blob: 2cea9a0d2d79fc1d2934702b96d927c0702cf2a3 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattner44827152003-12-28 09:47:19 +000021#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner94af4142002-12-25 05:13:53 +000026#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000028#include "llvm/Target/TargetMachine.h"
Chris Lattner3f1e8e72004-02-22 07:04:00 +000029#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Chris Lattnercf93cdd2004-01-30 22:13:44 +000031#include "llvm/Support/CFG.h"
Chris Lattner986618e2004-02-22 19:47:26 +000032#include "Support/Statistic.h"
Chris Lattner44827152003-12-28 09:47:19 +000033using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000034
Chris Lattner986618e2004-02-22 19:47:26 +000035namespace {
36 Statistic<>
37 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
Chris Lattner427aeb42004-04-11 19:21:59 +000038
39 /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
40 /// Representation.
41 ///
42 enum TypeClass {
43 cByte, cShort, cInt, cFP, cLong
44 };
45}
46
47/// getClass - Turn a primitive type into a "class" number which is based on the
48/// size of the type, and whether or not it is floating point.
49///
50static inline TypeClass getClass(const Type *Ty) {
51 switch (Ty->getPrimitiveID()) {
52 case Type::SByteTyID:
53 case Type::UByteTyID: return cByte; // Byte operands are class #0
54 case Type::ShortTyID:
55 case Type::UShortTyID: return cShort; // Short operands are class #1
56 case Type::IntTyID:
57 case Type::UIntTyID:
58 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
59
60 case Type::FloatTyID:
61 case Type::DoubleTyID: return cFP; // Floating Point is #3
62
63 case Type::LongTyID:
64 case Type::ULongTyID: return cLong; // Longs are class #4
65 default:
66 assert(0 && "Invalid type to getClass!");
67 return cByte; // not reached
68 }
69}
70
71// getClassB - Just like getClass, but treat boolean values as bytes.
72static inline TypeClass getClassB(const Type *Ty) {
73 if (Ty == Type::BoolTy) return cByte;
74 return getClass(Ty);
Chris Lattner986618e2004-02-22 19:47:26 +000075}
Chris Lattnercf93cdd2004-01-30 22:13:44 +000076
Chris Lattner72614082002-10-25 22:55:53 +000077namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000078 struct ISel : public FunctionPass, InstVisitor<ISel> {
79 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000080 MachineFunction *F; // The function we are compiling into
81 MachineBasicBlock *BB; // The current MBB we are compiling
82 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner0e5b79c2004-02-15 01:04:03 +000083 int ReturnAddressIndex; // FrameIndex for the return address
Chris Lattner72614082002-10-25 22:55:53 +000084
Chris Lattner72614082002-10-25 22:55:53 +000085 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
86
Chris Lattner333b2fa2002-12-13 10:09:43 +000087 // MBBMap - Mapping between LLVM BB -> Machine BB
88 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
89
Chris Lattnerf70e0c22003-12-28 21:23:38 +000090 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000091
92 /// runOnFunction - Top level implementation of instruction selection for
93 /// the entire function.
94 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000095 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000096 // First pass over the function, lower any unknown intrinsic functions
97 // with the IntrinsicLowering class.
98 LowerUnknownIntrinsicFunctionCalls(Fn);
99
Chris Lattner36b36032002-10-29 23:40:58 +0000100 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000101
Chris Lattner065faeb2002-12-28 20:24:02 +0000102 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +0000103 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
104 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
105
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000106 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +0000107
Chris Lattner0e5b79c2004-02-15 01:04:03 +0000108 // Set up a frame object for the return address. This is used by the
109 // llvm.returnaddress & llvm.frameaddress intrinisics.
110 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
111
Chris Lattnerdbd73722003-05-06 21:32:22 +0000112 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000113 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000114
Chris Lattner333b2fa2002-12-13 10:09:43 +0000115 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000116 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000117
118 // Select the PHI nodes
119 SelectPHINodes();
120
Chris Lattner986618e2004-02-22 19:47:26 +0000121 // Insert the FP_REG_KILL instructions into blocks that need them.
122 InsertFPRegKills();
123
Chris Lattner72614082002-10-25 22:55:53 +0000124 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000125 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000126 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000127 // We always build a machine code representation for the function
128 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000129 }
130
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000131 virtual const char *getPassName() const {
132 return "X86 Simple Instruction Selection";
133 }
134
Chris Lattner72614082002-10-25 22:55:53 +0000135 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000136 /// block. This simply creates a new MachineBasicBlock to emit code into
137 /// and adds it to the current MachineFunction. Subsequent visit* for
138 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000139 ///
140 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000141 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000142 }
143
Chris Lattner44827152003-12-28 09:47:19 +0000144 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
145 /// function, lowering any calls to unknown intrinsic functions into the
146 /// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +0000147 ///
Chris Lattner44827152003-12-28 09:47:19 +0000148 void LowerUnknownIntrinsicFunctionCalls(Function &F);
149
Chris Lattner065faeb2002-12-28 20:24:02 +0000150 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
151 /// from the stack into virtual registers.
152 ///
153 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000154
155 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
156 /// because we have to generate our sources into the source basic blocks,
157 /// not the current one.
158 ///
159 void SelectPHINodes();
160
Chris Lattner986618e2004-02-22 19:47:26 +0000161 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
162 /// that need them. This only occurs due to the floating point stackifier
163 /// not being aggressive enough to handle arbitrary global stackification.
164 ///
165 void InsertFPRegKills();
166
Chris Lattner72614082002-10-25 22:55:53 +0000167 // Visitation methods for various instructions. These methods simply emit
168 // fixed X86 code for each instruction.
169 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000170
171 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000172 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000173 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000174
175 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000176 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000177 unsigned Reg;
178 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000179 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
180 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000181 };
182 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000183 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000184 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000185 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000186
187 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000188 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000189 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
190 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +0000191 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000192
Chris Lattnerf01729e2002-11-02 20:54:46 +0000193 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
194 void visitRem(BinaryOperator &B) { visitDivRem(B); }
195 void visitDivRem(BinaryOperator &B);
196
Chris Lattnere2954c82002-11-02 20:04:26 +0000197 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000198 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
199 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
200 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000201
Chris Lattner6d40c192003-01-16 16:43:00 +0000202 // Comparison operators...
203 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000204 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
205 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000206 MachineBasicBlock::iterator MBBI);
Chris Lattner12d96a02004-03-30 21:22:00 +0000207 void visitSelectInst(SelectInst &SI);
208
Chris Lattnerb2acc512003-10-19 21:09:10 +0000209
Chris Lattner6fc3c522002-11-17 21:11:55 +0000210 // Memory Instructions
211 void visitLoadInst(LoadInst &I);
212 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000213 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000214 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000215 void visitMallocInst(MallocInst &I);
216 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000217
Chris Lattnere2954c82002-11-02 20:04:26 +0000218 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000219 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000220 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000221 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000222 void visitVANextInst(VANextInst &I);
223 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000224
225 void visitInstruction(Instruction &I) {
226 std::cerr << "Cannot instruction select: " << I;
227 abort();
228 }
229
Brian Gaeke95780cc2002-12-13 07:56:18 +0000230 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000231 ///
232 void promote32(unsigned targetReg, const ValueRecord &VR);
233
Chris Lattner721d2d42004-03-08 01:18:36 +0000234 /// getAddressingMode - Get the addressing mode to use to address the
235 /// specified value. The returned value should be used with addFullAddress.
236 void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
237 unsigned &IndexReg, unsigned &Disp);
238
239
240 /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
241 /// expressions.
Chris Lattnerb6bac512004-02-25 06:13:04 +0000242 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
243 std::vector<Value*> &GEPOps,
244 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
245 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
246
247 /// isGEPFoldable - Return true if the specified GEP can be completely
248 /// folded into the addressing mode of a load/store or lea instruction.
249 bool isGEPFoldable(MachineBasicBlock *MBB,
250 Value *Src, User::op_iterator IdxBegin,
251 User::op_iterator IdxEnd, unsigned &BaseReg,
252 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
253
Chris Lattner3e130a22003-01-13 00:32:26 +0000254 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
255 /// constant expression GEP support.
256 ///
Chris Lattner827832c2004-02-22 17:05:38 +0000257 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000258 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000259 User::op_iterator IdxEnd, unsigned TargetReg);
260
Chris Lattner548f61d2003-04-23 17:22:12 +0000261 /// emitCastOperation - Common code shared between visitCastInst and
262 /// constant expression cast support.
Misha Brukman538607f2004-03-01 23:53:11 +0000263 ///
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000264 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +0000265 Value *Src, const Type *DestTy, unsigned TargetReg);
266
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000267 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
268 /// and constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000269 ///
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000270 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000271 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000272 Value *Op0, Value *Op1,
273 unsigned OperatorClass, unsigned TargetReg);
274
Chris Lattner6621ed92004-04-11 21:23:56 +0000275 /// emitBinaryFPOperation - This method handles emission of floating point
276 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
277 void emitBinaryFPOperation(MachineBasicBlock *BB,
278 MachineBasicBlock::iterator IP,
279 Value *Op0, Value *Op1,
280 unsigned OperatorClass, unsigned TargetReg);
281
Chris Lattner462fa822004-04-11 20:56:28 +0000282 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
283 Value *Op0, Value *Op1, unsigned TargetReg);
284
285 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
286 unsigned DestReg, const Type *DestTy,
287 unsigned Op0Reg, unsigned Op1Reg);
288 void doMultiplyConst(MachineBasicBlock *MBB,
289 MachineBasicBlock::iterator MBBI,
290 unsigned DestReg, const Type *DestTy,
291 unsigned Op0Reg, unsigned Op1Val);
292
Chris Lattnercadff442003-10-23 17:21:43 +0000293 void emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000294 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +0000295 Value *Op0, Value *Op1, bool isDiv,
296 unsigned TargetReg);
Chris Lattnercadff442003-10-23 17:21:43 +0000297
Chris Lattner58c41fe2003-08-24 19:19:47 +0000298 /// emitSetCCOperation - Common code shared between visitSetCondInst and
299 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000300 ///
Chris Lattner58c41fe2003-08-24 19:19:47 +0000301 void emitSetCCOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000302 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +0000303 Value *Op0, Value *Op1, unsigned Opcode,
304 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000305
306 /// emitShiftOperation - Common code shared between visitShiftInst and
307 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000308 ///
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000309 void emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000310 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000311 Value *Op, Value *ShiftAmount, bool isLeftShift,
312 const Type *ResultTy, unsigned DestReg);
313
Chris Lattner12d96a02004-03-30 21:22:00 +0000314 /// emitSelectOperation - Common code shared between visitSelectInst and the
315 /// constant expression support.
316 void emitSelectOperation(MachineBasicBlock *MBB,
317 MachineBasicBlock::iterator IP,
318 Value *Cond, Value *TrueVal, Value *FalseVal,
319 unsigned DestReg);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000320
Chris Lattnerc5291f52002-10-27 21:16:59 +0000321 /// copyConstantToRegister - Output the instructions required to put the
322 /// specified constant into the specified register.
323 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000324 void copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000325 MachineBasicBlock::iterator MBBI,
Chris Lattner8a307e82002-12-16 19:32:50 +0000326 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000327
Chris Lattner3e130a22003-01-13 00:32:26 +0000328 /// makeAnotherReg - This method returns the next register number we haven't
329 /// yet used.
330 ///
331 /// Long values are handled somewhat specially. They are always allocated
332 /// as pairs of 32 bit integer values. The register number returned is the
333 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
334 /// of the long value.
335 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000336 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000337 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
338 "Current target doesn't have X86 reg info??");
339 const X86RegisterInfo *MRI =
340 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000341 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000342 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
343 // Create the lower part
344 F->getSSARegMap()->createVirtualRegister(RC);
345 // Create the upper part.
346 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000347 }
348
Chris Lattnerc0812d82002-12-13 06:56:29 +0000349 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000350 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000351 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000352 }
353
Chris Lattner72614082002-10-25 22:55:53 +0000354 /// getReg - This method turns an LLVM value into a register number. This
355 /// is guaranteed to produce the same register number for a particular value
356 /// every time it is queried.
357 ///
358 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000359 unsigned getReg(Value *V) {
360 // Just append to the end of the current bb.
361 MachineBasicBlock::iterator It = BB->end();
362 return getReg(V, BB, It);
363 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000364 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000365 MachineBasicBlock::iterator IPt) {
Chris Lattner427aeb42004-04-11 19:21:59 +0000366 // If this operand is a constant, emit the code to copy the constant into
367 // the register here...
368 //
369 if (Constant *C = dyn_cast<Constant>(V)) {
370 unsigned Reg = makeAnotherReg(V->getType());
371 copyConstantToRegister(MBB, IPt, C, Reg);
372 return Reg;
373 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
374 unsigned Reg = makeAnotherReg(V->getType());
375 // Move the address of the global into the register
376 BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV);
377 return Reg;
378 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
379 // Do not emit noop casts at all.
380 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
381 return getReg(CI->getOperand(0), MBB, IPt);
382 }
383
Chris Lattner72614082002-10-25 22:55:53 +0000384 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000385 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000386 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000387 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000388 }
Chris Lattner72614082002-10-25 22:55:53 +0000389
Chris Lattner72614082002-10-25 22:55:53 +0000390 return Reg;
391 }
Chris Lattner72614082002-10-25 22:55:53 +0000392 };
393}
394
Chris Lattnerc5291f52002-10-27 21:16:59 +0000395/// copyConstantToRegister - Output the instructions required to put the
396/// specified constant into the specified register.
