blob: 764c87af4f643ac352cd21cf2a86d6358676979b [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
Chris Lattner5dccfad2010-02-10 06:52:12 +000022// FIXME: This should move to a header.
23namespace llvm {
24namespace X86 {
25enum Fixups {
26 reloc_pcrel_word = FirstTargetFixupKind,
27 reloc_picrel_word,
28 reloc_absolute_word,
29 reloc_absolute_word_sext,
30 reloc_absolute_dword
31};
32}
33}
34
Chris Lattner45762472010-02-03 21:24:49 +000035namespace {
36class X86MCCodeEmitter : public MCCodeEmitter {
37 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
38 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000039 const TargetMachine &TM;
40 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000041 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000042public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000043 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000044 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000045 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000046 }
47
48 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000049
50 unsigned getNumFixupKinds() const {
51 return 5;
52 }
53
54 MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
55 static MCFixupKindInfo Infos[] = {
56 { "reloc_pcrel_word", 0, 4 * 8 },
57 { "reloc_picrel_word", 0, 4 * 8 },
58 { "reloc_absolute_word", 0, 4 * 8 },
59 { "reloc_absolute_word_sext", 0, 4 * 8 },
60 { "reloc_absolute_dword", 0, 8 * 8 }
61 };
62
63 assert(Kind >= FirstTargetFixupKind && Kind < MaxTargetFixupKind &&
64 "Invalid kind!");
65 return Infos[Kind - FirstTargetFixupKind];
66 }
Chris Lattner45762472010-02-03 21:24:49 +000067
Chris Lattner28249d92010-02-05 01:53:19 +000068 static unsigned GetX86RegNum(const MCOperand &MO) {
69 return X86RegisterInfo::getX86RegNum(MO.getReg());
70 }
71
Chris Lattner37ce80e2010-02-10 06:41:02 +000072 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000073 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000074 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000075 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000076
Chris Lattner37ce80e2010-02-10 06:41:02 +000077 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
78 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000079 // Output the constant in little endian byte order.
80 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000081 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000082 Val >>= 8;
83 }
84 }
Chris Lattner0e73c392010-02-05 06:16:07 +000085
Chris Lattner8496a262010-02-10 06:30:00 +000086 void EmitDisplacementField(const MCOperand &Disp, int64_t Adj, bool IsPCRel,
Chris Lattner5dccfad2010-02-10 06:52:12 +000087 unsigned &CurByte, raw_ostream &OS,
88 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +000089
90 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
91 unsigned RM) {
92 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
93 return RM | (RegOpcode << 3) | (Mod << 6);
94 }
95
96 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000097 unsigned &CurByte, raw_ostream &OS) const {
98 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000099 }
100
Chris Lattner0e73c392010-02-05 06:16:07 +0000101 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000102 unsigned &CurByte, raw_ostream &OS) const {
103 // SIB byte is in the same format as the ModRMByte.
104 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000105 }
106
107
Chris Lattner1ac23b12010-02-05 02:18:40 +0000108 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
109 unsigned RegOpcodeField, intptr_t PCAdj,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000110 unsigned &CurByte, raw_ostream &OS,
111 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000112
Daniel Dunbar73c55742010-02-09 22:59:55 +0000113 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
114 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000115
Chris Lattner45762472010-02-03 21:24:49 +0000116};
117
118} // end anonymous namespace
119
120
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000121MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
122 TargetMachine &TM) {
123 return new X86MCCodeEmitter(TM, false);
124}
125
126MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
127 TargetMachine &TM) {
128 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000129}
130
131
Chris Lattner1ac23b12010-02-05 02:18:40 +0000132/// isDisp8 - Return true if this signed displacement fits in a 8-bit
133/// sign-extended field.
