blob: a1b1d971a3a59be9289221452ee465f0f79c7c6a [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
Chris Lattner53f5aee2007-10-15 17:47:20 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
Duncan Sandsa9810f32007-10-16 09:56:48 +000031#include "llvm/ADT/SmallSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <cmath>
36using namespace llvm;
37
38/// makeVTList - Return an instance of the SDVTList struct initialized with the
39/// specified members.
40static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
41 SDVTList Res = {VTs, NumVTs};
42 return Res;
43}
44
45//===----------------------------------------------------------------------===//
46// ConstantFPSDNode Class
47//===----------------------------------------------------------------------===//
48
49/// isExactlyValue - We don't rely on operator== working on double values, as
50/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
51/// As such, this method can be used to do an exact bit-for-bit comparison of
52/// two floating point values.
Dale Johannesenc53301c2007-08-26 01:18:27 +000053bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
Dale Johannesen7f2c1d12007-08-25 22:10:57 +000054 return Value.bitwiseIsEqual(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000055}
56
Dale Johannesenbbe2b702007-08-30 00:23:21 +000057bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
58 const APFloat& Val) {
59 // convert modifies in place, so make a copy.
60 APFloat Val2 = APFloat(Val);
61 switch (VT) {
62 default:
63 return false; // These can't be represented as floating point!
64
65 // FIXME rounding mode needs to be more flexible
66 case MVT::f32:
67 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
68 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
69 APFloat::opOK;
70 case MVT::f64:
71 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72 &Val2.getSemantics() == &APFloat::IEEEdouble ||
73 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
74 APFloat::opOK;
75 // TODO: Figure out how to test if we can use a shorter type instead!
76 case MVT::f80:
77 case MVT::f128:
78 case MVT::ppcf128:
79 return true;
80 }
81}
82
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083//===----------------------------------------------------------------------===//
84// ISD Namespace
85//===----------------------------------------------------------------------===//
86
87/// isBuildVectorAllOnes - Return true if the specified node is a
88/// BUILD_VECTOR where all of the elements are ~0 or undef.
89bool ISD::isBuildVectorAllOnes(const SDNode *N) {
90 // Look through a bit convert.
91 if (N->getOpcode() == ISD::BIT_CONVERT)
92 N = N->getOperand(0).Val;
93
94 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
95
96 unsigned i = 0, e = N->getNumOperands();
97
98 // Skip over all of the undef values.
99 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
100 ++i;
101
102 // Do not accept an all-undef vector.
103 if (i == e) return false;
104
105 // Do not accept build_vectors that aren't all constants or which have non-~0
106 // elements.
107 SDOperand NotZero = N->getOperand(i);
108 if (isa<ConstantSDNode>(NotZero)) {
109 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
110 return false;
111 } else if (isa<ConstantFPSDNode>(NotZero)) {
112 MVT::ValueType VT = NotZero.getValueType();
113 if (VT== MVT::f64) {
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000114 if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
115 convertToAPInt().getZExtValue())) != (uint64_t)-1)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 return false;
117 } else {
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000118 if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
119 getValueAPF().convertToAPInt().getZExtValue() !=
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120 (uint32_t)-1)
121 return false;
122 }
123 } else
124 return false;
125
126 // Okay, we have at least one ~0 value, check to see if the rest match or are
127 // undefs.
128 for (++i; i != e; ++i)
129 if (N->getOperand(i) != NotZero &&
130 N->getOperand(i).getOpcode() != ISD::UNDEF)
131 return false;
132 return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139 // Look through a bit convert.
140 if (N->getOpcode() == ISD::BIT_CONVERT)
141 N = N->getOperand(0).Val;
142
143 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145 unsigned i = 0, e = N->getNumOperands();
146
147 // Skip over all of the undef values.
148 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149 ++i;
150
151 // Do not accept an all-undef vector.
152 if (i == e) return false;
153
154 // Do not accept build_vectors that aren't all constants or which have non-~0
155 // elements.
156 SDOperand Zero = N->getOperand(i);
157 if (isa<ConstantSDNode>(Zero)) {
158 if (!cast<ConstantSDNode>(Zero)->isNullValue())
159 return false;
160 } else if (isa<ConstantFPSDNode>(Zero)) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000161 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 return false;
163 } else
164 return false;
165
166 // Okay, we have at least one ~0 value, check to see if the rest match or are
167 // undefs.
168 for (++i; i != e; ++i)
169 if (N->getOperand(i) != Zero &&
170 N->getOperand(i).getOpcode() != ISD::UNDEF)
171 return false;
172 return true;
173}
174
175/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
176/// when given the operation for (X op Y).
177ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
178 // To perform this operation, we just need to swap the L and G bits of the
179 // operation.
180 unsigned OldL = (Operation >> 2) & 1;
181 unsigned OldG = (Operation >> 1) & 1;
182 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
183 (OldL << 1) | // New G bit
184 (OldG << 2)); // New L bit.
185}
186
187/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
188/// 'op' is a valid SetCC operation.
189ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
190 unsigned Operation = Op;
191 if (isInteger)
192 Operation ^= 7; // Flip L, G, E bits, but not U.
193 else
194 Operation ^= 15; // Flip all of the condition bits.
195 if (Operation > ISD::SETTRUE2)
196 Operation &= ~8; // Don't let N and U bits get set.
197 return ISD::CondCode(Operation);
198}
199
200
201/// isSignedOp - For an integer comparison, return 1 if the comparison is a
202/// signed operation and 2 if the result is an unsigned comparison. Return zero
203/// if the operation does not depend on the sign of the input (setne and seteq).
204static int isSignedOp(ISD::CondCode Opcode) {
205 switch (Opcode) {
206 default: assert(0 && "Illegal integer setcc operation!");
207 case ISD::SETEQ:
208 case ISD::SETNE: return 0;
209 case ISD::SETLT:
210 case ISD::SETLE:
211 case ISD::SETGT:
212 case ISD::SETGE: return 1;
213 case ISD::SETULT:
214 case ISD::SETULE:
215 case ISD::SETUGT:
216 case ISD::SETUGE: return 2;
217 }
218}
219
220/// getSetCCOrOperation - Return the result of a logical OR between different
221/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
222/// returns SETCC_INVALID if it is not possible to represent the resultant
223/// comparison.
224ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
225 bool isInteger) {
226 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
227 // Cannot fold a signed integer setcc with an unsigned integer setcc.
228 return ISD::SETCC_INVALID;
229
230 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
231
232 // If the N and U bits get set then the resultant comparison DOES suddenly
233 // care about orderedness, and is true when ordered.
234 if (Op > ISD::SETTRUE2)
235 Op &= ~16; // Clear the U bit if the N bit is set.
236
237 // Canonicalize illegal integer setcc's.
238 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
239 Op = ISD::SETNE;
240
241 return ISD::CondCode(Op);
242}
243
244/// getSetCCAndOperation - Return the result of a logical AND between different
245/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
246/// function returns zero if it is not possible to represent the resultant
247/// comparison.
248ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
249 bool isInteger) {
250 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
251 // Cannot fold a signed setcc with an unsigned setcc.
252 return ISD::SETCC_INVALID;
253
254 // Combine all of the condition bits.
255 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
256
257 // Canonicalize illegal integer setcc's.
258 if (isInteger) {
259 switch (Result) {
260 default: break;
261 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
262 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
263 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
264 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
265 }
266 }
267
268 return Result;
269}
270
271const TargetMachine &SelectionDAG::getTarget() const {
272 return TLI.getTargetMachine();
273}
274
275//===----------------------------------------------------------------------===//
276// SDNode Profile Support
277//===----------------------------------------------------------------------===//
278
279/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
280///
281static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
282 ID.AddInteger(OpC);
283}
284
285/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
286/// solely with their pointer.
287void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
288 ID.AddPointer(VTList.VTs);
289}
290
291/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
292///
293static void AddNodeIDOperands(FoldingSetNodeID &ID,
294 const SDOperand *Ops, unsigned NumOps) {
295 for (; NumOps; --NumOps, ++Ops) {
296 ID.AddPointer(Ops->Val);
297 ID.AddInteger(Ops->ResNo);
298 }
299}
300
301static void AddNodeIDNode(FoldingSetNodeID &ID,
302 unsigned short OpC, SDVTList VTList,
303 const SDOperand *OpList, unsigned N) {
304 AddNodeIDOpcode(ID, OpC);
305 AddNodeIDValueTypes(ID, VTList);
306 AddNodeIDOperands(ID, OpList, N);
307}
308
309/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
310/// data.
311static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
312 AddNodeIDOpcode(ID, N->getOpcode());
313 // Add the return value info.
314 AddNodeIDValueTypes(ID, N->getVTList());
315 // Add the operand info.
316 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
317
318 // Handle SDNode leafs with special info.
319 switch (N->getOpcode()) {
320 default: break; // Normal nodes don't need extra info.
321 case ISD::TargetConstant:
322 case ISD::Constant:
323 ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
324 break;
325 case ISD::TargetConstantFP:
Dale Johannesendf8a8312007-08-31 04:03:46 +0000326 case ISD::ConstantFP: {
Dale Johannesen2fc20782007-09-14 22:26:36 +0000327 ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328 break;
Dale Johannesendf8a8312007-08-31 04:03:46 +0000329 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330 case ISD::TargetGlobalAddress:
331 case ISD::GlobalAddress:
332 case ISD::TargetGlobalTLSAddress:
333 case ISD::GlobalTLSAddress: {
334 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
335 ID.AddPointer(GA->getGlobal());
336 ID.AddInteger(GA->getOffset());
337 break;
338 }
339 case ISD::BasicBlock:
340 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
341 break;
342 case ISD::Register:
343 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
344 break;
345 case ISD::SRCVALUE: {
346 SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
347 ID.AddPointer(SV->getValue());
348 ID.AddInteger(SV->getOffset());
349 break;
350 }
351 case ISD::FrameIndex:
352 case ISD::TargetFrameIndex:
353 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
354 break;
355 case ISD::JumpTable:
356 case ISD::TargetJumpTable:
357 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
358 break;
359 case ISD::ConstantPool:
360 case ISD::TargetConstantPool: {
361 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
362 ID.AddInteger(CP->getAlignment());
363 ID.AddInteger(CP->getOffset());
364 if (CP->isMachineConstantPoolEntry())
365 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
366 else
367 ID.AddPointer(CP->getConstVal());
368 break;
369 }
370 case ISD::LOAD: {
371 LoadSDNode *LD = cast<LoadSDNode>(N);
372 ID.AddInteger(LD->getAddressingMode());
373 ID.AddInteger(LD->getExtensionType());
Chris Lattner4a22a672007-09-13 06:09:48 +0000374 ID.AddInteger((unsigned int)(LD->getLoadedVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000375 ID.AddPointer(LD->getSrcValue());
376 ID.AddInteger(LD->getSrcValueOffset());
377 ID.AddInteger(LD->getAlignment());
378 ID.AddInteger(LD->isVolatile());
379 break;
380 }
381 case ISD::STORE: {
382 StoreSDNode *ST = cast<StoreSDNode>(N);
383 ID.AddInteger(ST->getAddressingMode());
384 ID.AddInteger(ST->isTruncatingStore());
Chris Lattner4a22a672007-09-13 06:09:48 +0000385 ID.AddInteger((unsigned int)(ST->getStoredVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000386 ID.AddPointer(ST->getSrcValue());
387 ID.AddInteger(ST->getSrcValueOffset());
388 ID.AddInteger(ST->getAlignment());
389 ID.AddInteger(ST->isVolatile());
390 break;
391 }
392 }
393}
394
395//===----------------------------------------------------------------------===//
396// SelectionDAG Class
397//===----------------------------------------------------------------------===//
398
399/// RemoveDeadNodes - This method deletes all unreachable nodes in the
400/// SelectionDAG.
401void SelectionDAG::RemoveDeadNodes() {
402 // Create a dummy node (which is not added to allnodes), that adds a reference
403 // to the root node, preventing it from being deleted.
404 HandleSDNode Dummy(getRoot());
405
406 SmallVector<SDNode*, 128> DeadNodes;
407
408 // Add all obviously-dead nodes to the DeadNodes worklist.
409 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
410 if (I->use_empty())
411 DeadNodes.push_back(I);
412
413 // Process the worklist, deleting the nodes and adding their uses to the
414 // worklist.
415 while (!DeadNodes.empty()) {
416 SDNode *N = DeadNodes.back();
417 DeadNodes.pop_back();
418
419 // Take the node out of the appropriate CSE map.
420 RemoveNodeFromCSEMaps(N);
421
422 // Next, brutally remove the operand list. This is safe to do, as there are
423 // no cycles in the graph.
424 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
425 SDNode *Operand = I->Val;
426 Operand->removeUser(N);
427
428 // Now that we removed this operand, see if there are no uses of it left.
429 if (Operand->use_empty())
430 DeadNodes.push_back(Operand);
431 }
432 if (N->OperandsNeedDelete)
433 delete[] N->OperandList;
434 N->OperandList = 0;
435 N->NumOperands = 0;
436
437 // Finally, remove N itself.
438 AllNodes.erase(N);
439 }
440
441 // If the root changed (e.g. it was a dead load, update the root).
442 setRoot(Dummy.getValue());
443}
444
445void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
446 SmallVector<SDNode*, 16> DeadNodes;
447 DeadNodes.push_back(N);
448
449 // Process the worklist, deleting the nodes and adding their uses to the
450 // worklist.
451 while (!DeadNodes.empty()) {
452 SDNode *N = DeadNodes.back();
453 DeadNodes.pop_back();
454
455 // Take the node out of the appropriate CSE map.
456 RemoveNodeFromCSEMaps(N);
457
458 // Next, brutally remove the operand list. This is safe to do, as there are
459 // no cycles in the graph.
460 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
461 SDNode *Operand = I->Val;
462 Operand->removeUser(N);
463
464 // Now that we removed this operand, see if there are no uses of it left.
465 if (Operand->use_empty())
466 DeadNodes.push_back(Operand);
467 }
468 if (N->OperandsNeedDelete)
469 delete[] N->OperandList;
470 N->OperandList = 0;
471 N->NumOperands = 0;
472
473 // Finally, remove N itself.
474 Deleted.push_back(N);
475 AllNodes.erase(N);
476 }
477}
478
479void SelectionDAG::DeleteNode(SDNode *N) {
480 assert(N->use_empty() && "Cannot delete a node that is not dead!");
481
482 // First take this out of the appropriate CSE map.
483 RemoveNodeFromCSEMaps(N);
484
485 // Finally, remove uses due to operands of this node, remove from the
486 // AllNodes list, and delete the node.
487 DeleteNodeNotInCSEMaps(N);
488}
489
490void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
491
492 // Remove it from the AllNodes list.
493 AllNodes.remove(N);
494
495 // Drop all of the operands and decrement used nodes use counts.
496 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
497 I->Val->removeUser(N);
498 if (N->OperandsNeedDelete)
499 delete[] N->OperandList;
500 N->OperandList = 0;
501 N->NumOperands = 0;
502
503 delete N;
504}
505
506/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
507/// correspond to it. This is useful when we're about to delete or repurpose
508/// the node. We don't want future request for structurally identical nodes
509/// to return N anymore.
510void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
511 bool Erased = false;
512 switch (N->getOpcode()) {
513 case ISD::HANDLENODE: return; // noop.
514 case ISD::STRING:
515 Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
516 break;
517 case ISD::CONDCODE:
518 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
519 "Cond code doesn't exist!");
520 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
521 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
522 break;
523 case ISD::ExternalSymbol:
524 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
525 break;
526 case ISD::TargetExternalSymbol:
527 Erased =
528 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
529 break;
Duncan Sandsd7307a92007-10-17 13:49:58 +0000530 case ISD::VALUETYPE: {
531 MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
532 if (MVT::isExtendedVT(VT)) {
533 Erased = ExtendedValueTypeNodes.erase(VT);
534 } else {
535 Erased = ValueTypeNodes[VT] != 0;
536 ValueTypeNodes[VT] = 0;
537 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000538 break;
Duncan Sandsd7307a92007-10-17 13:49:58 +0000539 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000540 default:
541 // Remove it from the CSE Map.
542 Erased = CSEMap.RemoveNode(N);
543 break;
544 }
545#ifndef NDEBUG
546 // Verify that the node was actually in one of the CSE maps, unless it has a
547 // flag result (which cannot be CSE'd) or is one of the special cases that are
548 // not subject to CSE.