397///
Chris Lattner8a307e82002-12-16 19:32:50 +0000398void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000399 MachineBasicBlock::iterator IP,
Chris Lattner8a307e82002-12-16 19:32:50 +0000400 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000401 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000402 unsigned Class = 0;
403 switch (CE->getOpcode()) {
404 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000405 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000406 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000407 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000408 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000409 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000410 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000411
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000412 case Instruction::Xor: ++Class; // FALL THROUGH
413 case Instruction::Or: ++Class; // FALL THROUGH
414 case Instruction::And: ++Class; // FALL THROUGH
415 case Instruction::Sub: ++Class; // FALL THROUGH
416 case Instruction::Add:
417 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
418 Class, R);
419 return;
420
Chris Lattner462fa822004-04-11 20:56:28 +0000421 case Instruction::Mul:
422 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
Chris Lattnercadff442003-10-23 17:21:43 +0000423 return;
Chris Lattner462fa822004-04-11 20:56:28 +0000424
Chris Lattnercadff442003-10-23 17:21:43 +0000425 case Instruction::Div:
Chris Lattner462fa822004-04-11 20:56:28 +0000426 case Instruction::Rem:
427 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
428 CE->getOpcode() == Instruction::Div, R);
Chris Lattnercadff442003-10-23 17:21:43 +0000429 return;
Chris Lattnercadff442003-10-23 17:21:43 +0000430
Chris Lattner58c41fe2003-08-24 19:19:47 +0000431 case Instruction::SetNE:
432 case Instruction::SetEQ:
433 case Instruction::SetLT:
434 case Instruction::SetGT:
435 case Instruction::SetLE:
436 case Instruction::SetGE:
437 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
438 CE->getOpcode(), R);
439 return;
440
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000441 case Instruction::Shl:
442 case Instruction::Shr:
443 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000444 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
445 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000446
Chris Lattner12d96a02004-03-30 21:22:00 +0000447 case Instruction::Select:
448 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
449 CE->getOperand(2), R);
450 return;
451
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000452 default:
453 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000454 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000455 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000456 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000457
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000458 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000459 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000460
461 if (Class == cLong) {
462 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000463 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000464 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
465 BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
Chris Lattner3e130a22003-01-13 00:32:26 +0000466 return;
467 }
468
Chris Lattner94af4142002-12-25 05:13:53 +0000469 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000470
471 static const unsigned IntegralOpcodeTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000472 X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000473 };
474
Chris Lattner6b993cc2002-12-15 08:02:15 +0000475 if (C->getType() == Type::BoolTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000476 BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000477 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000478 ConstantInt *CI = cast<ConstantInt>(C);
Chris Lattneree352852004-02-29 07:22:16 +0000479 BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000480 }
Chris Lattner94af4142002-12-25 05:13:53 +0000481 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000482 if (CFP->isExactlyValue(+0.0))
Chris Lattneree352852004-02-29 07:22:16 +0000483 BuildMI(*MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000484 else if (CFP->isExactlyValue(+1.0))
Chris Lattneree352852004-02-29 07:22:16 +0000485 BuildMI(*MBB, IP, X86::FLD1, 0, R);
Chris Lattner94af4142002-12-25 05:13:53 +0000486 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000487 // Otherwise we need to spill the constant to memory...
488 MachineConstantPool *CP = F->getConstantPool();
489 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000490 const Type *Ty = CFP->getType();
491
492 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000493 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
Chris Lattneree352852004-02-29 07:22:16 +0000494 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000495 }
496
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000497 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000498 // Copy zero (null pointer) to the register.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000499 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000500 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000501 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(CPR->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000502 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000503 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000504 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000505 }
506}
507
Chris Lattner065faeb2002-12-28 20:24:02 +0000508/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
509/// the stack into virtual registers.
510///
511void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
512 // Emit instructions to load the arguments... On entry to a function on the
513 // X86, the stack frame looks like this:
514 //
515 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000516 // [ESP + 4] -- first argument (leftmost lexically)
517 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000518 // ...
519 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000520 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000521 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000522
523 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
Chris Lattner427aeb42004-04-11 19:21:59 +0000524 bool ArgLive = !I->use_empty();
525 unsigned Reg = ArgLive ? getReg(*I) : 0;
Chris Lattner065faeb2002-12-28 20:24:02 +0000526 int FI; // Frame object index
Chris Lattner427aeb42004-04-11 19:21:59 +0000527
Chris Lattner065faeb2002-12-28 20:24:02 +0000528 switch (getClassB(I->getType())) {
529 case cByte:
Chris Lattner427aeb42004-04-11 19:21:59 +0000530 if (ArgLive) {
531 FI = MFI->CreateFixedObject(1, ArgOffset);
532 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
533 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000534 break;
535 case cShort:
Chris Lattner427aeb42004-04-11 19:21:59 +0000536 if (ArgLive) {
537 FI = MFI->CreateFixedObject(2, ArgOffset);
538 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
539 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000540 break;
541 case cInt:
Chris Lattner427aeb42004-04-11 19:21:59 +0000542 if (ArgLive) {
543 FI = MFI->CreateFixedObject(4, ArgOffset);
544 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
545 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000546 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000547 case cLong:
Chris Lattner427aeb42004-04-11 19:21:59 +0000548 if (ArgLive) {
549 FI = MFI->CreateFixedObject(8, ArgOffset);
550 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
551 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
552 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000553 ArgOffset += 4; // longs require 4 additional bytes
554 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000555 case cFP:
Chris Lattner427aeb42004-04-11 19:21:59 +0000556 if (ArgLive) {
557 unsigned Opcode;
558 if (I->getType() == Type::FloatTy) {
559 Opcode = X86::FLD32m;
560 FI = MFI->CreateFixedObject(4, ArgOffset);
561 } else {
562 Opcode = X86::FLD64m;
563 FI = MFI->CreateFixedObject(8, ArgOffset);
564 }
565 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000566 }
Chris Lattner427aeb42004-04-11 19:21:59 +0000567 if (I->getType() == Type::DoubleTy)
568 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000569 break;
570 default:
571 assert(0 && "Unhandled argument type!");
572 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000573 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000574 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000575
576 // If the function takes variable number of arguments, add a frame offset for
577 // the start of the first vararg value... this is used to expand
578 // llvm.va_start.
579 if (Fn.getFunctionType()->isVarArg())
580 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000581}
582
583
Chris Lattner333b2fa2002-12-13 10:09:43 +0000584/// SelectPHINodes - Insert machine code to generate phis. This is tricky
585/// because we have to generate our sources into the source basic blocks, not
586/// the current one.
587///
588void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000589 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000590 const Function &LF = *F->getFunction(); // The LLVM function...
591 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
592 const BasicBlock *BB = I;
Chris Lattner168aa902004-02-29 07:10:16 +0000593 MachineBasicBlock &MBB = *MBBMap[I];
Chris Lattner333b2fa2002-12-13 10:09:43 +0000594
595 // Loop over all of the PHI nodes in the LLVM basic block...
Chris Lattner168aa902004-02-29 07:10:16 +0000596 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000597 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000598 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000599
Chris Lattner333b2fa2002-12-13 10:09:43 +0000600 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000601 unsigned PHIReg = getReg(*PN);
Chris Lattner168aa902004-02-29 07:10:16 +0000602 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
603 X86::PHI, PN->getNumOperands(), PHIReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000604
605 MachineInstr *LongPhiMI = 0;
Chris Lattner168aa902004-02-29 07:10:16 +0000606 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
607 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
608 X86::PHI, PN->getNumOperands(), PHIReg+1);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000609
Chris Lattnera6e73f12003-05-12 14:22:21 +0000610 // PHIValues - Map of blocks to incoming virtual registers. We use this
611 // so that we only initialize one incoming value for a particular block,
612 // even if the block has multiple entries in the PHI node.
613 //
614 std::map<MachineBasicBlock*, unsigned> PHIValues;
615
Chris Lattner333b2fa2002-12-13 10:09:43 +0000616 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
617 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000618 unsigned ValReg;
619 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
620 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000621
Chris Lattnera6e73f12003-05-12 14:22:21 +0000622 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
623 // We already inserted an initialization of the register for this
624 // predecessor. Recycle it.
625 ValReg = EntryIt->second;
626
627 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000628 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000629 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000630 Value *Val = PN->getIncomingValue(i);
631
632 // If this is a constant or GlobalValue, we may have to insert code
633 // into the basic block to compute it into a virtual register.
634 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
Chris Lattner6f2ab042004-03-30 19:10:12 +0000635 if (isa<ConstantExpr>(Val)) {
636 // Because we don't want to clobber any values which might be in
637 // physical registers with the computation of this constant (which
638 // might be arbitrarily complex if it is a constant expression),
639 // just insert the computation at the top of the basic block.
640 MachineBasicBlock::iterator PI = PredMBB->begin();
641
642 // Skip over any PHI nodes though!
643 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
644 ++PI;
645
646 ValReg = getReg(Val, PredMBB, PI);
647 } else {
648 // Simple constants get emitted at the end of the basic block,
649 // before any terminator instructions. We "know" that the code to
650 // move a constant into a register will never clobber any flags.
651 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
652 }
Chris Lattnera81fc682003-10-19 00:26:11 +0000653 } else {
654 ValReg = getReg(Val);
655 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000656
657 // Remember that we inserted a value for this PHI for this predecessor
658 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
659 }
660
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000661 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000662 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000663 if (LongPhiMI) {
664 LongPhiMI->addRegOperand(ValReg+1);
665 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
666 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000667 }
Chris Lattner168aa902004-02-29 07:10:16 +0000668
669 // Now that we emitted all of the incoming values for the PHI node, make
670 // sure to reposition the InsertPoint after the PHI that we just added.
671 // This is needed because we might have inserted a constant into this
672 // block, right after the PHI's which is before the old insert point!
673 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
674 ++PHIInsertPoint;
Chris Lattner333b2fa2002-12-13 10:09:43 +0000675 }
676 }
677}
678
Chris Lattner986618e2004-02-22 19:47:26 +0000679/// RequiresFPRegKill - The floating point stackifier pass cannot insert
680/// compensation code on critical edges. As such, it requires that we kill all
681/// FP registers on the exit from any blocks that either ARE critical edges, or
682/// branch to a block that has incoming critical edges.
683///
684/// Note that this kill instruction will eventually be eliminated when
685/// restrictions in the stackifier are relaxed.
686///
687static bool RequiresFPRegKill(const BasicBlock *BB) {
688#if 0
689 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
690 const BasicBlock *Succ = *SI;
691 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
692 ++PI; // Block have at least one predecessory
693 if (PI != PE) { // If it has exactly one, this isn't crit edge
694 // If this block has more than one predecessor, check all of the
695 // predecessors to see if they have multiple successors. If so, then the
696 // block we are analyzing needs an FPRegKill.
697 for (PI = pred_begin(Succ); PI != PE; ++PI) {
698 const BasicBlock *Pred = *PI;
699 succ_const_iterator SI2 = succ_begin(Pred);
700 ++SI2; // There must be at least one successor of this block.
701 if (SI2 != succ_end(Pred))
702 return true; // Yes, we must insert the kill on this edge.
703 }
704 }
705 }
706 // If we got this far, there is no need to insert the kill instruction.
707 return false;
708#else
709 return true;
710#endif
711}
712
713// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
714// need them. This only occurs due to the floating point stackifier not being
715// aggressive enough to handle arbitrary global stackification.
716//
717// Currently we insert an FP_REG_KILL instruction into each block that uses or
718// defines a floating point virtual register.
719//
720// When the global register allocators (like linear scan) finally update live
721// variable analysis, we can keep floating point values in registers across
722// portions of the CFG that do not involve critical edges. This will be a big
723// win, but we are waiting on the global allocators before we can do this.
724//
725// With a bit of work, the floating point stackifier pass can be enhanced to
726// break critical edges as needed (to make a place to put compensation code),
727// but this will require some infrastructure improvements as well.
728//
729void ISel::InsertFPRegKills() {
730 SSARegMap &RegMap = *F->getSSARegMap();
Chris Lattner986618e2004-02-22 19:47:26 +0000731
732 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000733 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000734 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
735 MachineOperand& MO = I->getOperand(i);
736 if (MO.isRegister() && MO.getReg()) {
737 unsigned Reg = MO.getReg();
Chris Lattner986618e2004-02-22 19:47:26 +0000738 if (MRegisterInfo::isVirtualRegister(Reg))
Chris Lattner65cf42d2004-02-23 07:29:45 +0000739 if (RegMap.getRegClass(Reg)->getSize() == 10)
740 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000741 }
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000742 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000743 // If we haven't found an FP register use or def in this basic block, check
744 // to see if any of our successors has an FP PHI node, which will cause a
745 // copy to be inserted into this block.
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000746 for (succ_const_iterator SI = succ_begin(BB->getBasicBlock()),
747 E = succ_end(BB->getBasicBlock()); SI != E; ++SI) {
748 MachineBasicBlock *SBB = MBBMap[*SI];
749 for (MachineBasicBlock::iterator I = SBB->begin();
750 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
751 if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
752 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000753 }
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000754 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000755 continue;
756 UsesFPReg:
757 // Okay, this block uses an FP register. If the block has successors (ie,
758 // it's not an unwind/return), insert the FP_REG_KILL instruction.
759 if (BB->getBasicBlock()->getTerminator()->getNumSuccessors() &&
760 RequiresFPRegKill(BB->getBasicBlock())) {
Chris Lattneree352852004-02-29 07:22:16 +0000761 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
Chris Lattner65cf42d2004-02-23 07:29:45 +0000762 ++NumFPKill;
Chris Lattner986618e2004-02-22 19:47:26 +0000763 }
764 }
765}
766
767
Chris Lattner307ecba2004-03-30 22:39:09 +0000768// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
769// it into the conditional branch or select instruction which is the only user
770// of the cc instruction. This is the case if the conditional branch is the
771// only user of the setcc, and if the setcc is in the same basic block as the
772// conditional branch. We also don't handle long arguments below, so we reject
773// them here as well.
Chris Lattner6d40c192003-01-16 16:43:00 +0000774//
Chris Lattner307ecba2004-03-30 22:39:09 +0000775static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000776 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattner307ecba2004-03-30 22:39:09 +0000777 if (SCI->hasOneUse()) {
778 Instruction *User = cast<Instruction>(SCI->use_back());
779 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
780 SCI->getParent() == User->getParent() &&
Chris Lattner48c937e2004-04-06 17:34:50 +0000781 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
782 SCI->getOpcode() == Instruction::SetEQ ||
783 SCI->getOpcode() == Instruction::SetNE))
Chris Lattner6d40c192003-01-16 16:43:00 +0000784 return SCI;
785 }
786 return 0;
787}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000788
Chris Lattner6d40c192003-01-16 16:43:00 +0000789// Return a fixed numbering for setcc instructions which does not depend on the
790// order of the opcodes.
791//
792static unsigned getSetCCNumber(unsigned Opcode) {
793 switch(Opcode) {
794 default: assert(0 && "Unknown setcc instruction!");
795 case Instruction::SetEQ: return 0;
796 case Instruction::SetNE: return 1;
797 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000798 case Instruction::SetGE: return 3;
799 case Instruction::SetGT: return 4;
800 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000801 }
802}
Chris Lattner06925362002-11-17 21:56:38 +0000803
Chris Lattner6d40c192003-01-16 16:43:00 +0000804// LLVM -> X86 signed X86 unsigned
805// ----- ---------- ------------
806// seteq -> sete sete
807// setne -> setne setne
808// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000809// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000810// setgt -> setg seta
811// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000812// ----
813// sets // Used by comparison with 0 optimization
814// setns
815static const unsigned SetCCOpcodeTab[2][8] = {
816 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
817 0, 0 },
818 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
819 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000820};
821
Chris Lattnerb2acc512003-10-19 21:09:10 +0000822// EmitComparison - This function emits a comparison of the two operands,
823// returning the extended setcc code to use.
824unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
825 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000826 MachineBasicBlock::iterator IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000827 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000828 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000829 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000830 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000831
832 // Special case handling of: cmp R, i
Chris Lattnere80e6372004-04-06 16:02:27 +0000833 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
834 if (Class == cByte || Class == cShort || Class == cInt) {
835 unsigned Op1v = CI->getRawValue();
Chris Lattnerc07736a2003-07-23 15:22:26 +0000836
Chris Lattner333864d2003-06-05 19:30:30 +0000837 // Mask off any upper bits of the constant, if there are any...