134static bool isDisp8(int Value) {
135 return Value == (signed char)Value;
136}
137
Chris Lattner0e73c392010-02-05 06:16:07 +0000138void X86MCCodeEmitter::
Chris Lattner8496a262010-02-10 06:30:00 +0000139EmitDisplacementField(const MCOperand &DispOp, int64_t Adj, bool IsPCRel,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000140 unsigned &CurByte, raw_ostream &OS,
141 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000142 // If this is a simple integer displacement that doesn't require a relocation,
143 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000144 if (DispOp.isImm()) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000145 EmitConstant(DispOp.getImm(), 4, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000146 return;
147 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000148
Chris Lattner0e73c392010-02-05 06:16:07 +0000149#if 0
150 // Otherwise, this is something that requires a relocation. Emit it as such
151 // now.
152 unsigned RelocType = Is64BitMode ?
153 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
154 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
Chris Lattner0e73c392010-02-05 06:16:07 +0000155#endif
Chris Lattner5dccfad2010-02-10 06:52:12 +0000156
157 // Emit a symbolic constant as a fixup and 4 zeros.
158 Fixups.push_back(MCFixup::Create(CurByte, DispOp.getExpr(),
159 MCFixupKind(X86::reloc_absolute_word)));
160 EmitConstant(0, 4, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000161}
162
163
Chris Lattner1ac23b12010-02-05 02:18:40 +0000164void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
165 unsigned RegOpcodeField,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000166 intptr_t PCAdj,
167 unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000168 raw_ostream &OS,
169 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000170 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000171 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000172 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000173 const MCOperand &IndexReg = MI.getOperand(Op+2);
174 unsigned BaseReg = Base.getReg();
175
Chris Lattner0e73c392010-02-05 06:16:07 +0000176 // FIXME: Eliminate!
177 bool IsPCRel = false;
Chris Lattnera8168ec2010-02-09 21:57:34 +0000178
179 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000180 // If no BaseReg, issue a RIP relative instruction only if the MCE can
181 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
182 // 2-7) and absolute references.
Chris Lattnera8168ec2010-02-09 21:57:34 +0000183 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000184 IndexReg.getReg() == 0 &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000185 // The SIB byte must be used if the base is ESP/RSP.
186 BaseReg != X86::ESP && BaseReg != X86::RSP &&
187 // If there is no base register and we're in 64-bit mode, we need a SIB
188 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
189 (!Is64BitMode || BaseReg != 0)) {
190
191 if (BaseReg == 0 || // [disp32] in X86-32 mode
192 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000193 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner5dccfad2010-02-10 06:52:12 +0000194 EmitDisplacementField(Disp, PCAdj, true, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000195 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000196 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000197
198 unsigned BaseRegNo = GetX86RegNum(Base);
199
200 // If the base is not EBP/ESP and there is no displacement, use simple
201 // indirect register encoding, this handles addresses like [EAX]. The
202 // encoding for [EBP] with no displacement means [disp32] so we handle it
203 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000204 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000205 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000206 return;
207 }
208
209 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000210 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000211 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
212 EmitConstant(Disp.getImm(), 1, CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000213 return;
214 }
215
216 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000217 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattner5dccfad2010-02-10 06:52:12 +0000218 EmitDisplacementField(Disp, PCAdj, IsPCRel, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000219 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000220 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000221
222 // We need a SIB byte, so start by outputting the ModR/M byte first
223 assert(IndexReg.getReg() != X86::ESP &&
224 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
225
226 bool ForceDisp32 = false;
227 bool ForceDisp8 = false;
228 if (BaseReg == 0) {
229 // If there is no base register, we emit the special case SIB byte with
230 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000231 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000232 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000233 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000234 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000235 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000236 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000237 } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000238 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000239 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000240 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000241 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000242 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000243 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
244 } else {
245 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000246 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000247 }
248
249 // Calculate what the SS field value should be...
250 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
251 unsigned SS = SSTable[Scale.getImm()];
252
253 if (BaseReg == 0) {
254 // Handle the SIB byte for the case where there is no base, see Intel
255 // Manual 2A, table 2-7. The displacement has already been output.
