blob: 6eef297dd663d58f9e39d7ee9c1d4c9cef47ae59 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/Pass.h"
23#include "llvm/PassManager.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Analysis/ConstantsScanner.h"
29#include "llvm/Analysis/FindUsedTypes.h"
30#include "llvm/Analysis/LoopInfo.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/Transforms/Scalar.h"
33#include "llvm/Target/TargetMachineRegistry.h"
34#include "llvm/Target/TargetAsmInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/Mangler.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Config/config.h"
46#include <algorithm>
47#include <sstream>
48using namespace llvm;
49
50namespace {
51 // Register the target.
52 RegisterTarget<CTargetMachine> X("c", " C backend");
53
54 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
55 /// any unnamed structure types that are used by the program, and merges
56 /// external functions with the same name.
57 ///
58 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
59 public:
60 static char ID;
61 CBackendNameAllUsedStructsAndMergeFunctions()
62 : ModulePass((intptr_t)&ID) {}
63 void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.addRequired<FindUsedTypes>();
65 }
66
67 virtual const char *getPassName() const {
68 return "C backend type canonicalizer";
69 }
70
71 virtual bool runOnModule(Module &M);
72 };
73
74 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
75
76 /// CWriter - This class is the main chunk of code that converts an LLVM
77 /// module to a C translation unit.
78 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
79 std::ostream &Out;
80 IntrinsicLowering *IL;
81 Mangler *Mang;
82 LoopInfo *LI;
83 const Module *TheModule;
84 const TargetAsmInfo* TAsm;
85 const TargetData* TD;
86 std::map<const Type *, std::string> TypeNames;
87 std::map<const ConstantFP *, unsigned> FPConstantMap;
88 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
89
90 public:
91 static char ID;
92 CWriter(std::ostream &o)
93 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
94 TheModule(0), TAsm(0), TD(0) {}
95
96 virtual const char *getPassName() const { return "C backend"; }
97
98 void getAnalysisUsage(AnalysisUsage &AU) const {
99 AU.addRequired<LoopInfo>();
100 AU.setPreservesAll();
101 }
102
103 virtual bool doInitialization(Module &M);
104
105 bool runOnFunction(Function &F) {
106 LI = &getAnalysis<LoopInfo>();
107
108 // Get rid of intrinsics we can't handle.
109 lowerIntrinsics(F);
110
111 // Output all floating point constants that cannot be printed accurately.
112 printFloatingPointConstants(F);
113
114 printFunction(F);
115 FPConstantMap.clear();
116 return false;
117 }
118
119 virtual bool doFinalization(Module &M) {
120 // Free memory...
121 delete Mang;
122 TypeNames.clear();
123 return false;
124 }
125
126 std::ostream &printType(std::ostream &Out, const Type *Ty,
127 bool isSigned = false,
128 const std::string &VariableName = "",
129 bool IgnoreName = false);
130 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
131 bool isSigned,
132 const std::string &NameSoFar = "");
133
134 void printStructReturnPointerFunctionType(std::ostream &Out,
135 const PointerType *Ty);
136
137 void writeOperand(Value *Operand);
138 void writeOperandRaw(Value *Operand);
139 void writeOperandInternal(Value *Operand);
140 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000141 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000142 bool writeInstructionCast(const Instruction &I);
143
144 private :
145 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
146
147 void lowerIntrinsics(Function &F);
148
149 void printModule(Module *M);
150 void printModuleTypes(const TypeSymbolTable &ST);
151 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
152 void printFloatingPointConstants(Function &F);
153 void printFunctionSignature(const Function *F, bool Prototype);
154
155 void printFunction(Function &);
156 void printBasicBlock(BasicBlock *BB);
157 void printLoop(Loop *L);
158
159 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
160 void printConstant(Constant *CPV);
161 void printConstantWithCast(Constant *CPV, unsigned Opcode);
162 bool printConstExprCast(const ConstantExpr *CE);
163 void printConstantArray(ConstantArray *CPA);
164 void printConstantVector(ConstantVector *CP);
165
166 // isInlinableInst - Attempt to inline instructions into their uses to build
167 // trees as much as possible. To do this, we have to consistently decide
168 // what is acceptable to inline, so that variable declarations don't get
169 // printed and an extra copy of the expr is not emitted.
170 //
171 static bool isInlinableInst(const Instruction &I) {
172 // Always inline cmp instructions, even if they are shared by multiple
173 // expressions. GCC generates horrible code if we don't.
174 if (isa<CmpInst>(I))
175 return true;
176
177 // Must be an expression, must be used exactly once. If it is dead, we
178 // emit it inline where it would go.
