blob: 41173c9ce13518319323c0f599667fee2b2c0030 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000031//
Chris Lattner53e677a2004-04-02 20:23:17 +000032// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
Chris Lattner53e677a2004-04-02 20:23:17 +000036// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000066#include "llvm/Instructions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Analysis/LoopInfo.h"
68#include "llvm/Assembly/Writer.h"
69#include "llvm/Transforms/Scalar.h"
Chris Lattner7980fb92004-04-17 18:36:24 +000070#include "llvm/Transforms/Utils/Local.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000071#include "llvm/Support/CFG.h"
72#include "llvm/Support/ConstantRange.h"
73#include "llvm/Support/InstIterator.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000074#include "llvm/Support/CommandLine.h"
75#include "llvm/ADT/Statistic.h"
Brian Gaekec5985172004-04-16 15:57:32 +000076#include <cmath>
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000077#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000078using namespace llvm;
79
80namespace {
81 RegisterAnalysis<ScalarEvolution>
Chris Lattner45a1cf82004-04-19 03:42:32 +000082 R("scalar-evolution", "Scalar Evolution Analysis");
Chris Lattner53e677a2004-04-02 20:23:17 +000083
84 Statistic<>
85 NumBruteForceEvaluations("scalar-evolution",
Chris Lattner673e02b2004-10-12 01:49:27 +000086 "Number of brute force evaluations needed to "
87 "calculate high-order polynomial exit values");
88 Statistic<>
89 NumArrayLenItCounts("scalar-evolution",
90 "Number of trip counts computed with array length");
Chris Lattner53e677a2004-04-02 20:23:17 +000091 Statistic<>
92 NumTripCountsComputed("scalar-evolution",
93 "Number of loops with predictable loop counts");
94 Statistic<>
95 NumTripCountsNotComputed("scalar-evolution",
96 "Number of loops without predictable loop counts");
Chris Lattner7980fb92004-04-17 18:36:24 +000097 Statistic<>
98 NumBruteForceTripCountsComputed("scalar-evolution",
99 "Number of loops with trip counts computed by force");
100
101 cl::opt<unsigned>
102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will symbolically execute a constant derived loop"),
104 cl::init(100));
Chris Lattner53e677a2004-04-02 20:23:17 +0000105}
106
107//===----------------------------------------------------------------------===//
108// SCEV class definitions
109//===----------------------------------------------------------------------===//
110
111//===----------------------------------------------------------------------===//
112// Implementation of the SCEV class.
113//
Chris Lattner53e677a2004-04-02 20:23:17 +0000114SCEV::~SCEV() {}
115void SCEV::dump() const {
116 print(std::cerr);
117}
118
119/// getValueRange - Return the tightest constant bounds that this value is
120/// known to have. This method is only valid on integer SCEV objects.
121ConstantRange SCEV::getValueRange() const {
122 const Type *Ty = getType();
123 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
124 Ty = Ty->getUnsignedVersion();
125 // Default to a full range if no better information is available.
126 return ConstantRange(getType());
127}
128
129
130SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
131
132bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
133 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000134 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000135}
136
137const Type *SCEVCouldNotCompute::getType() const {
138 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000139 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000140}
141
142bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
143 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
144 return false;
145}
146
Chris Lattner4dc534c2005-02-13 04:37:18 +0000147SCEVHandle SCEVCouldNotCompute::
148replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
149 const SCEVHandle &Conc) const {
150 return this;
151}
152
Chris Lattner53e677a2004-04-02 20:23:17 +0000153void SCEVCouldNotCompute::print(std::ostream &OS) const {
154 OS << "***COULDNOTCOMPUTE***";
155}
156
157bool SCEVCouldNotCompute::classof(const SCEV *S) {
158 return S->getSCEVType() == scCouldNotCompute;
159}
160
161
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000162// SCEVConstants - Only allow the creation of one SCEVConstant for any
163// particular value. Don't use a SCEVHandle here, or else the object will
164// never be deleted!
165static std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000166
Chris Lattner53e677a2004-04-02 20:23:17 +0000167
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000168SCEVConstant::~SCEVConstant() {
169 SCEVConstants.erase(V);
170}
Chris Lattner53e677a2004-04-02 20:23:17 +0000171
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000172SCEVHandle SCEVConstant::get(ConstantInt *V) {
173 // Make sure that SCEVConstant instances are all unsigned.
174 if (V->getType()->isSigned()) {
175 const Type *NewTy = V->getType()->getUnsignedVersion();
176 V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
177 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000178
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000179 SCEVConstant *&R = SCEVConstants[V];
180 if (R == 0) R = new SCEVConstant(V);
181 return R;
182}
Chris Lattner53e677a2004-04-02 20:23:17 +0000183
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000184ConstantRange SCEVConstant::getValueRange() const {
185 return ConstantRange(V);
186}
Chris Lattner53e677a2004-04-02 20:23:17 +0000187
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000188const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000189
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000190void SCEVConstant::print(std::ostream &OS) const {
191 WriteAsOperand(OS, V, false);
192}
Chris Lattner53e677a2004-04-02 20:23:17 +0000193
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000194// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
195// particular input. Don't use a SCEVHandle here, or else the object will
196// never be deleted!
197static std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates;
Chris Lattner53e677a2004-04-02 20:23:17 +0000198
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000199SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
200 : SCEV(scTruncate), Op(op), Ty(ty) {
201 assert(Op->getType()->isInteger() && Ty->isInteger() &&
202 Ty->isUnsigned() &&
203 "Cannot truncate non-integer value!");
204 assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
205 "This is not a truncating conversion!");
206}
Chris Lattner53e677a2004-04-02 20:23:17 +0000207
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000208SCEVTruncateExpr::~SCEVTruncateExpr() {
209 SCEVTruncates.erase(std::make_pair(Op, Ty));
210}
Chris Lattner53e677a2004-04-02 20:23:17 +0000211
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000212ConstantRange SCEVTruncateExpr::getValueRange() const {
213 return getOperand()->getValueRange().truncate(getType());
214}
Chris Lattner53e677a2004-04-02 20:23:17 +0000215
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000216void SCEVTruncateExpr::print(std::ostream &OS) const {
217 OS << "(truncate " << *Op << " to " << *Ty << ")";
218}
219
220// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
221// particular input. Don't use a SCEVHandle here, or else the object will never
222// be deleted!
223static std::map<std::pair<SCEV*, const Type*>,
224 SCEVZeroExtendExpr*> SCEVZeroExtends;
225
226SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Chris Lattner2352fec2005-02-17 16:54:16 +0000227 : SCEV(scTruncate), Op(op), Ty(ty) {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000228 assert(Op->getType()->isInteger() && Ty->isInteger() &&
229 Ty->isUnsigned() &&
230 "Cannot zero extend non-integer value!");
231 assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
232 "This is not an extending conversion!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236 SCEVZeroExtends.erase(std::make_pair(Op, Ty));
237}
238
239ConstantRange SCEVZeroExtendExpr::getValueRange() const {
240 return getOperand()->getValueRange().zeroExtend(getType());
241}
242
243void SCEVZeroExtendExpr::print(std::ostream &OS) const {
244 OS << "(zeroextend " << *Op << " to " << *Ty << ")";
245}
246
247// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
248// particular input. Don't use a SCEVHandle here, or else the object will never
249// be deleted!
250static std::map<std::pair<unsigned, std::vector<SCEV*> >,
251 SCEVCommutativeExpr*> SCEVCommExprs;
252
253SCEVCommutativeExpr::~SCEVCommutativeExpr() {
254 SCEVCommExprs.erase(std::make_pair(getSCEVType(),
255 std::vector<SCEV*>(Operands.begin(),
256 Operands.end())));
257}
258
259void SCEVCommutativeExpr::print(std::ostream &OS) const {
260 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
261 const char *OpStr = getOperationStr();
262 OS << "(" << *Operands[0];
263 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
264 OS << OpStr << *Operands[i];
265 OS << ")";
266}
267
Chris Lattner4dc534c2005-02-13 04:37:18 +0000268SCEVHandle SCEVCommutativeExpr::
269replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
270 const SCEVHandle &Conc) const {
271 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
273 if (H != getOperand(i)) {
274 std::vector<SCEVHandle> NewOps;
275 NewOps.reserve(getNumOperands());
276 for (unsigned j = 0; j != i; ++j)
277 NewOps.push_back(getOperand(j));
278 NewOps.push_back(H);
279 for (++i; i != e; ++i)
280 NewOps.push_back(getOperand(i)->
281 replaceSymbolicValuesWithConcrete(Sym, Conc));
282
283 if (isa<SCEVAddExpr>(this))
284 return SCEVAddExpr::get(NewOps);
285 else if (isa<SCEVMulExpr>(this))
286 return SCEVMulExpr::get(NewOps);
287 else
288 assert(0 && "Unknown commutative expr!");
289 }
290 }
291 return this;
292}
293
294
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
296// input. Don't use a SCEVHandle here, or else the object will never be
297// deleted!
298static std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs;
299
300SCEVUDivExpr::~SCEVUDivExpr() {
301 SCEVUDivs.erase(std::make_pair(LHS, RHS));
302}
303
304void SCEVUDivExpr::print(std::ostream &OS) const {
305 OS << "(" << *LHS << " /u " << *RHS << ")";
306}
307
308const Type *SCEVUDivExpr::getType() const {
309 const Type *Ty = LHS->getType();
310 if (Ty->isSigned()) Ty = Ty->getUnsignedVersion();
311 return Ty;
312}
313
314// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
315// particular input. Don't use a SCEVHandle here, or else the object will never
316// be deleted!
317static std::map<std::pair<const Loop *, std::vector<SCEV*> >,
318 SCEVAddRecExpr*> SCEVAddRecExprs;
319
320SCEVAddRecExpr::~SCEVAddRecExpr() {
321 SCEVAddRecExprs.erase(std::make_pair(L,
322 std::vector<SCEV*>(Operands.begin(),
323 Operands.end())));
324}
325
Chris Lattner4dc534c2005-02-13 04:37:18 +0000326SCEVHandle SCEVAddRecExpr::
327replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
328 const SCEVHandle &Conc) const {
329 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
330 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
331 if (H != getOperand(i)) {
332 std::vector<SCEVHandle> NewOps;
333 NewOps.reserve(getNumOperands());
334 for (unsigned j = 0; j != i; ++j)
335 NewOps.push_back(getOperand(j));
336 NewOps.push_back(H);
337 for (++i; i != e; ++i)
338 NewOps.push_back(getOperand(i)->
339 replaceSymbolicValuesWithConcrete(Sym, Conc));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000340
Chris Lattner4dc534c2005-02-13 04:37:18 +0000341 return get(NewOps, L);
342 }
343 }
344 return this;
345}
346
347
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000348bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
349 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
Chris Lattnerff2006a2005-08-16 00:37:01 +0000350 // contain L and if the start is invariant.
351 return !QueryLoop->contains(L->getHeader()) &&
352 getOperand(0)->isLoopInvariant(QueryLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +0000353}
354
355
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000356void SCEVAddRecExpr::print(std::ostream &OS) const {
357 OS << "{" << *Operands[0];
358 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
359 OS << ",+," << *Operands[i];
360 OS << "}<" << L->getHeader()->getName() + ">";
361}
Chris Lattner53e677a2004-04-02 20:23:17 +0000362
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000363// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
364// value. Don't use a SCEVHandle here, or else the object will never be
365// deleted!
