38 +00001196Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1197 const DominatorTree *DT) {
1198 return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001199}
Chris Lattnerd06094f2009-11-10 00:55:12 +00001200
Duncan Sands2b749872010-11-17 18:52:15 +00001201/// SimplifyXorInst - Given operands for a Xor, see if we can
1202/// fold the result. If not, this returns null.
1203static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1204 const DominatorTree *DT, unsigned MaxRecurse) {
1205 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1206 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1207 Constant *Ops[] = { CLHS, CRHS };
1208 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1209 Ops, 2, TD);
1210 }
1211
1212 // Canonicalize the constant to the RHS.
1213 std::swap(Op0, Op1);
1214 }
1215
1216 // A ^ undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001217 if (match(Op1, m_Undef()))
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001218 return Op1;
Duncan Sands2b749872010-11-17 18:52:15 +00001219
1220 // A ^ 0 = A
1221 if (match(Op1, m_Zero()))
1222 return Op0;
1223
1224 // A ^ A = 0
Duncan Sands124708d2011-01-01 20:08:02 +00001225 if (Op0 == Op1)
Duncan Sands2b749872010-11-17 18:52:15 +00001226 return Constant::getNullValue(Op0->getType());
1227
1228 // A ^ ~A = ~A ^ A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001229 if (match(Op0, m_Not(m_Specific(Op1))) ||
1230 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sands2b749872010-11-17 18:52:15 +00001231 return Constant::getAllOnesValue(Op0->getType());
1232
Duncan Sands566edb02010-12-21 08:49:00 +00001233 // Try some generic simplifications for associative operations.
1234 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
1235 MaxRecurse))
1236 return V;
Duncan Sands2b749872010-11-17 18:52:15 +00001237
Duncan Sands3421d902010-12-21 13:32:22 +00001238 // And distributes over Xor. Try some generic simplifications based on this.
1239 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1240 TD, DT, MaxRecurse))
1241 return V;
1242
Duncan Sands87689cf2010-11-19 09:20:39 +00001243 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1244 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1245 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1246 // only if B and C are equal. If B and C are equal then (since we assume
1247 // that operands have already been simplified) "select(cond, B, C)" should
1248 // have been simplified to the common value of B and C already. Analysing
1249 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1250 // for threading over phi nodes.
Duncan Sands2b749872010-11-17 18:52:15 +00001251
1252 return 0;
1253}
1254
1255Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1256 const DominatorTree *DT) {
1257 return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
1258}
1259
Chris Lattner210c5d42009-11-09 23:55:12 +00001260static const Type *GetCompareTy(Value *Op) {
1261 return CmpInst::makeCmpResultType(Op->getType());
1262}
1263
Chris Lattner9dbb4292009-11-09 23:28:39 +00001264/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1265/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001266static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001267 const TargetData *TD, const DominatorTree *DT,
1268 unsigned MaxRecurse) {
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001269 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
Chris Lattner9dbb4292009-11-09 23:28:39 +00001270 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001271
Chris Lattnerd06094f2009-11-10 00:55:12 +00001272 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner8f73dea2009-11-09 23:06:58 +00001273 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1274 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001275
1276 // If we have a constant, make sure it is on the RHS.
1277 std::swap(LHS, RHS);
1278 Pred = CmpInst::getSwappedPredicate(Pred);
1279 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001280
Duncan Sands6dc91252011-01-13 08:56:29 +00001281 const Type *ITy = GetCompareTy(LHS); // The return type.
1282 const Type *OpTy = LHS->getType(); // The operand type.
Duncan Sands12a86f52010-11-14 11:23:23 +00001283
Chris Lattner210c5d42009-11-09 23:55:12 +00001284 // icmp X, X -> true/false
Chris Lattnerc8e14b32010-03-03 19:46:03 +00001285 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1286 // because X could be 0.
Duncan Sands124708d2011-01-01 20:08:02 +00001287 if (LHS == RHS || isa<UndefValue>(RHS))
Chris Lattner210c5d42009-11-09 23:55:12 +00001288 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +00001289
Duncan Sands6dc91252011-01-13 08:56:29 +00001290 // Special case logic when the operands have i1 type.