838 Op1v &= (1ULL << (8 << Class)) - 1;
839
Chris Lattnerb2acc512003-10-19 21:09:10 +0000840 // If this is a comparison against zero, emit more efficient code. We
841 // can't handle unsigned comparisons against zero unless they are == or
842 // !=. These should have been strength reduced already anyway.
843 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
844 static const unsigned TESTTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000845 X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
Chris Lattnerb2acc512003-10-19 21:09:10 +0000846 };
Chris Lattneree352852004-02-29 07:22:16 +0000847 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000848
849 if (OpNum == 2) return 6; // Map jl -> js
850 if (OpNum == 3) return 7; // Map jg -> jns
851 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000852 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000853
854 static const unsigned CMPTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000855 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
Chris Lattnerb2acc512003-10-19 21:09:10 +0000856 };
857
Chris Lattneree352852004-02-29 07:22:16 +0000858 BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000859 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000860 } else {
861 assert(Class == cLong && "Unknown integer class!");
862 unsigned LowCst = CI->getRawValue();
863 unsigned HiCst = CI->getRawValue() >> 32;
864 if (OpNum < 2) { // seteq, setne
865 unsigned LoTmp = Op0r;
866 if (LowCst != 0) {
867 LoTmp = makeAnotherReg(Type::IntTy);
868 BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
869 }
870 unsigned HiTmp = Op0r+1;
871 if (HiCst != 0) {
872 HiTmp = makeAnotherReg(Type::IntTy);
Chris Lattner48c937e2004-04-06 17:34:50 +0000873 BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
Chris Lattnere80e6372004-04-06 16:02:27 +0000874 }
875 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
876 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
877 return OpNum;
Chris Lattner48c937e2004-04-06 17:34:50 +0000878 } else {
879 // Emit a sequence of code which compares the high and low parts once
880 // each, then uses a conditional move to handle the overflow case. For
881 // example, a setlt for long would generate code like this:
882 //
883 // AL = lo(op1) < lo(op2) // Signedness depends on operands
884 // BL = hi(op1) < hi(op2) // Always unsigned comparison
885 // dest = hi(op1) == hi(op2) ? AL : BL;
886 //
887
888 // FIXME: This would be much better if we had hierarchical register
889 // classes! Until then, hardcode registers so that we can deal with
890 // their aliases (because we don't have conditional byte moves).
891 //
892 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
893 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
894 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
895 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
896 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
897 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
898 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
899 .addReg(X86::AX);
900 // NOTE: visitSetCondInst knows that the value is dumped into the BL
901 // register at this point for long values...
902 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000903 }
Chris Lattner333864d2003-06-05 19:30:30 +0000904 }
Chris Lattnere80e6372004-04-06 16:02:27 +0000905 }
Chris Lattner333864d2003-06-05 19:30:30 +0000906
Chris Lattner9f08a922004-02-03 18:54:04 +0000907 // Special case handling of comparison against +/- 0.0
908 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
909 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
Chris Lattneree352852004-02-29 07:22:16 +0000910 BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000911 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +0000912 BuildMI(*MBB, IP, X86::SAHF, 1);
Chris Lattner9f08a922004-02-03 18:54:04 +0000913 return OpNum;
914 }
915
Chris Lattner58c41fe2003-08-24 19:19:47 +0000916 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000917 switch (Class) {
918 default: assert(0 && "Unknown type class!");
919 // Emit: cmp <var1>, <var2> (do the comparison). We can
920 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
921 // 32-bit.
922 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000923 BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000924 break;
925 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000926 BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000927 break;
928 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000929 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000930 break;
931 case cFP:
Chris Lattneree352852004-02-29 07:22:16 +0000932 BuildMI(*MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000933 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +0000934 BuildMI(*MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000935 break;
936
937 case cLong:
938 if (OpNum < 2) { // seteq, setne
939 unsigned LoTmp = makeAnotherReg(Type::IntTy);
940 unsigned HiTmp = makeAnotherReg(Type::IntTy);
941 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000942 BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
943 BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
944 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000945 break; // Allow the sete or setne to be generated from flags set by OR
946 } else {
947 // Emit a sequence of code which compares the high and low parts once
948 // each, then uses a conditional move to handle the overflow case. For
949 // example, a setlt for long would generate code like this:
950 //
951 // AL = lo(op1) < lo(op2) // Signedness depends on operands
952 // BL = hi(op1) < hi(op2) // Always unsigned comparison
953 // dest = hi(op1) == hi(op2) ? AL : BL;
954 //
955
Chris Lattner6d40c192003-01-16 16:43:00 +0000956 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000957 // classes! Until then, hardcode registers so that we can deal with their
958 // aliases (because we don't have conditional byte moves).
959 //
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000960 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattneree352852004-02-29 07:22:16 +0000961 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000962 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattneree352852004-02-29 07:22:16 +0000963 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
964 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
965 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000966 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
Chris Lattneree352852004-02-29 07:22:16 +0000967 .addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000968 // NOTE: visitSetCondInst knows that the value is dumped into the BL
969 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000970 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000971 }
972 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000973 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000974}
Chris Lattner3e130a22003-01-13 00:32:26 +0000975
Chris Lattner6d40c192003-01-16 16:43:00 +0000976/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
977/// register, then move it to wherever the result should be.
978///
979void ISel::visitSetCondInst(SetCondInst &I) {
Chris Lattner307ecba2004-03-30 22:39:09 +0000980 if (canFoldSetCCIntoBranchOrSelect(&I))
981 return; // Fold this into a branch or select.
Chris Lattner6d40c192003-01-16 16:43:00 +0000982
Chris Lattner6d40c192003-01-16 16:43:00 +0000983 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000984 MachineBasicBlock::iterator MII = BB->end();
985 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
986 DestReg);
987}
Chris Lattner6d40c192003-01-16 16:43:00 +0000988
Chris Lattner58c41fe2003-08-24 19:19:47 +0000989/// emitSetCCOperation - Common code shared between visitSetCondInst and
990/// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000991///
Chris Lattner58c41fe2003-08-24 19:19:47 +0000992void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000993 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +0000994 Value *Op0, Value *Op1, unsigned Opcode,
995 unsigned TargetReg) {
996 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000997 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000998
Chris Lattnerb2acc512003-10-19 21:09:10 +0000999 const Type *CompTy = Op0->getType();
1000 unsigned CompClass = getClassB(CompTy);
1001 bool isSigned = CompTy->isSigned() && CompClass != cFP;
1002
1003 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +00001004 // Handle normal comparisons with a setcc instruction...
Chris Lattneree352852004-02-29 07:22:16 +00001005 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +00001006 } else {
1007 // Handle long comparisons by copying the value which is already in BL into
1008 // the register we want...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001009 BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +00001010 }
Brian Gaeke1749d632002-11-07 17:59:21 +00001011}
Chris Lattner51b49a92002-11-02 19:45:49 +00001012
Chris Lattner12d96a02004-03-30 21:22:00 +00001013void ISel::visitSelectInst(SelectInst &SI) {
1014 unsigned DestReg = getReg(SI);
1015 MachineBasicBlock::iterator MII = BB->end();
1016 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1017 SI.getFalseValue(), DestReg);
1018}
1019
1020/// emitSelect - Common code shared between visitSelectInst and the constant
1021/// expression support.
1022void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1023 MachineBasicBlock::iterator IP,
1024 Value *Cond, Value *TrueVal, Value *FalseVal,
1025 unsigned DestReg) {
1026 unsigned SelectClass = getClassB(TrueVal->getType());
1027
1028 // We don't support 8-bit conditional moves. If we have incoming constants,
1029 // transform them into 16-bit constants to avoid having a run-time conversion.
1030 if (SelectClass == cByte) {
1031 if (Constant *T = dyn_cast<Constant>(TrueVal))
1032 TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
1033 if (Constant *F = dyn_cast<Constant>(FalseVal))
1034 FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
1035 }
1036
Chris Lattner307ecba2004-03-30 22:39:09 +00001037
1038 unsigned Opcode;
1039 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1040 // We successfully folded the setcc into the select instruction.
1041
1042 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1043 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1044 IP);
1045
1046 const Type *CompTy = SCI->getOperand(0)->getType();
1047 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1048
1049 // LLVM -> X86 signed X86 unsigned
1050 // ----- ---------- ------------
1051 // seteq -> cmovNE cmovNE
1052 // setne -> cmovE cmovE
1053 // setlt -> cmovGE cmovAE
1054 // setge -> cmovL cmovB
1055 // setgt -> cmovLE cmovBE
1056 // setle -> cmovG cmovA
1057 // ----
1058 // cmovNS // Used by comparison with 0 optimization
1059 // cmovS
1060
1061 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001062 default: assert(0 && "Unknown value class!");
1063 case cFP: {
1064 // Annoyingly, we don't have a full set of floating point conditional
1065 // moves. :(
1066 static const unsigned OpcodeTab[2][8] = {
1067 { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
1068 X86::FCMOVBE, X86::FCMOVA, 0, 0 },
1069 { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
1070 };
1071 Opcode = OpcodeTab[isSigned][OpNum];
1072
1073 // If opcode == 0, we hit a case that we don't support. Output a setcc
1074 // and compare the result against zero.
1075 if (Opcode == 0) {
1076 unsigned CompClass = getClassB(CompTy);
1077 unsigned CondReg;
1078 if (CompClass != cLong || OpNum < 2) {
1079 CondReg = makeAnotherReg(Type::BoolTy);
1080 // Handle normal comparisons with a setcc instruction...
1081 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
1082 } else {
1083 // Long comparisons end up in the BL register.
1084 CondReg = X86::BL;
1085 }
1086
Chris Lattner68626c22004-03-31 22:22:36 +00001087 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner352eb482004-03-31 22:03:35 +00001088 Opcode = X86::FCMOVE;
1089 }
1090 break;
1091 }
Chris Lattner307ecba2004-03-30 22:39:09 +00001092 case cByte:
1093 case cShort: {
1094 static const unsigned OpcodeTab[2][8] = {
1095 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
1096 X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
1097 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
1098 X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
1099 };
1100 Opcode = OpcodeTab[isSigned][OpNum];
1101 break;
1102 }
1103 case cInt:
1104 case cLong: {
1105 static const unsigned OpcodeTab[2][8] = {
1106 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
1107 X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
1108 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
1109 X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
1110 };
1111 Opcode = OpcodeTab[isSigned][OpNum];
1112 break;
1113 }
1114 }
1115 } else {
1116 // Get the value being branched on, and use it to set the condition codes.
1117 unsigned CondReg = getReg(Cond, MBB, IP);
Chris Lattner68626c22004-03-31 22:22:36 +00001118 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner307ecba2004-03-30 22:39:09 +00001119 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001120 default: assert(0 && "Unknown value class!");
1121 case cFP: Opcode = X86::FCMOVE; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001122 case cByte:
Chris Lattner352eb482004-03-31 22:03:35 +00001123 case cShort: Opcode = X86::CMOVE16rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001124 case cInt:
Chris Lattner352eb482004-03-31 22:03:35 +00001125 case cLong: Opcode = X86::CMOVE32rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001126 }
1127 }
Chris Lattner12d96a02004-03-30 21:22:00 +00001128
1129 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1130 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1131 unsigned RealDestReg = DestReg;
Chris Lattner12d96a02004-03-30 21:22:00 +00001132
Chris Lattner12d96a02004-03-30 21:22:00 +00001133
1134 // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
1135 // this, we have to promote the incoming values to 16 bits, perform a 16-bit
1136 // cmove, then truncate the result.
1137 if (SelectClass == cByte) {
1138 DestReg = makeAnotherReg(Type::ShortTy);
1139 if (getClassB(TrueVal->getType()) == cByte) {
1140 // Promote the true value, by storing it into AL, and reading from AX.
1141 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
1142 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
1143 TrueReg = makeAnotherReg(Type::ShortTy);
1144 BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
1145 }
1146 if (getClassB(FalseVal->getType()) == cByte) {
1147 // Promote the true value, by storing it into CL, and reading from CX.
1148 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
1149 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
1150 FalseReg = makeAnotherReg(Type::ShortTy);
1151 BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
1152 }
1153 }
1154
1155 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
1156
1157 switch (SelectClass) {
1158 case cByte:
1159 // We did the computation with 16-bit registers. Truncate back to our
1160 // result by copying into AX then copying out AL.
1161 BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
1162 BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
1163 break;
1164 case cLong:
1165 // Move the upper half of the value as well.
1166 BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
1167 break;
1168 }
1169}
Chris Lattner58c41fe2003-08-24 19:19:47 +00001170
1171
1172
Brian Gaekec2505982002-11-30 11:57:28 +00001173/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1174/// operand, in the specified target register.
Misha Brukman538607f2004-03-01 23:53:11 +00001175///
Chris Lattner3e130a22003-01-13 00:32:26 +00001176void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1177 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001178
Chris Lattner29bf0622004-04-06 01:21:00 +00001179 Value *Val = VR.Val;
1180 const Type *Ty = VR.Ty;
Chris Lattner502e36c2004-04-06 01:25:33 +00001181 if (Val) {
Chris Lattner29bf0622004-04-06 01:21:00 +00001182 if (Constant *C = dyn_cast<Constant>(Val)) {
1183 Val = ConstantExpr::getCast(C, Type::IntTy);
1184 Ty = Type::IntTy;
1185 }
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001186
Chris Lattner502e36c2004-04-06 01:25:33 +00001187 // If this is a simple constant, just emit a MOVri directly to avoid the
1188 // copy.
1189 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1190 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1191 BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
1192 return;
1193 }
1194 }
1195
Chris Lattner29bf0622004-04-06 01:21:00 +00001196 // Make sure we have the register number for this value...
1197 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1198
1199 switch (getClassB(Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +00001200 case cByte:
1201 // Extend value into target register (8->32)
1202 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001203 BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001204 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001205 BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001206 break;
1207 case cShort:
1208 // Extend value into target register (16->32)
1209 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001210 BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001211 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001212 BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001213 break;
1214 case cInt:
1215 // Move value into target register (32->32)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001216 BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001217 break;
1218 default:
1219 assert(0 && "Unpromotable operand class in promote32");
1220 }
Brian Gaekec2505982002-11-30 11:57:28 +00001221}
Chris Lattnerc5291f52002-10-27 21:16:59 +00001222
Chris Lattner72614082002-10-25 22:55:53 +00001223/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
1224/// we have the following possibilities:
1225///
1226/// ret void: No return value, simply emit a 'ret' instruction
1227/// ret sbyte, ubyte : Extend value into EAX and return
1228/// ret short, ushort: Extend value into EAX and return
1229/// ret int, uint : Move value into EAX and return
1230/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +00001231/// ret long, ulong : Move value into EAX/EDX and return
1232/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +00001233///
Chris Lattner3e130a22003-01-13 00:32:26 +00001234void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001235 if (I.getNumOperands() == 0) {
1236 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1237 return;
1238 }
1239
1240 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001241 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +00001242 case cByte: // integral return values: extend or move into EAX and return
1243 case cShort:
1244 case cInt:
Chris Lattner29bf0622004-04-06 01:21:00 +00001245 promote32(X86::EAX, ValueRecord(RetVal));
Chris Lattnerdbd73722003-05-06 21:32:22 +00001246 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001247 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001248 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001249 case cFP: { // Floats & Doubles: Return in ST(0)
1250 unsigned RetReg = getReg(RetVal);
Chris Lattner3e130a22003-01-13 00:32:26 +00001251 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001252 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001253 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001254 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001255 }
1256 case cLong: {
1257 unsigned RetReg = getReg(RetVal);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001258 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
1259 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001260 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001261 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1262 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001263 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001264 }
Chris Lattner94af4142002-12-25 05:13:53 +00001265 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001266 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001267 }
Chris Lattner43189d12002-11-17 20:07:45 +00001268 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +00001269 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +00001270}
1271
Chris Lattner55f6fab2003-01-16 18:07:23 +00001272// getBlockAfter - Return the basic block which occurs lexically after the
1273// specified one.