366static std::map<Value*, SCEVUnknown*> SCEVUnknowns;
Chris Lattner53e677a2004-04-02 20:23:17 +0000367
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000368SCEVUnknown::~SCEVUnknown() { SCEVUnknowns.erase(V); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000369
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000370bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
371 // All non-instruction values are loop invariant. All instructions are loop
372 // invariant if they are not contained in the specified loop.
373 if (Instruction *I = dyn_cast<Instruction>(V))
374 return !L->contains(I->getParent());
375 return true;
376}
Chris Lattner53e677a2004-04-02 20:23:17 +0000377
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000378const Type *SCEVUnknown::getType() const {
379 return V->getType();
380}
Chris Lattner53e677a2004-04-02 20:23:17 +0000381
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000382void SCEVUnknown::print(std::ostream &OS) const {
383 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000384}
385
Chris Lattner8d741b82004-06-20 06:23:15 +0000386//===----------------------------------------------------------------------===//
387// SCEV Utilities
388//===----------------------------------------------------------------------===//
389
390namespace {
391 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
392 /// than the complexity of the RHS. This comparator is used to canonicalize
393 /// expressions.
394 struct SCEVComplexityCompare {
395 bool operator()(SCEV *LHS, SCEV *RHS) {
396 return LHS->getSCEVType() < RHS->getSCEVType();
397 }
398 };
399}
400
401/// GroupByComplexity - Given a list of SCEV objects, order them by their
402/// complexity, and group objects of the same complexity together by value.
403/// When this routine is finished, we know that any duplicates in the vector are
404/// consecutive and that complexity is monotonically increasing.
405///
406/// Note that we go take special precautions to ensure that we get determinstic
407/// results from this routine. In other words, we don't want the results of
408/// this to depend on where the addresses of various SCEV objects happened to
409/// land in memory.
410///
411static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
412 if (Ops.size() < 2) return; // Noop
413 if (Ops.size() == 2) {
414 // This is the common case, which also happens to be trivially simple.
415 // Special case it.
416 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
417 std::swap(Ops[0], Ops[1]);
418 return;
419 }
420
421 // Do the rough sort by complexity.
422 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
423
424 // Now that we are sorted by complexity, group elements of the same
425 // complexity. Note that this is, at worst, N^2, but the vector is likely to
426 // be extremely short in practice. Note that we take this approach because we
427 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000428 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000429 SCEV *S = Ops[i];
430 unsigned Complexity = S->getSCEVType();
431
432 // If there are any objects of the same complexity and same value as this
433 // one, group them.
434 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
435 if (Ops[j] == S) { // Found a duplicate.
436 // Move it to immediately after i'th element.
437 std::swap(Ops[i+1], Ops[j]);
438 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000439 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000440 }
441 }
442 }
443}
444
Chris Lattner53e677a2004-04-02 20:23:17 +0000445
Chris Lattner53e677a2004-04-02 20:23:17 +0000446
447//===----------------------------------------------------------------------===//
448// Simple SCEV method implementations
449//===----------------------------------------------------------------------===//
450
451/// getIntegerSCEV - Given an integer or FP type, create a constant for the
452/// specified signed integer value and return a SCEV for the constant.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000453SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000454 Constant *C;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000455 if (Val == 0)
Chris Lattner53e677a2004-04-02 20:23:17 +0000456 C = Constant::getNullValue(Ty);
457 else if (Ty->isFloatingPoint())
458 C = ConstantFP::get(Ty, Val);
459 else if (Ty->isSigned())
460 C = ConstantSInt::get(Ty, Val);
461 else {
462 C = ConstantSInt::get(Ty->getSignedVersion(), Val);
463 C = ConstantExpr::getCast(C, Ty);
464 }
465 return SCEVUnknown::get(C);
466}
467
468/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
469/// input value to the specified type. If the type must be extended, it is zero
470/// extended.
471static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
472 const Type *SrcTy = V->getType();
473 assert(SrcTy->isInteger() && Ty->isInteger() &&
474 "Cannot truncate or zero extend with non-integer arguments!");
475 if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
476 return V; // No conversion
477 if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
478 return SCEVTruncateExpr::get(V, Ty);
479 return SCEVZeroExtendExpr::get(V, Ty);
480}
481
482/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
483///
Chris Lattnerbac5b462005-03-09 05:34:41 +0000484SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000485 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
486 return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000487
Chris Lattnerb06432c2004-04-23 21:29:03 +0000488 return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
Chris Lattner53e677a2004-04-02 20:23:17 +0000489}
490
491/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
492///
Chris Lattnerbac5b462005-03-09 05:34:41 +0000493SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000494 // X - Y --> X + -Y
Chris Lattnerbac5b462005-03-09 05:34:41 +0000495 return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
Chris Lattner53e677a2004-04-02 20:23:17 +0000496}
497
498
Chris Lattner53e677a2004-04-02 20:23:17 +0000499/// PartialFact - Compute V!/(V-NumSteps)!
500static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
501 // Handle this case efficiently, it is common to have constant iteration
502 // counts while computing loop exit values.
503 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
504 uint64_t Val = SC->getValue()->getRawValue();
505 uint64_t Result = 1;
506 for (; NumSteps; --NumSteps)
507 Result *= Val-(NumSteps-1);
508 Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
509 return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
510 }
511
512 const Type *Ty = V->getType();
513 if (NumSteps == 0)
Chris Lattnerb06432c2004-04-23 21:29:03 +0000514 return SCEVUnknown::getIntegerSCEV(1, Ty);
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000515
Chris Lattner53e677a2004-04-02 20:23:17 +0000516 SCEVHandle Result = V;
517 for (unsigned i = 1; i != NumSteps; ++i)
Chris Lattnerbac5b462005-03-09 05:34:41 +0000518 Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
Chris Lattnerb06432c2004-04-23 21:29:03 +0000519 SCEVUnknown::getIntegerSCEV(i, Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000520 return Result;
521}
522
523
524/// evaluateAtIteration - Return the value of this chain of recurrences at
525/// the specified iteration number. We can evaluate this recurrence by
526/// multiplying each element in the chain by the binomial coefficient
527/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
528///
529/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
530///
531/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
532/// Is the binomial equation safe using modular arithmetic??
533///
534SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
535 SCEVHandle Result = getStart();
536 int Divisor = 1;
537 const Type *Ty = It->getType();
538 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
539 SCEVHandle BC = PartialFact(It, i);
540 Divisor *= i;
541 SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
Chris Lattnerb06432c2004-04-23 21:29:03 +0000542 SCEVUnknown::getIntegerSCEV(Divisor,Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000543 Result = SCEVAddExpr::get(Result, Val);
544 }
545 return Result;
546}
547
548
549//===----------------------------------------------------------------------===//
550// SCEV Expression folder implementations
551//===----------------------------------------------------------------------===//
552
553SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
554 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
555 return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
556
557 // If the input value is a chrec scev made out of constants, truncate
558 // all of the constants.
559 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
560 std::vector<SCEVHandle> Operands;
561 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
562 // FIXME: This should allow truncation of other expression types!
563 if (isa<SCEVConstant>(AddRec->getOperand(i)))
564 Operands.push_back(get(AddRec->getOperand(i), Ty));
565 else
566 break;
567 if (Operands.size() == AddRec->getNumOperands())
568 return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
569 }
570
571 SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
572 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
573 return Result;
574}
575
576SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
577 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
578 return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
579
580 // FIXME: If the input value is a chrec scev, and we can prove that the value
581 // did not overflow the old, smaller, value, we can zero extend all of the
582 // operands (often constants). This would allow analysis of something like
583 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
584
585 SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
586 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
587 return Result;
588}
589
590// get - Get a canonical add expression, or something simpler if possible.
591SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
592 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +0000593 if (Ops.size() == 1) return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +0000594
595 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000596 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000597
598 // If there are any constants, fold them together.
599 unsigned Idx = 0;
600 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
601 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +0000602 assert(Idx < Ops.size());
Chris Lattner53e677a2004-04-02 20:23:17 +0000603 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
604 // We found two constants, fold them together!
605 Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
606 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
607 Ops[0] = SCEVConstant::get(CI);
608 Ops.erase(Ops.begin()+1); // Erase the folded element
609 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000610 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000611 } else {
612 // If we couldn't fold the expression, move to the next constant. Note
613 // that this is impossible to happen in practice because we always
614 // constant fold constant ints to constant ints.
615 ++Idx;
616 }
617 }
618
619 // If we are left with a constant zero being added, strip it off.
620 if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
621 Ops.erase(Ops.begin());
622 --Idx;
623 }
624 }
625
Chris Lattner627018b2004-04-07 16:16:11 +0000626 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000627
Chris Lattner53e677a2004-04-02 20:23:17 +0000628 // Okay, check to see if the same value occurs in the operand list twice. If
629 // so, merge them together into an multiply expression. Since we sorted the
630 // list, these values are required to be adjacent.
631 const Type *Ty = Ops[0]->getType();
632 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
633 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
634 // Found a match, merge the two values into a multiply, and add any
635 // remaining values to the result.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000636 SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000637 SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
638 if (Ops.size() == 2)
639 return Mul;
640 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
641 Ops.push_back(Mul);
642 return SCEVAddExpr::get(Ops);
643 }
644
645 // Okay, now we know the first non-constant operand. If there are add
646 // operands they would be next.
647 if (Idx < Ops.size()) {
648 bool DeletedAdd = false;
649 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
650 // If we have an add, expand the add operands onto the end of the operands
651 // list.
652 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
653 Ops.erase(Ops.begin()+Idx);
654 DeletedAdd = true;
655 }
656
657 // If we deleted at least one add, we added operands to the end of the list,
658 // and they are not necessarily sorted. Recurse to resort and resimplify
659 // any operands we just aquired.
660 if (DeletedAdd)
661 return get(Ops);
662 }
663
664 // Skip over the add expression until we get to a multiply.
665 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
666 ++Idx;
667
668 // If we are adding something to a multiply expression, make sure the
669 // something is not already an operand of the multiply. If so, merge it into
670 // the multiply.
671 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
672 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
673 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
674 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
675 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000676 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000677 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
678 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
679 if (Mul->getNumOperands() != 2) {
680 // If the multiply has more than two operands, we must get the
681 // Y*Z term.
682 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
683 MulOps.erase(MulOps.begin()+MulOp);
684 InnerMul = SCEVMulExpr::get(MulOps);
685 }
Chris Lattnerb06432c2004-04-23 21:29:03 +0000686 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000687 SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
688 SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
689 if (Ops.size() == 2) return OuterMul;
690 if (AddOp < Idx) {
691 Ops.erase(Ops.begin()+AddOp);
692 Ops.erase(Ops.begin()+Idx-1);
693 } else {
694 Ops.erase(Ops.begin()+Idx);
695 Ops.erase(Ops.begin()+AddOp-1);
696 }
697 Ops.push_back(OuterMul);
698 return SCEVAddExpr::get(Ops);
699 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000700
Chris Lattner53e677a2004-04-02 20:23:17 +0000701 // Check this multiply against other multiplies being added together.