179 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
180 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
181 isa<LoadInst>(I) || isa<VAArgInst>(I))
182 // Don't inline a load across a store or other bad things!
183 return false;
184
185 // Must not be used in inline asm
186 if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
187
188 // Only inline instruction it if it's use is in the same BB as the inst.
189 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
190 }
191
192 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
193 // variables which are accessed with the & operator. This causes GCC to
194 // generate significantly better code than to emit alloca calls directly.
195 //
196 static const AllocaInst *isDirectAlloca(const Value *V) {
197 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
198 if (!AI) return false;
199 if (AI->isArrayAllocation())
200 return 0; // FIXME: we can also inline fixed size array allocas!
201 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
202 return 0;
203 return AI;
204 }
205
206 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
207 static bool isInlineAsm(const Instruction& I) {
208 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
209 return true;
210 return false;
211 }
212
213 // Instruction visitation functions
214 friend class InstVisitor<CWriter>;
215
216 void visitReturnInst(ReturnInst &I);
217 void visitBranchInst(BranchInst &I);
218 void visitSwitchInst(SwitchInst &I);
219 void visitInvokeInst(InvokeInst &I) {
220 assert(0 && "Lowerinvoke pass didn't work!");
221 }
222
223 void visitUnwindInst(UnwindInst &I) {
224 assert(0 && "Lowerinvoke pass didn't work!");
225 }
226 void visitUnreachableInst(UnreachableInst &I);
227
228 void visitPHINode(PHINode &I);
229 void visitBinaryOperator(Instruction &I);
230 void visitICmpInst(ICmpInst &I);
231 void visitFCmpInst(FCmpInst &I);
232
233 void visitCastInst (CastInst &I);
234 void visitSelectInst(SelectInst &I);
235 void visitCallInst (CallInst &I);
236 void visitInlineAsm(CallInst &I);
237
238 void visitMallocInst(MallocInst &I);
239 void visitAllocaInst(AllocaInst &I);
240 void visitFreeInst (FreeInst &I);
241 void visitLoadInst (LoadInst &I);
242 void visitStoreInst (StoreInst &I);
243 void visitGetElementPtrInst(GetElementPtrInst &I);
244 void visitVAArgInst (VAArgInst &I);
245
246 void visitInstruction(Instruction &I) {
247 cerr << "C Writer does not know about " << I;
248 abort();
249 }
250
251 void outputLValue(Instruction *I) {
252 Out << " " << GetValueName(I) << " = ";
253 }
254
255 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
256 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
257 BasicBlock *Successor, unsigned Indent);
258 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
259 unsigned Indent);
260 void printIndexingExpression(Value *Ptr, gep_type_iterator I,
261 gep_type_iterator E);
262
263 std::string GetValueName(const Value *Operand);
264 };
265}
266
267char CWriter::ID = 0;
268
269/// This method inserts names for any unnamed structure types that are used by
270/// the program, and removes names from structure types that are not used by the
271/// program.
272///
273bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
274 // Get a set of types that are used by the program...
275 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
276
277 // Loop over the module symbol table, removing types from UT that are
278 // already named, and removing names for types that are not used.
279 //
280 TypeSymbolTable &TST = M.getTypeSymbolTable();
281 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
282 TI != TE; ) {
283 TypeSymbolTable::iterator I = TI++;
284
285 // If this isn't a struct type, remove it from our set of types to name.
286 // This simplifies emission later.
287 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
288 TST.remove(I);
289 } else {
290 // If this is not used, remove it from the symbol table.
291 std::set<const Type *>::iterator UTI = UT.find(I->second);
292 if (UTI == UT.end())
293 TST.remove(I);
294 else
295 UT.erase(UTI); // Only keep one name for this type.
296 }
297 }
298
299 // UT now contains types that are not named. Loop over it, naming
300 // structure types.
301 //
302 bool Changed = false;
303 unsigned RenameCounter = 0;
304 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
305 I != E; ++I)
306 if (const StructType *ST = dyn_cast<StructType>(*I)) {
307 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
308 ++RenameCounter;
309 Changed = true;
310 }
311
312
313 // Loop over all external functions and globals. If we have two with
314 // identical names, merge them.
315 // FIXME: This code should disappear when we don't allow values with the same
316 // names when they have different types!
317 std::map<std::string, GlobalValue*> ExtSymbols;
318 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
319 Function *GV = I++;
320 if (GV->isDeclaration() && GV->hasName()) {
321 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
322 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
323 if (!X.second) {
324 // Found a conflict, replace this global with the previous one.