1291 if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
1292 cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
1293 switch (Pred) {
1294 default: break;
1295 case ICmpInst::ICMP_EQ:
1296 // X == 1 -> X
1297 if (match(RHS, m_One()))
1298 return LHS;
1299 break;
1300 case ICmpInst::ICMP_NE:
1301 // X != 0 -> X
1302 if (match(RHS, m_Zero()))
1303 return LHS;
1304 break;
1305 case ICmpInst::ICMP_UGT:
1306 // X >u 0 -> X
1307 if (match(RHS, m_Zero()))
1308 return LHS;
1309 break;
1310 case ICmpInst::ICMP_UGE:
1311 // X >=u 1 -> X
1312 if (match(RHS, m_One()))
1313 return LHS;
1314 break;
1315 case ICmpInst::ICMP_SLT:
1316 // X <s 0 -> X
1317 if (match(RHS, m_Zero()))
1318 return LHS;
1319 break;
1320 case ICmpInst::ICMP_SLE:
1321 // X <=s -1 -> X
1322 if (match(RHS, m_One()))
1323 return LHS;
1324 break;
1325 }
1326 }
1327
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001328 // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1329 // different addresses, and what's more the address of a stack variable is
1330 // never null or equal to the address of a global. Note that generalizing
1331 // to the case where LHS is a global variable address or null is pointless,
1332 // since if both LHS and RHS are constants then we already constant folded
1333 // the compare, and if only one of them is then we moved it to RHS already.
1334 if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1335 isa<ConstantPointerNull>(RHS)))
1336 // We already know that LHS != LHS.
1337 return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
1338
1339 // If we are comparing with zero then try hard since this is a common case.
1340 if (match(RHS, m_Zero())) {
1341 bool LHSKnownNonNegative, LHSKnownNegative;
1342 switch (Pred) {
1343 default:
1344 assert(false && "Unknown ICmp predicate!");
1345 case ICmpInst::ICMP_ULT:
1346 return ConstantInt::getFalse(LHS->getContext());
1347 case ICmpInst::ICMP_UGE:
1348 return ConstantInt::getTrue(LHS->getContext());
1349 case ICmpInst::ICMP_EQ:
1350 case ICmpInst::ICMP_ULE:
1351 if (isKnownNonZero(LHS, TD))
1352 return ConstantInt::getFalse(LHS->getContext());
1353 break;
1354 case ICmpInst::ICMP_NE:
1355 case ICmpInst::ICMP_UGT:
1356 if (isKnownNonZero(LHS, TD))
1357 return ConstantInt::getTrue(LHS->getContext());
1358 break;
1359 case ICmpInst::ICMP_SLT:
1360 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1361 if (LHSKnownNegative)
1362 return ConstantInt::getTrue(LHS->getContext());
1363 if (LHSKnownNonNegative)
1364 return ConstantInt::getFalse(LHS->getContext());
1365 break;
1366 case ICmpInst::ICMP_SLE:
1367 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1368 if (LHSKnownNegative)
1369 return ConstantInt::getTrue(LHS->getContext());
1370 if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1371 return ConstantInt::getFalse(LHS->getContext());
1372 break;
1373 case ICmpInst::ICMP_SGE:
1374 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1375 if (LHSKnownNegative)
1376 return ConstantInt::getFalse(LHS->getContext());
1377 if (LHSKnownNonNegative)
1378 return ConstantInt::getTrue(LHS->getContext());
1379 break;
1380 case ICmpInst::ICMP_SGT:
1381 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1382 if (LHSKnownNegative)
1383 return ConstantInt::getFalse(LHS->getContext());
1384 if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1385 return ConstantInt::getTrue(LHS->getContext());
1386 break;
1387 }
1388 }
1389
1390 // See if we are doing a comparison with a constant integer.