702 for (unsigned OtherMulIdx = Idx+1;
703 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
704 ++OtherMulIdx) {
705 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
706 // If MulOp occurs in OtherMul, we can fold the two multiplies
707 // together.
708 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
709 OMulOp != e; ++OMulOp)
710 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
711 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
712 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
713 if (Mul->getNumOperands() != 2) {
714 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
715 MulOps.erase(MulOps.begin()+MulOp);
716 InnerMul1 = SCEVMulExpr::get(MulOps);
717 }
718 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
719 if (OtherMul->getNumOperands() != 2) {
720 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
721 OtherMul->op_end());
722 MulOps.erase(MulOps.begin()+OMulOp);
723 InnerMul2 = SCEVMulExpr::get(MulOps);
724 }
725 SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
726 SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
727 if (Ops.size() == 2) return OuterMul;
728 Ops.erase(Ops.begin()+Idx);
729 Ops.erase(Ops.begin()+OtherMulIdx-1);
730 Ops.push_back(OuterMul);
731 return SCEVAddExpr::get(Ops);
732 }
733 }
734 }
735 }
736
737 // If there are any add recurrences in the operands list, see if any other
738 // added values are loop invariant. If so, we can fold them into the
739 // recurrence.
740 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
741 ++Idx;
742
743 // Scan over all recurrences, trying to fold loop invariants into them.
744 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
745 // Scan all of the other operands to this add and add them to the vector if
746 // they are loop invariant w.r.t. the recurrence.
747 std::vector<SCEVHandle> LIOps;
748 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
749 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
750 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
751 LIOps.push_back(Ops[i]);
752 Ops.erase(Ops.begin()+i);
753 --i; --e;
754 }
755
756 // If we found some loop invariants, fold them into the recurrence.
757 if (!LIOps.empty()) {
758 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step }
759 LIOps.push_back(AddRec->getStart());
760
761 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
762 AddRecOps[0] = SCEVAddExpr::get(LIOps);
763
764 SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
765 // If all of the other operands were loop invariant, we are done.
766 if (Ops.size() == 1) return NewRec;
767
768 // Otherwise, add the folded AddRec by the non-liv parts.
769 for (unsigned i = 0;; ++i)
770 if (Ops[i] == AddRec) {
771 Ops[i] = NewRec;
772 break;
773 }
774 return SCEVAddExpr::get(Ops);
775 }
776
777 // Okay, if there weren't any loop invariants to be folded, check to see if
778 // there are multiple AddRec's with the same loop induction variable being
779 // added together. If so, we can fold them.
780 for (unsigned OtherIdx = Idx+1;
781 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
782 if (OtherIdx != Idx) {
783 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
784 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
785 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
786 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
787 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
788 if (i >= NewOps.size()) {
789 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
790 OtherAddRec->op_end());
791 break;
792 }
793 NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
794 }
795 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
796
797 if (Ops.size() == 2) return NewAddRec;
798
799 Ops.erase(Ops.begin()+Idx);
800 Ops.erase(Ops.begin()+OtherIdx-1);
801 Ops.push_back(NewAddRec);
802 return SCEVAddExpr::get(Ops);
803 }
804 }
805
806 // Otherwise couldn't fold anything into this recurrence. Move onto the
807 // next one.
808 }
809
810 // Okay, it looks like we really DO need an add expr. Check to see if we
811 // already have one, otherwise create a new one.
812 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
813 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
814 SCEVOps)];
815 if (Result == 0) Result = new SCEVAddExpr(Ops);
816 return Result;
817}
818
819
820SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
821 assert(!Ops.empty() && "Cannot get empty mul!");
822
823 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000824 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000825
826 // If there are any constants, fold them together.
827 unsigned Idx = 0;
828 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
829
830 // C1*(C2+V) -> C1*C2 + C1*V
831 if (Ops.size() == 2)
832 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
833 if (Add->getNumOperands() == 2 &&
834 isa<SCEVConstant>(Add->getOperand(0)))
835 return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
836 SCEVMulExpr::get(LHSC, Add->getOperand(1)));
837
838
839 ++Idx;
840 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
841 // We found two constants, fold them together!
842 Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
843 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
844 Ops[0] = SCEVConstant::get(CI);
845 Ops.erase(Ops.begin()+1); // Erase the folded element
846 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000847 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000848 } else {
849 // If we couldn't fold the expression, move to the next constant. Note
850 // that this is impossible to happen in practice because we always
851 // constant fold constant ints to constant ints.
852 ++Idx;
853 }
854 }
855
856 // If we are left with a constant one being multiplied, strip it off.
857 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
858 Ops.erase(Ops.begin());
859 --Idx;
860 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
861 // If we have a multiply of zero, it will always be zero.
862 return Ops[0];
863 }
864 }
865
866 // Skip over the add expression until we get to a multiply.
867 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
868 ++Idx;
869
870 if (Ops.size() == 1)
871 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000872
Chris Lattner53e677a2004-04-02 20:23:17 +0000873 // If there are mul operands inline them all into this expression.
874 if (Idx < Ops.size()) {
875 bool DeletedMul = false;
876 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
877 // If we have an mul, expand the mul operands onto the end of the operands
878 // list.
879 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
880 Ops.erase(Ops.begin()+Idx);
881 DeletedMul = true;
882 }
883
884 // If we deleted at least one mul, we added operands to the end of the list,
885 // and they are not necessarily sorted. Recurse to resort and resimplify
886 // any operands we just aquired.
887 if (DeletedMul)
888 return get(Ops);
889 }
890
891 // If there are any add recurrences in the operands list, see if any other
892 // added values are loop invariant. If so, we can fold them into the
893 // recurrence.
894 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
895 ++Idx;
896
897 // Scan over all recurrences, trying to fold loop invariants into them.
898 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
899 // Scan all of the other operands to this mul and add them to the vector if
900 // they are loop invariant w.r.t. the recurrence.
901 std::vector<SCEVHandle> LIOps;
902 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
903 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
904 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
905 LIOps.push_back(Ops[i]);
906 Ops.erase(Ops.begin()+i);
907 --i; --e;
908 }
909
910 // If we found some loop invariants, fold them into the recurrence.
911 if (!LIOps.empty()) {
912 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step }
913 std::vector<SCEVHandle> NewOps;
914 NewOps.reserve(AddRec->getNumOperands());
915 if (LIOps.size() == 1) {
916 SCEV *Scale = LIOps[0];
917 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
918 NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
919 } else {
920 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
921 std::vector<SCEVHandle> MulOps(LIOps);
922 MulOps.push_back(AddRec->getOperand(i));
923 NewOps.push_back(SCEVMulExpr::get(MulOps));
924 }
925 }
926
927 SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
928
929 // If all of the other operands were loop invariant, we are done.
930 if (Ops.size() == 1) return NewRec;
931
932 // Otherwise, multiply the folded AddRec by the non-liv parts.
933 for (unsigned i = 0;; ++i)
934 if (Ops[i] == AddRec) {
935 Ops[i] = NewRec;
936 break;
937 }
938 return SCEVMulExpr::get(Ops);
939 }
940
941 // Okay, if there weren't any loop invariants to be folded, check to see if
942 // there are multiple AddRec's with the same loop induction variable being
943 // multiplied together. If so, we can fold them.
944 for (unsigned OtherIdx = Idx+1;
945 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
946 if (OtherIdx != Idx) {
947 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
948 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
949 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
950 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
951 SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
952 G->getStart());
953 SCEVHandle B = F->getStepRecurrence();
954 SCEVHandle D = G->getStepRecurrence();
955 SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
956 SCEVMulExpr::get(G, B),
957 SCEVMulExpr::get(B, D));
958 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
959 F->getLoop());
960 if (Ops.size() == 2) return NewAddRec;
961
962 Ops.erase(Ops.begin()+Idx);
963 Ops.erase(Ops.begin()+OtherIdx-1);
964 Ops.push_back(NewAddRec);
965 return SCEVMulExpr::get(Ops);
966 }
967 }
968
969 // Otherwise couldn't fold anything into this recurrence. Move onto the
970 // next one.
971 }
972
973 // Okay, it looks like we really DO need an mul expr. Check to see if we
974 // already have one, otherwise create a new one.
975 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
976 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
977 SCEVOps)];
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000978 if (Result == 0)
979 Result = new SCEVMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000980 return Result;
981}
982
983SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
984 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
985 if (RHSC->getValue()->equalsInt(1))
986 return LHS; // X /u 1 --> x
987 if (RHSC->getValue()->isAllOnesValue())
Chris Lattnerbac5b462005-03-09 05:34:41 +0000988 return SCEV::getNegativeSCEV(LHS); // X /u -1 --> -x
Chris Lattner53e677a2004-04-02 20:23:17 +0000989
990 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
991 Constant *LHSCV = LHSC->getValue();
992 Constant *RHSCV = RHSC->getValue();
993 if (LHSCV->getType()->isSigned())
994 LHSCV = ConstantExpr::getCast(LHSCV,
995 LHSCV->getType()->getUnsignedVersion());
996 if (RHSCV->getType()->isSigned())
997 RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
998 return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
999 }
1000 }
1001
1002 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1003
1004 SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
1005 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1006 return Result;
1007}
1008
1009
1010/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1011/// specified loop. Simplify the expression as much as possible.
1012SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1013 const SCEVHandle &Step, const Loop *L) {
1014 std::vector<SCEVHandle> Operands;
1015 Operands.push_back(Start);
1016 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1017 if (StepChrec->getLoop() == L) {
1018 Operands.insert(Operands.end(), StepChrec->op_begin(),
1019 StepChrec->op_end());
1020 return get(Operands, L);
1021 }
1022
1023 Operands.push_back(Step);
1024 return get(Operands, L);
1025}
1026
1027/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1028/// specified loop. Simplify the expression as much as possible.
1029SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1030 const Loop *L) {
1031 if (Operands.size() == 1) return Operands[0];
1032
1033 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1034 if (StepC->getValue()->isNullValue()) {
1035 Operands.pop_back();
1036 return get(Operands, L); // { X,+,0 } --> X
1037 }
1038
1039 SCEVAddRecExpr *&Result =
1040 SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1041 Operands.end()))];
1042 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1043 return Result;
1044}
1045
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001046SCEVHandle SCEVUnknown::get(Value *V) {
1047 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1048 return SCEVConstant::get(CI);
1049 SCEVUnknown *&Result = SCEVUnknowns[V];
1050 if (Result == 0) Result = new SCEVUnknown(V);
1051 return Result;
1052}
1053
Chris Lattner53e677a2004-04-02 20:23:17 +00001054
1055//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00001056// ScalarEvolutionsImpl Definition and Implementation
1057//===----------------------------------------------------------------------===//
1058//
1059/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1060/// evolution code.
1061///
1062namespace {
1063 struct ScalarEvolutionsImpl {
1064 /// F - The function we are analyzing.
1065 ///
1066 Function &F;
1067
1068 /// LI - The loop information for the function we are currently analyzing.
1069 ///
1070 LoopInfo &LI;
1071
1072 /// UnknownValue - This SCEV is used to represent unknown trip counts and
1073 /// things.