1274static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1275 Function::iterator I = BB; ++I; // Get iterator to next block
1276 return I != BB->getParent()->end() ? &*I : 0;
1277}
1278
Chris Lattner51b49a92002-11-02 19:45:49 +00001279/// visitBranchInst - Handle conditional and unconditional branches here. Note
1280/// that since code layout is frozen at this point, that if we are trying to
1281/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +00001282/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +00001283///
Chris Lattner94af4142002-12-25 05:13:53 +00001284void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +00001285 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1286
1287 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001288 if (BI.getSuccessor(0) != NextBB)
Chris Lattner55f6fab2003-01-16 18:07:23 +00001289 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +00001290 return;
1291 }
1292
1293 // See if we can fold the setcc into the branch itself...
Chris Lattner307ecba2004-03-30 22:39:09 +00001294 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
Chris Lattner6d40c192003-01-16 16:43:00 +00001295 if (SCI == 0) {
1296 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1297 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +00001298 unsigned condReg = getReg(BI.getCondition());
Chris Lattner68626c22004-03-31 22:22:36 +00001299 BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001300 if (BI.getSuccessor(1) == NextBB) {
1301 if (BI.getSuccessor(0) != NextBB)
1302 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
1303 } else {
1304 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
1305
1306 if (BI.getSuccessor(0) != NextBB)
1307 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
1308 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001309 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001310 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001311
1312 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +00001313 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001314 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001315
1316 const Type *CompTy = SCI->getOperand(0)->getType();
1317 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +00001318
Chris Lattnerb2acc512003-10-19 21:09:10 +00001319
Chris Lattner6d40c192003-01-16 16:43:00 +00001320 // LLVM -> X86 signed X86 unsigned
1321 // ----- ---------- ------------
1322 // seteq -> je je
1323 // setne -> jne jne
1324 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +00001325 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +00001326 // setgt -> jg ja
1327 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +00001328 // ----
1329 // js // Used by comparison with 0 optimization
1330 // jns
1331
1332 static const unsigned OpcodeTab[2][8] = {
1333 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1334 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1335 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +00001336 };
1337
Chris Lattner55f6fab2003-01-16 18:07:23 +00001338 if (BI.getSuccessor(0) != NextBB) {
1339 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
1340 if (BI.getSuccessor(1) != NextBB)
1341 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
1342 } else {
1343 // Change to the inverse condition...
1344 if (BI.getSuccessor(1) != NextBB) {
1345 OpNum ^= 1;
1346 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
1347 }
1348 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001349}
1350
Chris Lattner3e130a22003-01-13 00:32:26 +00001351
1352/// doCall - This emits an abstract call instruction, setting up the arguments
1353/// and the return value as appropriate. For the actual function call itself,
1354/// it inserts the specified CallMI instruction into the stream.
1355///
1356void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001357 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001358
Chris Lattner065faeb2002-12-28 20:24:02 +00001359 // Count how many bytes are to be pushed on the stack...
1360 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001361
Chris Lattner3e130a22003-01-13 00:32:26 +00001362 if (!Args.empty()) {
1363 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1364 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001365 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001366 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001367 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001368 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001369 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001370 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1371 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001372 default: assert(0 && "Unknown class!");
1373 }
1374
1375 // Adjust the stack pointer for the new arguments...
Chris Lattneree352852004-02-29 07:22:16 +00001376 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
Chris Lattner065faeb2002-12-28 20:24:02 +00001377
1378 // Arguments go on the stack in reverse order, as specified by the ABI.
1379 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001380 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattnerce6096f2004-03-01 02:34:08 +00001381 unsigned ArgReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001382 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001383 case cByte:
Chris Lattner21585222004-03-01 02:42:43 +00001384 case cShort:
1385 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1386 // Zero/Sign extend constant, then stuff into memory.
1387 ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
1388 Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
1389 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1390 .addImm(Val->getRawValue() & 0xFFFFFFFF);
1391 } else {
1392 // Promote arg to 32 bits wide into a temporary register...
1393 ArgReg = makeAnotherReg(Type::UIntTy);
1394 promote32(ArgReg, Args[i]);
1395 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1396 X86::ESP, ArgOffset).addReg(ArgReg);
1397 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001398 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001399 case cInt:
Chris Lattner21585222004-03-01 02:42:43 +00001400 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1401 unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1402 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1403 X86::ESP, ArgOffset).addImm(Val);
1404 } else {
1405 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1406 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1407 X86::ESP, ArgOffset).addReg(ArgReg);
1408 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001409 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001410 case cLong:
Chris Lattner92900a62004-04-06 03:23:00 +00001411 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1412 uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1413 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1414 X86::ESP, ArgOffset).addImm(Val & ~0U);
1415 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1416 X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
1417 } else {
1418 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1419 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1420 X86::ESP, ArgOffset).addReg(ArgReg);
1421 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1422 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1423 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001424 ArgOffset += 4; // 8 byte entry, not 4.
1425 break;
1426
Chris Lattner065faeb2002-12-28 20:24:02 +00001427 case cFP:
Chris Lattnerce6096f2004-03-01 02:34:08 +00001428 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001429 if (Args[i].Ty == Type::FloatTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001430 addRegOffset(BuildMI(BB, X86::FST32m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001431 X86::ESP, ArgOffset).addReg(ArgReg);
1432 } else {
1433 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001434 addRegOffset(BuildMI(BB, X86::FST64m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001435 X86::ESP, ArgOffset).addReg(ArgReg);
1436 ArgOffset += 4; // 8 byte entry, not 4.
1437 }
1438 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001439
Chris Lattner3e130a22003-01-13 00:32:26 +00001440 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001441 }
1442 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001443 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001444 } else {
Chris Lattneree352852004-02-29 07:22:16 +00001445 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001446 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001447
Chris Lattner3e130a22003-01-13 00:32:26 +00001448 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001449
Chris Lattneree352852004-02-29 07:22:16 +00001450 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001451
1452 // If there is a return value, scavenge the result from the location the call
1453 // leaves it in...
1454 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001455 if (Ret.Ty != Type::VoidTy) {
1456 unsigned DestClass = getClassB(Ret.Ty);
1457 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001458 case cByte:
1459 case cShort:
1460 case cInt: {
1461 // Integral results are in %eax, or the appropriate portion
1462 // thereof.
1463 static const unsigned regRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001464 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
Brian Gaeke20244b72002-12-12 15:33:40 +00001465 };
1466 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001467 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001468 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001469 }
Chris Lattner94af4142002-12-25 05:13:53 +00001470 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001471 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001472 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001473 case cLong: // Long values are left in EDX:EAX
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001474 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
1475 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
Chris Lattner3e130a22003-01-13 00:32:26 +00001476 break;
1477 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001478 }
Chris Lattnera3243642002-12-04 23:45:28 +00001479 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001480}
Chris Lattner2df035b2002-11-02 19:27:56 +00001481
Chris Lattner3e130a22003-01-13 00:32:26 +00001482
1483/// visitCallInst - Push args on stack and do a procedure call instruction.
1484void ISel::visitCallInst(CallInst &CI) {
1485 MachineInstr *TheCall;
1486 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001487 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001488 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001489 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1490 return;
1491 }
1492
Chris Lattner3e130a22003-01-13 00:32:26 +00001493 // Emit a CALL instruction with PC-relative displacement.
1494 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1495 } else { // Emit an indirect call...
1496 unsigned Reg = getReg(CI.getCalledValue());
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001497 TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001498 }
1499
1500 std::vector<ValueRecord> Args;
1501 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001502 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001503
1504 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1505 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001506}
Chris Lattner3e130a22003-01-13 00:32:26 +00001507
Chris Lattneraeb54b82003-08-28 21:23:43 +00001508
Chris Lattner44827152003-12-28 09:47:19 +00001509/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1510/// function, lowering any calls to unknown intrinsic functions into the
1511/// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +00001512///
Chris Lattner44827152003-12-28 09:47:19 +00001513void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1514 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1515 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1516 if (CallInst *CI = dyn_cast<CallInst>(I++))
1517 if (Function *F = CI->getCalledFunction())
1518 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001519 case Intrinsic::not_intrinsic:
Chris Lattner317201d2004-03-13 00:24:00 +00001520 case Intrinsic::vastart:
1521 case Intrinsic::vacopy:
1522 case Intrinsic::vaend:
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001523 case Intrinsic::returnaddress:
1524 case Intrinsic::frameaddress:
Chris Lattner915e5e52004-02-12 17:53:22 +00001525 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001526 case Intrinsic::memset:
John Criswell4ffff9e2004-04-08 20:31:47 +00001527 case Intrinsic::readport:
1528 case Intrinsic::writeport:
Chris Lattner44827152003-12-28 09:47:19 +00001529 // We directly implement these intrinsics
1530 break;
1531 default:
1532 // All other intrinsic calls we must lower.
1533 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001534 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001535 if (Before) { // Move iterator to instruction after call
1536 I = Before; ++I;
1537 } else {
1538 I = BB->begin();
1539 }
1540 }
1541
1542}
1543
Brian Gaeked0fde302003-11-11 22:41:34 +00001544void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001545 unsigned TmpReg1, TmpReg2;
1546 switch (ID) {
Chris Lattner5634b9f2004-03-13 00:24:52 +00001547 case Intrinsic::vastart:
Chris Lattnereca195e2003-05-08 19:44:13 +00001548 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001549 TmpReg1 = getReg(CI);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001550 addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001551 return;
1552
Chris Lattner5634b9f2004-03-13 00:24:52 +00001553 case Intrinsic::vacopy:
Chris Lattner73815062003-10-18 05:56:40 +00001554 TmpReg1 = getReg(CI);
1555 TmpReg2 = getReg(CI.getOperand(1));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001556 BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001557 return;
Chris Lattner5634b9f2004-03-13 00:24:52 +00001558 case Intrinsic::vaend: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001559
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001560 case Intrinsic::returnaddress:
1561 case Intrinsic::frameaddress:
1562 TmpReg1 = getReg(CI);
1563 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1564 if (ID == Intrinsic::returnaddress) {
1565 // Just load the return address
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001566 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001567 ReturnAddressIndex);
1568 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001569 addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001570 ReturnAddressIndex, -4);
1571 }
1572 } else {
1573 // Values other than zero are not implemented yet.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001574 BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001575 }
1576 return;
1577
Chris Lattner915e5e52004-02-12 17:53:22 +00001578 case Intrinsic::memcpy: {
1579 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1580 unsigned Align = 1;
1581 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1582 Align = AlignC->getRawValue();
1583 if (Align == 0) Align = 1;
1584 }
1585
1586 // Turn the byte code into # iterations
Chris Lattner915e5e52004-02-12 17:53:22 +00001587 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001588 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001589 switch (Align & 3) {
1590 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001591 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1592 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1593 } else {
1594 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001595 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001596 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner07122832004-02-13 23:36:47 +00001597 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001598 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001599 break;
1600 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001601 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1602 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1603 } else {
1604 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001605 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001606 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner07122832004-02-13 23:36:47 +00001607 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001608 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001609 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001610 default: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001611 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001612 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001613 break;
1614 }
1615
1616 // No matter what the alignment is, we put the source in ESI, the
1617 // destination in EDI, and the count in ECX.
1618 TmpReg1 = getReg(CI.getOperand(1));
1619 TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001620 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1621 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1622 BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001623 BuildMI(BB, Opcode, 0);
1624 return;
1625 }
1626 case Intrinsic::memset: {
1627 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1628 unsigned Align = 1;
1629 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1630 Align = AlignC->getRawValue();
1631 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001632 }
1633
Chris Lattner2a0f2242004-02-14 04:46:05 +00001634 // Turn the byte code into # iterations
Chris Lattner2a0f2242004-02-14 04:46:05 +00001635 unsigned CountReg;
1636 unsigned Opcode;
1637 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1638 unsigned Val = ValC->getRawValue() & 255;
1639
1640 // If the value is a constant, then we can potentially use larger copies.
1641 switch (Align & 3) {
1642 case 2: // WORD aligned
1643 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001644 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001645 } else {
1646 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001647 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001648 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001649 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001650 BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001651 Opcode = X86::REP_STOSW;
1652 break;
1653 case 0: // DWORD aligned
1654 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001655 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001656 } else {
1657 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001658 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001659 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001660 }
1661 Val = (Val << 8) | Val;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001662 BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001663 Opcode = X86::REP_STOSD;
1664 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001665 default: // BYTE aligned
Chris Lattner2a0f2242004-02-14 04:46:05 +00001666 CountReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001667 BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001668 Opcode = X86::REP_STOSB;
1669 break;
1670 }
1671 } else {
1672 // If it's not a constant value we are storing, just fall back. We could
1673 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1674 unsigned ValReg = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001675 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001676 CountReg = getReg(CI.getOperand(3));
1677 Opcode = X86::REP_STOSB;
1678 }
1679
1680 // No matter what the alignment is, we put the source in ESI, the
1681 // destination in EDI, and the count in ECX.
1682 TmpReg1 = getReg(CI.getOperand(1));
1683 //TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001684 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1685 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001686 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001687 return;
1688 }
1689
John Criswell4ffff9e2004-04-08 20:31:47 +00001690 case Intrinsic::readport:
1691 //
1692 // First, determine that the size of the operand falls within the
1693 // acceptable range for this architecture.
1694 //
John Criswellca6ea0f2004-04-08 22:39:13 +00001695 if ((CI.getOperand(1)->getType()->getPrimitiveSize()) != 2) {
1696 std::cerr << "llvm.readport: Address size is not 16 bits\n";
1697 exit (1);
1698 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001699
1700 //
1701 // Now, move the I/O port address into the DX register and use the IN
1702 // instruction to get the input data.