549 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
550 !N->isTargetOpcode()) {
551 N->dump(this);
552 cerr << "\n";
553 assert(0 && "Node is not in map!");
554 }
555#endif
556}
557
558/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
559/// has been taken out and modified in some way. If the specified node already
560/// exists in the CSE maps, do not modify the maps, but return the existing node
561/// instead. If it doesn't exist, add it and return null.
562///
563SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
564 assert(N->getNumOperands() && "This is a leaf node!");
565 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
566 return 0; // Never add these nodes.
567
568 // Check that remaining values produced are not flags.
569 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
570 if (N->getValueType(i) == MVT::Flag)
571 return 0; // Never CSE anything that produces a flag.
572
573 SDNode *New = CSEMap.GetOrInsertNode(N);
574 if (New != N) return New; // Node already existed.
575 return 0;
576}
577
578/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
579/// were replaced with those specified. If this node is never memoized,
580/// return null, otherwise return a pointer to the slot it would take. If a
581/// node already exists with these operands, the slot will be non-null.
582SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
583 void *&InsertPos) {
584 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
585 return 0; // Never add these nodes.
586
587 // Check that remaining values produced are not flags.
588 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
589 if (N->getValueType(i) == MVT::Flag)
590 return 0; // Never CSE anything that produces a flag.
591
592 SDOperand Ops[] = { Op };
593 FoldingSetNodeID ID;
594 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
595 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
596}
597
598/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
599/// were replaced with those specified. If this node is never memoized,
600/// return null, otherwise return a pointer to the slot it would take. If a
601/// node already exists with these operands, the slot will be non-null.
602SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
603 SDOperand Op1, SDOperand Op2,
604 void *&InsertPos) {
605 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
606 return 0; // Never add these nodes.
607
608 // Check that remaining values produced are not flags.
609 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
610 if (N->getValueType(i) == MVT::Flag)
611 return 0; // Never CSE anything that produces a flag.
612
613 SDOperand Ops[] = { Op1, Op2 };
614 FoldingSetNodeID ID;
615 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
616 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
617}
618
619
620/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
621/// were replaced with those specified. If this node is never memoized,
622/// return null, otherwise return a pointer to the slot it would take. If a
623/// node already exists with these operands, the slot will be non-null.
624SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
625 const SDOperand *Ops,unsigned NumOps,
626 void *&InsertPos) {
627 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
628 return 0; // Never add these nodes.
629
630 // Check that remaining values produced are not flags.
631 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
632 if (N->getValueType(i) == MVT::Flag)
633 return 0; // Never CSE anything that produces a flag.
634
635 FoldingSetNodeID ID;
636 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
637
638 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
639 ID.AddInteger(LD->getAddressingMode());
640 ID.AddInteger(LD->getExtensionType());
Chris Lattner4a22a672007-09-13 06:09:48 +0000641 ID.AddInteger((unsigned int)(LD->getLoadedVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000642 ID.AddPointer(LD->getSrcValue());
643 ID.AddInteger(LD->getSrcValueOffset());
644 ID.AddInteger(LD->getAlignment());
645 ID.AddInteger(LD->isVolatile());
646 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
647 ID.AddInteger(ST->getAddressingMode());
648 ID.AddInteger(ST->isTruncatingStore());
Chris Lattner4a22a672007-09-13 06:09:48 +0000649 ID.AddInteger((unsigned int)(ST->getStoredVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000650 ID.AddPointer(ST->getSrcValue());
651 ID.AddInteger(ST->getSrcValueOffset());
652 ID.AddInteger(ST->getAlignment());
653 ID.AddInteger(ST->isVolatile());
654 }
655
656 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
657}
658
659
660SelectionDAG::~SelectionDAG() {
661 while (!AllNodes.empty()) {
662 SDNode *N = AllNodes.begin();
663 N->SetNextInBucket(0);
664 if (N->OperandsNeedDelete)
665 delete [] N->OperandList;
666 N->OperandList = 0;
667 N->NumOperands = 0;
668 AllNodes.pop_front();
669 }
670}
671
672SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
673 if (Op.getValueType() == VT) return Op;
674 int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
675 return getNode(ISD::AND, Op.getValueType(), Op,
676 getConstant(Imm, Op.getValueType()));
677}
678
679SDOperand SelectionDAG::getString(const std::string &Val) {
680 StringSDNode *&N = StringNodes[Val];
681 if (!N) {
682 N = new StringSDNode(Val);
683 AllNodes.push_back(N);
684 }
685 return SDOperand(N, 0);
686}
687
688SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
689 assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
Dan Gohman5b9d6412007-12-12 22:21:26 +0000690
691 MVT::ValueType EltVT =
692 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000693
694 // Mask out any bits that are not valid for this constant.
Dan Gohman5b9d6412007-12-12 22:21:26 +0000695 Val &= MVT::getIntVTBitMask(EltVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000696
697 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
698 FoldingSetNodeID ID;
Dan Gohman5b9d6412007-12-12 22:21:26 +0000699 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000700 ID.AddInteger(Val);
701 void *IP = 0;
Dan Gohman5b9d6412007-12-12 22:21:26 +0000702 SDNode *N = NULL;
703 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
704 if (!MVT::isVector(VT))
705 return SDOperand(N, 0);
706 if (!N) {
707 N = new ConstantSDNode(isT, Val, EltVT);
708 CSEMap.InsertNode(N, IP);
709 AllNodes.push_back(N);
710 }
711
712 SDOperand Result(N, 0);
713 if (MVT::isVector(VT)) {
714 SmallVector<SDOperand, 8> Ops;
715 Ops.assign(MVT::getVectorNumElements(VT), Result);
716 Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
717 }
718 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719}
720
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000721SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000722 bool isTarget) {
723 assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000724
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000725 MVT::ValueType EltVT =
726 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000727
728 // Do the map lookup using the actual bit pattern for the floating point
729 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
730 // we don't have issues with SNANs.
731 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
732 FoldingSetNodeID ID;
733 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000734 ID.AddAPFloat(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000735 void *IP = 0;
736 SDNode *N = NULL;
737 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
738 if (!MVT::isVector(VT))
739 return SDOperand(N, 0);
740 if (!N) {
Dale Johannesen2fc20782007-09-14 22:26:36 +0000741 N = new ConstantFPSDNode(isTarget, V, EltVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 CSEMap.InsertNode(N, IP);
743 AllNodes.push_back(N);
744 }
745
746 SDOperand Result(N, 0);
747 if (MVT::isVector(VT)) {
748 SmallVector<SDOperand, 8> Ops;
749 Ops.assign(MVT::getVectorNumElements(VT), Result);
750 Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
751 }
752 return Result;
753}
754
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000755SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
756 bool isTarget) {
757 MVT::ValueType EltVT =
758 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
759 if (EltVT==MVT::f32)
760 return getConstantFP(APFloat((float)Val), VT, isTarget);
761 else
762 return getConstantFP(APFloat(Val), VT, isTarget);
763}
764
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000765SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
766 MVT::ValueType VT, int Offset,
767 bool isTargetGA) {
768 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
769 unsigned Opc;
770 if (GVar && GVar->isThreadLocal())
771 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
772 else
773 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
774 FoldingSetNodeID ID;
775 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
776 ID.AddPointer(GV);
777 ID.AddInteger(Offset);
778 void *IP = 0;
779 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
780 return SDOperand(E, 0);
781 SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
782 CSEMap.InsertNode(N, IP);
783 AllNodes.push_back(N);
784 return SDOperand(N, 0);
785}
786
787SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
788 bool isTarget) {
789 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
790 FoldingSetNodeID ID;
791 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
792 ID.AddInteger(FI);
793 void *IP = 0;
794 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
795 return SDOperand(E, 0);
796 SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
797 CSEMap.InsertNode(N, IP);
798 AllNodes.push_back(N);
799 return SDOperand(N, 0);
800}
801
802SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
803 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
804 FoldingSetNodeID ID;
805 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
806 ID.AddInteger(JTI);
807 void *IP = 0;
808 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
809 return SDOperand(E, 0);
810 SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
811 CSEMap.InsertNode(N, IP);
812 AllNodes.push_back(N);
813 return SDOperand(N, 0);
814}
815
816SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
817 unsigned Alignment, int Offset,
818 bool isTarget) {
819 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
820 FoldingSetNodeID ID;
821 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
822 ID.AddInteger(Alignment);
823 ID.AddInteger(Offset);
824 ID.AddPointer(C);
825 void *IP = 0;
826 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
827 return SDOperand(E, 0);
828 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
829 CSEMap.InsertNode(N, IP);
830 AllNodes.push_back(N);
831 return SDOperand(N, 0);
832}
833
834
835SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
836 MVT::ValueType VT,
837 unsigned Alignment, int Offset,
838 bool isTarget) {
839 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
840 FoldingSetNodeID ID;
841 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
842 ID.AddInteger(Alignment);
843 ID.AddInteger(Offset);
844 C->AddSelectionDAGCSEId(ID);
845 void *IP = 0;
846 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
847 return SDOperand(E, 0);
848 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
849 CSEMap.InsertNode(N, IP);
850 AllNodes.push_back(N);
851 return SDOperand(N, 0);
852}
853
854
855SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
856 FoldingSetNodeID ID;
857 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
858 ID.AddPointer(MBB);
859 void *IP = 0;
860 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
861 return SDOperand(E, 0);
862 SDNode *N = new BasicBlockSDNode(MBB);
863 CSEMap.InsertNode(N, IP);
864 AllNodes.push_back(N);
865 return SDOperand(N, 0);
866}
867
868SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
Duncan Sandsd7307a92007-10-17 13:49:58 +0000869 if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000870 ValueTypeNodes.resize(VT+1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000871
Duncan Sandsd7307a92007-10-17 13:49:58 +0000872 SDNode *&N = MVT::isExtendedVT(VT) ?
873 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
874
875 if (N) return SDOperand(N, 0);
876 N = new VTSDNode(VT);
877 AllNodes.push_back(N);
878 return SDOperand(N, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000879}
880
881SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
882 SDNode *&N = ExternalSymbols[Sym];
883 if (N) return SDOperand(N, 0);
884 N = new ExternalSymbolSDNode(false, Sym, VT);
885 AllNodes.push_back(N);
886 return SDOperand(N, 0);
887}
888
889SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
890 MVT::ValueType VT) {
891 SDNode *&N = TargetExternalSymbols[Sym];
892 if (N) return SDOperand(N, 0);
893 N = new ExternalSymbolSDNode(true, Sym, VT);
894 AllNodes.push_back(N);
895 return SDOperand(N, 0);
896}
897
898SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
899 if ((unsigned)Cond >= CondCodeNodes.size())
900 CondCodeNodes.resize(Cond+1);
901
902 if (CondCodeNodes[Cond] == 0) {
903 CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
904 AllNodes.push_back(CondCodeNodes[Cond]);
905 }
906 return SDOperand(CondCodeNodes[Cond], 0);
907}
908
909SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
910 FoldingSetNodeID ID;
911 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
912 ID.AddInteger(RegNo);
913 void *IP = 0;
914 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
915 return SDOperand(E, 0);
916 SDNode *N = new RegisterSDNode(RegNo, VT);
917 CSEMap.InsertNode(N, IP);
918 AllNodes.push_back(N);
919 return SDOperand(N, 0);
920}
921
922SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
923 assert((!V || isa<PointerType>(V->getType())) &&
924 "SrcValue is not a pointer?");
925
926 FoldingSetNodeID ID;
927 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
928 ID.AddPointer(V);
929 ID.AddInteger(Offset);
930 void *IP = 0;
931 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
932 return SDOperand(E, 0);
933 SDNode *N = new SrcValueSDNode(V, Offset);
934 CSEMap.InsertNode(N, IP);
935 AllNodes.push_back(N);
936 return SDOperand(N, 0);
937}
938
Chris Lattner53f5aee2007-10-15 17:47:20 +0000939/// CreateStackTemporary - Create a stack temporary, suitable for holding the
940/// specified value type.
941SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
942 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
943 unsigned ByteSize = MVT::getSizeInBits(VT)/8;
944 const Type *Ty = MVT::getTypeForValueType(VT);
945 unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
946 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
947 return getFrameIndex(FrameIdx, TLI.getPointerTy());
948}
949
950
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000951SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
952 SDOperand N2, ISD::CondCode Cond) {
953 // These setcc operations always fold.
954 switch (Cond) {
955 default: break;
956 case ISD::SETFALSE:
957 case ISD::SETFALSE2: return getConstant(0, VT);
958 case ISD::SETTRUE:
959 case ISD::SETTRUE2: return getConstant(1, VT);
960
961 case ISD::SETOEQ:
962 case ISD::SETOGT:
963 case ISD::SETOGE:
964 case ISD::SETOLT:
965 case ISD::SETOLE:
966 case ISD::SETONE:
967 case ISD::SETO:
968 case ISD::SETUO:
969 case ISD::SETUEQ:
970 case ISD::SETUNE:
971 assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
972 break;
973 }
974
975 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
976 uint64_t C2 = N2C->getValue();
977 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
978 uint64_t C1 = N1C->getValue();
979
980 // Sign extend the operands if required
981 if (ISD::isSignedIntSetCC(Cond)) {
982 C1 = N1C->getSignExtended();
983 C2 = N2C->getSignExtended();
984 }
985
986 switch (Cond) {
987 default: assert(0 && "Unknown integer setcc!");
988 case ISD::SETEQ: return getConstant(C1 == C2, VT);
989 case ISD::SETNE: return getConstant(C1 != C2, VT);
990 case ISD::SETULT: return getConstant(C1 < C2, VT);
991 case ISD::SETUGT: return getConstant(C1 > C2, VT);
992 case ISD::SETULE: return getConstant(C1 <= C2, VT);
993 case ISD::SETUGE: return getConstant(C1 >= C2, VT);
994 case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
995 case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
996 case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
997 case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
998 }
999 }
1000 }
1001 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1002 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
Dale Johannesen80ca14c2007-10-14 01:56:47 +00001003 // No compile time operations on this type yet.
1004 if (N1C->getValueType(0) == MVT::ppcf128)
1005 return SDOperand();
Dale Johannesendf8a8312007-08-31 04:03:46 +00001006
1007 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008 switch (Cond) {
Dale Johannesendf8a8312007-08-31 04:03:46 +00001009 default: break;
Dale Johannesen76844472007-08-31 17:03:33 +00001010 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1011 return getNode(ISD::UNDEF, VT);
1012 // fall through
1013 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1014 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1015 return getNode(ISD::UNDEF, VT);
1016 // fall through
1017 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001018 R==APFloat::cmpLessThan, VT);
Dale Johannesen76844472007-08-31 17:03:33 +00001019 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1020 return getNode(ISD::UNDEF, VT);
1021 // fall through
1022 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1023 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1024 return getNode(ISD::UNDEF, VT);
1025 // fall through
1026 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1027 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1028 return getNode(ISD::UNDEF, VT);
1029 // fall through
1030 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001031 R==APFloat::cmpEqual, VT);
Dale Johannesen76844472007-08-31 17:03:33 +00001032 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1033 return getNode(ISD::UNDEF, VT);
1034 // fall through
1035 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001036 R==APFloat::cmpEqual, VT);
1037 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1038 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1039 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1040 R==APFloat::cmpEqual, VT);
1041 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1042 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1043 R==APFloat::cmpLessThan, VT);
1044 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1045 R==APFloat::cmpUnordered, VT);
1046 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1047 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001048 }
1049 } else {
1050 // Ensure that the constant occurs on the RHS.
1051 return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1052 }
1053
1054 // Could not fold it.
1055 return SDOperand();
1056}
1057
1058/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1059/// this predicate to simplify operations downstream. Mask is known to be zero
1060/// for bits that V cannot have.
1061bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1062 unsigned Depth) const {
1063 // The masks are not wide enough to represent this type! Should use APInt.
1064 if (Op.getValueType() == MVT::i128)
1065 return false;
1066
1067 uint64_t KnownZero, KnownOne;
1068 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1069 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1070 return (KnownZero & Mask) == Mask;
1071}
1072
1073/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1074/// known to be either zero or one and return them in the KnownZero/KnownOne
1075/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1076/// processing.
1077void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1078 uint64_t &KnownZero, uint64_t &KnownOne,
1079 unsigned Depth) const {
1080 KnownZero = KnownOne = 0; // Don't know anything.
1081 if (Depth == 6 || Mask == 0)
1082 return; // Limit search depth.
1083
1084 // The masks are not wide enough to represent this type! Should use APInt.