Duncan Sands6dc91252011-01-13 08:56:29 +00001391 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1392 switch (Pred) {
1393 default: break;
1394 case ICmpInst::ICMP_UGT:
1395 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
1396 return ConstantInt::getFalse(CI->getContext());
1397 break;
1398 case ICmpInst::ICMP_UGE:
1399 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
1400 return ConstantInt::getTrue(CI->getContext());
1401 break;
1402 case ICmpInst::ICMP_ULT:
1403 if (CI->isMinValue(false)) // A <u MIN -> FALSE
1404 return ConstantInt::getFalse(CI->getContext());
1405 break;
1406 case ICmpInst::ICMP_ULE:
1407 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
1408 return ConstantInt::getTrue(CI->getContext());
1409 break;
1410 case ICmpInst::ICMP_SGT:
1411 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
1412 return ConstantInt::getFalse(CI->getContext());
1413 break;
1414 case ICmpInst::ICMP_SGE:
1415 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
1416 return ConstantInt::getTrue(CI->getContext());
1417 break;
1418 case ICmpInst::ICMP_SLT:
1419 if (CI->isMinValue(true)) // A <s MIN -> FALSE
1420 return ConstantInt::getFalse(CI->getContext());
1421 break;
1422 case ICmpInst::ICMP_SLE:
1423 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
1424 return ConstantInt::getTrue(CI->getContext());
1425 break;
1426 }
1427 }
1428
Duncan Sands9d32f602011-01-20 13:21:55 +00001429 // Compare of cast, for example (zext X) != 0 -> X != 0
1430 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1431 Instruction *LI = cast<CastInst>(LHS);
1432 Value *SrcOp = LI->getOperand(0);
1433 const Type *SrcTy = SrcOp->getType();
1434 const Type *DstTy = LI->getType();
1435
1436 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1437 // if the integer type is the same size as the pointer type.
1438 if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
1439 TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1440 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1441 // Transfer the cast to the constant.
1442 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1443 ConstantExpr::getIntToPtr(RHSC, SrcTy),
1444 TD, DT, MaxRecurse-1))
1445 return V;
1446 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1447 if (RI->getOperand(0)->getType() == SrcTy)
1448 // Compare without the cast.
1449 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1450 TD, DT, MaxRecurse-1))
1451 return V;
1452 }
1453 }
1454
1455 if (isa<ZExtInst>(LHS)) {
1456 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1457 // same type.
1458 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1459 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1460 // Compare X and Y. Note that signed predicates become unsigned.
1461 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1462 SrcOp, RI->getOperand(0), TD, DT,
1463 MaxRecurse-1))
1464 return V;
1465 }
1466 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1467 // too. If not, then try to deduce the result of the comparison.
1468 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1469 // Compute the constant that would happen if we truncated to SrcTy then
1470 // reextended to DstTy.
1471 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1472 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1473
1474 // If the re-extended constant didn't change then this is effectively
1475 // also a case of comparing two zero-extended values.
1476 if (RExt == CI && MaxRecurse)
1477 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1478 SrcOp, Trunc, TD, DT, MaxRecurse-1))
1479 return V;
1480
1481 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1482 // there. Use this to work out the result of the comparison.
1483 if (RExt != CI) {
1484 switch (Pred) {
1485 default:
1486 assert(false && "Unknown ICmp predicate!");
1487 // LHS <u RHS.
1488 case ICmpInst::ICMP_EQ:
1489 case ICmpInst::ICMP_UGT:
1490 case ICmpInst::ICMP_UGE:
1491 return ConstantInt::getFalse(CI->getContext());
1492
1493 case ICmpInst::ICMP_NE:
1494 case ICmpInst::ICMP_ULT:
1495 case ICmpInst::ICMP_ULE:
1496 return ConstantInt::getTrue(CI->getContext());
1497
1498 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
1499 // is non-negative then LHS <s RHS.
1500 case ICmpInst::ICMP_SGT:
1501 case ICmpInst::ICMP_SGE:
1502 return CI->getValue().isNegative() ?
1503 ConstantInt::getTrue(CI->getContext()) :
1504 ConstantInt::getFalse(CI->getContext());
1505
1506 case ICmpInst::ICMP_SLT:
1507 case ICmpInst::ICMP_SLE:
1508 return CI->getValue().isNegative() ?
1509 ConstantInt::getFalse(CI->getContext()) :
1510 ConstantInt::getTrue(CI->getContext());
1511 }
1512 }
1513 }
1514 }
1515
1516 if (isa<SExtInst>(LHS)) {
1517 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1518 // same type.
1519 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1520 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1521 // Compare X and Y. Note that the predicate does not change.
1522 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1523 TD, DT, MaxRecurse-1))
1524 return V;
1525 }
1526 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1527 // too. If not, then try to deduce the result of the comparison.
1528 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1529 // Compute the constant that would happen if we truncated to SrcTy then
1530 // reextended to DstTy.
1531 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1532 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1533
1534 // If the re-extended constant didn't change then this is effectively
1535 // also a case of comparing two sign-extended values.