1703 //
1704 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(getReg(CI.getOperand(1)));
1705 switch (CI.getCalledFunction()->getReturnType()->getPrimitiveSize()) {
1706 case 1:
John Criswellca6ea0f2004-04-08 22:39:13 +00001707 BuildMI(BB, X86::IN8, 0);
John Criswell4ffff9e2004-04-08 20:31:47 +00001708 break;
1709 case 2:
John Criswellca6ea0f2004-04-08 22:39:13 +00001710 BuildMI(BB, X86::IN16, 0);
John Criswell4ffff9e2004-04-08 20:31:47 +00001711 break;
1712 case 4:
John Criswellca6ea0f2004-04-08 22:39:13 +00001713 BuildMI(BB, X86::IN32, 0);
John Criswell4ffff9e2004-04-08 20:31:47 +00001714 break;
1715 default:
John Criswellaee0cf32004-04-09 15:10:15 +00001716 std::cerr << "Cannot do input on this data type";
1717 exit (1);
John Criswell4ffff9e2004-04-08 20:31:47 +00001718 }
1719 return;
1720
1721 case Intrinsic::writeport:
1722 //
1723 // First, determine that the size of the operand falls within the
1724 // acceptable range for this architecture.
1725 //
John Criswellca6ea0f2004-04-08 22:39:13 +00001726 //
John Criswell6d804f42004-04-09 19:09:14 +00001727 if ((CI.getOperand(2)->getType()->getPrimitiveSize()) != 2) {
John Criswellca6ea0f2004-04-08 22:39:13 +00001728 std::cerr << "llvm.writeport: Address size is not 16 bits\n";
1729 exit (1);
1730 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001731
1732 //
1733 // Now, move the I/O port address into the DX register and the value to
1734 // write into the AL/AX/EAX register.
1735 //
John Criswell6d804f42004-04-09 19:09:14 +00001736 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(getReg(CI.getOperand(2)));
1737 switch (CI.getOperand(1)->getType()->getPrimitiveSize()) {
John Criswell4ffff9e2004-04-08 20:31:47 +00001738 case 1:
John Criswell6d804f42004-04-09 19:09:14 +00001739 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(getReg(CI.getOperand(1)));
John Criswellca6ea0f2004-04-08 22:39:13 +00001740 BuildMI(BB, X86::OUT8, 0);
John Criswell4ffff9e2004-04-08 20:31:47 +00001741 break;
1742 case 2:
John Criswell6d804f42004-04-09 19:09:14 +00001743 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(getReg(CI.getOperand(1)));
John Criswellca6ea0f2004-04-08 22:39:13 +00001744 BuildMI(BB, X86::OUT16, 0);
John Criswell4ffff9e2004-04-08 20:31:47 +00001745 break;
1746 case 4:
John Criswell6d804f42004-04-09 19:09:14 +00001747 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(getReg(CI.getOperand(1)));
John Criswellca6ea0f2004-04-08 22:39:13 +00001748 BuildMI(BB, X86::OUT32, 0);
John Criswell4ffff9e2004-04-08 20:31:47 +00001749 break;
1750 default:
John Criswellaee0cf32004-04-09 15:10:15 +00001751 std::cerr << "Cannot do output on this data type";
1752 exit (1);
John Criswell4ffff9e2004-04-08 20:31:47 +00001753 }
1754 return;
1755
Chris Lattner44827152003-12-28 09:47:19 +00001756 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001757 }
1758}
1759
Chris Lattner7dee5da2004-03-08 01:58:35 +00001760static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
1761 if (LI.getParent() != User.getParent())
1762 return false;
1763 BasicBlock::iterator It = &LI;
1764 // Check all of the instructions between the load and the user. We should
1765 // really use alias analysis here, but for now we just do something simple.
1766 for (++It; It != BasicBlock::iterator(&User); ++It) {
1767 switch (It->getOpcode()) {
Chris Lattner85c84e72004-03-18 06:29:54 +00001768 case Instruction::Free:
Chris Lattner7dee5da2004-03-08 01:58:35 +00001769 case Instruction::Store:
1770 case Instruction::Call:
1771 case Instruction::Invoke:
1772 return false;
1773 }
1774 }
1775 return true;
1776}
1777
Chris Lattnereca195e2003-05-08 19:44:13 +00001778
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001779/// visitSimpleBinary - Implement simple binary operators for integral types...
1780/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1781/// Xor.
Misha Brukman538607f2004-03-01 23:53:11 +00001782///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001783void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1784 unsigned DestReg = getReg(B);
1785 MachineBasicBlock::iterator MI = BB->end();
Chris Lattner721d2d42004-03-08 01:18:36 +00001786 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1787
Chris Lattner7dee5da2004-03-08 01:58:35 +00001788 // Special case: op Reg, load [mem]
1789 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
1790 if (!B.swapOperands())
1791 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
1792
1793 unsigned Class = getClassB(B.getType());
1794 if (isa<LoadInst>(Op1) && Class < cFP &&
1795 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
1796
1797 static const unsigned OpcodeTab[][3] = {
1798 // Arithmetic operators
1799 { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
1800 { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
1801
1802 // Bitwise operators
1803 { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
1804 { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
1805 { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
1806 };
1807
1808 assert(Class < cFP && "General code handles 64-bit integer types!");
1809 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1810
1811 unsigned BaseReg, Scale, IndexReg, Disp;
1812 getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), BaseReg,
1813 Scale, IndexReg, Disp);
1814
1815 unsigned Op0r = getReg(Op0);
1816 addFullAddress(BuildMI(BB, Opcode, 2, DestReg).addReg(Op0r),
1817 BaseReg, Scale, IndexReg, Disp);
1818 return;
1819 }
1820
Chris Lattner721d2d42004-03-08 01:18:36 +00001821 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001822}
Chris Lattner3e130a22003-01-13 00:32:26 +00001823
Chris Lattner6621ed92004-04-11 21:23:56 +00001824
1825/// emitBinaryFPOperation - This method handles emission of floating point
1826/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1827void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1828 MachineBasicBlock::iterator IP,
1829 Value *Op0, Value *Op1,
1830 unsigned OperatorClass, unsigned DestReg) {
1831
1832 // Special case: op Reg, <const fp>
1833 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
1834 if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
1835 // Create a constant pool entry for this constant.
1836 MachineConstantPool *CP = F->getConstantPool();
1837 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1838 const Type *Ty = Op1->getType();
1839
1840 static const unsigned OpcodeTab[][4] = {
1841 { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
1842 { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
1843 };
1844
1845 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1846 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1847 unsigned Op0r = getReg(Op0, BB, IP);
1848 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
1849 DestReg).addReg(Op0r), CPI);
1850 return;
1851 }
1852
1853 // Special case: R1 = sub <const fp>, R2
1854 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1855 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1856 // -0.0 - X === -X
1857 unsigned op1Reg = getReg(Op1, BB, IP);
1858 BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
1859 return;
1860 } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
1861 // R1 = sub CST, R2 --> R1 = subr R2, CST
1862
1863 // Create a constant pool entry for this constant.
1864 MachineConstantPool *CP = F->getConstantPool();
1865 unsigned CPI = CP->getConstantPoolIndex(CFP);
1866 const Type *Ty = CFP->getType();
1867
1868 static const unsigned OpcodeTab[][4] = {
1869 { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
1870 { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
1871 };
1872
1873 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
1874 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1875 unsigned Op1r = getReg(Op1, BB, IP);
1876 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
1877 DestReg).addReg(Op1r), CPI);
1878 return;
1879 }
1880
1881 // General case.
1882 static const unsigned OpcodeTab[4] = {
1883 X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
1884 };
1885
1886 unsigned Opcode = OpcodeTab[OperatorClass];
1887 unsigned Op0r = getReg(Op0, BB, IP);
1888 unsigned Op1r = getReg(Op1, BB, IP);
1889 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1890}
1891
Chris Lattnerb2acc512003-10-19 21:09:10 +00001892/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1893/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1894/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001895///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001896/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1897/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001898///
1899void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00001900 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001901 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001902 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001903 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001904
Chris Lattner6621ed92004-04-11 21:23:56 +00001905 if (Class == cFP) {
1906 assert(OperatorClass < 2 && "No logical ops for FP!");
1907 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1908 return;
1909 }
1910
Chris Lattnerb2acc512003-10-19 21:09:10 +00001911 // sub 0, X -> neg X
Chris Lattner48b0c972004-04-11 20:26:20 +00001912 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1913 if (OperatorClass == 1 && CI->isNullValue()) {
1914 unsigned op1Reg = getReg(Op1, MBB, IP);
1915 static unsigned const NEGTab[] = {
1916 X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
1917 };
1918 BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
1919
1920 if (Class == cLong) {
1921 // We just emitted: Dl = neg Sl
1922 // Now emit : T = addc Sh, 0
1923 // : Dh = neg T
1924 unsigned T = makeAnotherReg(Type::IntTy);
1925 BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
1926 BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001927 }
Chris Lattner48b0c972004-04-11 20:26:20 +00001928 return;
1929 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001930
Chris Lattner48b0c972004-04-11 20:26:20 +00001931 // Special case: op Reg, <const int>
1932 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner721d2d42004-03-08 01:18:36 +00001933 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001934
Chris Lattner721d2d42004-03-08 01:18:36 +00001935 // xor X, -1 -> not X
1936 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
Chris Lattnerab1d0e02004-04-06 02:11:49 +00001937 static unsigned const NOTTab[] = {
1938 X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
1939 };
Chris Lattner721d2d42004-03-08 01:18:36 +00001940 BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattnerab1d0e02004-04-06 02:11:49 +00001941 if (Class == cLong) // Invert the top part too
1942 BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
Chris Lattner721d2d42004-03-08 01:18:36 +00001943 return;
1944 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001945
Chris Lattner721d2d42004-03-08 01:18:36 +00001946 // add X, -1 -> dec X
Chris Lattner06521672004-04-06 03:36:57 +00001947 if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
1948 // Note that we can't use dec for 64-bit decrements, because it does not
1949 // set the carry flag!
1950 static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
Chris Lattner721d2d42004-03-08 01:18:36 +00001951 BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1952 return;
1953 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001954
Chris Lattner721d2d42004-03-08 01:18:36 +00001955 // add X, 1 -> inc X
Chris Lattner06521672004-04-06 03:36:57 +00001956 if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
1957 // Note that we can't use inc for 64-bit increments, because it does not
1958 // set the carry flag!
1959 static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
Alkis Evlogimenosbee8a092004-04-02 18:11:32 +00001960 BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattner721d2d42004-03-08 01:18:36 +00001961 return;
1962 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001963
Chris Lattnerab1d0e02004-04-06 02:11:49 +00001964 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00001965 // Arithmetic operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00001966 { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
1967 { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
Chris Lattnerb2acc512003-10-19 21:09:10 +00001968
Chris Lattner721d2d42004-03-08 01:18:36 +00001969 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00001970 { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
1971 { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
1972 { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
Chris Lattner721d2d42004-03-08 01:18:36 +00001973 };
1974
Chris Lattner721d2d42004-03-08 01:18:36 +00001975 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner33f7fa32004-04-06 03:15:53 +00001976 unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner721d2d42004-03-08 01:18:36 +00001977
Chris Lattner33f7fa32004-04-06 03:15:53 +00001978 if (Class != cLong) {
1979 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
1980 return;
Chris Lattner6621ed92004-04-11 21:23:56 +00001981 }
1982
1983 // If this is a long value and the high or low bits have a special
1984 // property, emit some special cases.
1985 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1986
1987 // If the constant is zero in the low 32-bits, just copy the low part
1988 // across and apply the normal 32-bit operation to the high parts. There
1989 // will be no carry or borrow into the top.
1990 if (Op1l == 0) {
1991 if (OperatorClass != 2) // All but and...
1992 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
1993 else
1994 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
1995 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
1996 .addReg(Op0r+1).addImm(Op1h);
Chris Lattner33f7fa32004-04-06 03:15:53 +00001997 return;
Chris Lattnerab1d0e02004-04-06 02:11:49 +00001998 }
Chris Lattner6621ed92004-04-11 21:23:56 +00001999
2000 // If this is a logical operation and the top 32-bits are zero, just
2001 // operate on the lower 32.
2002 if (Op1h == 0 && OperatorClass > 1) {
2003 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
2004 .addReg(Op0r).addImm(Op1l);
2005 if (OperatorClass != 2) // All but and
2006 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
2007 else
2008 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2009 return;
2010 }
2011
2012 // TODO: We could handle lots of other special cases here, such as AND'ing
2013 // with 0xFFFFFFFF00000000 -> noop, etc.
2014
2015 // Otherwise, code generate the full operation with a constant.
2016 static const unsigned TopTab[] = {
2017 X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
2018 };
2019
2020 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2021 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
2022 .addReg(Op0r+1).addImm(Op1h);
2023 return;
Chris Lattner721d2d42004-03-08 01:18:36 +00002024 }
2025
2026 // Finally, handle the general case now.
Chris Lattner7ba92302004-04-06 02:13:25 +00002027 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002028 // Arithmetic operators
Chris Lattner6621ed92004-04-11 21:23:56 +00002029 { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
2030 { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
Chris Lattner721d2d42004-03-08 01:18:36 +00002031
Chris Lattnerb2acc512003-10-19 21:09:10 +00002032 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002033 { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
2034 { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
2035 { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
Chris Lattnerb2acc512003-10-19 21:09:10 +00002036 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002037
Chris Lattnerb2acc512003-10-19 21:09:10 +00002038 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner721d2d42004-03-08 01:18:36 +00002039 unsigned Op0r = getReg(Op0, MBB, IP);
2040 unsigned Op1r = getReg(Op1, MBB, IP);
2041 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2042
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002043 if (Class == cLong) { // Handle the upper 32 bits of long values...
Chris Lattner721d2d42004-03-08 01:18:36 +00002044 static const unsigned TopTab[] = {
2045 X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
2046 };
2047 BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
2048 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2049 }
Chris Lattnere2954c82002-11-02 20:04:26 +00002050}
2051
Chris Lattner3e130a22003-01-13 00:32:26 +00002052/// doMultiply - Emit appropriate instructions to multiply together the
2053/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
2054/// result should be given as DestTy.
2055///
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002056void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00002057 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00002058 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002059 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00002060 switch (Class) {
Chris Lattner0f1c4612003-06-21 17:16:58 +00002061 case cInt:
2062 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002063 BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00002064 .addReg(op0Reg).addReg(op1Reg);
2065 return;
2066 case cByte:
2067 // Must use the MUL instruction, which forces use of AL...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002068 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
2069 BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
2070 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
Chris Lattner0f1c4612003-06-21 17:16:58 +00002071 return;
Chris Lattner94af4142002-12-25 05:13:53 +00002072 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00002073 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00002074 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002075}
2076
Chris Lattnerb2acc512003-10-19 21:09:10 +00002077// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2078// returns zero when the input is not exactly a power of two.