1085 if (Op.getValueType() == MVT::i128)
1086 return;
1087
1088 uint64_t KnownZero2, KnownOne2;
1089
1090 switch (Op.getOpcode()) {
1091 case ISD::Constant:
1092 // We know all of the bits for a constant!
1093 KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1094 KnownZero = ~KnownOne & Mask;
1095 return;
1096 case ISD::AND:
1097 // If either the LHS or the RHS are Zero, the result is zero.
1098 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1099 Mask &= ~KnownZero;
1100 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1101 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1102 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1103
1104 // Output known-1 bits are only known if set in both the LHS & RHS.
1105 KnownOne &= KnownOne2;
1106 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1107 KnownZero |= KnownZero2;
1108 return;
1109 case ISD::OR:
1110 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1111 Mask &= ~KnownOne;
1112 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1113 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1114 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1115
1116 // Output known-0 bits are only known if clear in both the LHS & RHS.
1117 KnownZero &= KnownZero2;
1118 // Output known-1 are known to be set if set in either the LHS | RHS.
1119 KnownOne |= KnownOne2;
1120 return;
1121 case ISD::XOR: {
1122 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1123 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1124 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1125 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1126
1127 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1128 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1129 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1130 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1131 KnownZero = KnownZeroOut;
1132 return;
1133 }
1134 case ISD::SELECT:
1135 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1136 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1137 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1138 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1139
1140 // Only known if known in both the LHS and RHS.
1141 KnownOne &= KnownOne2;
1142 KnownZero &= KnownZero2;
1143 return;
1144 case ISD::SELECT_CC:
1145 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1146 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1147 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1148 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1149
1150 // Only known if known in both the LHS and RHS.
1151 KnownOne &= KnownOne2;
1152 KnownZero &= KnownZero2;
1153 return;
1154 case ISD::SETCC:
1155 // If we know the result of a setcc has the top bits zero, use this info.
1156 if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1157 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1158 return;
1159 case ISD::SHL:
1160 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1161 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1162 ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1163 KnownZero, KnownOne, Depth+1);
1164 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1165 KnownZero <<= SA->getValue();
1166 KnownOne <<= SA->getValue();
1167 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
1168 }
1169 return;
1170 case ISD::SRL:
1171 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1172 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1173 MVT::ValueType VT = Op.getValueType();
1174 unsigned ShAmt = SA->getValue();
1175
1176 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1177 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1178 KnownZero, KnownOne, Depth+1);
1179 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1180 KnownZero &= TypeMask;
1181 KnownOne &= TypeMask;
1182 KnownZero >>= ShAmt;
1183 KnownOne >>= ShAmt;
1184
1185 uint64_t HighBits = (1ULL << ShAmt)-1;
1186 HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1187 KnownZero |= HighBits; // High bits known zero.
1188 }
1189 return;
1190 case ISD::SRA:
1191 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1192 MVT::ValueType VT = Op.getValueType();
1193 unsigned ShAmt = SA->getValue();
1194
1195 // Compute the new bits that are at the top now.
1196 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1197
1198 uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1199 // If any of the demanded bits are produced by the sign extension, we also
1200 // demand the input sign bit.
1201 uint64_t HighBits = (1ULL << ShAmt)-1;
1202 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1203 if (HighBits & Mask)
1204 InDemandedMask |= MVT::getIntVTSignBit(VT);
1205
1206 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1207 Depth+1);
1208 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1209 KnownZero &= TypeMask;
1210 KnownOne &= TypeMask;
1211 KnownZero >>= ShAmt;
1212 KnownOne >>= ShAmt;
1213
1214 // Handle the sign bits.
1215 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1216 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
1217
1218 if (KnownZero & SignBit) {
1219 KnownZero |= HighBits; // New bits are known zero.
1220 } else if (KnownOne & SignBit) {
1221 KnownOne |= HighBits; // New bits are known one.
1222 }
1223 }
1224 return;
1225 case ISD::SIGN_EXTEND_INREG: {
1226 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1227
1228 // Sign extension. Compute the demanded bits in the result that are not
1229 // present in the input.
1230 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1231
1232 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1233 int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1234
1235 // If the sign extended bits are demanded, we know that the sign
1236 // bit is demanded.
1237 if (NewBits)
1238 InputDemandedBits |= InSignBit;
1239
1240 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1241 KnownZero, KnownOne, Depth+1);
1242 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1243
1244 // If the sign bit of the input is known set or clear, then we know the
1245 // top bits of the result.
1246 if (KnownZero & InSignBit) { // Input sign bit known clear
1247 KnownZero |= NewBits;
1248 KnownOne &= ~NewBits;
1249 } else if (KnownOne & InSignBit) { // Input sign bit known set
1250 KnownOne |= NewBits;
1251 KnownZero &= ~NewBits;
1252 } else { // Input sign bit unknown
1253 KnownZero &= ~NewBits;
1254 KnownOne &= ~NewBits;
1255 }
1256 return;
1257 }
1258 case ISD::CTTZ:
1259 case ISD::CTLZ:
1260 case ISD::CTPOP: {
1261 MVT::ValueType VT = Op.getValueType();
1262 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1263 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1264 KnownOne = 0;
1265 return;
1266 }
1267 case ISD::LOAD: {
1268 if (ISD::isZEXTLoad(Op.Val)) {
1269 LoadSDNode *LD = cast<LoadSDNode>(Op);
1270 MVT::ValueType VT = LD->getLoadedVT();
1271 KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1272 }
1273 return;
1274 }
1275 case ISD::ZERO_EXTEND: {
1276 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1277 uint64_t NewBits = (~InMask) & Mask;
1278 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1279 KnownOne, Depth+1);
1280 KnownZero |= NewBits & Mask;
1281 KnownOne &= ~NewBits;
1282 return;
1283 }
1284 case ISD::SIGN_EXTEND: {
1285 MVT::ValueType InVT = Op.getOperand(0).getValueType();
1286 unsigned InBits = MVT::getSizeInBits(InVT);
1287 uint64_t InMask = MVT::getIntVTBitMask(InVT);
1288 uint64_t InSignBit = 1ULL << (InBits-1);
1289 uint64_t NewBits = (~InMask) & Mask;
1290 uint64_t InDemandedBits = Mask & InMask;
1291
1292 // If any of the sign extended bits are demanded, we know that the sign
1293 // bit is demanded.
1294 if (NewBits & Mask)
1295 InDemandedBits |= InSignBit;
1296
1297 ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1298 KnownOne, Depth+1);
1299 // If the sign bit is known zero or one, the top bits match.
1300 if (KnownZero & InSignBit) {
1301 KnownZero |= NewBits;
1302 KnownOne &= ~NewBits;
1303 } else if (KnownOne & InSignBit) {
1304 KnownOne |= NewBits;
1305 KnownZero &= ~NewBits;
1306 } else { // Otherwise, top bits aren't known.
1307 KnownOne &= ~NewBits;
1308 KnownZero &= ~NewBits;
1309 }
1310 return;
1311 }
1312 case ISD::ANY_EXTEND: {
1313 MVT::ValueType VT = Op.getOperand(0).getValueType();
1314 ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1315 KnownZero, KnownOne, Depth+1);
1316 return;
1317 }
1318 case ISD::TRUNCATE: {
1319 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1320 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1321 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1322 KnownZero &= OutMask;
1323 KnownOne &= OutMask;
1324 break;
1325 }
1326 case ISD::AssertZext: {
1327 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1328 uint64_t InMask = MVT::getIntVTBitMask(VT);
1329 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1330 KnownOne, Depth+1);
1331 KnownZero |= (~InMask) & Mask;
1332 return;
1333 }
1334 case ISD::ADD: {
1335 // If either the LHS or the RHS are Zero, the result is zero.
1336 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1337 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1338 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1339 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1340
1341 // Output known-0 bits are known if clear or set in both the low clear bits
1342 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1343 // low 3 bits clear.
1344 uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1345 CountTrailingZeros_64(~KnownZero2));
1346
1347 KnownZero = (1ULL << KnownZeroOut) - 1;
1348 KnownOne = 0;
1349 return;
1350 }
1351 case ISD::SUB: {
1352 ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1353 if (!CLHS) return;
1354
1355 // We know that the top bits of C-X are clear if X contains less bits
1356 // than C (i.e. no wrap-around can happen). For example, 20-X is
1357 // positive if we can prove that X is >= 0 and < 16.
1358 MVT::ValueType VT = CLHS->getValueType(0);
1359 if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
1360 unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1361 uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1362 MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1363 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1364
1365 // If all of the MaskV bits are known to be zero, then we know the output
1366 // top bits are zero, because we now know that the output is from [0-C].
1367 if ((KnownZero & MaskV) == MaskV) {
1368 unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1369 KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
1370 KnownOne = 0; // No one bits known.
1371 } else {
1372 KnownZero = KnownOne = 0; // Otherwise, nothing known.
1373 }
1374 }
1375 return;
1376 }
1377 default:
1378 // Allow the target to implement this method for its nodes.
1379 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1380 case ISD::INTRINSIC_WO_CHAIN:
1381 case ISD::INTRINSIC_W_CHAIN:
1382 case ISD::INTRINSIC_VOID:
1383 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1384 }
1385 return;
1386 }
1387}
1388
1389/// ComputeNumSignBits - Return the number of times the sign bit of the
1390/// register is replicated into the other bits. We know that at least 1 bit
1391/// is always equal to the sign bit (itself), but other cases can give us
1392/// information. For example, immediately after an "SRA X, 2", we know that
1393/// the top 3 bits are all equal to each other, so we return 3.
1394unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1395 MVT::ValueType VT = Op.getValueType();
1396 assert(MVT::isInteger(VT) && "Invalid VT!");
1397 unsigned VTBits = MVT::getSizeInBits(VT);
1398 unsigned Tmp, Tmp2;
1399
1400 if (Depth == 6)
1401 return 1; // Limit search depth.
1402
1403 switch (Op.getOpcode()) {
1404 default: break;
1405 case ISD::AssertSext:
1406 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1407 return VTBits-Tmp+1;
1408 case ISD::AssertZext:
1409 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1410 return VTBits-Tmp;
1411
1412 case ISD::Constant: {
1413 uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1414 // If negative, invert the bits, then look at it.
1415 if (Val & MVT::getIntVTSignBit(VT))
1416 Val = ~Val;
1417
1418 // Shift the bits so they are the leading bits in the int64_t.
1419 Val <<= 64-VTBits;
1420
1421 // Return # leading zeros. We use 'min' here in case Val was zero before
1422 // shifting. We don't want to return '64' as for an i32 "0".
1423 return std::min(VTBits, CountLeadingZeros_64(Val));
1424 }
1425
1426 case ISD::SIGN_EXTEND:
1427 Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1428 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1429
1430 case ISD::SIGN_EXTEND_INREG:
1431 // Max of the input and what this extends.
1432 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1433 Tmp = VTBits-Tmp+1;
1434
1435 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1436 return std::max(Tmp, Tmp2);
1437
1438 case ISD::SRA:
1439 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1440 // SRA X, C -> adds C sign bits.
1441 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1442 Tmp += C->getValue();
1443 if (Tmp > VTBits) Tmp = VTBits;
1444 }
1445 return Tmp;
1446 case ISD::SHL:
1447 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1448 // shl destroys sign bits.
1449 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1450 if (C->getValue() >= VTBits || // Bad shift.
1451 C->getValue() >= Tmp) break; // Shifted all sign bits out.
1452 return Tmp - C->getValue();
1453 }
1454 break;
1455 case ISD::AND:
1456 case ISD::OR:
1457 case ISD::XOR: // NOT is handled here.
1458 // Logical binary ops preserve the number of sign bits.
1459 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1460 if (Tmp == 1) return 1; // Early out.
1461 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1462 return std::min(Tmp, Tmp2);
1463
1464 case ISD::SELECT:
1465 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1466 if (Tmp == 1) return 1; // Early out.
1467 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1468 return std::min(Tmp, Tmp2);
1469
1470 case ISD::SETCC:
1471 // If setcc returns 0/-1, all bits are sign bits.
1472 if (TLI.getSetCCResultContents() ==
1473 TargetLowering::ZeroOrNegativeOneSetCCResult)
1474 return VTBits;
1475 break;
1476 case ISD::ROTL:
1477 case ISD::ROTR:
1478 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1479 unsigned RotAmt = C->getValue() & (VTBits-1);
1480
1481 // Handle rotate right by N like a rotate left by 32-N.
1482 if (Op.getOpcode() == ISD::ROTR)
1483 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1484
1485 // If we aren't rotating out all of the known-in sign bits, return the
1486 // number that are left. This handles rotl(sext(x), 1) for example.
1487 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1488 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1489 }
1490 break;
1491 case ISD::ADD:
1492 // Add can have at most one carry bit. Thus we know that the output
1493 // is, at worst, one more bit than the inputs.
1494 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1495 if (Tmp == 1) return 1; // Early out.
1496
1497 // Special case decrementing a value (ADD X, -1):
1498 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1499 if (CRHS->isAllOnesValue()) {
1500 uint64_t KnownZero, KnownOne;
1501 uint64_t Mask = MVT::getIntVTBitMask(VT);
1502 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1503
1504 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1505 // sign bits set.
1506 if ((KnownZero|1) == Mask)
1507 return VTBits;
1508
1509 // If we are subtracting one from a positive number, there is no carry
1510 // out of the result.
1511 if (KnownZero & MVT::getIntVTSignBit(VT))
1512 return Tmp;
1513 }
1514
1515 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1516 if (Tmp2 == 1) return 1;
1517 return std::min(Tmp, Tmp2)-1;
1518 break;
1519
1520 case ISD::SUB:
1521 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1522 if (Tmp2 == 1) return 1;
1523
1524 // Handle NEG.
1525 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1526 if (CLHS->getValue() == 0) {
1527 uint64_t KnownZero, KnownOne;
1528 uint64_t Mask = MVT::getIntVTBitMask(VT);
1529 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1530 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1531 // sign bits set.
1532 if ((KnownZero|1) == Mask)
1533 return VTBits;
1534
1535 // If the input is known to be positive (the sign bit is known clear),
1536 // the output of the NEG has the same number of sign bits as the input.
1537 if (KnownZero & MVT::getIntVTSignBit(VT))
1538 return Tmp2;
1539
1540 // Otherwise, we treat this like a SUB.
1541 }
1542
1543 // Sub can have at most one carry bit. Thus we know that the output
1544 // is, at worst, one more bit than the inputs.
1545 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1546 if (Tmp == 1) return 1; // Early out.
1547 return std::min(Tmp, Tmp2)-1;
1548 break;
1549 case ISD::TRUNCATE:
1550 // FIXME: it's tricky to do anything useful for this, but it is an important
1551 // case for targets like X86.
1552 break;
1553 }
1554
1555 // Handle LOADX separately here. EXTLOAD case will fallthrough.
1556 if (Op.getOpcode() == ISD::LOAD) {
1557 LoadSDNode *LD = cast<LoadSDNode>(Op);
1558 unsigned ExtType = LD->getExtensionType();
1559 switch (ExtType) {
1560 default: break;
1561 case ISD::SEXTLOAD: // '17' bits known
1562 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1563 return VTBits-Tmp+1;
1564 case ISD::ZEXTLOAD: // '16' bits known
1565 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1566 return VTBits-Tmp;
1567 }
1568 }
1569
1570 // Allow the target to implement this method for its nodes.
1571 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1572 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1573 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1574 Op.getOpcode() == ISD::INTRINSIC_VOID) {
1575 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1576 if (NumBits > 1) return NumBits;
1577 }
1578
1579 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1580 // use this information.
1581 uint64_t KnownZero, KnownOne;
1582 uint64_t Mask = MVT::getIntVTBitMask(VT);
1583 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1584
1585 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1586 if (KnownZero & SignBit) { // SignBit is 0
1587 Mask = KnownZero;
1588 } else if (KnownOne & SignBit) { // SignBit is 1;
1589 Mask = KnownOne;
1590 } else {
1591 // Nothing known.
1592 return 1;
1593 }
1594
1595 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1596 // the number of identical bits in the top of the input value.
1597 Mask ^= ~0ULL;
1598 Mask <<= 64-VTBits;
1599 // Return # leading zeros. We use 'min' here in case Val was zero before
1600 // shifting. We don't want to return '64' as for an i32 "0".
1601 return std::min(VTBits, CountLeadingZeros_64(Mask));
1602}
1603
1604
1605/// getNode - Gets or creates the specified node.