1074 SCEVHandle UnknownValue;
1075
1076 /// Scalars - This is a cache of the scalars we have analyzed so far.
1077 ///
1078 std::map<Value*, SCEVHandle> Scalars;
1079
1080 /// IterationCounts - Cache the iteration count of the loops for this
1081 /// function as they are computed.
1082 std::map<const Loop*, SCEVHandle> IterationCounts;
1083
Chris Lattner3221ad02004-04-17 22:58:41 +00001084 /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1085 /// the PHI instructions that we attempt to compute constant evolutions for.
1086 /// This allows us to avoid potentially expensive recomputation of these
1087 /// properties. An instruction maps to null if we are unable to compute its
1088 /// exit value.
1089 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001090
Chris Lattner53e677a2004-04-02 20:23:17 +00001091 public:
1092 ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1093 : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1094
1095 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1096 /// expression and create a new one.
1097 SCEVHandle getSCEV(Value *V);
1098
Chris Lattnera0740fb2005-08-09 23:36:33 +00001099 /// hasSCEV - Return true if the SCEV for this value has already been
1100 /// computed.
1101 bool hasSCEV(Value *V) const {
1102 return Scalars.count(V);
1103 }
1104
1105 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1106 /// the specified value.
1107 void setSCEV(Value *V, const SCEVHandle &H) {
1108 bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1109 assert(isNew && "This entry already existed!");
1110 }
1111
1112
Chris Lattner53e677a2004-04-02 20:23:17 +00001113 /// getSCEVAtScope - Compute the value of the specified expression within
1114 /// the indicated loop (which may be null to indicate in no loop). If the
1115 /// expression cannot be evaluated, return UnknownValue itself.
1116 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1117
1118
1119 /// hasLoopInvariantIterationCount - Return true if the specified loop has
1120 /// an analyzable loop-invariant iteration count.
1121 bool hasLoopInvariantIterationCount(const Loop *L);
1122
1123 /// getIterationCount - If the specified loop has a predictable iteration
1124 /// count, return it. Note that it is not valid to call this method on a
1125 /// loop without a loop-invariant iteration count.
1126 SCEVHandle getIterationCount(const Loop *L);
1127
1128 /// deleteInstructionFromRecords - This method should be called by the
1129 /// client before it removes an instruction from the program, to make sure
1130 /// that no dangling references are left around.
1131 void deleteInstructionFromRecords(Instruction *I);
1132
1133 private:
1134 /// createSCEV - We know that there is no SCEV for the specified value.
1135 /// Analyze the expression.
1136 SCEVHandle createSCEV(Value *V);
1137 SCEVHandle createNodeForCast(CastInst *CI);
1138
1139 /// createNodeForPHI - Provide the special handling we need to analyze PHI
1140 /// SCEVs.
1141 SCEVHandle createNodeForPHI(PHINode *PN);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001142
1143 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1144 /// for the specified instruction and replaces any references to the
1145 /// symbolic value SymName with the specified value. This is used during
1146 /// PHI resolution.
1147 void ReplaceSymbolicValueWithConcrete(Instruction *I,
1148 const SCEVHandle &SymName,
1149 const SCEVHandle &NewVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00001150
1151 /// ComputeIterationCount - Compute the number of times the specified loop
1152 /// will iterate.
1153 SCEVHandle ComputeIterationCount(const Loop *L);
1154
Chris Lattner673e02b2004-10-12 01:49:27 +00001155 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1156 /// 'setcc load X, cst', try to se if we can compute the trip count.
1157 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1158 Constant *RHS,
1159 const Loop *L,
1160 unsigned SetCCOpcode);
1161
Chris Lattner7980fb92004-04-17 18:36:24 +00001162 /// ComputeIterationCountExhaustively - If the trip is known to execute a
1163 /// constant number of times (the condition evolves only from constants),
1164 /// try to evaluate a few iterations of the loop until we get the exit
1165 /// condition gets a value of ExitWhen (true or false). If we cannot
1166 /// evaluate the trip count of the loop, return UnknownValue.
1167 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1168 bool ExitWhen);
1169
Chris Lattner53e677a2004-04-02 20:23:17 +00001170 /// HowFarToZero - Return the number of times a backedge comparing the
1171 /// specified value to zero will execute. If not computable, return
Chris Lattnerdb25de42005-08-15 23:33:51 +00001172 /// UnknownValue.
Chris Lattner53e677a2004-04-02 20:23:17 +00001173 SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1174
1175 /// HowFarToNonZero - Return the number of times a backedge checking the
1176 /// specified value for nonzero will execute. If not computable, return
Chris Lattnerdb25de42005-08-15 23:33:51 +00001177 /// UnknownValue.
Chris Lattner53e677a2004-04-02 20:23:17 +00001178 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
Chris Lattner3221ad02004-04-17 22:58:41 +00001179
Chris Lattnerdb25de42005-08-15 23:33:51 +00001180 /// HowManyLessThans - Return the number of times a backedge containing the
1181 /// specified less-than comparison will execute. If not computable, return
1182 /// UnknownValue.
1183 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1184
Chris Lattner3221ad02004-04-17 22:58:41 +00001185 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1186 /// in the header of its containing loop, we know the loop executes a
1187 /// constant number of times, and the PHI node is just a recurrence
1188 /// involving constants, fold it.
1189 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1190 const Loop *L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001191 };
1192}
1193
1194//===----------------------------------------------------------------------===//
1195// Basic SCEV Analysis and PHI Idiom Recognition Code
1196//
1197
1198/// deleteInstructionFromRecords - This method should be called by the
1199/// client before it removes an instruction from the program, to make sure
1200/// that no dangling references are left around.
1201void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1202 Scalars.erase(I);
Chris Lattner3221ad02004-04-17 22:58:41 +00001203 if (PHINode *PN = dyn_cast<PHINode>(I))
1204 ConstantEvolutionLoopExitValue.erase(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00001205}
1206
1207
1208/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1209/// expression and create a new one.
1210SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1211 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1212
1213 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1214 if (I != Scalars.end()) return I->second;
1215 SCEVHandle S = createSCEV(V);
1216 Scalars.insert(std::make_pair(V, S));
1217 return S;
1218}
1219
Chris Lattner4dc534c2005-02-13 04:37:18 +00001220/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1221/// the specified instruction and replaces any references to the symbolic value
1222/// SymName with the specified value. This is used during PHI resolution.
1223void ScalarEvolutionsImpl::
1224ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1225 const SCEVHandle &NewVal) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001226 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001227 if (SI == Scalars.end()) return;
Chris Lattner53e677a2004-04-02 20:23:17 +00001228
Chris Lattner4dc534c2005-02-13 04:37:18 +00001229 SCEVHandle NV =
1230 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1231 if (NV == SI->second) return; // No change.
1232
1233 SI->second = NV; // Update the scalars map!
1234
1235 // Any instruction values that use this instruction might also need to be
1236 // updated!
1237 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1238 UI != E; ++UI)
1239 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1240}
Chris Lattner53e677a2004-04-02 20:23:17 +00001241
1242/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1243/// a loop header, making it a potential recurrence, or it doesn't.
1244///
1245SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1246 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1247 if (const Loop *L = LI.getLoopFor(PN->getParent()))
1248 if (L->getHeader() == PN->getParent()) {
1249 // If it lives in the loop header, it has two incoming values, one
1250 // from outside the loop, and one from inside.
1251 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1252 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001253
Chris Lattner53e677a2004-04-02 20:23:17 +00001254 // While we are analyzing this PHI node, handle its value symbolically.
1255 SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1256 assert(Scalars.find(PN) == Scalars.end() &&
1257 "PHI node already processed?");
1258 Scalars.insert(std::make_pair(PN, SymbolicName));
1259
1260 // Using this symbolic name for the PHI, analyze the value coming around
1261 // the back-edge.
1262 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1263
1264 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1265 // has a special value for the first iteration of the loop.
1266
1267 // If the value coming around the backedge is an add with the symbolic
1268 // value we just inserted, then we found a simple induction variable!
1269 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1270 // If there is a single occurrence of the symbolic value, replace it
1271 // with a recurrence.
1272 unsigned FoundIndex = Add->getNumOperands();
1273 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1274 if (Add->getOperand(i) == SymbolicName)
1275 if (FoundIndex == e) {
1276 FoundIndex = i;
1277 break;
1278 }
1279
1280 if (FoundIndex != Add->getNumOperands()) {
1281 // Create an add with everything but the specified operand.
1282 std::vector<SCEVHandle> Ops;
1283 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1284 if (i != FoundIndex)
1285 Ops.push_back(Add->getOperand(i));
1286 SCEVHandle Accum = SCEVAddExpr::get(Ops);
1287
1288 // This is not a valid addrec if the step amount is varying each
1289 // loop iteration, but is not itself an addrec in this loop.
1290 if (Accum->isLoopInvariant(L) ||
1291 (isa<SCEVAddRecExpr>(Accum) &&
1292 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1293 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1294 SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L);
1295
1296 // Okay, for the entire analysis of this edge we assumed the PHI
1297 // to be symbolic. We now need to go back and update all of the
1298 // entries for the scalars that use the PHI (except for the PHI
1299 // itself) to use the new analyzed value instead of the "symbolic"
1300 // value.
Chris Lattner4dc534c2005-02-13 04:37:18 +00001301 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001302 return PHISCEV;
1303 }
1304 }
1305 }
1306
1307 return SymbolicName;
1308 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001309
Chris Lattner53e677a2004-04-02 20:23:17 +00001310 // If it's not a loop phi, we can't handle it yet.
1311 return SCEVUnknown::get(PN);
1312}
1313
1314/// createNodeForCast - Handle the various forms of casts that we support.
1315///
1316SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
1317 const Type *SrcTy = CI->getOperand(0)->getType();
1318 const Type *DestTy = CI->getType();
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001319
Chris Lattner53e677a2004-04-02 20:23:17 +00001320 // If this is a noop cast (ie, conversion from int to uint), ignore it.
1321 if (SrcTy->isLosslesslyConvertibleTo(DestTy))
1322 return getSCEV(CI->getOperand(0));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001323
Chris Lattner53e677a2004-04-02 20:23:17 +00001324 if (SrcTy->isInteger() && DestTy->isInteger()) {
1325 // Otherwise, if this is a truncating integer cast, we can represent this
1326 // cast.
1327 if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1328 return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
1329 CI->getType()->getUnsignedVersion());
1330 if (SrcTy->isUnsigned() &&
1331 SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1332 return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
1333 CI->getType()->getUnsignedVersion());
1334 }
1335
1336 // If this is an sign or zero extending cast and we can prove that the value
1337 // will never overflow, we could do similar transformations.
1338
1339 // Otherwise, we can't handle this cast!
1340 return SCEVUnknown::get(CI);
1341}
1342
1343
1344/// createSCEV - We know that there is no SCEV for the specified value.
1345/// Analyze the expression.