2079static unsigned ExactLog2(unsigned Val) {
2080 if (Val == 0) return 0;
2081 unsigned Count = 0;
2082 while (Val != 1) {
2083 if (Val & 1) return 0;
2084 Val >>= 1;
2085 ++Count;
2086 }
2087 return Count+1;
2088}
2089
Chris Lattner462fa822004-04-11 20:56:28 +00002090
2091/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
2092/// 16, or 32-bit integer multiply by a constant.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002093void ISel::doMultiplyConst(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002094 MachineBasicBlock::iterator IP,
Chris Lattnerb2acc512003-10-19 21:09:10 +00002095 unsigned DestReg, const Type *DestTy,
2096 unsigned op0Reg, unsigned ConstRHS) {
Chris Lattner6ab06d52004-04-06 04:55:43 +00002097 static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
2098 static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
2099
Chris Lattnerb2acc512003-10-19 21:09:10 +00002100 unsigned Class = getClass(DestTy);
2101
Chris Lattner6ab06d52004-04-06 04:55:43 +00002102 if (ConstRHS == 0) {
2103 BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
2104 return;
2105 } else if (ConstRHS == 1) {
2106 BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
2107 return;
2108 }
2109
Chris Lattnerb2acc512003-10-19 21:09:10 +00002110 // If the element size is exactly a power of 2, use a shift to get it.
2111 if (unsigned Shift = ExactLog2(ConstRHS)) {
2112 switch (Class) {
2113 default: assert(0 && "Unknown class for this function!");
2114 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002115 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002116 return;
2117 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002118 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002119 return;
2120 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002121 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002122 return;
2123 }
2124 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00002125
2126 if (Class == cShort) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002127 BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002128 return;
2129 } else if (Class == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002130 BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002131 return;
2132 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002133
2134 // Most general case, emit a normal multiply...
Chris Lattnerb2acc512003-10-19 21:09:10 +00002135 unsigned TmpReg = makeAnotherReg(DestTy);
Chris Lattneree352852004-02-29 07:22:16 +00002136 BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002137
2138 // Emit a MUL to multiply the register holding the index by
2139 // elementSize, putting the result in OffsetReg.
2140 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
2141}
2142
Chris Lattnerca9671d2002-11-02 20:28:58 +00002143/// visitMul - Multiplies are not simple binary operators because they must deal
2144/// with the EAX register explicitly.
2145///
2146void ISel::visitMul(BinaryOperator &I) {
Chris Lattner462fa822004-04-11 20:56:28 +00002147 unsigned ResultReg = getReg(I);
2148
2149 MachineBasicBlock::iterator IP = BB->end();
2150 emitMultiply(BB, IP, I.getOperand(0), I.getOperand(1), ResultReg);
2151}
2152
2153void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2154 Value *Op0, Value *Op1, unsigned DestReg) {
2155 MachineBasicBlock &BB = *MBB;
2156 TypeClass Class = getClass(Op0->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +00002157
2158 // Simple scalar multiply?
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002159 unsigned Op0Reg = getReg(Op0, &BB, IP);
Chris Lattner462fa822004-04-11 20:56:28 +00002160 switch (Class) {
2161 case cByte:
2162 case cShort:
2163 case cInt:
2164 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner462fa822004-04-11 20:56:28 +00002165 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
2166 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002167 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002168 unsigned Op1Reg = getReg(Op1, &BB, IP);
2169 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002170 }
Chris Lattner462fa822004-04-11 20:56:28 +00002171 return;
2172 case cFP:
Chris Lattner6621ed92004-04-11 21:23:56 +00002173 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2174 return;
Chris Lattner462fa822004-04-11 20:56:28 +00002175 case cLong:
2176 break;
2177 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002178
Chris Lattner462fa822004-04-11 20:56:28 +00002179 // Long value. We have to do things the hard way...
2180 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2181 unsigned CLow = CI->getRawValue();
2182 unsigned CHi = CI->getRawValue() >> 32;
2183
2184 if (CLow == 0) {
2185 // If the low part of the constant is all zeros, things are simple.
2186 BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2187 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2188 return;
2189 }
2190
2191 // Multiply the two low parts... capturing carry into EDX
2192 unsigned OverflowReg = 0;
2193 if (CLow == 1) {
2194 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
Chris Lattner028adc42004-04-06 04:29:36 +00002195 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002196 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2197 OverflowReg = makeAnotherReg(Type::UIntTy);
2198 BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
2199 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2200 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
Chris Lattner028adc42004-04-06 04:29:36 +00002201
Chris Lattner462fa822004-04-11 20:56:28 +00002202 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2203 BuildMI(BB, IP, X86::MOV32rr, 1,
2204 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2205 }
2206
2207 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2208 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2209
2210 unsigned AHBLplusOverflowReg;
2211 if (OverflowReg) {
2212 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2213 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002214 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002215 } else {
2216 AHBLplusOverflowReg = AHBLReg;
2217 }
2218
2219 if (CHi == 0) {
2220 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
2221 } else {
Chris Lattner028adc42004-04-06 04:29:36 +00002222 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattner462fa822004-04-11 20:56:28 +00002223 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
Chris Lattner028adc42004-04-06 04:29:36 +00002224
Chris Lattner462fa822004-04-11 20:56:28 +00002225 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002226 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2227 }
Chris Lattner462fa822004-04-11 20:56:28 +00002228 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002229 }
Chris Lattner462fa822004-04-11 20:56:28 +00002230
2231 // General 64x64 multiply
2232
2233 unsigned Op1Reg = getReg(Op1, &BB, IP);
2234 // Multiply the two low parts... capturing carry into EDX
2235 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2236 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
2237
2238 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
2239 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2240 BuildMI(BB, IP, X86::MOV32rr, 1,
2241 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2242
2243 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2244 BuildMI(BB, IP, X86::IMUL32rr, 2,
2245 AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2246
2247 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2248 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2249 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2250
2251 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2252 BuildMI(BB, IP, X86::IMUL32rr, 2,
2253 ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2254
2255 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2256 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002257}
Chris Lattnerca9671d2002-11-02 20:28:58 +00002258
Chris Lattner06925362002-11-17 21:56:38 +00002259
Chris Lattnerf01729e2002-11-02 20:54:46 +00002260/// visitDivRem - Handle division and remainder instructions... these
2261/// instruction both require the same instructions to be generated, they just
2262/// select the result from a different register. Note that both of these
2263/// instructions work differently for signed and unsigned operands.
2264///
2265void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00002266 unsigned ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00002267
Chris Lattnercadff442003-10-23 17:21:43 +00002268 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner462fa822004-04-11 20:56:28 +00002269 emitDivRemOperation(BB, IP, I.getOperand(0), I.getOperand(1),
2270 I.getOpcode() == Instruction::Div, ResultReg);
Chris Lattnercadff442003-10-23 17:21:43 +00002271}
2272
2273void ISel::emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002274 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +00002275 Value *Op0, Value *Op1, bool isDiv,
2276 unsigned ResultReg) {
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002277 const Type *Ty = Op0->getType();
2278 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00002279 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002280 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00002281 if (isDiv) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002282 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2283 return;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002284 } else { // Floating point remainder...
Chris Lattner462fa822004-04-11 20:56:28 +00002285 unsigned Op0Reg = getReg(Op0, BB, IP);
2286 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002287 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002288 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002289 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002290 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2291 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002292 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
2293 }
Chris Lattner94af4142002-12-25 05:13:53 +00002294 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002295 case cLong: {
2296 static const char *FnName[] =
2297 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
Chris Lattner462fa822004-04-11 20:56:28 +00002298 unsigned Op0Reg = getReg(Op0, BB, IP);
2299 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002300 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00002301 MachineInstr *TheCall =
2302 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
2303
2304 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002305 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2306 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002307 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
2308 return;
2309 }
2310 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00002311 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00002312 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00002313 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00002314
2315 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002316 static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
2317 static const unsigned SarOpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
2318 static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
Chris Lattnerf01729e2002-11-02 20:54:46 +00002319 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
2320
2321 static const unsigned DivOpcode[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002322 { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
2323 { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00002324 };
2325
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002326 bool isSigned = Ty->isSigned();
Chris Lattnerf01729e2002-11-02 20:54:46 +00002327 unsigned Reg = Regs[Class];
2328 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00002329
2330 // Put the first operand into one of the A registers...
Chris Lattner462fa822004-04-11 20:56:28 +00002331 unsigned Op0Reg = getReg(Op0, BB, IP);
2332 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattneree352852004-02-29 07:22:16 +00002333 BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002334
2335 if (isSigned) {
2336 // Emit a sign extension instruction...
Chris Lattner462fa822004-04-11 20:56:28 +00002337 unsigned ShiftResult = makeAnotherReg(Op0->getType());
Chris Lattneree352852004-02-29 07:22:16 +00002338 BuildMI(*BB, IP, SarOpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
2339 BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002340 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00002341 // If unsigned, emit a zeroing instruction... (reg = 0)
Chris Lattneree352852004-02-29 07:22:16 +00002342 BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002343 }
2344
Chris Lattner06925362002-11-17 21:56:38 +00002345 // Emit the appropriate divide or remainder instruction...
Chris Lattneree352852004-02-29 07:22:16 +00002346 BuildMI(*BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00002347
Chris Lattnerf01729e2002-11-02 20:54:46 +00002348 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00002349 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00002350
Chris Lattnerf01729e2002-11-02 20:54:46 +00002351 // Put the result into the destination register...
Chris Lattneree352852004-02-29 07:22:16 +00002352 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00002353}
Chris Lattnere2954c82002-11-02 20:04:26 +00002354
Chris Lattner06925362002-11-17 21:56:38 +00002355
Brian Gaekea1719c92002-10-31 23:03:59 +00002356/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2357/// for constant immediate shift values, and for constant immediate
2358/// shift values equal to 1. Even the general case is sort of special,
2359/// because the shift amount has to be in CL, not just any old register.
2360///
Chris Lattner3e130a22003-01-13 00:32:26 +00002361void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002362 MachineBasicBlock::iterator IP = BB->end ();
2363 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
2364 I.getOpcode () == Instruction::Shl, I.getType (),
2365 getReg (I));
2366}
2367
2368/// emitShiftOperation - Common code shared between visitShiftInst and
2369/// constant expression support.
2370void ISel::emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002371 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002372 Value *Op, Value *ShiftAmount, bool isLeftShift,
2373 const Type *ResultTy, unsigned DestReg) {
2374 unsigned SrcReg = getReg (Op, MBB, IP);
2375 bool isSigned = ResultTy->isSigned ();
2376 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002377
2378 static const unsigned ConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002379 { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR
2380 { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR
2381 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL
2382 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002383 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002384
Chris Lattner3e130a22003-01-13 00:32:26 +00002385 static const unsigned NonConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002386 { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
2387 { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
2388 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
2389 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002390 };
Chris Lattner796df732002-11-02 00:44:25 +00002391
Chris Lattner3e130a22003-01-13 00:32:26 +00002392 // Longs, as usual, are handled specially...
2393 if (Class == cLong) {
2394 // If we have a constant shift, we can generate much more efficient code
2395 // than otherwise...
2396 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002397 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002398 unsigned Amount = CUI->getValue();
2399 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002400 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
2401 if (isLeftShift) {
Chris Lattneree352852004-02-29 07:22:16 +00002402 BuildMI(*MBB, IP, Opc[3], 3,
2403 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
2404 BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002405 } else {
Chris Lattneree352852004-02-29 07:22:16 +00002406 BuildMI(*MBB, IP, Opc[3], 3,
2407 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
2408 BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002409 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002410 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002411 Amount -= 32;
2412 if (isLeftShift) {
Chris Lattner722070e2004-04-06 03:42:38 +00002413 if (Amount != 0) {
2414 BuildMI(*MBB, IP, X86::SHL32ri, 2,
2415 DestReg + 1).addReg(SrcReg).addImm(Amount);
2416 } else {
2417 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
2418 }
2419 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002420 } else {
Chris Lattner722070e2004-04-06 03:42:38 +00002421 if (Amount != 0) {
2422 BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
2423 DestReg).addReg(SrcReg+1).addImm(Amount);
2424 } else {
2425 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
2426 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002427 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002428 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002429 }
2430 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00002431 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2432
2433 if (!isLeftShift && isSigned) {
2434 // If this is a SHR of a Long, then we need to do funny sign extension
2435 // stuff. TmpReg gets the value to use as the high-part if we are
2436 // shifting more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002437 BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00002438 } else {
2439 // Other shifts use a fixed zero value if the shift is more than 32
2440 // bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002441 BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00002442 }
2443
2444 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002445 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002446 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002447
2448 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
2449 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2450 if (isLeftShift) {
2451 // TmpReg2 = shld inHi, inLo
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002452 BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
Chris Lattneree352852004-02-29 07:22:16 +00002453 .addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002454 // TmpReg3 = shl inLo, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002455 BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002456
2457 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002458 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002459
2460 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002461 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002462 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
2463 // DestLo = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002464 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002465 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002466 } else {
2467 // TmpReg2 = shrd inLo, inHi
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002468 BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
Chris Lattneree352852004-02-29 07:22:16 +00002469 .addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00002470 // TmpReg3 = s[ah]r inHi, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002471 BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00002472 .addReg(SrcReg+1);
2473
2474 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002475 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002476
2477 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002478 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002479 DestReg).addReg(TmpReg2).addReg(TmpReg3);
2480
2481 // DestHi = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002482 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002483 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
2484 }
Brian Gaekea1719c92002-10-31 23:03:59 +00002485 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002486 return;
2487 }
Chris Lattnere9913f22002-11-02 01:41:55 +00002488
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002489 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002490 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2491 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002492
Chris Lattner3e130a22003-01-13 00:32:26 +00002493 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00002494 BuildMI(*MBB, IP, Opc[Class], 2,
2495 DestReg).addReg(SrcReg).addImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00002496 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002497 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002498 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002499
Chris Lattner3e130a22003-01-13 00:32:26 +00002500 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00002501 BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002502 }
2503}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002504
Chris Lattner3e130a22003-01-13 00:32:26 +00002505
Chris Lattner721d2d42004-03-08 01:18:36 +00002506void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
2507 unsigned &IndexReg, unsigned &Disp) {
2508 BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0;
2509 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
2510 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
2511 BaseReg, Scale, IndexReg, Disp))
2512 return;
2513 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
2514 if (CE->getOpcode() == Instruction::GetElementPtr)
2515 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
2516 BaseReg, Scale, IndexReg, Disp))
2517 return;
2518 }
2519
2520 // If it's not foldable, reset addr mode.
2521 BaseReg = getReg(Addr);
2522 Scale = 1; IndexReg = 0; Disp = 0;
2523}
2524
2525
Chris Lattner6fc3c522002-11-17 21:11:55 +00002526/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00002527/// instruction. The load and store instructions are the only place where we
2528/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00002529///
2530void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00002531 // Check to see if this load instruction is going to be folded into a binary
2532 // instruction, like add. If so, we don't want to emit it. Wouldn't a real
2533 // pattern matching instruction selector be nice?
2534 if (I.hasOneUse() && getClassB(I.getType()) < cFP) {
2535 Instruction *User = cast<Instruction>(I.use_back());
2536 switch (User->getOpcode()) {
2537 default: User = 0; break;
2538 case Instruction::Add:
2539 case Instruction::Sub:
2540 case Instruction::And:
2541 case Instruction::Or:
2542 case Instruction::Xor:
2543 break;
2544 }
2545
2546 if (User) {
2547 // Okay, we found a user. If the load is the first operand and there is
2548 // no second operand load, reverse the operand ordering. Note that this
2549 // can fail for a subtract (ie, no change will be made).