1606///
1607SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1608 FoldingSetNodeID ID;
1609 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1610 void *IP = 0;
1611 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1612 return SDOperand(E, 0);
1613 SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1614 CSEMap.InsertNode(N, IP);
1615
1616 AllNodes.push_back(N);
1617 return SDOperand(N, 0);
1618}
1619
1620SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1621 SDOperand Operand) {
1622 unsigned Tmp1;
1623 // Constant fold unary operations with an integer constant operand.
1624 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1625 uint64_t Val = C->getValue();
1626 switch (Opcode) {
1627 default: break;
1628 case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1629 case ISD::ANY_EXTEND:
1630 case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1631 case ISD::TRUNCATE: return getConstant(Val, VT);
Dale Johannesen958b08b2007-09-19 23:55:34 +00001632 case ISD::UINT_TO_FP:
1633 case ISD::SINT_TO_FP: {
1634 const uint64_t zero[] = {0, 0};
Dale Johannesenb89072e2007-10-16 23:38:29 +00001635 // No compile time operations on this type.
1636 if (VT==MVT::ppcf128)
1637 break;
Dale Johannesen958b08b2007-09-19 23:55:34 +00001638 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
Neil Booth4bdd45a2007-10-07 11:45:55 +00001639 (void)apf.convertFromZeroExtendedInteger(&Val,
Dale Johannesena6f79742007-09-21 22:09:37 +00001640 MVT::getSizeInBits(Operand.getValueType()),
1641 Opcode==ISD::SINT_TO_FP,
Dale Johannesen87fa68f2007-09-30 18:19:03 +00001642 APFloat::rmNearestTiesToEven);
Dale Johannesen958b08b2007-09-19 23:55:34 +00001643 return getConstantFP(apf, VT);
1644 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001645 case ISD::BIT_CONVERT:
1646 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1647 return getConstantFP(BitsToFloat(Val), VT);
1648 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1649 return getConstantFP(BitsToDouble(Val), VT);
1650 break;
1651 case ISD::BSWAP:
1652 switch(VT) {
1653 default: assert(0 && "Invalid bswap!"); break;
1654 case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1655 case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1656 case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1657 }
1658 break;
1659 case ISD::CTPOP:
1660 switch(VT) {
1661 default: assert(0 && "Invalid ctpop!"); break;
1662 case MVT::i1: return getConstant(Val != 0, VT);
1663 case MVT::i8:
1664 Tmp1 = (unsigned)Val & 0xFF;
1665 return getConstant(CountPopulation_32(Tmp1), VT);
1666 case MVT::i16:
1667 Tmp1 = (unsigned)Val & 0xFFFF;
1668 return getConstant(CountPopulation_32(Tmp1), VT);
1669 case MVT::i32:
1670 return getConstant(CountPopulation_32((unsigned)Val), VT);
1671 case MVT::i64:
1672 return getConstant(CountPopulation_64(Val), VT);
1673 }
1674 case ISD::CTLZ:
1675 switch(VT) {
1676 default: assert(0 && "Invalid ctlz!"); break;
1677 case MVT::i1: return getConstant(Val == 0, VT);
1678 case MVT::i8:
1679 Tmp1 = (unsigned)Val & 0xFF;
1680 return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1681 case MVT::i16:
1682 Tmp1 = (unsigned)Val & 0xFFFF;
1683 return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1684 case MVT::i32:
1685 return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1686 case MVT::i64:
1687 return getConstant(CountLeadingZeros_64(Val), VT);
1688 }
1689 case ISD::CTTZ:
1690 switch(VT) {
1691 default: assert(0 && "Invalid cttz!"); break;
1692 case MVT::i1: return getConstant(Val == 0, VT);
1693 case MVT::i8:
1694 Tmp1 = (unsigned)Val | 0x100;
1695 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1696 case MVT::i16:
1697 Tmp1 = (unsigned)Val | 0x10000;
1698 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1699 case MVT::i32:
1700 return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1701 case MVT::i64:
1702 return getConstant(CountTrailingZeros_64(Val), VT);
1703 }
1704 }
1705 }
1706
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001707 // Constant fold unary operations with a floating point constant operand.
1708 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1709 APFloat V = C->getValueAPF(); // make copy
Dale Johannesenb89072e2007-10-16 23:38:29 +00001710 if (VT!=MVT::ppcf128 && Operand.getValueType()!=MVT::ppcf128) {
1711 switch (Opcode) {
1712 case ISD::FNEG:
1713 V.changeSign();
1714 return getConstantFP(V, VT);
1715 case ISD::FABS:
1716 V.clearSign();
1717 return getConstantFP(V, VT);
1718 case ISD::FP_ROUND:
1719 case ISD::FP_EXTEND:
1720 // This can return overflow, underflow, or inexact; we don't care.
1721 // FIXME need to be more flexible about rounding mode.
1722 (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1723 VT==MVT::f64 ? APFloat::IEEEdouble :
1724 VT==MVT::f80 ? APFloat::x87DoubleExtended :
1725 VT==MVT::f128 ? APFloat::IEEEquad :
1726 APFloat::Bogus,
1727 APFloat::rmNearestTiesToEven);
1728 return getConstantFP(V, VT);
1729 case ISD::FP_TO_SINT:
1730 case ISD::FP_TO_UINT: {
1731 integerPart x;
1732 assert(integerPartWidth >= 64);
1733 // FIXME need to be more flexible about rounding mode.
1734 APFloat::opStatus s = V.convertToInteger(&x, 64U,
1735 Opcode==ISD::FP_TO_SINT,
1736 APFloat::rmTowardZero);
1737 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
1738 break;
1739 return getConstant(x, VT);
1740 }
1741 case ISD::BIT_CONVERT:
1742 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1743 return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1744 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1745 return getConstant(V.convertToAPInt().getZExtValue(), VT);
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001746 break;
Dale Johannesenb89072e2007-10-16 23:38:29 +00001747 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001748 }
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001749 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001750
1751 unsigned OpOpcode = Operand.Val->getOpcode();
1752 switch (Opcode) {
1753 case ISD::TokenFactor:
1754 return Operand; // Factor of one node? No factor.
1755 case ISD::FP_ROUND:
1756 case ISD::FP_EXTEND:
1757 assert(MVT::isFloatingPoint(VT) &&
1758 MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1759 break;
1760 case ISD::SIGN_EXTEND:
1761 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1762 "Invalid SIGN_EXTEND!");
1763 if (Operand.getValueType() == VT) return Operand; // noop extension
Duncan Sandsa9810f32007-10-16 09:56:48 +00001764 assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1765 && "Invalid sext node, dst < src!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001766 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1767 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1768 break;
1769 case ISD::ZERO_EXTEND:
1770 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1771 "Invalid ZERO_EXTEND!");
1772 if (Operand.getValueType() == VT) return Operand; // noop extension
Duncan Sandsa9810f32007-10-16 09:56:48 +00001773 assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1774 && "Invalid zext node, dst < src!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001775 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
1776 return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1777 break;
1778 case ISD::ANY_EXTEND:
1779 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1780 "Invalid ANY_EXTEND!");
1781 if (Operand.getValueType() == VT) return Operand; // noop extension
Duncan Sandsa9810f32007-10-16 09:56:48 +00001782 assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1783 && "Invalid anyext node, dst < src!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001784 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1785 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
1786 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1787 break;
1788 case ISD::TRUNCATE:
1789 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1790 "Invalid TRUNCATE!");
1791 if (Operand.getValueType() == VT) return Operand; // noop truncate
Duncan Sandsa9810f32007-10-16 09:56:48 +00001792 assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1793 && "Invalid truncate node, src < dst!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001794 if (OpOpcode == ISD::TRUNCATE)
1795 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1796 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1797 OpOpcode == ISD::ANY_EXTEND) {
1798 // If the source is smaller than the dest, we still need an extend.
Duncan Sandsa9810f32007-10-16 09:56:48 +00001799 if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1800 < MVT::getSizeInBits(VT))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001801 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
Duncan Sandsa9810f32007-10-16 09:56:48 +00001802 else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1803 > MVT::getSizeInBits(VT))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001804 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1805 else
1806 return Operand.Val->getOperand(0);
1807 }
1808 break;
1809 case ISD::BIT_CONVERT:
1810 // Basic sanity checking.
1811 assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1812 && "Cannot BIT_CONVERT between types of different sizes!");
1813 if (VT == Operand.getValueType()) return Operand; // noop conversion.
1814 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
1815 return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1816 if (OpOpcode == ISD::UNDEF)
1817 return getNode(ISD::UNDEF, VT);
1818 break;
1819 case ISD::SCALAR_TO_VECTOR:
1820 assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1821 MVT::getVectorElementType(VT) == Operand.getValueType() &&
1822 "Illegal SCALAR_TO_VECTOR node!");
1823 break;
1824 case ISD::FNEG:
1825 if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
1826 return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1827 Operand.Val->getOperand(0));
1828 if (OpOpcode == ISD::FNEG) // --X -> X
1829 return Operand.Val->getOperand(0);
1830 break;
1831 case ISD::FABS:
1832 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
1833 return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1834 break;
1835 }
1836
1837 SDNode *N;
1838 SDVTList VTs = getVTList(VT);
1839 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1840 FoldingSetNodeID ID;
1841 SDOperand Ops[1] = { Operand };
1842 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1843 void *IP = 0;
1844 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1845 return SDOperand(E, 0);
1846 N = new UnarySDNode(Opcode, VTs, Operand);
1847 CSEMap.InsertNode(N, IP);
1848 } else {
1849 N = new UnarySDNode(Opcode, VTs, Operand);
1850 }
1851 AllNodes.push_back(N);
1852 return SDOperand(N, 0);
1853}
1854
1855
1856
1857SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1858 SDOperand N1, SDOperand N2) {
1859#ifndef NDEBUG
1860 switch (Opcode) {
1861 case ISD::TokenFactor:
1862 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1863 N2.getValueType() == MVT::Other && "Invalid token factor!");
1864 break;
1865 case ISD::AND:
1866 case ISD::OR:
1867 case ISD::XOR:
1868 case ISD::UDIV:
1869 case ISD::UREM:
1870 case ISD::MULHU:
1871 case ISD::MULHS:
1872 assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1873 // fall through
1874 case ISD::ADD:
1875 case ISD::SUB:
1876 case ISD::MUL:
1877 case ISD::SDIV:
1878 case ISD::SREM:
1879 assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1880 // fall through.
1881 case ISD::FADD:
1882 case ISD::FSUB:
1883 case ISD::FMUL:
1884 case ISD::FDIV:
1885 case ISD::FREM:
1886 assert(N1.getValueType() == N2.getValueType() &&
1887 N1.getValueType() == VT && "Binary operator types must match!");
1888 break;
1889 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
1890 assert(N1.getValueType() == VT &&
1891 MVT::isFloatingPoint(N1.getValueType()) &&
1892 MVT::isFloatingPoint(N2.getValueType()) &&
1893 "Invalid FCOPYSIGN!");
1894 break;
1895 case ISD::SHL:
1896 case ISD::SRA:
1897 case ISD::SRL:
1898 case ISD::ROTL:
1899 case ISD::ROTR:
1900 assert(VT == N1.getValueType() &&
1901 "Shift operators return type must be the same as their first arg");
1902 assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1903 VT != MVT::i1 && "Shifts only work on integers");
1904 break;
1905 case ISD::FP_ROUND_INREG: {
1906 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1907 assert(VT == N1.getValueType() && "Not an inreg round!");
1908 assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1909 "Cannot FP_ROUND_INREG integer types");
Duncan Sandsa9810f32007-10-16 09:56:48 +00001910 assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1911 "Not rounding down!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001912 break;
1913 }
1914 case ISD::AssertSext:
1915 case ISD::AssertZext:
1916 case ISD::SIGN_EXTEND_INREG: {
1917 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1918 assert(VT == N1.getValueType() && "Not an inreg extend!");
1919 assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1920 "Cannot *_EXTEND_INREG FP types");
Duncan Sandsa9810f32007-10-16 09:56:48 +00001921 assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1922 "Not extending!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001923 }
1924
1925 default: break;
1926 }
1927#endif
1928
1929 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1930 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1931 if (N1C) {
1932 if (Opcode == ISD::SIGN_EXTEND_INREG) {
1933 int64_t Val = N1C->getValue();
1934 unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1935 Val <<= 64-FromBits;
1936 Val >>= 64-FromBits;
1937 return getConstant(Val, VT);
1938 }
1939
1940 if (N2C) {
1941 uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1942 switch (Opcode) {
1943 case ISD::ADD: return getConstant(C1 + C2, VT);
1944 case ISD::SUB: return getConstant(C1 - C2, VT);
1945 case ISD::MUL: return getConstant(C1 * C2, VT);
1946 case ISD::UDIV:
1947 if (C2) return getConstant(C1 / C2, VT);
1948 break;
1949 case ISD::UREM :
1950 if (C2) return getConstant(C1 % C2, VT);
1951 break;
1952 case ISD::SDIV :
1953 if (C2) return getConstant(N1C->getSignExtended() /
1954 N2C->getSignExtended(), VT);
1955 break;
1956 case ISD::SREM :
1957 if (C2) return getConstant(N1C->getSignExtended() %
1958 N2C->getSignExtended(), VT);
1959 break;
1960 case ISD::AND : return getConstant(C1 & C2, VT);
1961 case ISD::OR : return getConstant(C1 | C2, VT);
1962 case ISD::XOR : return getConstant(C1 ^ C2, VT);
1963 case ISD::SHL : return getConstant(C1 << C2, VT);
1964 case ISD::SRL : return getConstant(C1 >> C2, VT);
1965 case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1966 case ISD::ROTL :
1967 return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1968 VT);
1969 case ISD::ROTR :
1970 return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1971 VT);
1972 default: break;
1973 }
1974 } else { // Cannonicalize constant to RHS if commutative
1975 if (isCommutativeBinOp(Opcode)) {
1976 std::swap(N1C, N2C);
1977 std::swap(N1, N2);
1978 }
1979 }
1980 }
1981
1982 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1983 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1984 if (N1CFP) {
Dale Johannesenb89072e2007-10-16 23:38:29 +00001985 if (N2CFP && VT!=MVT::ppcf128) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001986 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1987 APFloat::opStatus s;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001988 switch (Opcode) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001989 case ISD::FADD:
1990 s = V1.add(V2, APFloat::rmNearestTiesToEven);
1991 if (s!=APFloat::opInvalidOp)
1992 return getConstantFP(V1, VT);
1993 break;
1994 case ISD::FSUB:
1995 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1996 if (s!=APFloat::opInvalidOp)
1997 return getConstantFP(V1, VT);
1998 break;
1999 case ISD::FMUL:
2000 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2001 if (s!=APFloat::opInvalidOp)
2002 return getConstantFP(V1, VT);
2003 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002004 case ISD::FDIV:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00002005 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2006 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2007 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002008 break;
2009 case ISD::FREM :
Dale Johannesen7604c1b2007-08-31 23:34:27 +00002010 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2011 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2012 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002013 break;
Dale Johannesen7604c1b2007-08-31 23:34:27 +00002014 case ISD::FCOPYSIGN:
2015 V1.copySign(V2);
2016 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002017 default: break;
2018 }
2019 } else { // Cannonicalize constant to RHS if commutative
2020 if (isCommutativeBinOp(Opcode)) {
2021 std::swap(N1CFP, N2CFP);
2022 std::swap(N1, N2);
2023 }
2024 }
2025 }
2026
2027 // Canonicalize an UNDEF to the RHS, even over a constant.
2028 if (N1.getOpcode() == ISD::UNDEF) {
2029 if (isCommutativeBinOp(Opcode)) {
2030 std::swap(N1, N2);
2031 } else {
2032 switch (Opcode) {
2033 case ISD::FP_ROUND_INREG:
2034 case ISD::SIGN_EXTEND_INREG:
2035 case ISD::SUB:
2036 case ISD::FSUB:
2037 case ISD::FDIV:
2038 case ISD::FREM:
2039 case ISD::SRA:
2040 return N1; // fold op(undef, arg2) -> undef
2041 case ISD::UDIV:
2042 case ISD::SDIV:
2043 case ISD::UREM:
2044 case ISD::SREM:
2045 case ISD::SRL:
2046 case ISD::SHL:
2047 if (!MVT::isVector(VT))
2048 return getConstant(0, VT); // fold op(undef, arg2) -> 0
2049 // For vectors, we can't easily build an all zero vector, just return
2050 // the LHS.