1536 if (RExt == CI && MaxRecurse)
1537 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
1538 MaxRecurse-1))
1539 return V;
1540
1541 // Otherwise the upper bits of LHS are all equal, while RHS has varying
1542 // bits there. Use this to work out the result of the comparison.
1543 if (RExt != CI) {
1544 switch (Pred) {
1545 default:
1546 assert(false && "Unknown ICmp predicate!");
1547 case ICmpInst::ICMP_EQ:
1548 return ConstantInt::getFalse(CI->getContext());
1549 case ICmpInst::ICMP_NE:
1550 return ConstantInt::getTrue(CI->getContext());
1551
1552 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
1553 // LHS >s RHS.
1554 case ICmpInst::ICMP_SGT:
1555 case ICmpInst::ICMP_SGE:
1556 return CI->getValue().isNegative() ?
1557 ConstantInt::getTrue(CI->getContext()) :
1558 ConstantInt::getFalse(CI->getContext());
1559 case ICmpInst::ICMP_SLT:
1560 case ICmpInst::ICMP_SLE:
1561 return CI->getValue().isNegative() ?
1562 ConstantInt::getFalse(CI->getContext()) :
1563 ConstantInt::getTrue(CI->getContext());
1564
1565 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
1566 // LHS >u RHS.
1567 case ICmpInst::ICMP_UGT:
1568 case ICmpInst::ICMP_UGE:
1569 // Comparison is true iff the LHS <s 0.
1570 if (MaxRecurse)
1571 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1572 Constant::getNullValue(SrcTy),
1573 TD, DT, MaxRecurse-1))
1574 return V;
1575 break;
1576 case ICmpInst::ICMP_ULT:
1577 case ICmpInst::ICMP_ULE:
1578 // Comparison is true iff the LHS >=s 0.
1579 if (MaxRecurse)
1580 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1581 Constant::getNullValue(SrcTy),
1582 TD, DT, MaxRecurse-1))
1583 return V;
1584 break;
1585 }
1586 }
1587 }
1588 }
1589 }
1590
Duncan Sands52fb8462011-02-13 17:15:40 +00001591 // Special logic for binary operators.
1592 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
1593 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
1594 if (MaxRecurse && (LBO || RBO)) {
1595
1596 // Analyze the case when either LHS or RHS is an add instruction.
1597 Value *A = 0, *B = 0, *C = 0, *D = 0;
1598 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
1599 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
1600 if (LBO && LBO->getOpcode() == Instruction::Add) {
1601 A = LBO->getOperand(0); B = LBO->getOperand(1);
1602 NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
1603 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
1604 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
1605 }
1606 if (RBO && RBO->getOpcode() == Instruction::Add) {
1607 C = RBO->getOperand(0); D = RBO->getOperand(1);
1608 NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
1609 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
1610 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
1611 }
1612
1613 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
1614 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
1615 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
1616 Constant::getNullValue(RHS->getType()),
1617 TD, DT, MaxRecurse-1))
1618 return V;
1619
1620 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
1621 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
1622 if (Value *V = SimplifyICmpInst(Pred,
1623 Constant::getNullValue(LHS->getType()),
1624 C == LHS ? D : C, TD, DT, MaxRecurse-1))
1625 return V;
1626
1627 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
1628 if (A && C && (A == C || A == D || B == C || B == D) &&
1629 NoLHSWrapProblem && NoRHSWrapProblem) {
1630 // Determine Y and Z in the form icmp (X+Y), (X+Z).
1631 Value *Y = (A == C || A == D) ? B : A;
1632 Value *Z = (C == A || C == B) ? D : C;
1633 if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, DT, MaxRecurse-1))
1634 return V;
1635 }
1636 }
1637
Duncan Sands1ac7c992010-11-07 16:12:23 +00001638 // If the comparison is with the result of a select instruction, check whether
1639 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001640 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1641 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001642 return V;
1643
1644 // If the comparison is with the result of a phi instruction, check whether
1645 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00001646 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1647 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00001648 return V;
Duncan Sands1ac7c992010-11-07 16:12:23 +00001649
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001650 return 0;
1651}
1652
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001653Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001654 const TargetData *TD, const DominatorTree *DT) {
1655 return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001656}
1657
Chris Lattner9dbb4292009-11-09 23:28:39 +00001658/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
1659/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001660static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001661 const TargetData *TD, const DominatorTree *DT,
1662 unsigned MaxRecurse) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00001663 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1664 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
1665
Chris Lattnerd06094f2009-11-10 00:55:12 +00001666 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00001667 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1668 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
Duncan Sands12a86f52010-11-14 11:23:23 +00001669
Chris Lattnerd06094f2009-11-10 00:55:12 +00001670 // If we have a constant, make sure it is on the RHS.