1346///
1347SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1348 if (Instruction *I = dyn_cast<Instruction>(V)) {
1349 switch (I->getOpcode()) {
1350 case Instruction::Add:
1351 return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1352 getSCEV(I->getOperand(1)));
1353 case Instruction::Mul:
1354 return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1355 getSCEV(I->getOperand(1)));
1356 case Instruction::Div:
1357 if (V->getType()->isInteger() && V->getType()->isUnsigned())
1358 return SCEVUDivExpr::get(getSCEV(I->getOperand(0)),
1359 getSCEV(I->getOperand(1)));
1360 break;
1361
1362 case Instruction::Sub:
Chris Lattnerbac5b462005-03-09 05:34:41 +00001363 return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1364 getSCEV(I->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001365
1366 case Instruction::Shl:
1367 // Turn shift left of a constant amount into a multiply.
1368 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1369 Constant *X = ConstantInt::get(V->getType(), 1);
1370 X = ConstantExpr::getShl(X, SA);
1371 return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1372 }
1373 break;
1374
1375 case Instruction::Shr:
1376 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
1377 if (V->getType()->isUnsigned()) {
1378 Constant *X = ConstantInt::get(V->getType(), 1);
1379 X = ConstantExpr::getShl(X, SA);
1380 return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1381 }
1382 break;
1383
1384 case Instruction::Cast:
1385 return createNodeForCast(cast<CastInst>(I));
1386
1387 case Instruction::PHI:
1388 return createNodeForPHI(cast<PHINode>(I));
1389
1390 default: // We cannot analyze this expression.
1391 break;
1392 }
1393 }
1394
1395 return SCEVUnknown::get(V);
1396}
1397
1398
1399
1400//===----------------------------------------------------------------------===//
1401// Iteration Count Computation Code
1402//
1403
1404/// getIterationCount - If the specified loop has a predictable iteration
1405/// count, return it. Note that it is not valid to call this method on a
1406/// loop without a loop-invariant iteration count.
1407SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1408 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1409 if (I == IterationCounts.end()) {
1410 SCEVHandle ItCount = ComputeIterationCount(L);
1411 I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1412 if (ItCount != UnknownValue) {
1413 assert(ItCount->isLoopInvariant(L) &&
1414 "Computed trip count isn't loop invariant for loop!");
1415 ++NumTripCountsComputed;
1416 } else if (isa<PHINode>(L->getHeader()->begin())) {
1417 // Only count loops that have phi nodes as not being computable.
1418 ++NumTripCountsNotComputed;
1419 }
1420 }
1421 return I->second;
1422}
1423
1424/// ComputeIterationCount - Compute the number of times the specified loop
1425/// will iterate.
1426SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1427 // If the loop has a non-one exit block count, we can't analyze it.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001428 std::vector<BasicBlock*> ExitBlocks;
1429 L->getExitBlocks(ExitBlocks);
1430 if (ExitBlocks.size() != 1) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001431
1432 // Okay, there is one exit block. Try to find the condition that causes the
1433 // loop to be exited.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001434 BasicBlock *ExitBlock = ExitBlocks[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001435
1436 BasicBlock *ExitingBlock = 0;
1437 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1438 PI != E; ++PI)
1439 if (L->contains(*PI)) {
1440 if (ExitingBlock == 0)
1441 ExitingBlock = *PI;
1442 else
1443 return UnknownValue; // More than one block exiting!
1444 }
1445 assert(ExitingBlock && "No exits from loop, something is broken!");
1446
1447 // Okay, we've computed the exiting block. See what condition causes us to
1448 // exit.
1449 //
1450 // FIXME: we should be able to handle switch instructions (with a single exit)
1451 // FIXME: We should handle cast of int to bool as well
1452 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1453 if (ExitBr == 0) return UnknownValue;
1454 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1455 SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
Chris Lattner7980fb92004-04-17 18:36:24 +00001456 if (ExitCond == 0) // Not a setcc
1457 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1458 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner53e677a2004-04-02 20:23:17 +00001459
Chris Lattner673e02b2004-10-12 01:49:27 +00001460 // If the condition was exit on true, convert the condition to exit on false.
1461 Instruction::BinaryOps Cond;
1462 if (ExitBr->getSuccessor(1) == ExitBlock)
1463 Cond = ExitCond->getOpcode();
1464 else
1465 Cond = ExitCond->getInverseCondition();
1466
1467 // Handle common loops like: for (X = "string"; *X; ++X)
1468 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1469 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1470 SCEVHandle ItCnt =
1471 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1472 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1473 }
1474
Chris Lattner53e677a2004-04-02 20:23:17 +00001475 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1476 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1477
1478 // Try to evaluate any dependencies out of the loop.
1479 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1480 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1481 Tmp = getSCEVAtScope(RHS, L);
1482 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1483
Chris Lattner53e677a2004-04-02 20:23:17 +00001484 // At this point, we would like to compute how many iterations of the loop the
1485 // predicate will return true for these inputs.
1486 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1487 // If there is a constant, force it into the RHS.
1488 std::swap(LHS, RHS);
1489 Cond = SetCondInst::getSwappedCondition(Cond);
1490 }
1491
1492 // FIXME: think about handling pointer comparisons! i.e.:
1493 // while (P != P+100) ++P;
1494
1495 // If we have a comparison of a chrec against a constant, try to use value
1496 // ranges to answer this query.
1497 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1498 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1499 if (AddRec->getLoop() == L) {
1500 // Form the comparison range using the constant of the correct type so
1501 // that the ConstantRange class knows to do a signed or unsigned
1502 // comparison.
1503 ConstantInt *CompVal = RHSC->getValue();
1504 const Type *RealTy = ExitCond->getOperand(0)->getType();
1505 CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
1506 if (CompVal) {
1507 // Form the constant range.
1508 ConstantRange CompRange(Cond, CompVal);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001509
Chris Lattner53e677a2004-04-02 20:23:17 +00001510 // Now that we have it, if it's signed, convert it to an unsigned
1511 // range.
1512 if (CompRange.getLower()->getType()->isSigned()) {
1513 const Type *NewTy = RHSC->getValue()->getType();
1514 Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
1515 Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
1516 CompRange = ConstantRange(NewL, NewU);
1517 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001518
Chris Lattner53e677a2004-04-02 20:23:17 +00001519 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1520 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1521 }
1522 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001523
Chris Lattner53e677a2004-04-02 20:23:17 +00001524 switch (Cond) {
1525 case Instruction::SetNE: // while (X != Y)
1526 // Convert to: while (X-Y != 0)
Chris Lattner7980fb92004-04-17 18:36:24 +00001527 if (LHS->getType()->isInteger()) {
Chris Lattnerbac5b462005-03-09 05:34:41 +00001528 SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
Chris Lattner7980fb92004-04-17 18:36:24 +00001529 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1530 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001531 break;
1532 case Instruction::SetEQ:
1533 // Convert to: while (X-Y == 0) // while (X == Y)
Chris Lattner7980fb92004-04-17 18:36:24 +00001534 if (LHS->getType()->isInteger()) {
Chris Lattnerbac5b462005-03-09 05:34:41 +00001535 SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
Chris Lattner7980fb92004-04-17 18:36:24 +00001536 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1537 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001538 break;
Chris Lattnerdb25de42005-08-15 23:33:51 +00001539 case Instruction::SetLT:
1540 if (LHS->getType()->isInteger() &&
1541 ExitCond->getOperand(0)->getType()->isSigned()) {
1542 SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1543 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1544 }
1545 break;
1546 case Instruction::SetGT:
1547 if (LHS->getType()->isInteger() &&
1548 ExitCond->getOperand(0)->getType()->isSigned()) {
1549 SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1550 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1551 }
1552 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001553 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001554#if 0
Chris Lattner53e677a2004-04-02 20:23:17 +00001555 std::cerr << "ComputeIterationCount ";
1556 if (ExitCond->getOperand(0)->getType()->isUnsigned())
1557 std::cerr << "[unsigned] ";
1558 std::cerr << *LHS << " "
1559 << Instruction::getOpcodeName(Cond) << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001560#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00001561 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001562 }
Chris Lattner7980fb92004-04-17 18:36:24 +00001563
1564 return ComputeIterationCountExhaustively(L, ExitCond,
1565 ExitBr->getSuccessor(0) == ExitBlock);
1566}
1567
Chris Lattner673e02b2004-10-12 01:49:27 +00001568static ConstantInt *
1569EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1570 SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1571 SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1572 assert(isa<SCEVConstant>(Val) &&
1573 "Evaluation of SCEV at constant didn't fold correctly?");
1574 return cast<SCEVConstant>(Val)->getValue();
1575}
1576
1577/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1578/// and a GEP expression (missing the pointer index) indexing into it, return
1579/// the addressed element of the initializer or null if the index expression is
1580/// invalid.
1581static Constant *
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001582GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00001583 const std::vector<ConstantInt*> &Indices) {
1584 Constant *Init = GV->getInitializer();
1585 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1586 uint64_t Idx = Indices[i]->getRawValue();
1587 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1588 assert(Idx < CS->getNumOperands() && "Bad struct index!");
1589 Init = cast<Constant>(CS->getOperand(Idx));
1590 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1591 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
1592 Init = cast<Constant>(CA->getOperand(Idx));
1593 } else if (isa<ConstantAggregateZero>(Init)) {
1594 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1595 assert(Idx < STy->getNumElements() && "Bad struct index!");
1596 Init = Constant::getNullValue(STy->getElementType(Idx));
1597 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1598 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
1599 Init = Constant::getNullValue(ATy->getElementType());
1600 } else {
1601 assert(0 && "Unknown constant aggregate type!");
1602 }
1603 return 0;
1604 } else {
1605 return 0; // Unknown initializer type
1606 }
1607 }
1608 return Init;
1609}
1610
1611/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1612/// 'setcc load X, cst', try to se if we can compute the trip count.
1613SCEVHandle ScalarEvolutionsImpl::
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001614ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
Chris Lattner673e02b2004-10-12 01:49:27 +00001615 const Loop *L, unsigned SetCCOpcode) {
1616 if (LI->isVolatile()) return UnknownValue;
1617
1618 // Check to see if the loaded pointer is a getelementptr of a global.
1619 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1620 if (!GEP) return UnknownValue;
1621
1622 // Make sure that it is really a constant global we are gepping, with an
1623 // initializer, and make sure the first IDX is really 0.
1624 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1625 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1626 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1627 !cast<Constant>(GEP->getOperand(1))->isNullValue())
1628 return UnknownValue;
1629
1630 // Okay, we allow one non-constant index into the GEP instruction.
1631 Value *VarIdx = 0;
1632 std::vector<ConstantInt*> Indexes;
1633 unsigned VarIdxNum = 0;
1634 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1635 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1636 Indexes.push_back(CI);
1637 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1638 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
1639 VarIdx = GEP->getOperand(i);
1640 VarIdxNum = i-2;
1641 Indexes.push_back(0);
1642 }
1643
1644 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1645 // Check to see if X is a loop variant variable value now.
1646 SCEVHandle Idx = getSCEV(VarIdx);
1647 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1648 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1649
1650 // We can only recognize very limited forms of loop index expressions, in
1651 // particular, only affine AddRec's like {C1,+,C2}.
1652 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1653 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1654 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1655 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1656 return UnknownValue;
1657
1658 unsigned MaxSteps = MaxBruteForceIterations;
1659 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1660 ConstantUInt *ItCst =
1661 ConstantUInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
1662 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1663
1664 // Form the GEP offset.