2051 return N2;
2052 }
2053 }
2054 }
2055
2056 // Fold a bunch of operators when the RHS is undef.
2057 if (N2.getOpcode() == ISD::UNDEF) {
2058 switch (Opcode) {
2059 case ISD::ADD:
2060 case ISD::ADDC:
2061 case ISD::ADDE:
2062 case ISD::SUB:
2063 case ISD::FADD:
2064 case ISD::FSUB:
2065 case ISD::FMUL:
2066 case ISD::FDIV:
2067 case ISD::FREM:
2068 case ISD::UDIV:
2069 case ISD::SDIV:
2070 case ISD::UREM:
2071 case ISD::SREM:
2072 case ISD::XOR:
2073 return N2; // fold op(arg1, undef) -> undef
2074 case ISD::MUL:
2075 case ISD::AND:
2076 case ISD::SRL:
2077 case ISD::SHL:
2078 if (!MVT::isVector(VT))
2079 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2080 // For vectors, we can't easily build an all zero vector, just return
2081 // the LHS.
2082 return N1;
2083 case ISD::OR:
2084 if (!MVT::isVector(VT))
2085 return getConstant(MVT::getIntVTBitMask(VT), VT);
2086 // For vectors, we can't easily build an all one vector, just return
2087 // the LHS.
2088 return N1;
2089 case ISD::SRA:
2090 return N1;
2091 }
2092 }
2093
2094 // Fold operations.
2095 switch (Opcode) {
2096 case ISD::TokenFactor:
2097 // Fold trivial token factors.
2098 if (N1.getOpcode() == ISD::EntryToken) return N2;
2099 if (N2.getOpcode() == ISD::EntryToken) return N1;
2100 break;
2101
2102 case ISD::AND:
2103 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2104 // worth handling here.
2105 if (N2C && N2C->getValue() == 0)
2106 return N2;
2107 break;
2108 case ISD::OR:
2109 case ISD::XOR:
2110 // (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's
2111 // worth handling here.
2112 if (N2C && N2C->getValue() == 0)
2113 return N1;
2114 break;
2115 case ISD::FP_ROUND_INREG:
2116 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2117 break;
2118 case ISD::SIGN_EXTEND_INREG: {
2119 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2120 if (EVT == VT) return N1; // Not actually extending
2121 break;
2122 }
2123 case ISD::EXTRACT_VECTOR_ELT:
2124 assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2125
2126 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2127 // expanding copies of large vectors from registers.
2128 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2129 N1.getNumOperands() > 0) {
2130 unsigned Factor =
2131 MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2132 return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2133 N1.getOperand(N2C->getValue() / Factor),
2134 getConstant(N2C->getValue() % Factor, N2.getValueType()));
2135 }
2136
2137 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2138 // expanding large vector constants.
2139 if (N1.getOpcode() == ISD::BUILD_VECTOR)
2140 return N1.getOperand(N2C->getValue());
2141
2142 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2143 // operations are lowered to scalars.
2144 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2145 if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2146 if (IEC == N2C)
2147 return N1.getOperand(1);
2148 else
2149 return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2150 }
2151 break;
2152 case ISD::EXTRACT_ELEMENT:
2153 assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2154
2155 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2156 // 64-bit integers into 32-bit parts. Instead of building the extract of
2157 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2158 if (N1.getOpcode() == ISD::BUILD_PAIR)
2159 return N1.getOperand(N2C->getValue());
2160
2161 // EXTRACT_ELEMENT of a constant int is also very common.
2162 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2163 unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2164 return getConstant(C->getValue() >> Shift, VT);
2165 }
2166 break;
2167
2168 // FIXME: figure out how to safely handle things like
2169 // int foo(int x) { return 1 << (x & 255); }
2170 // int bar() { return foo(256); }
2171#if 0
2172 case ISD::SHL:
2173 case ISD::SRL:
2174 case ISD::SRA:
2175 if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2176 cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2177 return getNode(Opcode, VT, N1, N2.getOperand(0));
2178 else if (N2.getOpcode() == ISD::AND)
2179 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2180 // If the and is only masking out bits that cannot effect the shift,
2181 // eliminate the and.
2182 unsigned NumBits = MVT::getSizeInBits(VT);
2183 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2184 return getNode(Opcode, VT, N1, N2.getOperand(0));
2185 }
2186 break;
2187#endif
2188 }
2189
2190 // Memoize this node if possible.
2191 SDNode *N;
2192 SDVTList VTs = getVTList(VT);
2193 if (VT != MVT::Flag) {
2194 SDOperand Ops[] = { N1, N2 };
2195 FoldingSetNodeID ID;
2196 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2197 void *IP = 0;
2198 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2199 return SDOperand(E, 0);
2200 N = new BinarySDNode(Opcode, VTs, N1, N2);
2201 CSEMap.InsertNode(N, IP);
2202 } else {
2203 N = new BinarySDNode(Opcode, VTs, N1, N2);
2204 }
2205
2206 AllNodes.push_back(N);
2207 return SDOperand(N, 0);
2208}
2209
2210SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2211 SDOperand N1, SDOperand N2, SDOperand N3) {
2212 // Perform various simplifications.
2213 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2214 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2215 switch (Opcode) {
2216 case ISD::SETCC: {
2217 // Use FoldSetCC to simplify SETCC's.
2218 SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2219 if (Simp.Val) return Simp;
2220 break;
2221 }
2222 case ISD::SELECT:
2223 if (N1C)
2224 if (N1C->getValue())
2225 return N2; // select true, X, Y -> X
2226 else
2227 return N3; // select false, X, Y -> Y
2228
2229 if (N2 == N3) return N2; // select C, X, X -> X
2230 break;
2231 case ISD::BRCOND:
2232 if (N2C)
2233 if (N2C->getValue()) // Unconditional branch
2234 return getNode(ISD::BR, MVT::Other, N1, N3);
2235 else
2236 return N1; // Never-taken branch
2237 break;
2238 case ISD::VECTOR_SHUFFLE:
2239 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2240 MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2241 N3.getOpcode() == ISD::BUILD_VECTOR &&
2242 MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2243 "Illegal VECTOR_SHUFFLE node!");
2244 break;
2245 case ISD::BIT_CONVERT:
2246 // Fold bit_convert nodes from a type to themselves.
2247 if (N1.getValueType() == VT)
2248 return N1;
2249 break;
2250 }
2251
2252 // Memoize node if it doesn't produce a flag.
2253 SDNode *N;
2254 SDVTList VTs = getVTList(VT);
2255 if (VT != MVT::Flag) {
2256 SDOperand Ops[] = { N1, N2, N3 };
2257 FoldingSetNodeID ID;
2258 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2259 void *IP = 0;
2260 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2261 return SDOperand(E, 0);
2262 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2263 CSEMap.InsertNode(N, IP);
2264 } else {
2265 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2266 }
2267 AllNodes.push_back(N);
2268 return SDOperand(N, 0);
2269}
2270
2271SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2272 SDOperand N1, SDOperand N2, SDOperand N3,
2273 SDOperand N4) {
2274 SDOperand Ops[] = { N1, N2, N3, N4 };
2275 return getNode(Opcode, VT, Ops, 4);
2276}
2277
2278SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2279 SDOperand N1, SDOperand N2, SDOperand N3,
2280 SDOperand N4, SDOperand N5) {
2281 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2282 return getNode(Opcode, VT, Ops, 5);
2283}
2284
Rafael Espindola80825902007-10-19 10:41:11 +00002285SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2286 SDOperand Src, SDOperand Size,
2287 SDOperand Align,
2288 SDOperand AlwaysInline) {
2289 SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2290 return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2291}
2292
2293SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2294 SDOperand Src, SDOperand Size,
2295 SDOperand Align,
2296 SDOperand AlwaysInline) {
2297 SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2298 return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2299}
2300
2301SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2302 SDOperand Src, SDOperand Size,
2303 SDOperand Align,
2304 SDOperand AlwaysInline) {
2305 SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2306 return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2307}
2308
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002309SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2310 SDOperand Chain, SDOperand Ptr,
2311 const Value *SV, int SVOffset,
2312 bool isVolatile, unsigned Alignment) {
2313 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2314 const Type *Ty = 0;
2315 if (VT != MVT::iPTR) {
2316 Ty = MVT::getTypeForValueType(VT);
2317 } else if (SV) {
2318 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2319 assert(PT && "Value for load must be a pointer");
2320 Ty = PT->getElementType();
2321 }
2322 assert(Ty && "Could not get type information for load");
2323 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2324 }
2325 SDVTList VTs = getVTList(VT, MVT::Other);
2326 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2327 SDOperand Ops[] = { Chain, Ptr, Undef };
2328 FoldingSetNodeID ID;
2329 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2330 ID.AddInteger(ISD::UNINDEXED);
2331 ID.AddInteger(ISD::NON_EXTLOAD);
Chris Lattner4a22a672007-09-13 06:09:48 +00002332 ID.AddInteger((unsigned int)VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002333 ID.AddPointer(SV);
2334 ID.AddInteger(SVOffset);
2335 ID.AddInteger(Alignment);
2336 ID.AddInteger(isVolatile);
2337 void *IP = 0;
2338 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2339 return SDOperand(E, 0);
2340 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2341 ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2342 isVolatile);
2343 CSEMap.InsertNode(N, IP);
2344 AllNodes.push_back(N);
2345 return SDOperand(N, 0);
2346}
2347
2348SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2349 SDOperand Chain, SDOperand Ptr,
2350 const Value *SV,
2351 int SVOffset, MVT::ValueType EVT,
2352 bool isVolatile, unsigned Alignment) {
2353 // If they are asking for an extending load from/to the same thing, return a
2354 // normal load.
2355 if (VT == EVT)
Duncan Sands9b614742007-10-19 13:05:40 +00002356 return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002357
2358 if (MVT::isVector(VT))
2359 assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2360 else
Duncan Sandsa9810f32007-10-16 09:56:48 +00002361 assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2362 "Should only be an extending load, not truncating!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002363 assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2364 "Cannot sign/zero extend a FP/Vector load!");
2365 assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2366 "Cannot convert from FP to Int or Int -> FP!");
2367
2368 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2369 const Type *Ty = 0;
2370 if (VT != MVT::iPTR) {
2371 Ty = MVT::getTypeForValueType(VT);
2372 } else if (SV) {
2373 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2374 assert(PT && "Value for load must be a pointer");
2375 Ty = PT->getElementType();
2376 }
2377 assert(Ty && "Could not get type information for load");
2378 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2379 }
2380 SDVTList VTs = getVTList(VT, MVT::Other);
2381 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2382 SDOperand Ops[] = { Chain, Ptr, Undef };
2383 FoldingSetNodeID ID;
2384 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2385 ID.AddInteger(ISD::UNINDEXED);
2386 ID.AddInteger(ExtType);
Chris Lattner4a22a672007-09-13 06:09:48 +00002387 ID.AddInteger((unsigned int)EVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002388 ID.AddPointer(SV);
2389 ID.AddInteger(SVOffset);
2390 ID.AddInteger(Alignment);
2391 ID.AddInteger(isVolatile);
2392 void *IP = 0;
2393 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2394 return SDOperand(E, 0);
2395 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2396 SV, SVOffset, Alignment, isVolatile);
2397 CSEMap.InsertNode(N, IP);
2398 AllNodes.push_back(N);
2399 return SDOperand(N, 0);
2400}
2401
2402SDOperand
2403SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2404 SDOperand Offset, ISD::MemIndexedMode AM) {
2405 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2406 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2407 "Load is already a indexed load!");
2408 MVT::ValueType VT = OrigLoad.getValueType();
2409 SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2410 SDOperand Ops[] = { LD->getChain(), Base, Offset };
2411 FoldingSetNodeID ID;
2412 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2413 ID.AddInteger(AM);
2414 ID.AddInteger(LD->getExtensionType());
Chris Lattner4a22a672007-09-13 06:09:48 +00002415 ID.AddInteger((unsigned int)(LD->getLoadedVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002416 ID.AddPointer(LD->getSrcValue());
2417 ID.AddInteger(LD->getSrcValueOffset());
2418 ID.AddInteger(LD->getAlignment());
2419 ID.AddInteger(LD->isVolatile());
2420 void *IP = 0;
2421 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2422 return SDOperand(E, 0);
2423 SDNode *N = new LoadSDNode(Ops, VTs, AM,
2424 LD->getExtensionType(), LD->getLoadedVT(),
2425 LD->getSrcValue(), LD->getSrcValueOffset(),
2426 LD->getAlignment(), LD->isVolatile());
2427 CSEMap.InsertNode(N, IP);
2428 AllNodes.push_back(N);
2429 return SDOperand(N, 0);
2430}
2431
2432SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2433 SDOperand Ptr, const Value *SV, int SVOffset,
2434 bool isVolatile, unsigned Alignment) {
2435 MVT::ValueType VT = Val.getValueType();
2436
2437 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2438 const Type *Ty = 0;
2439 if (VT != MVT::iPTR) {
2440 Ty = MVT::getTypeForValueType(VT);
2441 } else if (SV) {
2442 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2443 assert(PT && "Value for store must be a pointer");
2444 Ty = PT->getElementType();
2445 }
2446 assert(Ty && "Could not get type information for store");
2447 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2448 }
2449 SDVTList VTs = getVTList(MVT::Other);
2450 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2451 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2452 FoldingSetNodeID ID;
2453 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2454 ID.AddInteger(ISD::UNINDEXED);
2455 ID.AddInteger(false);
Chris Lattner4a22a672007-09-13 06:09:48 +00002456 ID.AddInteger((unsigned int)VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002457 ID.AddPointer(SV);
2458 ID.AddInteger(SVOffset);
2459 ID.AddInteger(Alignment);
2460 ID.AddInteger(isVolatile);
2461 void *IP = 0;
2462 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2463 return SDOperand(E, 0);
2464 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2465 VT, SV, SVOffset, Alignment, isVolatile);
2466 CSEMap.InsertNode(N, IP);
2467 AllNodes.push_back(N);
2468 return SDOperand(N, 0);
2469}
2470
2471SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2472 SDOperand Ptr, const Value *SV,
2473 int SVOffset, MVT::ValueType SVT,
2474 bool isVolatile, unsigned Alignment) {
2475 MVT::ValueType VT = Val.getValueType();
Duncan Sands06fcf652007-10-30 12:40:58 +00002476
2477 if (VT == SVT)
2478 return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002479
Duncan Sandsa9810f32007-10-16 09:56:48 +00002480 assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2481 "Not a truncation?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002482 assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2483 "Can't do FP-INT conversion!");
2484
2485 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2486 const Type *Ty = 0;
2487 if (VT != MVT::iPTR) {
2488 Ty = MVT::getTypeForValueType(VT);
2489 } else if (SV) {
2490 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2491 assert(PT && "Value for store must be a pointer");
2492 Ty = PT->getElementType();
2493 }
2494 assert(Ty && "Could not get type information for store");
2495 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2496 }
2497 SDVTList VTs = getVTList(MVT::Other);
2498 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2499 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2500 FoldingSetNodeID ID;
2501 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2502 ID.AddInteger(ISD::UNINDEXED);
Duncan Sands06fcf652007-10-30 12:40:58 +00002503 ID.AddInteger(1);
Chris Lattner4a22a672007-09-13 06:09:48 +00002504 ID.AddInteger((unsigned int)SVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002505 ID.AddPointer(SV);
2506 ID.AddInteger(SVOffset);
2507 ID.AddInteger(Alignment);
2508 ID.AddInteger(isVolatile);
2509 void *IP = 0;
2510 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2511 return SDOperand(E, 0);
Duncan Sands06fcf652007-10-30 12:40:58 +00002512 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002513 SVT, SV, SVOffset, Alignment, isVolatile);
2514 CSEMap.InsertNode(N, IP);
2515 AllNodes.push_back(N);
2516 return SDOperand(N, 0);
2517}
2518
2519SDOperand
2520SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2521 SDOperand Offset, ISD::MemIndexedMode AM) {
2522 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2523 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2524 "Store is already a indexed store!");
2525 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2526 SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2527 FoldingSetNodeID ID;
2528 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2529 ID.AddInteger(AM);
2530 ID.AddInteger(ST->isTruncatingStore());
Chris Lattner4a22a672007-09-13 06:09:48 +00002531 ID.AddInteger((unsigned int)(ST->getStoredVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002532 ID.AddPointer(ST->getSrcValue());
2533 ID.AddInteger(ST->getSrcValueOffset());
2534 ID.AddInteger(ST->getAlignment());
2535 ID.AddInteger(ST->isVolatile());
2536 void *IP = 0;
2537 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2538 return SDOperand(E, 0);
2539 SDNode *N = new StoreSDNode(Ops, VTs, AM,
2540 ST->isTruncatingStore(), ST->getStoredVT(),
2541 ST->getSrcValue(), ST->getSrcValueOffset(),
2542 ST->getAlignment(), ST->isVolatile());
2543 CSEMap.InsertNode(N, IP);
2544 AllNodes.push_back(N);
2545 return SDOperand(N, 0);
2546}
2547
2548SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2549 SDOperand Chain, SDOperand Ptr,
2550 SDOperand SV) {
2551 SDOperand Ops[] = { Chain, Ptr, SV };
2552 return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2553}
2554
2555SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2556 const SDOperand *Ops, unsigned NumOps) {
2557 switch (NumOps) {
2558 case 0: return getNode(Opcode, VT);
2559 case 1: return getNode(Opcode, VT, Ops[0]);
2560 case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2561 case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2562 default: break;
2563 }
2564
2565 switch (Opcode) {
2566 default: break;
2567 case ISD::SELECT_CC: {
2568 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2569 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2570 "LHS and RHS of condition must have same type!");
2571 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2572 "True and False arms of SelectCC must have same type!");
2573 assert(Ops[2].getValueType() == VT &&
2574 "select_cc node must be of same type as true and false value!");
2575 break;
2576 }
2577 case ISD::BR_CC: {
2578 assert(NumOps == 5 && "BR_CC takes 5 operands!");
2579 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2580 "LHS/RHS of comparison should match types!");
2581 break;
2582 }
2583 }
2584
2585 // Memoize nodes.