325 GlobalValue *OldGV = X.first->second;
326 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
327 GV->eraseFromParent();
328 Changed = true;
329 }
330 }
331 }
332 // Do the same for globals.
333 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
334 I != E;) {
335 GlobalVariable *GV = I++;
336 if (GV->isDeclaration() && GV->hasName()) {
337 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
338 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
339 if (!X.second) {
340 // Found a conflict, replace this global with the previous one.
341 GlobalValue *OldGV = X.first->second;
342 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
343 GV->eraseFromParent();
344 Changed = true;
345 }
346 }
347 }
348
349 return Changed;
350}
351
352/// printStructReturnPointerFunctionType - This is like printType for a struct
353/// return type, except, instead of printing the type as void (*)(Struct*, ...)
354/// print it as "Struct (*)(...)", for struct return functions.
355void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
356 const PointerType *TheTy) {
357 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
358 std::stringstream FunctionInnards;
359 FunctionInnards << " (*) (";
360 bool PrintedType = false;
361
362 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
363 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
364 unsigned Idx = 1;
365 const ParamAttrsList *Attrs = FTy->getParamAttrs();
366 for (++I; I != E; ++I) {
367 if (PrintedType)
368 FunctionInnards << ", ";
369 printType(FunctionInnards, *I,
370 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
371 PrintedType = true;
372 }
373 if (FTy->isVarArg()) {
374 if (PrintedType)
375 FunctionInnards << ", ...";
376 } else if (!PrintedType) {
377 FunctionInnards << "void";
378 }
379 FunctionInnards << ')';
380 std::string tstr = FunctionInnards.str();
381 printType(Out, RetTy,
382 /*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
383}
384
385std::ostream &
386CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
387 const std::string &NameSoFar) {
388 assert((Ty->isPrimitiveType() || Ty->isInteger()) &&
389 "Invalid type for printSimpleType");
390 switch (Ty->getTypeID()) {
391 case Type::VoidTyID: return Out << "void " << NameSoFar;
392 case Type::IntegerTyID: {
393 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
394 if (NumBits == 1)
395 return Out << "bool " << NameSoFar;
396 else if (NumBits <= 8)
397 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
398 else if (NumBits <= 16)
399 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
400 else if (NumBits <= 32)
401 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
402 else {
403 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
404 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
405 }
406 }
407 case Type::FloatTyID: return Out << "float " << NameSoFar;
408 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000409 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
410 // present matches host 'long double'.
411 case Type::X86_FP80TyID:
412 case Type::PPC_FP128TyID:
413 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000414 default :
415 cerr << "Unknown primitive type: " << *Ty << "\n";
416 abort();
417 }
418}
419
420// Pass the Type* and the variable name and this prints out the variable
421// declaration.
422//
423std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
424 bool isSigned, const std::string &NameSoFar,
425 bool IgnoreName) {
426 if (Ty->isPrimitiveType() || Ty->isInteger()) {
427 printSimpleType(Out, Ty, isSigned, NameSoFar);
428 return Out;
429 }
430
431 // Check to see if the type is named.
432 if (!IgnoreName || isa<OpaqueType>(Ty)) {
433 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
434 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
435 }
436
437 switch (Ty->getTypeID()) {
438 case Type::FunctionTyID: {
439 const FunctionType *FTy = cast<FunctionType>(Ty);
440 std::stringstream FunctionInnards;
441 FunctionInnards << " (" << NameSoFar << ") (";
442 const ParamAttrsList *Attrs = FTy->getParamAttrs();
443 unsigned Idx = 1;
444 for (FunctionType::param_iterator I = FTy->param_begin(),
445 E = FTy->param_end(); I != E; ++I) {
446 if (I != FTy->param_begin())
447 FunctionInnards << ", ";
448 printType(FunctionInnards, *I,
449 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
450 ++Idx;
451 }
452 if (FTy->isVarArg()) {
453 if (FTy->getNumParams())
454 FunctionInnards << ", ...";
455 } else if (!FTy->getNumParams()) {
456 FunctionInnards << "void";
457 }
458 FunctionInnards << ')';
459 std::string tstr = FunctionInnards.str();
460 printType(Out, FTy->getReturnType(),
461 /*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
462 return Out;