256 unsigned IndexRegNo;
257 if (IndexReg.getReg())
258 IndexRegNo = GetX86RegNum(IndexReg);
259 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
260 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000261 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000262 } else {
263 unsigned IndexRegNo;
264 if (IndexReg.getReg())
265 IndexRegNo = GetX86RegNum(IndexReg);
266 else
267 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000268 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000269 }
270
271 // Do we need to output a displacement?
272 if (ForceDisp8)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000273 EmitConstant(Disp.getImm(), 1, CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000274 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattner5dccfad2010-02-10 06:52:12 +0000275 EmitDisplacementField(Disp, PCAdj, IsPCRel, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000276}
277
Chris Lattner39a612e2010-02-05 22:10:22 +0000278/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
279/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
280/// size, and 3) use of X86-64 extended registers.
281static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
282 const TargetInstrDesc &Desc) {
283 unsigned REX = 0;
284
285 // Pseudo instructions do not need REX prefix byte.
286 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
287 return 0;
288 if (TSFlags & X86II::REX_W)
289 REX |= 1 << 3;
290
291 if (MI.getNumOperands() == 0) return REX;
292
293 unsigned NumOps = MI.getNumOperands();
294 // FIXME: MCInst should explicitize the two-addrness.
295 bool isTwoAddr = NumOps > 1 &&
296 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
297
298 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
299 unsigned i = isTwoAddr ? 1 : 0;
300 for (; i != NumOps; ++i) {
301 const MCOperand &MO = MI.getOperand(i);
302 if (!MO.isReg()) continue;
303 unsigned Reg = MO.getReg();
304 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000305 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
306 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000307 REX |= 0x40;
308 break;
309 }
310
311 switch (TSFlags & X86II::FormMask) {
312 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
313 case X86II::MRMSrcReg:
314 if (MI.getOperand(0).isReg() &&
315 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
316 REX |= 1 << 2;
317 i = isTwoAddr ? 2 : 1;
318 for (; i != NumOps; ++i) {
319 const MCOperand &MO = MI.getOperand(i);
320 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
321 REX |= 1 << 0;
322 }
323 break;
324 case X86II::MRMSrcMem: {
325 if (MI.getOperand(0).isReg() &&
326 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
327 REX |= 1 << 2;
328 unsigned Bit = 0;
329 i = isTwoAddr ? 2 : 1;
330 for (; i != NumOps; ++i) {
331 const MCOperand &MO = MI.getOperand(i);
332 if (MO.isReg()) {
333 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
334 REX |= 1 << Bit;
335 Bit++;
336 }
337 }
338 break;
339 }
340 case X86II::MRM0m: case X86II::MRM1m:
341 case X86II::MRM2m: case X86II::MRM3m:
342 case X86II::MRM4m: case X86II::MRM5m:
343 case X86II::MRM6m: case X86II::MRM7m:
344 case X86II::MRMDestMem: {
345 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
346 i = isTwoAddr ? 1 : 0;
347 if (NumOps > e && MI.getOperand(e).isReg() &&
348 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
349 REX |= 1 << 2;
350 unsigned Bit = 0;
351 for (; i != e; ++i) {
352 const MCOperand &MO = MI.getOperand(i);
353 if (MO.isReg()) {
354 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
355 REX |= 1 << Bit;
356 Bit++;
357 }
358 }
359 break;
360 }
361 default:
362 if (MI.getOperand(0).isReg() &&
363 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
364 REX |= 1 << 0;
365 i = isTwoAddr ? 2 : 1;
366 for (unsigned e = NumOps; i != e; ++i) {
367 const MCOperand &MO = MI.getOperand(i);
368 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
369 REX |= 1 << 2;
370 }
371 break;
372 }
373 return REX;
374}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000375
376void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000377EncodeInstruction(const MCInst &MI, raw_ostream &OS,
378 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000379 unsigned Opcode = MI.getOpcode();
380 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000381 unsigned TSFlags = Desc.TSFlags;
382
Chris Lattner37ce80e2010-02-10 06:41:02 +0000383 // Keep track of the current byte being emitted.