1665 Indexes[VarIdxNum] = Val;
1666
1667 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1668 if (Result == 0) break; // Cannot compute!
1669
1670 // Evaluate the condition for this iteration.
1671 Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
1672 if (!isa<ConstantBool>(Result)) break; // Couldn't decide for sure
1673 if (Result == ConstantBool::False) {
1674#if 0
1675 std::cerr << "\n***\n*** Computed loop count " << *ItCst
1676 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1677 << "***\n";
1678#endif
1679 ++NumArrayLenItCounts;
1680 return SCEVConstant::get(ItCst); // Found terminating iteration!
1681 }
1682 }
1683 return UnknownValue;
1684}
1685
1686
Chris Lattner3221ad02004-04-17 22:58:41 +00001687/// CanConstantFold - Return true if we can constant fold an instruction of the
1688/// specified type, assuming that all operands were constants.
1689static bool CanConstantFold(const Instruction *I) {
1690 if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
1691 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1692 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001693
Chris Lattner3221ad02004-04-17 22:58:41 +00001694 if (const CallInst *CI = dyn_cast<CallInst>(I))
1695 if (const Function *F = CI->getCalledFunction())
1696 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast
1697 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00001698}
1699
Chris Lattner3221ad02004-04-17 22:58:41 +00001700/// ConstantFold - Constant fold an instruction of the specified type with the
1701/// specified constant operands. This function may modify the operands vector.
1702static Constant *ConstantFold(const Instruction *I,
1703 std::vector<Constant*> &Operands) {
Chris Lattner7980fb92004-04-17 18:36:24 +00001704 if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
1705 return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
1706
1707 switch (I->getOpcode()) {
1708 case Instruction::Cast:
1709 return ConstantExpr::getCast(Operands[0], I->getType());
1710 case Instruction::Select:
1711 return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
1712 case Instruction::Call:
Reid Spencere8404342004-07-18 00:18:30 +00001713 if (Function *GV = dyn_cast<Function>(Operands[0])) {
Chris Lattner7980fb92004-04-17 18:36:24 +00001714 Operands.erase(Operands.begin());
Reid Spencere8404342004-07-18 00:18:30 +00001715 return ConstantFoldCall(cast<Function>(GV), Operands);
Chris Lattner7980fb92004-04-17 18:36:24 +00001716 }
1717
1718 return 0;
1719 case Instruction::GetElementPtr:
1720 Constant *Base = Operands[0];
1721 Operands.erase(Operands.begin());
1722 return ConstantExpr::getGetElementPtr(Base, Operands);
1723 }
1724 return 0;
1725}
1726
1727
Chris Lattner3221ad02004-04-17 22:58:41 +00001728/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1729/// in the loop that V is derived from. We allow arbitrary operations along the
1730/// way, but the operands of an operation must either be constants or a value
1731/// derived from a constant PHI. If this expression does not fit with these
1732/// constraints, return null.
1733static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1734 // If this is not an instruction, or if this is an instruction outside of the
1735 // loop, it can't be derived from a loop PHI.
1736 Instruction *I = dyn_cast<Instruction>(V);
1737 if (I == 0 || !L->contains(I->getParent())) return 0;
1738
1739 if (PHINode *PN = dyn_cast<PHINode>(I))
1740 if (L->getHeader() == I->getParent())
1741 return PN;
1742 else
1743 // We don't currently keep track of the control flow needed to evaluate
1744 // PHIs, so we cannot handle PHIs inside of loops.
1745 return 0;
1746
1747 // If we won't be able to constant fold this expression even if the operands
1748 // are constants, return early.
1749 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001750
Chris Lattner3221ad02004-04-17 22:58:41 +00001751 // Otherwise, we can evaluate this instruction if all of its operands are
1752 // constant or derived from a PHI node themselves.
1753 PHINode *PHI = 0;
1754 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1755 if (!(isa<Constant>(I->getOperand(Op)) ||
1756 isa<GlobalValue>(I->getOperand(Op)))) {
1757 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1758 if (P == 0) return 0; // Not evolving from PHI
1759 if (PHI == 0)
1760 PHI = P;
1761 else if (PHI != P)
1762 return 0; // Evolving from multiple different PHIs.
1763 }
1764
1765 // This is a expression evolving from a constant PHI!
1766 return PHI;
1767}
1768
1769/// EvaluateExpression - Given an expression that passes the
1770/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1771/// in the loop has the value PHIVal. If we can't fold this expression for some
1772/// reason, return null.
1773static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1774 if (isa<PHINode>(V)) return PHIVal;
Chris Lattner3221ad02004-04-17 22:58:41 +00001775 if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
Reid Spencere8404342004-07-18 00:18:30 +00001776 return GV;
1777 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00001778 Instruction *I = cast<Instruction>(V);
1779
1780 std::vector<Constant*> Operands;
1781 Operands.resize(I->getNumOperands());
1782
1783 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1784 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1785 if (Operands[i] == 0) return 0;
1786 }
1787
1788 return ConstantFold(I, Operands);
1789}
1790
1791/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1792/// in the header of its containing loop, we know the loop executes a
1793/// constant number of times, and the PHI node is just a recurrence
1794/// involving constants, fold it.
1795Constant *ScalarEvolutionsImpl::
1796getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1797 std::map<PHINode*, Constant*>::iterator I =
1798 ConstantEvolutionLoopExitValue.find(PN);
1799 if (I != ConstantEvolutionLoopExitValue.end())
1800 return I->second;
1801
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001802 if (Its > MaxBruteForceIterations)
Chris Lattner3221ad02004-04-17 22:58:41 +00001803 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
1804
1805 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1806
1807 // Since the loop is canonicalized, the PHI node must have two entries. One
1808 // entry must be a constant (coming in from outside of the loop), and the
1809 // second must be derived from the same PHI.
1810 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1811 Constant *StartCST =
1812 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1813 if (StartCST == 0)
1814 return RetVal = 0; // Must be a constant.
1815
1816 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1817 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1818 if (PN2 != PN)
1819 return RetVal = 0; // Not derived from same PHI.
1820
1821 // Execute the loop symbolically to determine the exit value.
1822 unsigned IterationNum = 0;
1823 unsigned NumIterations = Its;
1824 if (NumIterations != Its)
1825 return RetVal = 0; // More than 2^32 iterations??
1826
1827 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1828 if (IterationNum == NumIterations)
1829 return RetVal = PHIVal; // Got exit value!
1830
1831 // Compute the value of the PHI node for the next iteration.
1832 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1833 if (NextPHI == PHIVal)
1834 return RetVal = NextPHI; // Stopped evolving!
1835 if (NextPHI == 0)
1836 return 0; // Couldn't evaluate!
1837 PHIVal = NextPHI;
1838 }
1839}
1840
Chris Lattner7980fb92004-04-17 18:36:24 +00001841/// ComputeIterationCountExhaustively - If the trip is known to execute a
1842/// constant number of times (the condition evolves only from constants),
1843/// try to evaluate a few iterations of the loop until we get the exit
1844/// condition gets a value of ExitWhen (true or false). If we cannot
1845/// evaluate the trip count of the loop, return UnknownValue.
1846SCEVHandle ScalarEvolutionsImpl::
1847ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1848 PHINode *PN = getConstantEvolvingPHI(Cond, L);
1849 if (PN == 0) return UnknownValue;
1850
1851 // Since the loop is canonicalized, the PHI node must have two entries. One
1852 // entry must be a constant (coming in from outside of the loop), and the
1853 // second must be derived from the same PHI.
1854 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1855 Constant *StartCST =
1856 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1857 if (StartCST == 0) return UnknownValue; // Must be a constant.
1858
1859 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1860 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1861 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
1862
1863 // Okay, we find a PHI node that defines the trip count of this loop. Execute
1864 // the loop symbolically to determine when the condition gets a value of
1865 // "ExitWhen".
1866 unsigned IterationNum = 0;
1867 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
1868 for (Constant *PHIVal = StartCST;
1869 IterationNum != MaxIterations; ++IterationNum) {
1870 ConstantBool *CondVal =
1871 dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
1872 if (!CondVal) return UnknownValue; // Couldn't symbolically evaluate.
Chris Lattner3221ad02004-04-17 22:58:41 +00001873
Chris Lattner7980fb92004-04-17 18:36:24 +00001874 if (CondVal->getValue() == ExitWhen) {
Chris Lattner3221ad02004-04-17 22:58:41 +00001875 ConstantEvolutionLoopExitValue[PN] = PHIVal;
Chris Lattner7980fb92004-04-17 18:36:24 +00001876 ++NumBruteForceTripCountsComputed;
1877 return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum));
1878 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001879
Chris Lattner3221ad02004-04-17 22:58:41 +00001880 // Compute the value of the PHI node for the next iteration.
1881 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1882 if (NextPHI == 0 || NextPHI == PHIVal)
Chris Lattner7980fb92004-04-17 18:36:24 +00001883 return UnknownValue; // Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00001884 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00001885 }
1886
1887 // Too many iterations were needed to evaluate.
Chris Lattner53e677a2004-04-02 20:23:17 +00001888 return UnknownValue;
1889}
1890
1891/// getSCEVAtScope - Compute the value of the specified expression within the
1892/// indicated loop (which may be null to indicate in no loop). If the
1893/// expression cannot be evaluated, return UnknownValue.
1894SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1895 // FIXME: this should be turned into a virtual method on SCEV!
1896
Chris Lattner3221ad02004-04-17 22:58:41 +00001897 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001898
Chris Lattner3221ad02004-04-17 22:58:41 +00001899 // If this instruction is evolves from a constant-evolving PHI, compute the
1900 // exit value from the loop without using SCEVs.
1901 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1902 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1903 const Loop *LI = this->LI[I->getParent()];
1904 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
1905 if (PHINode *PN = dyn_cast<PHINode>(I))
1906 if (PN->getParent() == LI->getHeader()) {
1907 // Okay, there is no closed form solution for the PHI node. Check
1908 // to see if the loop that contains it has a known iteration count.
1909 // If so, we may be able to force computation of the exit value.
1910 SCEVHandle IterationCount = getIterationCount(LI);
1911 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1912 // Okay, we know how many times the containing loop executes. If
1913 // this is a constant evolving PHI node, get the final value at
1914 // the specified iteration number.
1915 Constant *RV = getConstantEvolutionLoopExitValue(PN,
1916 ICC->getValue()->getRawValue(),
1917 LI);
1918 if (RV) return SCEVUnknown::get(RV);
1919 }
1920 }
1921
1922 // Okay, this is a some expression that we cannot symbolically evaluate
1923 // into a SCEV. Check to see if it's possible to symbolically evaluate
1924 // the arguments into constants, and if see, try to constant propagate the
1925 // result. This is particularly useful for computing loop exit values.
1926 if (CanConstantFold(I)) {
1927 std::vector<Constant*> Operands;
1928 Operands.reserve(I->getNumOperands());
1929 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1930 Value *Op = I->getOperand(i);
1931 if (Constant *C = dyn_cast<Constant>(Op)) {
1932 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00001933 } else {
1934 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1935 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1936 Operands.push_back(ConstantExpr::getCast(SC->getValue(),
1937 Op->getType()));
1938 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1939 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1940 Operands.push_back(ConstantExpr::getCast(C, Op->getType()));
1941 else
1942 return V;
1943 } else {
1944 return V;
1945 }
1946 }
1947 }
1948 return SCEVUnknown::get(ConstantFold(I, Operands));
1949 }
1950 }
1951
1952 // This is some other type of SCEVUnknown, just return it.