2586 SDNode *N;
2587 SDVTList VTs = getVTList(VT);
2588 if (VT != MVT::Flag) {
2589 FoldingSetNodeID ID;
2590 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2591 void *IP = 0;
2592 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2593 return SDOperand(E, 0);
2594 N = new SDNode(Opcode, VTs, Ops, NumOps);
2595 CSEMap.InsertNode(N, IP);
2596 } else {
2597 N = new SDNode(Opcode, VTs, Ops, NumOps);
2598 }
2599 AllNodes.push_back(N);
2600 return SDOperand(N, 0);
2601}
2602
2603SDOperand SelectionDAG::getNode(unsigned Opcode,
2604 std::vector<MVT::ValueType> &ResultTys,
2605 const SDOperand *Ops, unsigned NumOps) {
2606 return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2607 Ops, NumOps);
2608}
2609
2610SDOperand SelectionDAG::getNode(unsigned Opcode,
2611 const MVT::ValueType *VTs, unsigned NumVTs,
2612 const SDOperand *Ops, unsigned NumOps) {
2613 if (NumVTs == 1)
2614 return getNode(Opcode, VTs[0], Ops, NumOps);
2615 return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2616}
2617
2618SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2619 const SDOperand *Ops, unsigned NumOps) {
2620 if (VTList.NumVTs == 1)
2621 return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2622
2623 switch (Opcode) {
2624 // FIXME: figure out how to safely handle things like
2625 // int foo(int x) { return 1 << (x & 255); }
2626 // int bar() { return foo(256); }
2627#if 0
2628 case ISD::SRA_PARTS:
2629 case ISD::SRL_PARTS:
2630 case ISD::SHL_PARTS:
2631 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2632 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2633 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2634 else if (N3.getOpcode() == ISD::AND)
2635 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2636 // If the and is only masking out bits that cannot effect the shift,
2637 // eliminate the and.
2638 unsigned NumBits = MVT::getSizeInBits(VT)*2;
2639 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2640 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2641 }
2642 break;
2643#endif
2644 }
2645
2646 // Memoize the node unless it returns a flag.
2647 SDNode *N;
2648 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2649 FoldingSetNodeID ID;
2650 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2651 void *IP = 0;
2652 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2653 return SDOperand(E, 0);
2654 if (NumOps == 1)
2655 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2656 else if (NumOps == 2)
2657 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2658 else if (NumOps == 3)
2659 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2660 else
2661 N = new SDNode(Opcode, VTList, Ops, NumOps);
2662 CSEMap.InsertNode(N, IP);
2663 } else {
2664 if (NumOps == 1)
2665 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2666 else if (NumOps == 2)
2667 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2668 else if (NumOps == 3)
2669 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2670 else
2671 N = new SDNode(Opcode, VTList, Ops, NumOps);
2672 }
2673 AllNodes.push_back(N);
2674 return SDOperand(N, 0);
2675}
2676
Dan Gohman798d1272007-10-08 15:49:58 +00002677SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2678 return getNode(Opcode, VTList, 0, 0);
2679}
2680
2681SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2682 SDOperand N1) {
2683 SDOperand Ops[] = { N1 };
2684 return getNode(Opcode, VTList, Ops, 1);
2685}
2686
2687SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2688 SDOperand N1, SDOperand N2) {
2689 SDOperand Ops[] = { N1, N2 };
2690 return getNode(Opcode, VTList, Ops, 2);
2691}
2692
2693SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2694 SDOperand N1, SDOperand N2, SDOperand N3) {
2695 SDOperand Ops[] = { N1, N2, N3 };
2696 return getNode(Opcode, VTList, Ops, 3);
2697}
2698
2699SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2700 SDOperand N1, SDOperand N2, SDOperand N3,
2701 SDOperand N4) {
2702 SDOperand Ops[] = { N1, N2, N3, N4 };
2703 return getNode(Opcode, VTList, Ops, 4);
2704}
2705
2706SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2707 SDOperand N1, SDOperand N2, SDOperand N3,
2708 SDOperand N4, SDOperand N5) {
2709 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2710 return getNode(Opcode, VTList, Ops, 5);
2711}
2712
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002713SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
Duncan Sandsa9810f32007-10-16 09:56:48 +00002714 return makeVTList(SDNode::getValueTypeList(VT), 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002715}
2716
2717SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2718 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2719 E = VTList.end(); I != E; ++I) {
2720 if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2721 return makeVTList(&(*I)[0], 2);
2722 }
2723 std::vector<MVT::ValueType> V;
2724 V.push_back(VT1);
2725 V.push_back(VT2);
2726 VTList.push_front(V);
2727 return makeVTList(&(*VTList.begin())[0], 2);
2728}
2729SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2730 MVT::ValueType VT3) {
2731 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2732 E = VTList.end(); I != E; ++I) {
2733 if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2734 (*I)[2] == VT3)
2735 return makeVTList(&(*I)[0], 3);
2736 }
2737 std::vector<MVT::ValueType> V;
2738 V.push_back(VT1);
2739 V.push_back(VT2);
2740 V.push_back(VT3);
2741 VTList.push_front(V);
2742 return makeVTList(&(*VTList.begin())[0], 3);
2743}
2744
2745SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2746 switch (NumVTs) {
2747 case 0: assert(0 && "Cannot have nodes without results!");
2748 case 1: return getVTList(VTs[0]);
2749 case 2: return getVTList(VTs[0], VTs[1]);
2750 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2751 default: break;
2752 }
2753
2754 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2755 E = VTList.end(); I != E; ++I) {
2756 if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2757
2758 bool NoMatch = false;
2759 for (unsigned i = 2; i != NumVTs; ++i)
2760 if (VTs[i] != (*I)[i]) {
2761 NoMatch = true;
2762 break;
2763 }
2764 if (!NoMatch)
2765 return makeVTList(&*I->begin(), NumVTs);
2766 }
2767
2768 VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2769 return makeVTList(&*VTList.begin()->begin(), NumVTs);
2770}
2771
2772
2773/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2774/// specified operands. If the resultant node already exists in the DAG,
2775/// this does not modify the specified node, instead it returns the node that
2776/// already exists. If the resultant node does not exist in the DAG, the
2777/// input node is returned. As a degenerate case, if you specify the same
2778/// input operands as the node already has, the input node is returned.
2779SDOperand SelectionDAG::
2780UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2781 SDNode *N = InN.Val;
2782 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2783
2784 // Check to see if there is no change.
2785 if (Op == N->getOperand(0)) return InN;
2786
2787 // See if the modified node already exists.
2788 void *InsertPos = 0;
2789 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2790 return SDOperand(Existing, InN.ResNo);
2791
2792 // Nope it doesn't. Remove the node from it's current place in the maps.
2793 if (InsertPos)
2794 RemoveNodeFromCSEMaps(N);
2795
2796 // Now we update the operands.
2797 N->OperandList[0].Val->removeUser(N);
2798 Op.Val->addUser(N);
2799 N->OperandList[0] = Op;
2800
2801 // If this gets put into a CSE map, add it.
2802 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2803 return InN;
2804}
2805
2806SDOperand SelectionDAG::
2807UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2808 SDNode *N = InN.Val;
2809 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2810
2811 // Check to see if there is no change.
2812 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2813 return InN; // No operands changed, just return the input node.
2814
2815 // See if the modified node already exists.
2816 void *InsertPos = 0;
2817 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2818 return SDOperand(Existing, InN.ResNo);
2819
2820 // Nope it doesn't. Remove the node from it's current place in the maps.
2821 if (InsertPos)
2822 RemoveNodeFromCSEMaps(N);
2823
2824 // Now we update the operands.
2825 if (N->OperandList[0] != Op1) {
2826 N->OperandList[0].Val->removeUser(N);
2827 Op1.Val->addUser(N);
2828 N->OperandList[0] = Op1;
2829 }
2830 if (N->OperandList[1] != Op2) {
2831 N->OperandList[1].Val->removeUser(N);
2832 Op2.Val->addUser(N);
2833 N->OperandList[1] = Op2;
2834 }
2835
2836 // If this gets put into a CSE map, add it.
2837 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2838 return InN;
2839}
2840
2841SDOperand SelectionDAG::
2842UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2843 SDOperand Ops[] = { Op1, Op2, Op3 };
2844 return UpdateNodeOperands(N, Ops, 3);
2845}
2846
2847SDOperand SelectionDAG::
2848UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2849 SDOperand Op3, SDOperand Op4) {
2850 SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2851 return UpdateNodeOperands(N, Ops, 4);
2852}
2853
2854SDOperand SelectionDAG::
2855UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2856 SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2857 SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2858 return UpdateNodeOperands(N, Ops, 5);
2859}
2860
2861
2862SDOperand SelectionDAG::
2863UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2864 SDNode *N = InN.Val;
2865 assert(N->getNumOperands() == NumOps &&
2866 "Update with wrong number of operands");
2867
2868 // Check to see if there is no change.
2869 bool AnyChange = false;
2870 for (unsigned i = 0; i != NumOps; ++i) {
2871 if (Ops[i] != N->getOperand(i)) {
2872 AnyChange = true;
2873 break;
2874 }
2875 }
2876
2877 // No operands changed, just return the input node.
2878 if (!AnyChange) return InN;
2879
2880 // See if the modified node already exists.
2881 void *InsertPos = 0;
2882 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2883 return SDOperand(Existing, InN.ResNo);
2884
2885 // Nope it doesn't. Remove the node from it's current place in the maps.
2886 if (InsertPos)
2887 RemoveNodeFromCSEMaps(N);
2888
2889 // Now we update the operands.
2890 for (unsigned i = 0; i != NumOps; ++i) {
2891 if (N->OperandList[i] != Ops[i]) {
2892 N->OperandList[i].Val->removeUser(N);
2893 Ops[i].Val->addUser(N);
2894 N->OperandList[i] = Ops[i];
2895 }
2896 }
2897
2898 // If this gets put into a CSE map, add it.
2899 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2900 return InN;
2901}
2902
2903
2904/// MorphNodeTo - This frees the operands of the current node, resets the
2905/// opcode, types, and operands to the specified value. This should only be
2906/// used by the SelectionDAG class.
2907void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2908 const SDOperand *Ops, unsigned NumOps) {
2909 NodeType = Opc;
2910 ValueList = L.VTs;
2911 NumValues = L.NumVTs;
2912
2913 // Clear the operands list, updating used nodes to remove this from their
2914 // use list.
2915 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2916 I->Val->removeUser(this);
2917
2918 // If NumOps is larger than the # of operands we currently have, reallocate
2919 // the operand list.
2920 if (NumOps > NumOperands) {
2921 if (OperandsNeedDelete)
2922 delete [] OperandList;
2923 OperandList = new SDOperand[NumOps];
2924 OperandsNeedDelete = true;
2925 }
2926
2927 // Assign the new operands.
2928 NumOperands = NumOps;
2929
2930 for (unsigned i = 0, e = NumOps; i != e; ++i) {
2931 OperandList[i] = Ops[i];
2932 SDNode *N = OperandList[i].Val;
2933 N->Uses.push_back(this);
2934 }
2935}
2936
2937/// SelectNodeTo - These are used for target selectors to *mutate* the
2938/// specified node to have the specified return type, Target opcode, and
2939/// operands. Note that target opcodes are stored as
2940/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2941///
2942/// Note that SelectNodeTo returns the resultant node. If there is already a
2943/// node of the specified opcode and operands, it returns that node instead of
2944/// the current one.
2945SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2946 MVT::ValueType VT) {
2947 SDVTList VTs = getVTList(VT);
2948 FoldingSetNodeID ID;
2949 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2950 void *IP = 0;
2951 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2952 return ON;
2953
2954 RemoveNodeFromCSEMaps(N);
2955
2956 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2957
2958 CSEMap.InsertNode(N, IP);
2959 return N;
2960}
2961
2962SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2963 MVT::ValueType VT, SDOperand Op1) {
2964 // If an identical node already exists, use it.
2965 SDVTList VTs = getVTList(VT);
2966 SDOperand Ops[] = { Op1 };
2967
2968 FoldingSetNodeID ID;
2969 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2970 void *IP = 0;
2971 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2972 return ON;
2973
2974 RemoveNodeFromCSEMaps(N);
2975 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2976 CSEMap.InsertNode(N, IP);
2977 return N;
2978}
2979
2980SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2981 MVT::ValueType VT, SDOperand Op1,
2982 SDOperand Op2) {
2983 // If an identical node already exists, use it.
2984 SDVTList VTs = getVTList(VT);
2985 SDOperand Ops[] = { Op1, Op2 };
2986
2987 FoldingSetNodeID ID;
2988 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2989 void *IP = 0;
2990 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2991 return ON;
2992
2993 RemoveNodeFromCSEMaps(N);
2994
2995 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2996
2997 CSEMap.InsertNode(N, IP); // Memoize the new node.
2998 return N;
2999}
3000
3001SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3002 MVT::ValueType VT, SDOperand Op1,
3003 SDOperand Op2, SDOperand Op3) {
3004 // If an identical node already exists, use it.
3005 SDVTList VTs = getVTList(VT);
3006 SDOperand Ops[] = { Op1, Op2, Op3 };
3007 FoldingSetNodeID ID;
3008 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3009 void *IP = 0;
3010 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3011 return ON;
3012
3013 RemoveNodeFromCSEMaps(N);
3014
3015 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3016
3017 CSEMap.InsertNode(N, IP); // Memoize the new node.
3018 return N;
3019}
3020
3021SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3022 MVT::ValueType VT, const SDOperand *Ops,
3023 unsigned NumOps) {
3024 // If an identical node already exists, use it.
3025 SDVTList VTs = getVTList(VT);
3026 FoldingSetNodeID ID;
3027 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3028 void *IP = 0;
3029 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3030 return ON;
3031
3032 RemoveNodeFromCSEMaps(N);
3033 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3034
3035 CSEMap.InsertNode(N, IP); // Memoize the new node.
3036 return N;
3037}
3038
3039SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3040 MVT::ValueType VT1, MVT::ValueType VT2,
3041 SDOperand Op1, SDOperand Op2) {
3042 SDVTList VTs = getVTList(VT1, VT2);
3043 FoldingSetNodeID ID;
3044 SDOperand Ops[] = { Op1, Op2 };
3045 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3046 void *IP = 0;
3047 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3048 return ON;
3049
3050 RemoveNodeFromCSEMaps(N);
3051 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3052 CSEMap.InsertNode(N, IP); // Memoize the new node.
3053 return N;
3054}
3055
3056SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3057 MVT::ValueType VT1, MVT::ValueType VT2,
3058 SDOperand Op1, SDOperand Op2,
3059 SDOperand Op3) {
3060 // If an identical node already exists, use it.