384 unsigned CurByte = 0;
385
Chris Lattner1e80f402010-02-03 21:57:59 +0000386 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
387 // in order to provide diffability.
388
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000389 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000390 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000391 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000392
393 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000394 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000395 default: assert(0 && "Invalid segment!");
396 case 0: break; // No segment override!
397 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000398 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000399 break;
400 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000401 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000402 break;
403 }
404
Chris Lattner1e80f402010-02-03 21:57:59 +0000405 // Emit the repeat opcode prefix as needed.
406 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000407 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000408
Chris Lattner1e80f402010-02-03 21:57:59 +0000409 // Emit the operand size opcode prefix as needed.
410 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000411 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000412
413 // Emit the address size opcode prefix as needed.
414 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000415 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000416
417 bool Need0FPrefix = false;
418 switch (TSFlags & X86II::Op0Mask) {
419 default: assert(0 && "Invalid prefix!");
420 case 0: break; // No prefix!
421 case X86II::REP: break; // already handled.
422 case X86II::TB: // Two-byte opcode prefix
423 case X86II::T8: // 0F 38
424 case X86II::TA: // 0F 3A
425 Need0FPrefix = true;
426 break;
427 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000428 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000429 Need0FPrefix = true;
430 break;
431 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000432 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000433 Need0FPrefix = true;
434 break;
435 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000436 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000437 Need0FPrefix = true;
438 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000439 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
440 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
441 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
442 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
443 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
444 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
445 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
446 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000447 }
448
449 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000450 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000451 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000452 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000453 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000454 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000455
456 // 0x0F escape code must be emitted just before the opcode.
457 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000458 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000459
460 // FIXME: Pull this up into previous switch if REX can be moved earlier.
461 switch (TSFlags & X86II::Op0Mask) {
462 case X86II::TF: // F2 0F 38
463 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000464 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000465 break;
466 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000467 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000468 break;
469 }
470
471 // If this is a two-address instruction, skip one of the register operands.
472 unsigned NumOps = Desc.getNumOperands();
473 unsigned CurOp = 0;
474 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
475 ++CurOp;
476 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
477 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
478 --NumOps;
479
Chris Lattner74a21512010-02-05 19:24:13 +0000480 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000481 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000482 case X86II::MRMInitReg:
483 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000484 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
485 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1e80f402010-02-03 21:57:59 +0000486 case X86II::RawFrm: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000487 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000488
489 if (CurOp == NumOps)
490 break;
491
Chris Lattner28249d92010-02-05 01:53:19 +0000492 assert(0 && "Unimpl RawFrm expr");
Chris Lattner1e80f402010-02-03 21:57:59 +0000493 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000494 }
Chris Lattner28249d92010-02-05 01:53:19 +0000495
496 case X86II::AddRegFrm: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000497 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000498 if (CurOp == NumOps)
499 break;
500
501 const MCOperand &MO1 = MI.getOperand(CurOp++);
502 if (MO1.isImm()) {
Chris Lattner74a21512010-02-05 19:24:13 +0000503 unsigned Size = X86II::getSizeOfImm(TSFlags);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000504 EmitConstant(MO1.getImm(), Size, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000505 break;
506 }
507
508 assert(0 && "Unimpl AddRegFrm expr");
509 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000510 }
Chris Lattner28249d92010-02-05 01:53:19 +0000511
512 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000513 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000514 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000515 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000516 CurOp += 2;
517 if (CurOp != NumOps)
518 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000519 X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000520 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000521
522 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000523 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000524 EmitMemModRMByte(MI, CurOp,
525 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner5dccfad2010-02-10 06:52:12 +0000526 0, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000527 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000528 if (CurOp != NumOps)
529 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000530 X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000531 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000532
533 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000534 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000535 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000536 CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000537 CurOp += 2;
538 if (CurOp != NumOps)
539 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000540 X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000541 break;
542
543 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000544 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000545
546 // FIXME: Maybe lea should have its own form? This is a horrible hack.