1671 std::swap(LHS, RHS);
1672 Pred = CmpInst::getSwappedPredicate(Pred);
1673 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001674
Chris Lattner210c5d42009-11-09 23:55:12 +00001675 // Fold trivial predicates.
1676 if (Pred == FCmpInst::FCMP_FALSE)
1677 return ConstantInt::get(GetCompareTy(LHS), 0);
1678 if (Pred == FCmpInst::FCMP_TRUE)
1679 return ConstantInt::get(GetCompareTy(LHS), 1);
1680
Chris Lattner210c5d42009-11-09 23:55:12 +00001681 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
1682 return UndefValue::get(GetCompareTy(LHS));
1683
1684 // fcmp x,x -> true/false. Not all compares are foldable.
Duncan Sands124708d2011-01-01 20:08:02 +00001685 if (LHS == RHS) {
Chris Lattner210c5d42009-11-09 23:55:12 +00001686 if (CmpInst::isTrueWhenEqual(Pred))
1687 return ConstantInt::get(GetCompareTy(LHS), 1);
1688 if (CmpInst::isFalseWhenEqual(Pred))
1689 return ConstantInt::get(GetCompareTy(LHS), 0);
1690 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001691
Chris Lattner210c5d42009-11-09 23:55:12 +00001692 // Handle fcmp with constant RHS
1693 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1694 // If the constant is a nan, see if we can fold the comparison based on it.
1695 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1696 if (CFP->getValueAPF().isNaN()) {
1697 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
1698 return ConstantInt::getFalse(CFP->getContext());
1699 assert(FCmpInst::isUnordered(Pred) &&
1700 "Comparison must be either ordered or unordered!");
1701 // True if unordered.
1702 return ConstantInt::getTrue(CFP->getContext());
1703 }
Dan Gohman6b617a72010-02-22 04:06:03 +00001704 // Check whether the constant is an infinity.
1705 if (CFP->getValueAPF().isInfinity()) {
1706 if (CFP->getValueAPF().isNegative()) {
1707 switch (Pred) {
1708 case FCmpInst::FCMP_OLT:
1709 // No value is ordered and less than negative infinity.
1710 return ConstantInt::getFalse(CFP->getContext());
1711 case FCmpInst::FCMP_UGE:
1712 // All values are unordered with or at least negative infinity.
1713 return ConstantInt::getTrue(CFP->getContext());
1714 default:
1715 break;
1716 }
1717 } else {
1718 switch (Pred) {
1719 case FCmpInst::FCMP_OGT:
1720 // No value is ordered and greater than infinity.
1721 return ConstantInt::getFalse(CFP->getContext());
1722 case FCmpInst::FCMP_ULE:
1723 // All values are unordered with and at most infinity.
1724 return ConstantInt::getTrue(CFP->getContext());
1725 default:
1726 break;
1727 }
1728 }
1729 }
Chris Lattner210c5d42009-11-09 23:55:12 +00001730 }
1731 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001732
Duncan Sands92826de2010-11-07 16:46:25 +00001733 // If the comparison is with the result of a select instruction, check whether
1734 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001735 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1736 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001737 return V;
1738
1739 // If the comparison is with the result of a phi instruction, check whether
1740 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00001741 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1742 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00001743 return V;
Duncan Sands92826de2010-11-07 16:46:25 +00001744
Chris Lattner9dbb4292009-11-09 23:28:39 +00001745 return 0;
1746}
1747
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001748Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001749 const TargetData *TD, const DominatorTree *DT) {
1750 return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001751}
1752
Chris Lattner04754262010-04-20 05:32:14 +00001753/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
1754/// the result. If not, this returns null.