463 }
464 case Type::StructTyID: {
465 const StructType *STy = cast<StructType>(Ty);
466 Out << NameSoFar + " {\n";
467 unsigned Idx = 0;
468 for (StructType::element_iterator I = STy->element_begin(),
469 E = STy->element_end(); I != E; ++I) {
470 Out << " ";
471 printType(Out, *I, false, "field" + utostr(Idx++));
472 Out << ";\n";
473 }
474 Out << '}';
475 if (STy->isPacked())
476 Out << " __attribute__ ((packed))";
477 return Out;
478 }
479
480 case Type::PointerTyID: {
481 const PointerType *PTy = cast<PointerType>(Ty);
482 std::string ptrName = "*" + NameSoFar;
483
484 if (isa<ArrayType>(PTy->getElementType()) ||
485 isa<VectorType>(PTy->getElementType()))
486 ptrName = "(" + ptrName + ")";
487
488 return printType(Out, PTy->getElementType(), false, ptrName);
489 }
490
491 case Type::ArrayTyID: {
492 const ArrayType *ATy = cast<ArrayType>(Ty);
493 unsigned NumElements = ATy->getNumElements();
494 if (NumElements == 0) NumElements = 1;
495 return printType(Out, ATy->getElementType(), false,
496 NameSoFar + "[" + utostr(NumElements) + "]");
497 }
498
499 case Type::VectorTyID: {
500 const VectorType *PTy = cast<VectorType>(Ty);
501 unsigned NumElements = PTy->getNumElements();
502 if (NumElements == 0) NumElements = 1;
503 return printType(Out, PTy->getElementType(), false,
504 NameSoFar + "[" + utostr(NumElements) + "]");
505 }
506
507 case Type::OpaqueTyID: {
508 static int Count = 0;
509 std::string TyName = "struct opaque_" + itostr(Count++);
510 assert(TypeNames.find(Ty) == TypeNames.end());
511 TypeNames[Ty] = TyName;
512 return Out << TyName << ' ' << NameSoFar;
513 }
514 default:
515 assert(0 && "Unhandled case in getTypeProps!");
516 abort();
517 }
518
519 return Out;
520}
521
522void CWriter::printConstantArray(ConstantArray *CPA) {
523
524 // As a special case, print the array as a string if it is an array of
525 // ubytes or an array of sbytes with positive values.
526 //
527 const Type *ETy = CPA->getType()->getElementType();
528 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
529
530 // Make sure the last character is a null char, as automatically added by C
531 if (isString && (CPA->getNumOperands() == 0 ||
532 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
533 isString = false;
534
535 if (isString) {
536 Out << '\"';
537 // Keep track of whether the last number was a hexadecimal escape
538 bool LastWasHex = false;
539
540 // Do not include the last character, which we know is null
541 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
542 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
543
544 // Print it out literally if it is a printable character. The only thing
545 // to be careful about is when the last letter output was a hex escape
546 // code, in which case we have to be careful not to print out hex digits
547 // explicitly (the C compiler thinks it is a continuation of the previous
548 // character, sheesh...)
549 //
550 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
551 LastWasHex = false;
552 if (C == '"' || C == '\\')
553 Out << "\\" << C;
554 else
555 Out << C;
556 } else {
557 LastWasHex = false;
558 switch (C) {
559 case '\n': Out << "\\n"; break;
560 case '\t': Out << "\\t"; break;
561 case '\r': Out << "\\r"; break;
562 case '\v': Out << "\\v"; break;
563 case '\a': Out << "\\a"; break;
564 case '\"': Out << "\\\""; break;
565 case '\'': Out << "\\\'"; break;
566 default:
567 Out << "\\x";
568 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
569 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
570 LastWasHex = true;
571 break;
572 }
573 }
574 }
575 Out << '\"';
576 } else {
577 Out << '{';
578 if (CPA->getNumOperands()) {
579 Out << ' ';
580 printConstant(cast<Constant>(CPA->getOperand(0)));
581 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
582 Out << ", ";
583 printConstant(cast<Constant>(CPA->getOperand(i)));
584 }
585 }
586 Out << " }";
587 }
588}
589
590void CWriter::printConstantVector(ConstantVector *CP) {
591 Out << '{';
592 if (CP->getNumOperands()) {
593 Out << ' ';
594 printConstant(cast<Constant>(CP->getOperand(0)));
595 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
596 Out << ", ";
597 printConstant(cast<Constant>(CP->getOperand(i)));
598 }
599 }
600 Out << " }";
601}
602
603// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
604// textually as a double (rather than as a reference to a stack-allocated
605// variable). We decide this by converting CFP to a string and back into a
606// double, and then checking whether the conversion results in a bit-equal
607// double to the original value of CFP. This depends on us and the target C
608// compiler agreeing on the conversion process (which is pretty likely since we
609// only deal in IEEE FP).