2550 if (!isa<LoadInst>(User->getOperand(1)))
2551 cast<BinaryOperator>(User)->swapOperands();
2552
2553 // Okay, now that everything is set up, if this load is used by the second
2554 // operand, and if there are no instructions that invalidate the load
2555 // before the binary operator, eliminate the load.
2556 if (User->getOperand(1) == &I &&
2557 isSafeToFoldLoadIntoInstruction(I, *User))
2558 return; // Eliminate the load!
2559 }
2560 }
2561
Chris Lattner94af4142002-12-25 05:13:53 +00002562 unsigned DestReg = getReg(I);
Chris Lattnerb6bac512004-02-25 06:13:04 +00002563 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
Chris Lattner721d2d42004-03-08 01:18:36 +00002564 getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
Chris Lattnere8f0d922002-12-24 00:03:11 +00002565
Brian Gaekebfedb912003-07-17 21:30:06 +00002566 unsigned Class = getClassB(I.getType());
Chris Lattner6ac1d712003-10-20 04:48:06 +00002567 if (Class == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002568 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg),
Chris Lattnerb6bac512004-02-25 06:13:04 +00002569 BaseReg, Scale, IndexReg, Disp);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002570 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1),
Chris Lattnerb6bac512004-02-25 06:13:04 +00002571 BaseReg, Scale, IndexReg, Disp+4);
Chris Lattner94af4142002-12-25 05:13:53 +00002572 return;
2573 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00002574
Chris Lattner6ac1d712003-10-20 04:48:06 +00002575 static const unsigned Opcodes[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002576 X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m
Chris Lattner3e130a22003-01-13 00:32:26 +00002577 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00002578 unsigned Opcode = Opcodes[Class];
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002579 if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
Chris Lattnerb6bac512004-02-25 06:13:04 +00002580 addFullAddress(BuildMI(BB, Opcode, 4, DestReg),
2581 BaseReg, Scale, IndexReg, Disp);
Chris Lattner3e130a22003-01-13 00:32:26 +00002582}
2583
Chris Lattner6fc3c522002-11-17 21:11:55 +00002584/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
2585/// instruction.
2586///
2587void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner721d2d42004-03-08 01:18:36 +00002588 unsigned BaseReg, Scale, IndexReg, Disp;
2589 getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp);
Chris Lattnerb6bac512004-02-25 06:13:04 +00002590
Chris Lattner6c09db22003-10-20 04:11:23 +00002591 const Type *ValTy = I.getOperand(0)->getType();
2592 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00002593
Chris Lattner5a830962004-02-25 02:56:58 +00002594 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
2595 uint64_t Val = CI->getRawValue();
2596 if (Class == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002597 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00002598 BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002599 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00002600 BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32);
Chris Lattner5a830962004-02-25 02:56:58 +00002601 } else {
2602 static const unsigned Opcodes[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002603 X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
Chris Lattner5a830962004-02-25 02:56:58 +00002604 };
2605 unsigned Opcode = Opcodes[Class];
Chris Lattnerb6bac512004-02-25 06:13:04 +00002606 addFullAddress(BuildMI(BB, Opcode, 5),
Chris Lattneree352852004-02-29 07:22:16 +00002607 BaseReg, Scale, IndexReg, Disp).addImm(Val);
Chris Lattner5a830962004-02-25 02:56:58 +00002608 }
2609 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002610 addFullAddress(BuildMI(BB, X86::MOV8mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00002611 BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue());
Chris Lattner5a830962004-02-25 02:56:58 +00002612 } else {
2613 if (Class == cLong) {
2614 unsigned ValReg = getReg(I.getOperand(0));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002615 addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
Chris Lattnerb6bac512004-02-25 06:13:04 +00002616 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002617 addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
Chris Lattnerb6bac512004-02-25 06:13:04 +00002618 BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1);
Chris Lattner5a830962004-02-25 02:56:58 +00002619 } else {
2620 unsigned ValReg = getReg(I.getOperand(0));
2621 static const unsigned Opcodes[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002622 X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
Chris Lattner5a830962004-02-25 02:56:58 +00002623 };
2624 unsigned Opcode = Opcodes[Class];
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002625 if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
Chris Lattnerb6bac512004-02-25 06:13:04 +00002626 addFullAddress(BuildMI(BB, Opcode, 1+4),
2627 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
Chris Lattner5a830962004-02-25 02:56:58 +00002628 }
Chris Lattner94af4142002-12-25 05:13:53 +00002629 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00002630}
2631
2632
Misha Brukman538607f2004-03-01 23:53:11 +00002633/// visitCastInst - Here we have various kinds of copying with or without sign
2634/// extension going on.
2635///
Chris Lattner3e130a22003-01-13 00:32:26 +00002636void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00002637 Value *Op = CI.getOperand(0);
Chris Lattner427aeb42004-04-11 19:21:59 +00002638
2639 // Noop casts are not even emitted.
2640 if (getClassB(CI.getType()) == getClassB(Op->getType()))
2641 return;
2642
Chris Lattnerf5854472003-06-21 16:01:24 +00002643 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2644 // of the case are GEP instructions, then the cast does not need to be
2645 // generated explicitly, it will be folded into the GEP.
2646 if (CI.getType() == Type::LongTy &&
2647 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
2648 bool AllUsesAreGEPs = true;
2649 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2650 if (!isa<GetElementPtrInst>(*I)) {
2651 AllUsesAreGEPs = false;
2652 break;
2653 }
2654
2655 // No need to codegen this cast if all users are getelementptr instrs...
2656 if (AllUsesAreGEPs) return;
2657 }
2658
Chris Lattner548f61d2003-04-23 17:22:12 +00002659 unsigned DestReg = getReg(CI);
2660 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00002661 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00002662}
2663
Misha Brukman538607f2004-03-01 23:53:11 +00002664/// emitCastOperation - Common code shared between visitCastInst and constant
2665/// expression cast support.
2666///
Chris Lattner548f61d2003-04-23 17:22:12 +00002667void ISel::emitCastOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002668 MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +00002669 Value *Src, const Type *DestTy,
2670 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00002671 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002672 const Type *SrcTy = Src->getType();
2673 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002674 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00002675
Chris Lattner3e130a22003-01-13 00:32:26 +00002676 // Implement casts to bool by using compare on the operand followed by set if
2677 // not zero on the result.
2678 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00002679 switch (SrcClass) {
2680 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002681 BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00002682 break;
2683 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002684 BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00002685 break;
2686 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002687 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00002688 break;
2689 case cLong: {
2690 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002691 BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner20772542003-06-01 03:38:24 +00002692 break;
2693 }
2694 case cFP:
Chris Lattneree352852004-02-29 07:22:16 +00002695 BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002696 BuildMI(*BB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00002697 BuildMI(*BB, IP, X86::SAHF, 1);
Chris Lattner311ca2e2004-02-23 03:21:41 +00002698 break;
Chris Lattner20772542003-06-01 03:38:24 +00002699 }
2700
2701 // If the zero flag is not set, then the value is true, set the byte to
2702 // true.
Chris Lattneree352852004-02-29 07:22:16 +00002703 BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00002704 return;
2705 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002706
2707 static const unsigned RegRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002708 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
Chris Lattner3e130a22003-01-13 00:32:26 +00002709 };
2710
2711 // Implement casts between values of the same type class (as determined by
2712 // getClass) by using a register-to-register move.
2713 if (SrcClass == DestClass) {
2714 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattneree352852004-02-29 07:22:16 +00002715 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002716 } else if (SrcClass == cFP) {
2717 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002718 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattneree352852004-02-29 07:22:16 +00002719 BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002720 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002721 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2722 "Unknown cFP member!");
2723 // Truncate from double to float by storing to memory as short, then
2724 // reading it back.
2725 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00002726 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002727 addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
2728 addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002729 }
2730 } else if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002731 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
2732 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00002733 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00002734 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00002735 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00002736 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002737 return;
2738 }
2739
2740 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2741 // or zero extension, depending on whether the source type was signed.
2742 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2743 SrcClass < DestClass) {
2744 bool isLong = DestClass == cLong;
2745 if (isLong) DestClass = cInt;
2746
2747 static const unsigned Opc[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002748 { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
2749 { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
Chris Lattner3e130a22003-01-13 00:32:26 +00002750 };
2751
2752 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattneree352852004-02-29 07:22:16 +00002753 BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
Chris Lattner548f61d2003-04-23 17:22:12 +00002754 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002755
2756 if (isLong) { // Handle upper 32 bits as appropriate...
2757 if (isUnsigned) // Zero out top bits...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002758 BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00002759 else // Sign extend bottom half...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002760 BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00002761 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002762 return;
2763 }
2764
2765 // Special case long -> int ...
2766 if (SrcClass == cLong && DestClass == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002767 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002768 return;
2769 }
2770
2771 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
2772 // move out of AX or AL.
2773 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2774 && SrcClass > DestClass) {
2775 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattneree352852004-02-29 07:22:16 +00002776 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
2777 BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00002778 return;
2779 }
2780
2781 // Handle casts from integer to floating point now...
2782 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002783 // Promote the integer to a type supported by FLD. We do this because there
2784 // are no unsigned FLD instructions, so we must promote an unsigned value to
2785 // a larger signed value, then use FLD on the larger value.
2786 //
2787 const Type *PromoteType = 0;
Chris Lattner85aa7092004-04-10 18:32:01 +00002788 unsigned PromoteOpcode = 0;
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002789 unsigned RealDestReg = DestReg;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002790 switch (SrcTy->getPrimitiveID()) {
2791 case Type::BoolTyID:
2792 case Type::SByteTyID:
2793 // We don't have the facilities for directly loading byte sized data from
2794 // memory (even signed). Promote it to 16 bits.
2795 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002796 PromoteOpcode = X86::MOVSX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002797 break;
2798 case Type::UByteTyID:
2799 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002800 PromoteOpcode = X86::MOVZX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002801 break;
2802 case Type::UShortTyID:
2803 PromoteType = Type::IntTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002804 PromoteOpcode = X86::MOVZX32rr16;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002805 break;
2806 case Type::UIntTyID: {
2807 // Make a 64 bit temporary... and zero out the top of it...
2808 unsigned TmpReg = makeAnotherReg(Type::LongTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002809 BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
2810 BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002811 SrcTy = Type::LongTy;
2812 SrcClass = cLong;
2813 SrcReg = TmpReg;
2814 break;
2815 }
2816 case Type::ULongTyID:
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002817 // Don't fild into the read destination.
2818 DestReg = makeAnotherReg(Type::DoubleTy);
2819 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002820 default: // No promotion needed...
2821 break;
2822 }
2823
2824 if (PromoteType) {
2825 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner7b92de1e2004-04-06 19:29:36 +00002826 BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002827 SrcTy = PromoteType;
2828 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00002829 SrcReg = TmpReg;
2830 }
2831
2832 // Spill the integer to memory and reload it from there...
Chris Lattnerb6bac512004-02-25 06:13:04 +00002833 int FrameIdx =
2834 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Chris Lattner3e130a22003-01-13 00:32:26 +00002835
2836 if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002837 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Chris Lattneree352852004-02-29 07:22:16 +00002838 FrameIdx).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002839 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002840 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00002841 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002842 static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
Chris Lattneree352852004-02-29 07:22:16 +00002843 addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
2844 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002845 }
2846
2847 static const unsigned Op2[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002848 { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
Chris Lattneree352852004-02-29 07:22:16 +00002849 addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002850
2851 // We need special handling for unsigned 64-bit integer sources. If the
2852 // input number has the "sign bit" set, then we loaded it incorrectly as a
2853 // negative 64-bit number. In this case, add an offset value.
2854 if (SrcTy == Type::ULongTy) {
2855 // Emit a test instruction to see if the dynamic input value was signed.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002856 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002857
Chris Lattnerb6bac512004-02-25 06:13:04 +00002858 // If the sign bit is set, get a pointer to an offset, otherwise get a
2859 // pointer to a zero.
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002860 MachineConstantPool *CP = F->getConstantPool();
2861 unsigned Zero = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00002862 Constant *Null = Constant::getNullValue(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002863 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
Chris Lattnerb6bac512004-02-25 06:13:04 +00002864 CP->getConstantPoolIndex(Null));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002865 unsigned Offset = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00002866 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
2867
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002868 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
Chris Lattnerb6bac512004-02-25 06:13:04 +00002869 CP->getConstantPoolIndex(OffsetCst));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002870 unsigned Addr = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002871 BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002872
2873 // Load the constant for an add. FIXME: this could make an 'fadd' that
2874 // reads directly from memory, but we don't support these yet.
2875 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002876 addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002877
Chris Lattneree352852004-02-29 07:22:16 +00002878 BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
2879 .addReg(ConstReg).addReg(DestReg);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002880 }
2881
Chris Lattner3e130a22003-01-13 00:32:26 +00002882 return;
2883 }
2884
2885 // Handle casts from floating point to integer now...
2886 if (SrcClass == cFP) {
2887 // Change the floating point control register to use "round towards zero"
2888 // mode when truncating to an integer value.
2889 //
2890 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002891 addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002892
2893 // Load the old value of the high byte of the control word...
2894 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002895 addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
Chris Lattneree352852004-02-29 07:22:16 +00002896 CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00002897
2898 // Set the high part to be round to zero...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002899 addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00002900 CWFrameIdx, 1).addImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00002901
2902 // Reload the modified control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002903 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002904
2905 // Restore the memory image of control word to original value
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002906 addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002907 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00002908
2909 // We don't have the facilities for directly storing byte sized data to
2910 // memory. Promote it to 16 bits. We also must promote unsigned values to
2911 // larger classes because we only have signed FP stores.
2912 unsigned StoreClass = DestClass;
2913 const Type *StoreTy = DestTy;
2914 if (StoreClass == cByte || DestTy->isUnsigned())
2915 switch (StoreClass) {
2916 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
2917 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
2918 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00002919 // The following treatment of cLong may not be perfectly right,
2920 // but it survives chains of casts of the form
2921 // double->ulong->double.
2922 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00002923 default: assert(0 && "Unknown store class!");
2924 }
2925
2926 // Spill the integer to memory and reload it from there...