Duncan Sands124708d2011-01-01 20:08:02 +00001755Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
1756 const TargetData *TD, const DominatorTree *) {
Chris Lattner04754262010-04-20 05:32:14 +00001757 // select true, X, Y -> X
1758 // select false, X, Y -> Y
1759 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
1760 return CB->getZExtValue() ? TrueVal : FalseVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00001761
Chris Lattner04754262010-04-20 05:32:14 +00001762 // select C, X, X -> X
Duncan Sands124708d2011-01-01 20:08:02 +00001763 if (TrueVal == FalseVal)
Chris Lattner04754262010-04-20 05:32:14 +00001764 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00001765
Chris Lattner04754262010-04-20 05:32:14 +00001766 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
1767 return FalseVal;
1768 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
1769 return TrueVal;
1770 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
1771 if (isa<Constant>(TrueVal))
1772 return TrueVal;
1773 return FalseVal;
1774 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001775
Chris Lattner04754262010-04-20 05:32:14 +00001776 return 0;
1777}
1778
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001779/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
1780/// fold the result. If not, this returns null.
1781Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
Duncan Sands18450092010-11-16 12:16:38 +00001782 const TargetData *TD, const DominatorTree *) {
Duncan Sands85bbff62010-11-22 13:42:49 +00001783 // The type of the GEP pointer operand.
1784 const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
1785
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001786 // getelementptr P -> P.
1787 if (NumOps == 1)
1788 return Ops[0];
1789
Duncan Sands85bbff62010-11-22 13:42:49 +00001790 if (isa<UndefValue>(Ops[0])) {
1791 // Compute the (pointer) type returned by the GEP instruction.
1792 const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1],
1793 NumOps-1);
1794 const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
1795 return UndefValue::get(GEPTy);
1796 }
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001797
Duncan Sandse60d79f2010-11-21 13:53:09 +00001798 if (NumOps == 2) {
1799 // getelementptr P, 0 -> P.
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001800 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
1801 if (C->isZero())
1802 return Ops[0];
Duncan Sandse60d79f2010-11-21 13:53:09 +00001803 // getelementptr P, N -> P if P points to a type of zero size.
1804 if (TD) {
Duncan Sands85bbff62010-11-22 13:42:49 +00001805 const Type *Ty = PtrTy->getElementType();
Duncan Sandsa63395a2010-11-22 16:32:50 +00001806 if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
Duncan Sandse60d79f2010-11-21 13:53:09 +00001807 return Ops[0];
1808 }
1809 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001810
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001811 // Check to see if this is constant foldable.
1812 for (unsigned i = 0; i != NumOps; ++i)
1813 if (!isa<Constant>(Ops[i]))
1814 return 0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001815
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001816 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
1817 (Constant *const*)Ops+1, NumOps-1);
1818}
1819
Duncan Sandsff103412010-11-17 04:30:22 +00001820/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
1821static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
1822 // If all of the PHI's incoming values are the same then replace the PHI node
1823 // with the common value.
1824 Value *CommonValue = 0;
1825 bool HasUndefInput = false;
1826 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1827 Value *Incoming = PN->getIncomingValue(i);
1828 // If the incoming value is the phi node itself, it can safely be skipped.
1829 if (Incoming == PN) continue;
1830 if (isa<UndefValue>(Incoming)) {
1831 // Remember that we saw an undef value, but otherwise ignore them.
1832 HasUndefInput = true;
1833 continue;
1834 }
1835 if (CommonValue && Incoming != CommonValue)
1836 return 0; // Not the same, bail out.
1837 CommonValue = Incoming;
1838 }
1839
1840 // If CommonValue is null then all of the incoming values were either undef or
1841 // equal to the phi node itself.
1842 if (!CommonValue)
1843 return UndefValue::get(PN->getType());
1844
1845 // If we have a PHI node like phi(X, undef, X), where X is defined by some
1846 // instruction, we cannot return X as the result of the PHI node unless it
1847 // dominates the PHI block.
1848 if (HasUndefInput)
1849 return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
1850
1851 return CommonValue;
1852}
1853
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001854
Chris Lattnerd06094f2009-11-10 00:55:12 +00001855//=== Helper functions for higher up the class hierarchy.