3061 SDVTList VTs = getVTList(VT1, VT2);
3062 SDOperand Ops[] = { Op1, Op2, Op3 };
3063 FoldingSetNodeID ID;
3064 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3065 void *IP = 0;
3066 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3067 return ON;
3068
3069 RemoveNodeFromCSEMaps(N);
3070
3071 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3072 CSEMap.InsertNode(N, IP); // Memoize the new node.
3073 return N;
3074}
3075
3076
3077/// getTargetNode - These are used for target selectors to create a new node
3078/// with specified return type(s), target opcode, and operands.
3079///
3080/// Note that getTargetNode returns the resultant node. If there is already a
3081/// node of the specified opcode and operands, it returns that node instead of
3082/// the current one.
3083SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3084 return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3085}
3086SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3087 SDOperand Op1) {
3088 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3089}
3090SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3091 SDOperand Op1, SDOperand Op2) {
3092 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3093}
3094SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3095 SDOperand Op1, SDOperand Op2,
3096 SDOperand Op3) {
3097 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3098}
3099SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3100 const SDOperand *Ops, unsigned NumOps) {
3101 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3102}
3103SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
Dale Johannesen3d8578b2007-10-10 01:01:31 +00003104 MVT::ValueType VT2) {
3105 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3106 SDOperand Op;
3107 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3108}
3109SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003110 MVT::ValueType VT2, SDOperand Op1) {
3111 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3112 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3113}
3114SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3115 MVT::ValueType VT2, SDOperand Op1,
3116 SDOperand Op2) {
3117 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3118 SDOperand Ops[] = { Op1, Op2 };
3119 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3120}
3121SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3122 MVT::ValueType VT2, SDOperand Op1,
3123 SDOperand Op2, SDOperand Op3) {
3124 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3125 SDOperand Ops[] = { Op1, Op2, Op3 };
3126 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3127}
3128SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3129 MVT::ValueType VT2,
3130 const SDOperand *Ops, unsigned NumOps) {
3131 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3132 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3133}
3134SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3135 MVT::ValueType VT2, MVT::ValueType VT3,
3136 SDOperand Op1, SDOperand Op2) {
3137 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3138 SDOperand Ops[] = { Op1, Op2 };
3139 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3140}
3141SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3142 MVT::ValueType VT2, MVT::ValueType VT3,
3143 SDOperand Op1, SDOperand Op2,
3144 SDOperand Op3) {
3145 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3146 SDOperand Ops[] = { Op1, Op2, Op3 };
3147 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3148}
3149SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3150 MVT::ValueType VT2, MVT::ValueType VT3,
3151 const SDOperand *Ops, unsigned NumOps) {
3152 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3153 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3154}
Evan Chenge1d067e2007-09-12 23:39:49 +00003155SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3156 MVT::ValueType VT2, MVT::ValueType VT3,
3157 MVT::ValueType VT4,
3158 const SDOperand *Ops, unsigned NumOps) {
3159 std::vector<MVT::ValueType> VTList;
3160 VTList.push_back(VT1);
3161 VTList.push_back(VT2);
3162 VTList.push_back(VT3);
3163 VTList.push_back(VT4);
3164 const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3165 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3166}
Evan Chenge3940912007-10-05 01:10:49 +00003167SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3168 std::vector<MVT::ValueType> &ResultTys,
3169 const SDOperand *Ops, unsigned NumOps) {
3170 const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3171 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3172 Ops, NumOps).Val;
3173}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003174
3175/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3176/// This can cause recursive merging of nodes in the DAG.
3177///
3178/// This version assumes From/To have a single result value.
3179///
3180void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3181 std::vector<SDNode*> *Deleted) {
3182 SDNode *From = FromN.Val, *To = ToN.Val;
3183 assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3184 "Cannot replace with this method!");
3185 assert(From != To && "Cannot replace uses of with self");
3186
3187 while (!From->use_empty()) {
3188 // Process users until they are all gone.
3189 SDNode *U = *From->use_begin();
3190
3191 // This node is about to morph, remove its old self from the CSE maps.
3192 RemoveNodeFromCSEMaps(U);
3193
3194 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3195 I != E; ++I)
3196 if (I->Val == From) {
3197 From->removeUser(U);
3198 I->Val = To;
3199 To->addUser(U);
3200 }
3201
3202 // Now that we have modified U, add it back to the CSE maps. If it already
3203 // exists there, recursively merge the results together.
3204 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3205 ReplaceAllUsesWith(U, Existing, Deleted);
3206 // U is now dead.
3207 if (Deleted) Deleted->push_back(U);
3208 DeleteNodeNotInCSEMaps(U);
3209 }
3210 }
3211}
3212
3213/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3214/// This can cause recursive merging of nodes in the DAG.
3215///
3216/// This version assumes From/To have matching types and numbers of result
3217/// values.
3218///
3219void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3220 std::vector<SDNode*> *Deleted) {
3221 assert(From != To && "Cannot replace uses of with self");
3222 assert(From->getNumValues() == To->getNumValues() &&
3223 "Cannot use this version of ReplaceAllUsesWith!");
3224 if (From->getNumValues() == 1) { // If possible, use the faster version.
3225 ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3226 return;
3227 }
3228
3229 while (!From->use_empty()) {
3230 // Process users until they are all gone.
3231 SDNode *U = *From->use_begin();
3232
3233 // This node is about to morph, remove its old self from the CSE maps.
3234 RemoveNodeFromCSEMaps(U);
3235
3236 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3237 I != E; ++I)
3238 if (I->Val == From) {
3239 From->removeUser(U);
3240 I->Val = To;
3241 To->addUser(U);
3242 }
3243
3244 // Now that we have modified U, add it back to the CSE maps. If it already
3245 // exists there, recursively merge the results together.
3246 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3247 ReplaceAllUsesWith(U, Existing, Deleted);
3248 // U is now dead.
3249 if (Deleted) Deleted->push_back(U);
3250 DeleteNodeNotInCSEMaps(U);
3251 }
3252 }
3253}
3254
3255/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3256/// This can cause recursive merging of nodes in the DAG.
3257///
3258/// This version can replace From with any result values. To must match the
3259/// number and types of values returned by From.
3260void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3261 const SDOperand *To,
3262 std::vector<SDNode*> *Deleted) {
3263 if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3264 // Degenerate case handled above.
3265 ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3266 return;
3267 }
3268
3269 while (!From->use_empty()) {
3270 // Process users until they are all gone.
3271 SDNode *U = *From->use_begin();
3272
3273 // This node is about to morph, remove its old self from the CSE maps.
3274 RemoveNodeFromCSEMaps(U);
3275
3276 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3277 I != E; ++I)
3278 if (I->Val == From) {
3279 const SDOperand &ToOp = To[I->ResNo];
3280 From->removeUser(U);
3281 *I = ToOp;
3282 ToOp.Val->addUser(U);
3283 }
3284
3285 // Now that we have modified U, add it back to the CSE maps. If it already
3286 // exists there, recursively merge the results together.
3287 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3288 ReplaceAllUsesWith(U, Existing, Deleted);
3289 // U is now dead.
3290 if (Deleted) Deleted->push_back(U);
3291 DeleteNodeNotInCSEMaps(U);
3292 }
3293 }
3294}
3295
3296/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3297/// uses of other values produced by From.Val alone. The Deleted vector is
3298/// handled the same was as for ReplaceAllUsesWith.
3299void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
Chris Lattner8a258202007-10-15 06:10:22 +00003300 std::vector<SDNode*> *Deleted) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003301 assert(From != To && "Cannot replace a value with itself");
3302 // Handle the simple, trivial, case efficiently.
3303 if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
Chris Lattner8a258202007-10-15 06:10:22 +00003304 ReplaceAllUsesWith(From, To, Deleted);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003305 return;
3306 }
3307
3308 // Get all of the users of From.Val. We want these in a nice,
3309 // deterministically ordered and uniqued set, so we use a SmallSetVector.
3310 SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3311
Chris Lattner8a258202007-10-15 06:10:22 +00003312 std::vector<SDNode*> LocalDeletionVector;
3313
3314 // Pick a deletion vector to use. If the user specified one, use theirs,
3315 // otherwise use a local one.
3316 std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003317 while (!Users.empty()) {
3318 // We know that this user uses some value of From. If it is the right
3319 // value, update it.
3320 SDNode *User = Users.back();
3321 Users.pop_back();
3322
Chris Lattner8a258202007-10-15 06:10:22 +00003323 // Scan for an operand that matches From.
3324 SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3325 for (; Op != E; ++Op)
3326 if (*Op == From) break;
3327
3328 // If there are no matches, the user must use some other result of From.
3329 if (Op == E) continue;
3330
3331 // Okay, we know this user needs to be updated. Remove its old self
3332 // from the CSE maps.
3333 RemoveNodeFromCSEMaps(User);
3334
3335 // Update all operands that match "From".
3336 for (; Op != E; ++Op) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003337 if (*Op == From) {
Chris Lattner8a258202007-10-15 06:10:22 +00003338 From.Val->removeUser(User);
3339 *Op = To;
3340 To.Val->addUser(User);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003341 }
3342 }
Chris Lattner8a258202007-10-15 06:10:22 +00003343
3344 // Now that we have modified User, add it back to the CSE maps. If it
3345 // already exists there, recursively merge the results together.
3346 SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3347 if (!Existing) continue; // Continue on to next user.
3348
3349 // If there was already an existing matching node, use ReplaceAllUsesWith
3350 // to replace the dead one with the existing one. However, this can cause
3351 // recursive merging of other unrelated nodes down the line. The merging
3352 // can cause deletion of nodes that used the old value. In this case,
3353 // we have to be certain to remove them from the Users set.
3354 unsigned NumDeleted = DeleteVector->size();
3355 ReplaceAllUsesWith(User, Existing, DeleteVector);
3356
3357 // User is now dead.
3358 DeleteVector->push_back(User);
3359 DeleteNodeNotInCSEMaps(User);
3360
3361 // We have to be careful here, because ReplaceAllUsesWith could have
3362 // deleted a user of From, which means there may be dangling pointers
3363 // in the "Users" setvector. Scan over the deleted node pointers and
3364 // remove them from the setvector.
3365 for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3366 Users.remove((*DeleteVector)[i]);
3367
3368 // If the user doesn't need the set of deleted elements, don't retain them
3369 // to the next loop iteration.
3370 if (Deleted == 0)
3371 LocalDeletionVector.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003372 }
3373}
3374
3375
3376/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3377/// their allnodes order. It returns the maximum id.
3378unsigned SelectionDAG::AssignNodeIds() {
3379 unsigned Id = 0;
3380 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3381 SDNode *N = I;
3382 N->setNodeId(Id++);
3383 }
3384 return Id;
3385}
3386
3387/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3388/// based on their topological order. It returns the maximum id and a vector
3389/// of the SDNodes* in assigned order by reference.
3390unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3391 unsigned DAGSize = AllNodes.size();
3392 std::vector<unsigned> InDegree(DAGSize);
3393 std::vector<SDNode*> Sources;
3394
3395 // Use a two pass approach to avoid using a std::map which is slow.
3396 unsigned Id = 0;
3397 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3398 SDNode *N = I;
3399 N->setNodeId(Id++);
3400 unsigned Degree = N->use_size();
3401 InDegree[N->getNodeId()] = Degree;
3402 if (Degree == 0)
3403 Sources.push_back(N);
3404 }
3405
3406 TopOrder.clear();
3407 while (!Sources.empty()) {
3408 SDNode *N = Sources.back();
3409 Sources.pop_back();
3410 TopOrder.push_back(N);
3411 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3412 SDNode *P = I->Val;
3413 unsigned Degree = --InDegree[P->getNodeId()];
3414 if (Degree == 0)
3415 Sources.push_back(P);
3416 }
3417 }
3418
3419 // Second pass, assign the actual topological order as node ids.
3420 Id = 0;
3421 for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3422 TI != TE; ++TI)
3423 (*TI)->setNodeId(Id++);
3424
3425 return Id;
3426}
3427
3428
3429
3430//===----------------------------------------------------------------------===//
3431// SDNode Class
3432//===----------------------------------------------------------------------===//
3433
3434// Out-of-line virtual method to give class a home.
3435void SDNode::ANCHOR() {}
3436void UnarySDNode::ANCHOR() {}
3437void BinarySDNode::ANCHOR() {}
3438void TernarySDNode::ANCHOR() {}
3439void HandleSDNode::ANCHOR() {}
3440void StringSDNode::ANCHOR() {}
3441void ConstantSDNode::ANCHOR() {}
3442void ConstantFPSDNode::ANCHOR() {}
3443void GlobalAddressSDNode::ANCHOR() {}
3444void FrameIndexSDNode::ANCHOR() {}
3445void JumpTableSDNode::ANCHOR() {}
3446void ConstantPoolSDNode::ANCHOR() {}
3447void BasicBlockSDNode::ANCHOR() {}
3448void SrcValueSDNode::ANCHOR() {}
3449void RegisterSDNode::ANCHOR() {}
3450void ExternalSymbolSDNode::ANCHOR() {}
3451void CondCodeSDNode::ANCHOR() {}
3452void VTSDNode::ANCHOR() {}
3453void LoadSDNode::ANCHOR() {}
3454void StoreSDNode::ANCHOR() {}
3455
3456HandleSDNode::~HandleSDNode() {
3457 SDVTList VTs = { 0, 0 };
3458 MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses.
3459}
3460
3461GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3462 MVT::ValueType VT, int o)
3463 : SDNode(isa<GlobalVariable>(GA) &&
Dan Gohman53491e92007-07-23 20:24:29 +00003464 cast<GlobalVariable>(GA)->isThreadLocal() ?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003465 // Thread Local
3466 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3467 // Non Thread Local
3468 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3469 getSDVTList(VT)), Offset(o) {
3470 TheGlobal = const_cast<GlobalValue*>(GA);
3471}
3472
3473/// Profile - Gather unique data for the node.
3474///
3475void SDNode::Profile(FoldingSetNodeID &ID) {
3476 AddNodeIDNode(ID, this);
3477}
3478
3479/// getValueTypeList - Return a pointer to the specified value type.
3480///
3481MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
Duncan Sandsa9810f32007-10-16 09:56:48 +00003482 if (MVT::isExtendedVT(VT)) {
3483 static std::set<MVT::ValueType> EVTs;
3484 return (MVT::ValueType *)&(*EVTs.insert(VT).first);
3485 } else {
3486 static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3487 VTs[VT] = VT;
3488 return &VTs[VT];
3489 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003490}
Duncan Sandsa9810f32007-10-16 09:56:48 +00003491
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003492/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3493/// indicated value. This method ignores uses of other values defined by this
3494/// operation.
3495bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3496 assert(Value < getNumValues() && "Bad value!");
3497
3498 // If there is only one value, this is easy.
3499 if (getNumValues() == 1)
3500 return use_size() == NUses;
Evan Cheng0af04f72007-08-02 05:29:38 +00003501 if (use_size() < NUses) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003502
3503 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3504
3505 SmallPtrSet<SDNode*, 32> UsersHandled;
3506
3507 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3508 SDNode *User = *UI;
3509 if (User->getNumOperands() == 1 ||
3510 UsersHandled.insert(User)) // First time we've seen this?
3511 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3512 if (User->getOperand(i) == TheValue) {
3513 if (NUses == 0)
3514 return false; // too many uses
3515 --NUses;
3516 }
3517 }
3518
3519 // Found exactly the right number of uses?
3520 return NUses == 0;
3521}
3522
3523
Evan Cheng0af04f72007-08-02 05:29:38 +00003524/// hasAnyUseOfValue - Return true if there are any use of the indicated
3525/// value. This method ignores uses of other values defined by this operation.
3526bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3527 assert(Value < getNumValues() && "Bad value!");
3528
3529 if (use_size() == 0) return false;
3530
3531 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3532
3533 SmallPtrSet<SDNode*, 32> UsersHandled;
3534
3535 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3536 SDNode *User = *UI;
3537 if (User->getNumOperands() == 1 ||
3538 UsersHandled.insert(User)) // First time we've seen this?
3539 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3540 if (User->getOperand(i) == TheValue) {
3541 return true;
3542 }
3543 }
3544
3545 return false;
3546}
3547
3548
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003549/// isOnlyUse - Return true if this node is the only use of N.
3550///
3551bool SDNode::isOnlyUse(SDNode *N) const {
3552 bool Seen = false;
3553 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3554 SDNode *User = *I;
3555 if (User == this)
3556 Seen = true;
3557 else
3558 return false;
3559 }
3560
3561 return Seen;
3562}
3563
3564/// isOperand - Return true if this node is an operand of N.