547 int AddrOperands;
548 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
549 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
550 AddrOperands = X86AddrNumOperands - 1; // No segment register
551 else
552 AddrOperands = X86AddrNumOperands;
553
554 // FIXME: What is this actually doing?
555 intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
Chris Lattner74a21512010-02-05 19:24:13 +0000556 X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000557
558 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner5dccfad2010-02-10 06:52:12 +0000559 PCAdj, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000560 CurOp += AddrOperands + 1;
561 if (CurOp != NumOps)
562 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000563 X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000564 break;
565 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000566
567 case X86II::MRM0r: case X86II::MRM1r:
568 case X86II::MRM2r: case X86II::MRM3r:
569 case X86II::MRM4r: case X86II::MRM5r:
570 case X86II::MRM6r: case X86II::MRM7r: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000571 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000572
573 // Special handling of lfence, mfence, monitor, and mwait.
574 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
575 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
576 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000577 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0),
578 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000579
580 switch (Opcode) {
581 default: break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000582 case X86::MONITOR: EmitByte(0xC8, CurByte, OS); break;
583 case X86::MWAIT: EmitByte(0xC9, CurByte, OS); break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000584 }
585 } else {
586 EmitRegModRMByte(MI.getOperand(CurOp++),
587 (TSFlags & X86II::FormMask)-X86II::MRM0r,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000588 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000589 }
590
591 if (CurOp == NumOps)
592 break;
593
594 const MCOperand &MO1 = MI.getOperand(CurOp++);
595 if (MO1.isImm()) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000596 EmitConstant(MO1.getImm(), X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000597 break;
598 }
599
600 assert(0 && "relo unimpl");
601#if 0
602 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
603 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
604 if (Opcode == X86::MOV64ri32)
605 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
606 if (MO1.isGlobal()) {
607 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
608 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
609 Indirect);
610 } else if (MO1.isSymbol())
611 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
612 else if (MO1.isCPI())
613 emitConstPoolAddress(MO1.getIndex(), rt);
614 else if (MO1.isJTI())
615 emitJumpTableAddress(MO1.getIndex(), rt);
616 break;
617#endif
618 }
619 case X86II::MRM0m: case X86II::MRM1m:
620 case X86II::MRM2m: case X86II::MRM3m:
621 case X86II::MRM4m: case X86II::MRM5m:
622 case X86II::MRM6m: case X86II::MRM7m: {
623 intptr_t PCAdj = 0;
624 if (CurOp + X86AddrNumOperands != NumOps) {
625 if (MI.getOperand(CurOp+X86AddrNumOperands).isImm())
626 PCAdj = X86II::getSizeOfImm(TSFlags);
627 else
628 PCAdj = 4;
629 }
630
Chris Lattner37ce80e2010-02-10 06:41:02 +0000631 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000632 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000633 PCAdj, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000634 CurOp += X86AddrNumOperands;
635
636 if (CurOp == NumOps)
637 break;
638
639 const MCOperand &MO = MI.getOperand(CurOp++);
640 if (MO.isImm()) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000641 EmitConstant(MO.getImm(), X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000642 break;
643 }
644
645 assert(0 && "relo not handled");
646#if 0
647 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
648 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
649 if (Opcode == X86::MOV64mi32)
650 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
651 if (MO.isGlobal()) {
652 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
653 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
654 Indirect);
655 } else if (MO.isSymbol())
656 emitExternalSymbolAddress(MO.getSymbolName(), rt);
657 else if (MO.isCPI())
658 emitConstPoolAddress(MO.getIndex(), rt);
659 else if (MO.isJTI())
660 emitJumpTableAddress(MO.getIndex(), rt);
661#endif
662 break;
663 }
Chris Lattner28249d92010-02-05 01:53:19 +0000664 }
665
666#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000667 // FIXME: Verify.
668 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000669 errs() << "Cannot encode all operands of: ";
670 MI.dump();
671 errs() << '\n';
672 abort();
673 }
674#endif
Chris Lattner45762472010-02-03 21:24:49 +0000675}