Chris Lattner9dbb4292009-11-09 23:28:39 +00001856
Chris Lattnerd06094f2009-11-10 00:55:12 +00001857/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
1858/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001859static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001860 const TargetData *TD, const DominatorTree *DT,
1861 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001862 switch (Opcode) {
Chris Lattner81a0dc92011-02-09 17:15:04 +00001863 case Instruction::Add:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00001864 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Chris Lattner81a0dc92011-02-09 17:15:04 +00001865 TD, DT, MaxRecurse);
1866 case Instruction::Sub:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00001867 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Chris Lattner81a0dc92011-02-09 17:15:04 +00001868 TD, DT, MaxRecurse);
1869 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, TD, DT, MaxRecurse);
Duncan Sands593faa52011-01-28 16:51:11 +00001870 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
1871 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001872 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00001873 case Instruction::Shl:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00001874 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Chris Lattner81a0dc92011-02-09 17:15:04 +00001875 TD, DT, MaxRecurse);
1876 case Instruction::LShr:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00001877 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00001878 case Instruction::AShr:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00001879 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
Duncan Sands82fdab32010-12-21 14:00:22 +00001880 case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00001881 case Instruction::Or: return SimplifyOrInst (LHS, RHS, TD, DT, MaxRecurse);
Duncan Sands82fdab32010-12-21 14:00:22 +00001882 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001883 default:
1884 if (Constant *CLHS = dyn_cast<Constant>(LHS))
1885 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1886 Constant *COps[] = {CLHS, CRHS};
1887 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
1888 }
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001889
Duncan Sands566edb02010-12-21 08:49:00 +00001890 // If the operation is associative, try some generic simplifications.
1891 if (Instruction::isAssociative(Opcode))
1892 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
1893 MaxRecurse))
1894 return V;
1895
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001896 // If the operation is with the result of a select instruction, check whether
1897 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001898 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands18450092010-11-16 12:16:38 +00001899 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001900 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001901 return V;
1902
1903 // If the operation is with the result of a phi instruction, check whether
1904 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001905 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1906 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001907 return V;
1908
Chris Lattnerd06094f2009-11-10 00:55:12 +00001909 return 0;
1910 }
1911}
Chris Lattner9dbb4292009-11-09 23:28:39 +00001912
Duncan Sands12a86f52010-11-14 11:23:23 +00001913Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001914 const TargetData *TD, const DominatorTree *DT) {
1915 return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
Chris Lattner9dbb4292009-11-09 23:28:39 +00001916}
1917
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001918/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
1919/// fold the result.
1920static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001921 const TargetData *TD, const DominatorTree *DT,
1922 unsigned MaxRecurse) {
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001923 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
Duncan Sands18450092010-11-16 12:16:38 +00001924 return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
1925 return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001926}
1927
1928Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001929 const TargetData *TD, const DominatorTree *DT) {
1930 return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001931}
Chris Lattnere3453782009-11-10 01:08:51 +00001932
1933/// SimplifyInstruction - See if we can compute a simplified version of this
1934/// instruction. If not, this returns null.
Duncan Sandseff05812010-11-14 18:36:10 +00001935Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
1936 const DominatorTree *DT) {
Duncan Sandsd261dc62010-11-17 08:35:29 +00001937 Value *Result;
1938
Chris Lattnere3453782009-11-10 01:08:51 +00001939 switch (I->getOpcode()) {
1940 default:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001941 Result = ConstantFoldInstruction(I, TD);
1942 break;
Chris Lattner8aee8ef2009-11-27 17:42:22 +00001943 case Instruction::Add:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001944 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
1945 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1946 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1947 TD, DT);
1948 break;
Duncan Sandsfea3b212010-12-15 14:07:39 +00001949 case Instruction::Sub:
1950 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
1951 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1952 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1953 TD, DT);
1954 break;
Duncan Sands82fdab32010-12-21 14:00:22 +00001955 case Instruction::Mul:
1956 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
1957 break;
Duncan Sands593faa52011-01-28 16:51:11 +00001958 case Instruction::SDiv:
1959 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
1960 break;
1961 case Instruction::UDiv:
1962 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
1963 break;
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001964 case Instruction::FDiv:
1965 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
1966 break;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001967 case Instruction::Shl:
Chris Lattner81a0dc92011-02-09 17:15:04 +00001968 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