1953 return V;
1954 }
1955
Chris Lattner53e677a2004-04-02 20:23:17 +00001956 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1957 // Avoid performing the look-up in the common case where the specified
1958 // expression has no loop-variant portions.
1959 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1960 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1961 if (OpAtScope != Comm->getOperand(i)) {
1962 if (OpAtScope == UnknownValue) return UnknownValue;
1963 // Okay, at least one of these operands is loop variant but might be
1964 // foldable. Build a new instance of the folded commutative expression.
Chris Lattner3221ad02004-04-17 22:58:41 +00001965 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00001966 NewOps.push_back(OpAtScope);
1967
1968 for (++i; i != e; ++i) {
1969 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1970 if (OpAtScope == UnknownValue) return UnknownValue;
1971 NewOps.push_back(OpAtScope);
1972 }
1973 if (isa<SCEVAddExpr>(Comm))
1974 return SCEVAddExpr::get(NewOps);
1975 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
1976 return SCEVMulExpr::get(NewOps);
1977 }
1978 }
1979 // If we got here, all operands are loop invariant.
1980 return Comm;
1981 }
1982
1983 if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) {
1984 SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L);
1985 if (LHS == UnknownValue) return LHS;
1986 SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L);
1987 if (RHS == UnknownValue) return RHS;
1988 if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS())
1989 return UDiv; // must be loop invariant
1990 return SCEVUDivExpr::get(LHS, RHS);
1991 }
1992
1993 // If this is a loop recurrence for a loop that does not contain L, then we
1994 // are dealing with the final value computed by the loop.
1995 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
1996 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
1997 // To evaluate this recurrence, we need to know how many times the AddRec
1998 // loop iterates. Compute this now.
1999 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2000 if (IterationCount == UnknownValue) return UnknownValue;
2001 IterationCount = getTruncateOrZeroExtend(IterationCount,
2002 AddRec->getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002003
Chris Lattner53e677a2004-04-02 20:23:17 +00002004 // If the value is affine, simplify the expression evaluation to just
2005 // Start + Step*IterationCount.
2006 if (AddRec->isAffine())
2007 return SCEVAddExpr::get(AddRec->getStart(),
2008 SCEVMulExpr::get(IterationCount,
2009 AddRec->getOperand(1)));
2010
2011 // Otherwise, evaluate it the hard way.
2012 return AddRec->evaluateAtIteration(IterationCount);
2013 }
2014 return UnknownValue;
2015 }
2016
2017 //assert(0 && "Unknown SCEV type!");
2018 return UnknownValue;
2019}
2020
2021
2022/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2023/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2024/// might be the same) or two SCEVCouldNotCompute objects.
2025///
2026static std::pair<SCEVHandle,SCEVHandle>
2027SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2028 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2029 SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2030 SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2031 SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002032
Chris Lattner53e677a2004-04-02 20:23:17 +00002033 // We currently can only solve this if the coefficients are constants.
2034 if (!L || !M || !N) {
2035 SCEV *CNC = new SCEVCouldNotCompute();
2036 return std::make_pair(CNC, CNC);
2037 }
2038
2039 Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002040
Chris Lattner53e677a2004-04-02 20:23:17 +00002041 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2042 Constant *C = L->getValue();
2043 // The B coefficient is M-N/2
2044 Constant *B = ConstantExpr::getSub(M->getValue(),
2045 ConstantExpr::getDiv(N->getValue(),
2046 Two));
2047 // The A coefficient is N/2
2048 Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002049
Chris Lattner53e677a2004-04-02 20:23:17 +00002050 // Compute the B^2-4ac term.
2051 Constant *SqrtTerm =
2052 ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2053 ConstantExpr::getMul(A, C));
2054 SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2055
2056 // Compute floor(sqrt(B^2-4ac))
2057 ConstantUInt *SqrtVal =
2058 cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
2059 SqrtTerm->getType()->getUnsignedVersion()));
2060 uint64_t SqrtValV = SqrtVal->getValue();
Chris Lattner219c1412004-10-25 18:40:08 +00002061 uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002062 // The square root might not be precise for arbitrary 64-bit integer
2063 // values. Do some sanity checks to ensure it's correct.
2064 if (SqrtValV2*SqrtValV2 > SqrtValV ||
2065 (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2066 SCEV *CNC = new SCEVCouldNotCompute();
2067 return std::make_pair(CNC, CNC);
2068 }
2069
2070 SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
2071 SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002072
Chris Lattner53e677a2004-04-02 20:23:17 +00002073 Constant *NegB = ConstantExpr::getNeg(B);
2074 Constant *TwoA = ConstantExpr::getMul(A, Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002075
Chris Lattner53e677a2004-04-02 20:23:17 +00002076 // The divisions must be performed as signed divisions.
2077 const Type *SignedTy = NegB->getType()->getSignedVersion();
2078 NegB = ConstantExpr::getCast(NegB, SignedTy);
2079 TwoA = ConstantExpr::getCast(TwoA, SignedTy);
2080 SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002081
Chris Lattner53e677a2004-04-02 20:23:17 +00002082 Constant *Solution1 =
2083 ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
2084 Constant *Solution2 =
2085 ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
2086 return std::make_pair(SCEVUnknown::get(Solution1),
2087 SCEVUnknown::get(Solution2));
2088}
2089
2090/// HowFarToZero - Return the number of times a backedge comparing the specified
2091/// value to zero will execute. If not computable, return UnknownValue
2092SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2093 // If the value is a constant
2094 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2095 // If the value is already zero, the branch will execute zero times.
2096 if (C->getValue()->isNullValue()) return C;
2097 return UnknownValue; // Otherwise it will loop infinitely.
2098 }
2099
2100 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2101 if (!AddRec || AddRec->getLoop() != L)
2102 return UnknownValue;
2103
2104 if (AddRec->isAffine()) {
2105 // If this is an affine expression the execution count of this branch is
2106 // equal to:
2107 //
2108 // (0 - Start/Step) iff Start % Step == 0
2109 //
2110 // Get the initial value for the loop.
2111 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Chris Lattner4a2b23e2004-10-11 04:07:27 +00002112 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00002113 SCEVHandle Step = AddRec->getOperand(1);
2114
2115 Step = getSCEVAtScope(Step, L->getParentLoop());
2116
2117 // Figure out if Start % Step == 0.
2118 // FIXME: We should add DivExpr and RemExpr operations to our AST.
2119 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2120 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0
Chris Lattnerbac5b462005-03-09 05:34:41 +00002121 return SCEV::getNegativeSCEV(Start); // 0 - Start/1 == -Start
Chris Lattner53e677a2004-04-02 20:23:17 +00002122 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0
2123 return Start; // 0 - Start/-1 == Start
2124
2125 // Check to see if Start is divisible by SC with no remainder.
2126 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2127 ConstantInt *StartCC = StartC->getValue();
2128 Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2129 Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
2130 if (Rem->isNullValue()) {
2131 Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
2132 return SCEVUnknown::get(Result);
2133 }
2134 }
2135 }
2136 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2137 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2138 // the quadratic equation to solve it.
2139 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2140 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2141 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2142 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002143#if 0
Chris Lattner53e677a2004-04-02 20:23:17 +00002144 std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2145 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002146#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002147 // Pick the smallest positive root value.
2148 assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
2149 if (ConstantBool *CB =
2150 dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2151 R2->getValue()))) {
2152 if (CB != ConstantBool::True)
2153 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002154
Chris Lattner53e677a2004-04-02 20:23:17 +00002155 // We can only use this value if the chrec ends up with an exact zero
2156 // value at this index. When solving for "X*X != 5", for example, we
2157 // should not accept a root of 2.
2158 SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2159 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2160 if (EvalVal->getValue()->isNullValue())
2161 return R1; // We found a quadratic root!
2162 }
2163 }
2164 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002165
Chris Lattner53e677a2004-04-02 20:23:17 +00002166 return UnknownValue;
2167}
2168
2169/// HowFarToNonZero - Return the number of times a backedge checking the
2170/// specified value for nonzero will execute. If not computable, return
2171/// UnknownValue
2172SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2173 // Loops that look like: while (X == 0) are very strange indeed. We don't
2174 // handle them yet except for the trivial case. This could be expanded in the
2175 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002176
Chris Lattner53e677a2004-04-02 20:23:17 +00002177 // If the value is a constant, check to see if it is known to be non-zero
2178 // already. If so, the backedge will execute zero times.
2179 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2180 Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2181 Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
2182 if (NonZero == ConstantBool::True)
2183 return getSCEV(Zero);
2184 return UnknownValue; // Otherwise it will loop infinitely.
2185 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002186
Chris Lattner53e677a2004-04-02 20:23:17 +00002187 // We could implement others, but I really doubt anyone writes loops like
2188 // this, and if they did, they would already be constant folded.
2189 return UnknownValue;
2190}
2191
Chris Lattnerdb25de42005-08-15 23:33:51 +00002192/// HowManyLessThans - Return the number of times a backedge containing the
2193/// specified less-than comparison will execute. If not computable, return
2194/// UnknownValue.
2195SCEVHandle ScalarEvolutionsImpl::
2196HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2197 // Only handle: "ADDREC < LoopInvariant".
2198 if (!RHS->isLoopInvariant(L)) return UnknownValue;
2199
2200 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2201 if (!AddRec || AddRec->getLoop() != L)
2202 return UnknownValue;
2203
2204 if (AddRec->isAffine()) {
2205 // FORNOW: We only support unit strides.
2206 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2207 if (AddRec->getOperand(1) != One)
2208 return UnknownValue;
2209
2210 // The number of iterations for "[n,+,1] < m", is m-n. However, we don't
2211 // know that m is >= n on input to the loop. If it is, the condition return
2212 // true zero times. What we really should return, for full generality, is
2213 // SMAX(0, m-n). Since we cannot check this, we will instead check for a
2214 // canonical loop form: most do-loops will have a check that dominates the
2215 // loop, that only enters the loop if [n-1]<m. If we can find this check,
2216 // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2217
2218 // Search for the check.
2219 BasicBlock *Preheader = L->getLoopPreheader();
2220 BasicBlock *PreheaderDest = L->getHeader();
2221 if (Preheader == 0) return UnknownValue;
2222
2223 BranchInst *LoopEntryPredicate =
2224 dyn_cast<BranchInst>(Preheader->getTerminator());
2225 if (!LoopEntryPredicate) return UnknownValue;
2226
2227 // This might be a critical edge broken out. If the loop preheader ends in
2228 // an unconditional branch to the loop, check to see if the preheader has a
2229 // single predecessor, and if so, look for its terminator.
2230 while (LoopEntryPredicate->isUnconditional()) {
2231 PreheaderDest = Preheader;
2232 Preheader = Preheader->getSinglePredecessor();
2233 if (!Preheader) return UnknownValue; // Multiple preds.