3565///
3566bool SDOperand::isOperand(SDNode *N) const {
3567 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3568 if (*this == N->getOperand(i))
3569 return true;
3570 return false;
3571}
3572
3573bool SDNode::isOperand(SDNode *N) const {
3574 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3575 if (this == N->OperandList[i].Val)
3576 return true;
3577 return false;
3578}
3579
3580static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3581 SmallPtrSet<SDNode *, 32> &Visited) {
3582 if (found || !Visited.insert(N))
3583 return;
3584
3585 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3586 SDNode *Op = N->getOperand(i).Val;
3587 if (Op == P) {
3588 found = true;
3589 return;
3590 }
3591 findPredecessor(Op, P, found, Visited);
3592 }
3593}
3594
3595/// isPredecessor - Return true if this node is a predecessor of N. This node
3596/// is either an operand of N or it can be reached by recursively traversing
3597/// up the operands.
3598/// NOTE: this is an expensive method. Use it carefully.
3599bool SDNode::isPredecessor(SDNode *N) const {
3600 SmallPtrSet<SDNode *, 32> Visited;
3601 bool found = false;
3602 findPredecessor(N, this, found, Visited);
3603 return found;
3604}
3605
3606uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3607 assert(Num < NumOperands && "Invalid child # of SDNode!");
3608 return cast<ConstantSDNode>(OperandList[Num])->getValue();
3609}
3610
3611std::string SDNode::getOperationName(const SelectionDAG *G) const {
3612 switch (getOpcode()) {
3613 default:
3614 if (getOpcode() < ISD::BUILTIN_OP_END)
3615 return "<<Unknown DAG Node>>";
3616 else {
3617 if (G) {
3618 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3619 if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3620 return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3621
3622 TargetLowering &TLI = G->getTargetLoweringInfo();
3623 const char *Name =
3624 TLI.getTargetNodeName(getOpcode());
3625 if (Name) return Name;
3626 }
3627
3628 return "<<Unknown Target Node>>";
3629 }
3630
3631 case ISD::PCMARKER: return "PCMarker";
3632 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3633 case ISD::SRCVALUE: return "SrcValue";
3634 case ISD::EntryToken: return "EntryToken";
3635 case ISD::TokenFactor: return "TokenFactor";
3636 case ISD::AssertSext: return "AssertSext";
3637 case ISD::AssertZext: return "AssertZext";
3638
3639 case ISD::STRING: return "String";
3640 case ISD::BasicBlock: return "BasicBlock";
3641 case ISD::VALUETYPE: return "ValueType";
3642 case ISD::Register: return "Register";
3643
3644 case ISD::Constant: return "Constant";
3645 case ISD::ConstantFP: return "ConstantFP";
3646 case ISD::GlobalAddress: return "GlobalAddress";
3647 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3648 case ISD::FrameIndex: return "FrameIndex";
3649 case ISD::JumpTable: return "JumpTable";
3650 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3651 case ISD::RETURNADDR: return "RETURNADDR";
3652 case ISD::FRAMEADDR: return "FRAMEADDR";
3653 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3654 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3655 case ISD::EHSELECTION: return "EHSELECTION";
3656 case ISD::EH_RETURN: return "EH_RETURN";
3657 case ISD::ConstantPool: return "ConstantPool";
3658 case ISD::ExternalSymbol: return "ExternalSymbol";
3659 case ISD::INTRINSIC_WO_CHAIN: {
3660 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3661 return Intrinsic::getName((Intrinsic::ID)IID);
3662 }
3663 case ISD::INTRINSIC_VOID:
3664 case ISD::INTRINSIC_W_CHAIN: {
3665 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3666 return Intrinsic::getName((Intrinsic::ID)IID);
3667 }
3668
3669 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
3670 case ISD::TargetConstant: return "TargetConstant";
3671 case ISD::TargetConstantFP:return "TargetConstantFP";
3672 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3673 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3674 case ISD::TargetFrameIndex: return "TargetFrameIndex";
3675 case ISD::TargetJumpTable: return "TargetJumpTable";
3676 case ISD::TargetConstantPool: return "TargetConstantPool";
3677 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3678
3679 case ISD::CopyToReg: return "CopyToReg";
3680 case ISD::CopyFromReg: return "CopyFromReg";
3681 case ISD::UNDEF: return "undef";
3682 case ISD::MERGE_VALUES: return "merge_values";
3683 case ISD::INLINEASM: return "inlineasm";
3684 case ISD::LABEL: return "label";
3685 case ISD::HANDLENODE: return "handlenode";
3686 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3687 case ISD::CALL: return "call";
3688
3689 // Unary operators
3690 case ISD::FABS: return "fabs";
3691 case ISD::FNEG: return "fneg";
3692 case ISD::FSQRT: return "fsqrt";
3693 case ISD::FSIN: return "fsin";
3694 case ISD::FCOS: return "fcos";
3695 case ISD::FPOWI: return "fpowi";
Dan Gohman1d744bb2007-10-11 23:06:37 +00003696 case ISD::FPOW: return "fpow";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003697
3698 // Binary operators
3699 case ISD::ADD: return "add";
3700 case ISD::SUB: return "sub";
3701 case ISD::MUL: return "mul";
3702 case ISD::MULHU: return "mulhu";
3703 case ISD::MULHS: return "mulhs";
3704 case ISD::SDIV: return "sdiv";
3705 case ISD::UDIV: return "udiv";
3706 case ISD::SREM: return "srem";
3707 case ISD::UREM: return "urem";
Dan Gohmanb945cee2007-10-05 14:11:04 +00003708 case ISD::SMUL_LOHI: return "smul_lohi";
3709 case ISD::UMUL_LOHI: return "umul_lohi";
3710 case ISD::SDIVREM: return "sdivrem";
3711 case ISD::UDIVREM: return "divrem";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003712 case ISD::AND: return "and";
3713 case ISD::OR: return "or";
3714 case ISD::XOR: return "xor";
3715 case ISD::SHL: return "shl";
3716 case ISD::SRA: return "sra";
3717 case ISD::SRL: return "srl";
3718 case ISD::ROTL: return "rotl";
3719 case ISD::ROTR: return "rotr";
3720 case ISD::FADD: return "fadd";
3721 case ISD::FSUB: return "fsub";
3722 case ISD::FMUL: return "fmul";
3723 case ISD::FDIV: return "fdiv";
3724 case ISD::FREM: return "frem";
3725 case ISD::FCOPYSIGN: return "fcopysign";
3726
3727 case ISD::SETCC: return "setcc";
3728 case ISD::SELECT: return "select";
3729 case ISD::SELECT_CC: return "select_cc";
3730 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
3731 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
3732 case ISD::CONCAT_VECTORS: return "concat_vectors";
3733 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
3734 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
3735 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
3736 case ISD::CARRY_FALSE: return "carry_false";
3737 case ISD::ADDC: return "addc";
3738 case ISD::ADDE: return "adde";
3739 case ISD::SUBC: return "subc";
3740 case ISD::SUBE: return "sube";
3741 case ISD::SHL_PARTS: return "shl_parts";
3742 case ISD::SRA_PARTS: return "sra_parts";
3743 case ISD::SRL_PARTS: return "srl_parts";
Christopher Lambb768c2e2007-07-26 07:34:40 +00003744
3745 case ISD::EXTRACT_SUBREG: return "extract_subreg";
3746 case ISD::INSERT_SUBREG: return "insert_subreg";
3747
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003748 // Conversion operators.
3749 case ISD::SIGN_EXTEND: return "sign_extend";
3750 case ISD::ZERO_EXTEND: return "zero_extend";
3751 case ISD::ANY_EXTEND: return "any_extend";
3752 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3753 case ISD::TRUNCATE: return "truncate";
3754 case ISD::FP_ROUND: return "fp_round";
Anton Korobeynikovc915e272007-11-15 23:25:33 +00003755 case ISD::FLT_ROUNDS: return "flt_rounds";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003756 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3757 case ISD::FP_EXTEND: return "fp_extend";
3758
3759 case ISD::SINT_TO_FP: return "sint_to_fp";
3760 case ISD::UINT_TO_FP: return "uint_to_fp";
3761 case ISD::FP_TO_SINT: return "fp_to_sint";
3762 case ISD::FP_TO_UINT: return "fp_to_uint";
3763 case ISD::BIT_CONVERT: return "bit_convert";
3764
3765 // Control flow instructions
3766 case ISD::BR: return "br";
3767 case ISD::BRIND: return "brind";
3768 case ISD::BR_JT: return "br_jt";
3769 case ISD::BRCOND: return "brcond";
3770 case ISD::BR_CC: return "br_cc";
3771 case ISD::RET: return "ret";
3772 case ISD::CALLSEQ_START: return "callseq_start";
3773 case ISD::CALLSEQ_END: return "callseq_end";
3774
3775 // Other operators
3776 case ISD::LOAD: return "load";
3777 case ISD::STORE: return "store";
3778 case ISD::VAARG: return "vaarg";
3779 case ISD::VACOPY: return "vacopy";
3780 case ISD::VAEND: return "vaend";
3781 case ISD::VASTART: return "vastart";
3782 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3783 case ISD::EXTRACT_ELEMENT: return "extract_element";
3784 case ISD::BUILD_PAIR: return "build_pair";
3785 case ISD::STACKSAVE: return "stacksave";
3786 case ISD::STACKRESTORE: return "stackrestore";
3787
3788 // Block memory operations.
3789 case ISD::MEMSET: return "memset";
3790 case ISD::MEMCPY: return "memcpy";
3791 case ISD::MEMMOVE: return "memmove";
3792
3793 // Bit manipulation
3794 case ISD::BSWAP: return "bswap";
3795 case ISD::CTPOP: return "ctpop";
3796 case ISD::CTTZ: return "cttz";
3797 case ISD::CTLZ: return "ctlz";
3798
3799 // Debug info
3800 case ISD::LOCATION: return "location";
3801 case ISD::DEBUG_LOC: return "debug_loc";
3802
Duncan Sands38947cd2007-07-27 12:58:54 +00003803 // Trampolines
Duncan Sands7407a9f2007-09-11 14:10:23 +00003804 case ISD::TRAMPOLINE: return "trampoline";
Duncan Sands38947cd2007-07-27 12:58:54 +00003805
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003806 case ISD::CONDCODE:
3807 switch (cast<CondCodeSDNode>(this)->get()) {
3808 default: assert(0 && "Unknown setcc condition!");
3809 case ISD::SETOEQ: return "setoeq";
3810 case ISD::SETOGT: return "setogt";
3811 case ISD::SETOGE: return "setoge";
3812 case ISD::SETOLT: return "setolt";
3813 case ISD::SETOLE: return "setole";
3814 case ISD::SETONE: return "setone";
3815
3816 case ISD::SETO: return "seto";
3817 case ISD::SETUO: return "setuo";
3818 case ISD::SETUEQ: return "setue";
3819 case ISD::SETUGT: return "setugt";
3820 case ISD::SETUGE: return "setuge";
3821 case ISD::SETULT: return "setult";
3822 case ISD::SETULE: return "setule";
3823 case ISD::SETUNE: return "setune";
3824
3825 case ISD::SETEQ: return "seteq";
3826 case ISD::SETGT: return "setgt";
3827 case ISD::SETGE: return "setge";
3828 case ISD::SETLT: return "setlt";
3829 case ISD::SETLE: return "setle";
3830 case ISD::SETNE: return "setne";
3831 }
3832 }
3833}
3834
3835const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3836 switch (AM) {
3837 default:
3838 return "";
3839 case ISD::PRE_INC:
3840 return "<pre-inc>";
3841 case ISD::PRE_DEC:
3842 return "<pre-dec>";
3843 case ISD::POST_INC:
3844 return "<post-inc>";
3845 case ISD::POST_DEC:
3846 return "<post-dec>";
3847 }
3848}
3849
3850void SDNode::dump() const { dump(0); }
3851void SDNode::dump(const SelectionDAG *G) const {
3852 cerr << (void*)this << ": ";
3853
3854 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3855 if (i) cerr << ",";
3856 if (getValueType(i) == MVT::Other)
3857 cerr << "ch";
3858 else
3859 cerr << MVT::getValueTypeString(getValueType(i));
3860 }
3861 cerr << " = " << getOperationName(G);
3862
3863 cerr << " ";
3864 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3865 if (i) cerr << ", ";
3866 cerr << (void*)getOperand(i).Val;
3867 if (unsigned RN = getOperand(i).ResNo)
3868 cerr << ":" << RN;
3869 }
3870
Evan Chengaad43a02007-12-11 02:08:35 +00003871 if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
3872 SDNode *Mask = getOperand(2).Val;
3873 cerr << "<";
3874 for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
3875 if (i) cerr << ",";
3876 if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
3877 cerr << "u";
3878 else
3879 cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
3880 }
3881 cerr << ">";
3882 }
3883
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003884 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3885 cerr << "<" << CSDN->getValue() << ">";
3886 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00003887 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3888 cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3889 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3890 cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3891 else {
3892 cerr << "<APFloat(";
3893 CSDN->getValueAPF().convertToAPInt().dump();
3894 cerr << ")>";
3895 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003896 } else if (const GlobalAddressSDNode *GADN =
3897 dyn_cast<GlobalAddressSDNode>(this)) {
3898 int offset = GADN->getOffset();
3899 cerr << "<";
3900 WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3901 if (offset > 0)
3902 cerr << " + " << offset;
3903 else
3904 cerr << " " << offset;
3905 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3906 cerr << "<" << FIDN->getIndex() << ">";
3907 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3908 cerr << "<" << JTDN->getIndex() << ">";
3909 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3910 int offset = CP->getOffset();
3911 if (CP->isMachineConstantPoolEntry())
3912 cerr << "<" << *CP->getMachineCPVal() << ">";
3913 else
3914 cerr << "<" << *CP->getConstVal() << ">";
3915 if (offset > 0)
3916 cerr << " + " << offset;
3917 else
3918 cerr << " " << offset;
3919 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3920 cerr << "<";
3921 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3922 if (LBB)
3923 cerr << LBB->getName() << " ";
3924 cerr << (const void*)BBDN->getBasicBlock() << ">";
3925 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3926 if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3927 cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3928 } else {
3929 cerr << " #" << R->getReg();
3930 }
3931 } else if (const ExternalSymbolSDNode *ES =
3932 dyn_cast<ExternalSymbolSDNode>(this)) {
3933 cerr << "'" << ES->getSymbol() << "'";
3934 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3935 if (M->getValue())
3936 cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3937 else
3938 cerr << "<null:" << M->getOffset() << ">";
3939 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3940 cerr << ":" << MVT::getValueTypeString(N->getVT());
3941 } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3942 bool doExt = true;
3943 switch (LD->getExtensionType()) {
3944 default: doExt = false; break;
3945 case ISD::EXTLOAD:
3946 cerr << " <anyext ";
3947 break;
3948 case ISD::SEXTLOAD:
3949 cerr << " <sext ";
3950 break;
3951 case ISD::ZEXTLOAD:
3952 cerr << " <zext ";
3953 break;
3954 }
3955 if (doExt)
3956 cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3957
3958 const char *AM = getIndexedModeName(LD->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003959 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003960 cerr << " " << AM;
3961 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3962 if (ST->isTruncatingStore())
3963 cerr << " <trunc "
3964 << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3965
3966 const char *AM = getIndexedModeName(ST->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003967 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003968 cerr << " " << AM;
3969 }
3970}
3971
3972static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3973 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3974 if (N->getOperand(i).Val->hasOneUse())
3975 DumpNodes(N->getOperand(i).Val, indent+2, G);
3976 else
3977 cerr << "\n" << std::string(indent+2, ' ')
3978 << (void*)N->getOperand(i).Val << ": <multiple use>";
3979
3980
3981 cerr << "\n" << std::string(indent, ' ');
3982 N->dump(G);
3983}
3984
3985void SelectionDAG::dump() const {
3986 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3987 std::vector<const SDNode*> Nodes;
3988 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3989 I != E; ++I)
3990 Nodes.push_back(I);
3991
3992 std::sort(Nodes.begin(), Nodes.end());
3993
3994 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3995 if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3996 DumpNodes(Nodes[i], 2, this);
3997 }
3998
3999 if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4000
4001 cerr << "\n\n";
4002}
4003
4004const Type *ConstantPoolSDNode::getType() const {
4005 if (isMachineConstantPoolEntry())
4006 return Val.MachineCPVal->getType();
4007 return Val.ConstVal->getType();
4008}