1969 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1970 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1971 TD, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001972 break;
1973 case Instruction::LShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00001974 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
1975 cast<BinaryOperator>(I)->isExact(),
1976 TD, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001977 break;
1978 case Instruction::AShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00001979 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
1980 cast<BinaryOperator>(I)->isExact(),
1981 TD, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001982 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001983 case Instruction::And:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001984 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
1985 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001986 case Instruction::Or:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001987 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1988 break;
Duncan Sands2b749872010-11-17 18:52:15 +00001989 case Instruction::Xor:
1990 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
1991 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001992 case Instruction::ICmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001993 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
1994 I->getOperand(0), I->getOperand(1), TD, DT);
1995 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001996 case Instruction::FCmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001997 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
1998 I->getOperand(0), I->getOperand(1), TD, DT);
1999 break;
Chris Lattner04754262010-04-20 05:32:14 +00002000 case Instruction::Select:
Duncan Sandsd261dc62010-11-17 08:35:29 +00002001 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
2002 I->getOperand(2), TD, DT);
2003 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002004 case Instruction::GetElementPtr: {
2005 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Duncan Sandsd261dc62010-11-17 08:35:29 +00002006 Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
2007 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002008 }
Duncan Sandscd6636c2010-11-14 13:30:18 +00002009 case Instruction::PHI:
Duncan Sandsd261dc62010-11-17 08:35:29 +00002010 Result = SimplifyPHINode(cast<PHINode>(I), DT);
2011 break;
Chris Lattnere3453782009-11-10 01:08:51 +00002012 }
Duncan Sandsd261dc62010-11-17 08:35:29 +00002013
2014 /// If called on unreachable code, the above logic may report that the
2015 /// instruction simplified to itself. Make life easier for users by
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00002016 /// detecting that case here, returning a safe value instead.
2017 return Result == I ? UndefValue::get(I->getType()) : Result;
Chris Lattnere3453782009-11-10 01:08:51 +00002018}
2019
Chris Lattner40d8c282009-11-10 22:26:15 +00002020/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
2021/// delete the From instruction. In addition to a basic RAUW, this does a
2022/// recursive simplification of the newly formed instructions. This catches
2023/// things where one simplification exposes other opportunities. This only
2024/// simplifies and deletes scalar operations, it does not change the CFG.
2025///
2026void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
Duncan Sandseff05812010-11-14 18:36:10 +00002027 const TargetData *TD,
2028 const DominatorTree *DT) {
Chris Lattner40d8c282009-11-10 22:26:15 +00002029 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
Duncan Sands12a86f52010-11-14 11:23:23 +00002030
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002031 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
2032 // we can know if it gets deleted out from under us or replaced in a
2033 // recursive simplification.
Chris Lattner40d8c282009-11-10 22:26:15 +00002034 WeakVH FromHandle(From);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002035 WeakVH ToHandle(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00002036
Chris Lattner40d8c282009-11-10 22:26:15 +00002037 while (!From->use_empty()) {
2038 // Update the instruction to use the new value.
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002039 Use &TheUse = From->use_begin().getUse();
2040 Instruction *User = cast<Instruction>(TheUse.getUser());
2041 TheUse = To;
2042
2043 // Check to see if the instruction can be folded due to the operand
2044 // replacement. For example changing (or X, Y) into (or X, -1) can replace
2045 // the 'or' with -1.
2046 Value *SimplifiedVal;
2047 {
2048 // Sanity check to make sure 'User' doesn't dangle across
2049 // SimplifyInstruction.
2050 AssertingVH<> UserHandle(User);
Duncan Sands12a86f52010-11-14 11:23:23 +00002051
Duncan Sandseff05812010-11-14 18:36:10 +00002052 SimplifiedVal = SimplifyInstruction(User, TD, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002053 if (SimplifiedVal == 0) continue;
Chris Lattner40d8c282009-11-10 22:26:15 +00002054 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002055
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002056 // Recursively simplify this user to the new value.
Duncan Sandseff05812010-11-14 18:36:10 +00002057 ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002058 From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
2059 To = ToHandle;
Duncan Sands12a86f52010-11-14 11:23:23 +00002060
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002061 assert(ToHandle && "To value deleted by recursive simplification?");
Duncan Sands12a86f52010-11-14 11:23:23 +00002062
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002063 // If the recursive simplification ended up revisiting and deleting
2064 // 'From' then we're done.
2065 if (From == 0)
2066 return;
Chris Lattner40d8c282009-11-10 22:26:15 +00002067 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002068
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002069 // If 'From' has value handles referring to it, do a real RAUW to update them.
2070 From->replaceAllUsesWith(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00002071
Chris Lattner40d8c282009-11-10 22:26:15 +00002072 From->eraseFromParent();
2073}