2234
2235 LoopEntryPredicate =
2236 dyn_cast<BranchInst>(Preheader->getTerminator());
2237 if (!LoopEntryPredicate) return UnknownValue;
2238 }
2239
2240 // Now that we found a conditional branch that dominates the loop, check to
2241 // see if it is the comparison we are looking for.
2242 SetCondInst *SCI =dyn_cast<SetCondInst>(LoopEntryPredicate->getCondition());
2243 if (!SCI) return UnknownValue;
2244 Value *PreCondLHS = SCI->getOperand(0);
2245 Value *PreCondRHS = SCI->getOperand(1);
2246 Instruction::BinaryOps Cond;
2247 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2248 Cond = SCI->getOpcode();
2249 else
2250 Cond = SCI->getInverseCondition();
2251
2252 switch (Cond) {
2253 case Instruction::SetGT:
2254 std::swap(PreCondLHS, PreCondRHS);
2255 Cond = Instruction::SetLT;
2256 // Fall Through.
2257 case Instruction::SetLT:
2258 if (PreCondLHS->getType()->isInteger() &&
2259 PreCondLHS->getType()->isSigned()) {
2260 if (RHS != getSCEV(PreCondRHS))
2261 return UnknownValue; // Not a comparison against 'm'.
2262
2263 if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2264 != getSCEV(PreCondLHS))
2265 return UnknownValue; // Not a comparison against 'n-1'.
2266 break;
2267 } else {
2268 return UnknownValue;
2269 }
2270 default: break;
2271 }
2272
2273 //std::cerr << "Computed Loop Trip Count as: " <<
2274 // *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2275 return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2276 }
2277
2278 return UnknownValue;
2279}
2280
Chris Lattner53e677a2004-04-02 20:23:17 +00002281/// getNumIterationsInRange - Return the number of iterations of this loop that
2282/// produce values in the specified constant range. Another way of looking at
2283/// this is that it returns the first iteration number where the value is not in
2284/// the condition, thus computing the exit count. If the iteration count can't
2285/// be computed, an instance of SCEVCouldNotCompute is returned.
2286SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2287 if (Range.isFullSet()) // Infinite loop.
2288 return new SCEVCouldNotCompute();
2289
2290 // If the start is a non-zero constant, shift the range to simplify things.
2291 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2292 if (!SC->getValue()->isNullValue()) {
2293 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Chris Lattnerb06432c2004-04-23 21:29:03 +00002294 Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
Chris Lattner53e677a2004-04-02 20:23:17 +00002295 SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2296 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2297 return ShiftedAddRec->getNumIterationsInRange(
2298 Range.subtract(SC->getValue()));
2299 // This is strange and shouldn't happen.
2300 return new SCEVCouldNotCompute();
2301 }
2302
2303 // The only time we can solve this is when we have all constant indices.
2304 // Otherwise, we cannot determine the overflow conditions.
2305 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2306 if (!isa<SCEVConstant>(getOperand(i)))
2307 return new SCEVCouldNotCompute();
2308
2309
2310 // Okay at this point we know that all elements of the chrec are constants and
2311 // that the start element is zero.
2312
2313 // First check to see if the range contains zero. If not, the first
2314 // iteration exits.
2315 ConstantInt *Zero = ConstantInt::get(getType(), 0);
2316 if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002317
Chris Lattner53e677a2004-04-02 20:23:17 +00002318 if (isAffine()) {
2319 // If this is an affine expression then we have this situation:
2320 // Solve {0,+,A} in Range === Ax in Range
2321
2322 // Since we know that zero is in the range, we know that the upper value of
2323 // the range must be the first possible exit value. Also note that we
2324 // already checked for a full range.
2325 ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2326 ConstantInt *A = cast<SCEVConstant>(getOperand(1))->getValue();
2327 ConstantInt *One = ConstantInt::get(getType(), 1);
2328
2329 // The exit value should be (Upper+A-1)/A.
2330 Constant *ExitValue = Upper;
2331 if (A != One) {
2332 ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
2333 ExitValue = ConstantExpr::getDiv(ExitValue, A);
2334 }
2335 assert(isa<ConstantInt>(ExitValue) &&
2336 "Constant folding of integers not implemented?");
2337
2338 // Evaluate at the exit value. If we really did fall out of the valid
2339 // range, then we computed our trip count, otherwise wrap around or other
2340 // things must have happened.
2341 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2342 if (Range.contains(Val))
2343 return new SCEVCouldNotCompute(); // Something strange happened
2344
2345 // Ensure that the previous value is in the range. This is a sanity check.
2346 assert(Range.contains(EvaluateConstantChrecAtConstant(this,
2347 ConstantExpr::getSub(ExitValue, One))) &&
2348 "Linear scev computation is off in a bad way!");
2349 return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2350 } else if (isQuadratic()) {
2351 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2352 // quadratic equation to solve it. To do this, we must frame our problem in
2353 // terms of figuring out when zero is crossed, instead of when
2354 // Range.getUpper() is crossed.
2355 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Chris Lattnerbac5b462005-03-09 05:34:41 +00002356 NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
Chris Lattner53e677a2004-04-02 20:23:17 +00002357 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2358
2359 // Next, solve the constructed addrec
2360 std::pair<SCEVHandle,SCEVHandle> Roots =
2361 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2362 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2363 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2364 if (R1) {
2365 // Pick the smallest positive root value.
2366 assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
2367 if (ConstantBool *CB =
2368 dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2369 R2->getValue()))) {
2370 if (CB != ConstantBool::True)
2371 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002372
Chris Lattner53e677a2004-04-02 20:23:17 +00002373 // Make sure the root is not off by one. The returned iteration should
2374 // not be in the range, but the previous one should be. When solving
2375 // for "X*X < 5", for example, we should not return a root of 2.
2376 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2377 R1->getValue());
2378 if (Range.contains(R1Val)) {
2379 // The next iteration must be out of the range...
2380 Constant *NextVal =
2381 ConstantExpr::getAdd(R1->getValue(),
2382 ConstantInt::get(R1->getType(), 1));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002383
Chris Lattner53e677a2004-04-02 20:23:17 +00002384 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2385 if (!Range.contains(R1Val))
2386 return SCEVUnknown::get(NextVal);
2387 return new SCEVCouldNotCompute(); // Something strange happened
2388 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002389
Chris Lattner53e677a2004-04-02 20:23:17 +00002390 // If R1 was not in the range, then it is a good return value. Make
2391 // sure that R1-1 WAS in the range though, just in case.
2392 Constant *NextVal =
2393 ConstantExpr::getSub(R1->getValue(),
2394 ConstantInt::get(R1->getType(), 1));
2395 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2396 if (Range.contains(R1Val))
2397 return R1;
2398 return new SCEVCouldNotCompute(); // Something strange happened
2399 }
2400 }
2401 }
2402
2403 // Fallback, if this is a general polynomial, figure out the progression
2404 // through brute force: evaluate until we find an iteration that fails the
2405 // test. This is likely to be slow, but getting an accurate trip count is
2406 // incredibly important, we will be able to simplify the exit test a lot, and
2407 // we are almost guaranteed to get a trip count in this case.
2408 ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2409 ConstantInt *One = ConstantInt::get(getType(), 1);
2410 ConstantInt *EndVal = TestVal; // Stop when we wrap around.
2411 do {
2412 ++NumBruteForceEvaluations;
2413 SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2414 if (!isa<SCEVConstant>(Val)) // This shouldn't happen.
2415 return new SCEVCouldNotCompute();
2416
2417 // Check to see if we found the value!
2418 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
2419 return SCEVConstant::get(TestVal);
2420
2421 // Increment to test the next index.
2422 TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2423 } while (TestVal != EndVal);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002424
Chris Lattner53e677a2004-04-02 20:23:17 +00002425 return new SCEVCouldNotCompute();
2426}
2427
2428
2429
2430//===----------------------------------------------------------------------===//
2431// ScalarEvolution Class Implementation
2432//===----------------------------------------------------------------------===//
2433
2434bool ScalarEvolution::runOnFunction(Function &F) {
2435 Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2436 return false;
2437}
2438
2439void ScalarEvolution::releaseMemory() {
2440 delete (ScalarEvolutionsImpl*)Impl;
2441 Impl = 0;
2442}
2443
2444void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2445 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00002446 AU.addRequiredTransitive<LoopInfo>();
2447}
2448
2449SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2450 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2451}
2452
Chris Lattnera0740fb2005-08-09 23:36:33 +00002453/// hasSCEV - Return true if the SCEV for this value has already been
2454/// computed.
2455bool ScalarEvolution::hasSCEV(Value *V) const {
Chris Lattner05bd3742005-08-10 00:59:40 +00002456 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
Chris Lattnera0740fb2005-08-09 23:36:33 +00002457}
2458
2459
2460/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2461/// the specified value.
2462void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2463 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2464}
2465
2466
Chris Lattner53e677a2004-04-02 20:23:17 +00002467SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2468 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2469}
2470
2471bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2472 return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2473}
2474
2475SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2476 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2477}
2478
2479void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2480 return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2481}
2482
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002483static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00002484 const Loop *L) {
2485 // Print all inner loops first
2486 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2487 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002488
Chris Lattner53e677a2004-04-02 20:23:17 +00002489 std::cerr << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00002490
2491 std::vector<BasicBlock*> ExitBlocks;
2492 L->getExitBlocks(ExitBlocks);
2493 if (ExitBlocks.size() != 1)
Chris Lattner53e677a2004-04-02 20:23:17 +00002494 std::cerr << "<multiple exits> ";
2495
2496 if (SE->hasLoopInvariantIterationCount(L)) {
2497 std::cerr << *SE->getIterationCount(L) << " iterations! ";
2498 } else {
2499 std::cerr << "Unpredictable iteration count. ";
2500 }
2501
2502 std::cerr << "\n";
2503}
2504
Reid Spencerce9653c2004-12-07 04:03:45 +00002505void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00002506 Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2507 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2508
2509 OS << "Classifying expressions for: " << F.getName() << "\n";
2510 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Chris Lattner6ffe5512004-04-27 15:13:33 +00002511 if (I->getType()->isInteger()) {
2512 OS << *I;
Chris Lattner53e677a2004-04-02 20:23:17 +00002513 OS << " --> ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002514 SCEVHandle SV = getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00002515 SV->print(OS);
2516 OS << "\t\t";
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002517
Chris Lattner6ffe5512004-04-27 15:13:33 +00002518 if ((*I).getType()->isIntegral()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002519 ConstantRange Bounds = SV->getValueRange();
2520 if (!Bounds.isFullSet())
2521 OS << "Bounds: " << Bounds << " ";
2522 }
2523
Chris Lattner6ffe5512004-04-27 15:13:33 +00002524 if (const Loop *L = LI.getLoopFor((*I).getParent())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002525 OS << "Exits: ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002526 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00002527 if (isa<SCEVCouldNotCompute>(ExitValue)) {
2528 OS << "<<Unknown>>";
2529 } else {
2530 OS << *ExitValue;
2531 }
2532 }
2533
2534
2535 OS << "\n";
2536 }
2537
2538 OS << "Determining loop execution counts for: " << F.getName() << "\n";
2539 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2540 PrintLoopInfo(OS, this, *I);
2541}
2542