2927 int FrameIdx =
2928 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
2929
2930 static const unsigned Op1[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002931 { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
Chris Lattneree352852004-02-29 07:22:16 +00002932 addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
2933 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002934
2935 if (DestClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002936 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
2937 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
Chris Lattneree352852004-02-29 07:22:16 +00002938 FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00002939 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002940 static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
Chris Lattneree352852004-02-29 07:22:16 +00002941 addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002942 }
2943
2944 // Reload the original control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002945 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002946 return;
2947 }
2948
Brian Gaeked474e9c2002-12-06 10:49:33 +00002949 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00002950 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00002951 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00002952}
Brian Gaekea1719c92002-10-31 23:03:59 +00002953
Chris Lattner73815062003-10-18 05:56:40 +00002954/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00002955///
Chris Lattner73815062003-10-18 05:56:40 +00002956void ISel::visitVANextInst(VANextInst &I) {
2957 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00002958 unsigned DestReg = getReg(I);
2959
Chris Lattnereca195e2003-05-08 19:44:13 +00002960 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00002961 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00002962 default:
2963 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00002964 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00002965 return;
2966 case Type::PointerTyID:
2967 case Type::UIntTyID:
2968 case Type::IntTyID:
2969 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00002970 break;
2971 case Type::ULongTyID:
2972 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00002973 case Type::DoubleTyID:
2974 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00002975 break;
2976 }
2977
2978 // Increment the VAList pointer...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002979 BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
Chris Lattner73815062003-10-18 05:56:40 +00002980}
Chris Lattnereca195e2003-05-08 19:44:13 +00002981
Chris Lattner73815062003-10-18 05:56:40 +00002982void ISel::visitVAArgInst(VAArgInst &I) {
2983 unsigned VAList = getReg(I.getOperand(0));
2984 unsigned DestReg = getReg(I);
2985
2986 switch (I.getType()->getPrimitiveID()) {
2987 default:
2988 std::cerr << I;
2989 assert(0 && "Error: bad type for va_next instruction!");
2990 return;
2991 case Type::PointerTyID:
2992 case Type::UIntTyID:
2993 case Type::IntTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002994 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00002995 break;
2996 case Type::ULongTyID:
2997 case Type::LongTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002998 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
2999 addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
Chris Lattner73815062003-10-18 05:56:40 +00003000 break;
3001 case Type::DoubleTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003002 addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003003 break;
3004 }
Chris Lattnereca195e2003-05-08 19:44:13 +00003005}
3006
Misha Brukman538607f2004-03-01 23:53:11 +00003007/// visitGetElementPtrInst - instruction-select GEP instructions
3008///
Chris Lattner3e130a22003-01-13 00:32:26 +00003009void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003010 // If this GEP instruction will be folded into all of its users, we don't need
3011 // to explicitly calculate it!
3012 unsigned A, B, C, D;
3013 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) {
3014 // Check all of the users of the instruction to see if they are loads and
3015 // stores.
3016 bool AllWillFold = true;
3017 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
3018 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
3019 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
3020 cast<Instruction>(*UI)->getOperand(0) == &I) {
3021 AllWillFold = false;
3022 break;
3023 }
3024
3025 // If the instruction is foldable, and will be folded into all users, don't
3026 // emit it!
3027 if (AllWillFold) return;
3028 }
3029
Chris Lattner3e130a22003-01-13 00:32:26 +00003030 unsigned outputReg = getReg(I);
Chris Lattner827832c2004-02-22 17:05:38 +00003031 emitGEPOperation(BB, BB->end(), I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00003032 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00003033}
3034
Chris Lattner985fe3d2004-02-25 03:45:50 +00003035/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
3036/// GEPTypes (the derived types being stepped through at each level). On return
3037/// from this function, if some indexes of the instruction are representable as
3038/// an X86 lea instruction, the machine operands are put into the Ops
3039/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
3040/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
3041/// addressing mode that only partially consumes the input, the BaseReg input of
3042/// the addressing mode must be left free.
3043///
3044/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
3045///
Chris Lattnerb6bac512004-02-25 06:13:04 +00003046void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
3047 std::vector<Value*> &GEPOps,
3048 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
3049 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
3050 const TargetData &TD = TM.getTargetData();
3051
Chris Lattner985fe3d2004-02-25 03:45:50 +00003052 // Clear out the state we are working with...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003053 BaseReg = 0; // No base register
3054 Scale = 1; // Unit scale
3055 IndexReg = 0; // No index register
3056 Disp = 0; // No displacement
3057
Chris Lattner985fe3d2004-02-25 03:45:50 +00003058 // While there are GEP indexes that can be folded into the current address,
3059 // keep processing them.
3060 while (!GEPTypes.empty()) {
3061 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
3062 // It's a struct access. CUI is the index into the structure,
3063 // which names the field. This index must have unsigned type.
3064 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
3065
3066 // Use the TargetData structure to pick out what the layout of the
3067 // structure is in memory. Since the structure index must be constant, we
3068 // can get its value and use it to find the right byte offset from the
3069 // StructLayout class's list of structure member offsets.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003070 Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
Chris Lattner985fe3d2004-02-25 03:45:50 +00003071 GEPOps.pop_back(); // Consume a GEP operand
3072 GEPTypes.pop_back();
3073 } else {
3074 // It's an array or pointer access: [ArraySize x ElementType].
3075 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3076 Value *idx = GEPOps.back();
3077
3078 // idx is the index into the array. Unlike with structure
3079 // indices, we may not know its actual value at code-generation
3080 // time.
Chris Lattner985fe3d2004-02-25 03:45:50 +00003081
3082 // If idx is a constant, fold it into the offset.
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003083 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
Chris Lattner985fe3d2004-02-25 03:45:50 +00003084 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003085 Disp += TypeSize*CSI->getValue();
Chris Lattner28977af2004-04-05 01:30:19 +00003086 } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
3087 Disp += TypeSize*CUI->getValue();
Chris Lattner985fe3d2004-02-25 03:45:50 +00003088 } else {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003089 // If the index reg is already taken, we can't handle this index.
3090 if (IndexReg) return;
3091
3092 // If this is a size that we can handle, then add the index as
3093 switch (TypeSize) {
3094 case 1: case 2: case 4: case 8:
3095 // These are all acceptable scales on X86.
3096 Scale = TypeSize;
3097 break;
3098 default:
3099 // Otherwise, we can't handle this scale
3100 return;
3101 }
3102
3103 if (CastInst *CI = dyn_cast<CastInst>(idx))
3104 if (CI->getOperand(0)->getType() == Type::IntTy ||
3105 CI->getOperand(0)->getType() == Type::UIntTy)
3106 idx = CI->getOperand(0);
3107
3108 IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003109 }
3110
3111 GEPOps.pop_back(); // Consume a GEP operand
3112 GEPTypes.pop_back();
3113 }
3114 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003115
3116 // GEPTypes is empty, which means we have a single operand left. See if we
3117 // can set it as the base register.
3118 //
3119 // FIXME: When addressing modes are more powerful/correct, we could load
3120 // global addresses directly as 32-bit immediates.
3121 assert(BaseReg == 0);
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003122 BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
Chris Lattnerb6bac512004-02-25 06:13:04 +00003123 GEPOps.pop_back(); // Consume the last GEP operand
Chris Lattner985fe3d2004-02-25 03:45:50 +00003124}
3125
3126
Chris Lattnerb6bac512004-02-25 06:13:04 +00003127/// isGEPFoldable - Return true if the specified GEP can be completely
3128/// folded into the addressing mode of a load/store or lea instruction.
3129bool ISel::isGEPFoldable(MachineBasicBlock *MBB,
3130 Value *Src, User::op_iterator IdxBegin,
3131 User::op_iterator IdxEnd, unsigned &BaseReg,
3132 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
Chris Lattner7ca04092004-02-22 17:35:42 +00003133 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
3134 Src = CPR->getValue();
3135
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003136 std::vector<Value*> GEPOps;
3137 GEPOps.resize(IdxEnd-IdxBegin+1);
3138 GEPOps[0] = Src;
3139 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3140
3141 std::vector<const Type*> GEPTypes;
3142 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3143 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
3144
Chris Lattnerb6bac512004-02-25 06:13:04 +00003145 MachineBasicBlock::iterator IP;
3146 if (MBB) IP = MBB->end();
3147 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
3148
3149 // We can fold it away iff the getGEPIndex call eliminated all operands.
3150 return GEPOps.empty();
3151}
3152
3153void ISel::emitGEPOperation(MachineBasicBlock *MBB,
3154 MachineBasicBlock::iterator IP,
3155 Value *Src, User::op_iterator IdxBegin,
3156 User::op_iterator IdxEnd, unsigned TargetReg) {
3157 const TargetData &TD = TM.getTargetData();
3158 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
3159 Src = CPR->getValue();
3160
3161 std::vector<Value*> GEPOps;
3162 GEPOps.resize(IdxEnd-IdxBegin+1);
3163 GEPOps[0] = Src;
3164 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3165
3166 std::vector<const Type*> GEPTypes;
3167 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3168 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner985fe3d2004-02-25 03:45:50 +00003169
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003170 // Keep emitting instructions until we consume the entire GEP instruction.
3171 while (!GEPOps.empty()) {
3172 unsigned OldSize = GEPOps.size();
Chris Lattnerb6bac512004-02-25 06:13:04 +00003173 unsigned BaseReg, Scale, IndexReg, Disp;
3174 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003175
Chris Lattner985fe3d2004-02-25 03:45:50 +00003176 if (GEPOps.size() != OldSize) {
3177 // getGEPIndex consumed some of the input. Build an LEA instruction here.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003178 unsigned NextTarget = 0;
3179 if (!GEPOps.empty()) {
3180 assert(BaseReg == 0 &&
3181 "getGEPIndex should have left the base register open for chaining!");
3182 NextTarget = BaseReg = makeAnotherReg(Type::UIntTy);
Chris Lattner985fe3d2004-02-25 03:45:50 +00003183 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003184
3185 if (IndexReg == 0 && Disp == 0)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003186 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003187 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003188 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003189 BaseReg, Scale, IndexReg, Disp);
3190 --IP;
3191 TargetReg = NextTarget;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003192 } else if (GEPTypes.empty()) {
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003193 // The getGEPIndex operation didn't want to build an LEA. Check to see if
3194 // all operands are consumed but the base pointer. If so, just load it
3195 // into the register.
Chris Lattner7ca04092004-02-22 17:35:42 +00003196 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003197 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
Chris Lattner7ca04092004-02-22 17:35:42 +00003198 } else {
3199 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003200 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattner7ca04092004-02-22 17:35:42 +00003201 }
3202 break; // we are now done
Chris Lattnerb6bac512004-02-25 06:13:04 +00003203
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003204 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +00003205 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003206 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3207 Value *idx = GEPOps.back();
3208 GEPOps.pop_back(); // Consume a GEP operand
3209 GEPTypes.pop_back();
Chris Lattner8a307e82002-12-16 19:32:50 +00003210
Chris Lattner28977af2004-04-05 01:30:19 +00003211 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Chris Lattnerf5854472003-06-21 16:01:24 +00003212 // operand on X86. Handle this case directly now...
3213 if (CastInst *CI = dyn_cast<CastInst>(idx))
3214 if (CI->getOperand(0)->getType() == Type::IntTy ||
3215 CI->getOperand(0)->getType() == Type::UIntTy)
3216 idx = CI->getOperand(0);
3217
Chris Lattner3e130a22003-01-13 00:32:26 +00003218 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00003219 // must find the size of the pointed-to type (Not coincidentally, the next
3220 // type is the type of the elements in the array).
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003221 const Type *ElTy = SqTy->getElementType();
3222 unsigned elementSize = TD.getTypeSize(ElTy);
Chris Lattner8a307e82002-12-16 19:32:50 +00003223
3224 // If idxReg is a constant, we don't need to perform the multiply!
Chris Lattner28977af2004-04-05 01:30:19 +00003225 if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003226 if (!CSI->isNullValue()) {
Chris Lattner28977af2004-04-05 01:30:19 +00003227 unsigned Offset = elementSize*CSI->getRawValue();
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003228 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003229 BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003230 .addReg(Reg).addImm(Offset);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003231 --IP; // Insert the next instruction before this one.
3232 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003233 }
3234 } else if (elementSize == 1) {
3235 // If the element size is 1, we don't have to multiply, just add
3236 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003237 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003238 BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003239 --IP; // Insert the next instruction before this one.
3240 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003241 } else {
3242 unsigned idxReg = getReg(idx, MBB, IP);
3243 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003244
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003245 // Make sure we can back the iterator up to point to the first
3246 // instruction emitted.
3247 MachineBasicBlock::iterator BeforeIt = IP;
3248 if (IP == MBB->begin())
3249 BeforeIt = MBB->end();
3250 else
3251 --BeforeIt;
Chris Lattnerb2acc512003-10-19 21:09:10 +00003252 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
3253
Chris Lattner8a307e82002-12-16 19:32:50 +00003254 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003255 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003256 BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003257 .addReg(Reg).addReg(OffsetReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003258
3259 // Step to the first instruction of the multiply.
3260 if (BeforeIt == MBB->end())
3261 IP = MBB->begin();
3262 else
3263 IP = ++BeforeIt;
3264
3265 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003266 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003267 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003268 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003269}
3270
3271
Chris Lattner065faeb2002-12-28 20:24:02 +00003272/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3273/// frame manager, otherwise do it the hard way.
3274///
3275void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00003276 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00003277 const Type *Ty = I.getAllocatedType();
3278 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3279
3280 // If this is a fixed size alloca in the entry block for the function,
3281 // statically stack allocate the space.
3282 //
3283 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
3284 if (I.getParent() == I.getParent()->getParent()->begin()) {
3285 TySize *= CUI->getValue(); // Get total allocated size...
3286 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
3287
3288 // Create a new stack object using the frame manager...
3289 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003290 addFrameReference(BuildMI(BB, X86::LEA32r, 5, getReg(I)), FrameIdx);
Chris Lattner065faeb2002-12-28 20:24:02 +00003291 return;
3292 }
3293 }
3294
3295 // Create a register to hold the temporary result of multiplying the type size
3296 // constant by the variable amount.
3297 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
3298 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00003299
3300 // TotalSizeReg = mul <numelements>, <TypeSize>
3301 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003302 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003303
3304 // AddedSize = add <TotalSizeReg>, 15
3305 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003306 BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003307
3308 // AlignedSize = and <AddedSize>, ~15
3309 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003310 BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003311
Brian Gaekee48ec012002-12-13 06:46:31 +00003312 // Subtract size from stack pointer, thereby allocating some space.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003313 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003314
Brian Gaekee48ec012002-12-13 06:46:31 +00003315 // Put a pointer to the space into the result register, by copying
3316 // the stack pointer.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003317 BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
Chris Lattner065faeb2002-12-28 20:24:02 +00003318
Misha Brukman48196b32003-05-03 02:18:17 +00003319 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00003320 // object.
3321 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00003322}
Chris Lattner3e130a22003-01-13 00:32:26 +00003323
3324/// visitMallocInst - Malloc instructions are code generated into direct calls
3325/// to the library malloc.
3326///
3327void ISel::visitMallocInst(MallocInst &I) {
3328 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3329 unsigned Arg;
3330
3331 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3332 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3333 } else {
3334 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003335 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00003336 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003337 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00003338 }
3339
3340 std::vector<ValueRecord> Args;
3341 Args.push_back(ValueRecord(Arg, Type::UIntTy));
3342 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003343 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003344 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
3345}
3346
3347
3348/// visitFreeInst - Free instructions are code gen'd to call the free libc
3349/// function.
3350///
3351void ISel::visitFreeInst(FreeInst &I) {
3352 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00003353 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00003354 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003355 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003356 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
3357}
3358
Chris Lattnerd281de22003-07-26 23:49:58 +00003359/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00003360/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00003361/// generated code sucks but the implementation is nice and simple.
3362///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00003363FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
3364 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00003365}