610//
611static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000612 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000613 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
614 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000615 APFloat APF = APFloat(CFP->getValueAPF()); // copy
616 if (CFP->getType()==Type::FloatTy)
617 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000618#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
619 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000620 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000621 if (!strncmp(Buffer, "0x", 2) ||
622 !strncmp(Buffer, "-0x", 3) ||
623 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000624 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000625 return false;
626#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000627 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000628
629 while (StrVal[0] == ' ')
630 StrVal.erase(StrVal.begin());
631
632 // Check to make sure that the stringized number is not some string like "Inf"
633 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
634 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
635 ((StrVal[0] == '-' || StrVal[0] == '+') &&
636 (StrVal[1] >= '0' && StrVal[1] <= '9')))
637 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000638 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000639 return false;
640#endif
641}
642
643/// Print out the casting for a cast operation. This does the double casting
644/// necessary for conversion to the destination type, if necessary.
645/// @brief Print a cast
646void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
647 // Print the destination type cast
648 switch (opc) {
649 case Instruction::UIToFP:
650 case Instruction::SIToFP:
651 case Instruction::IntToPtr:
652 case Instruction::Trunc:
653 case Instruction::BitCast:
654 case Instruction::FPExt:
655 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
656 Out << '(';
657 printType(Out, DstTy);
658 Out << ')';
659 break;
660 case Instruction::ZExt:
661 case Instruction::PtrToInt:
662 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
663 Out << '(';
664 printSimpleType(Out, DstTy, false);
665 Out << ')';
666 break;
667 case Instruction::SExt:
668 case Instruction::FPToSI: // For these, make sure we get a signed dest
669 Out << '(';
670 printSimpleType(Out, DstTy, true);
671 Out << ')';
672 break;
673 default:
674 assert(0 && "Invalid cast opcode");
675 }
676
677 // Print the source type cast
678 switch (opc) {
679 case Instruction::UIToFP:
680 case Instruction::ZExt:
681 Out << '(';
682 printSimpleType(Out, SrcTy, false);
683 Out << ')';
684 break;
685 case Instruction::SIToFP:
686 case Instruction::SExt:
687 Out << '(';
688 printSimpleType(Out, SrcTy, true);
689 Out << ')';
690 break;
691 case Instruction::IntToPtr:
692 case Instruction::PtrToInt:
693 // Avoid "cast to pointer from integer of different size" warnings
694 Out << "(unsigned long)";
695 break;
696 case Instruction::Trunc:
697 case Instruction::BitCast:
698 case Instruction::FPExt:
699 case Instruction::FPTrunc:
700 case Instruction::FPToSI:
701 case Instruction::FPToUI:
702 break; // These don't need a source cast.
703 default:
704 assert(0 && "Invalid cast opcode");
705 break;
706 }
707}
708
709// printConstant - The LLVM Constant to C Constant converter.
710void CWriter::printConstant(Constant *CPV) {
711 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
712 switch (CE->getOpcode()) {
713 case Instruction::Trunc:
714 case Instruction::ZExt:
715 case Instruction::SExt:
716 case Instruction::FPTrunc:
717 case Instruction::FPExt:
718 case Instruction::UIToFP:
719 case Instruction::SIToFP:
720 case Instruction::FPToUI:
721 case Instruction::FPToSI:
722 case Instruction::PtrToInt:
723 case Instruction::IntToPtr:
724 case Instruction::BitCast:
725 Out << "(";
726 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
727 if (CE->getOpcode() == Instruction::SExt &&
728 CE->getOperand(0)->getType() == Type::Int1Ty) {
729 // Make sure we really sext from bool here by subtracting from 0
730 Out << "0-";
731 }
732 printConstant(CE->getOperand(0));
733 if (CE->getType() == Type::Int1Ty &&
734 (CE->getOpcode() == Instruction::Trunc ||
735 CE->getOpcode() == Instruction::FPToUI ||
736 CE->getOpcode() == Instruction::FPToSI ||
737 CE->getOpcode() == Instruction::PtrToInt)) {
738 // Make sure we really truncate to bool here by anding with 1
739 Out << "&1u";
740 }
741 Out << ')';
742 return;
743
744 case Instruction::GetElementPtr:
745 Out << "(&(";
746 printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
747 gep_type_end(CPV));
748 Out << "))";
749 return;
750 case Instruction::Select:
751 Out << '(';
752 printConstant(CE->getOperand(0));
753 Out << '?';
754 printConstant(CE->getOperand(1));
755 Out << ':';
756 printConstant(CE->getOperand(2));
757 Out << ')';
758 return;
759 case Instruction::Add:
760 case Instruction::Sub:
761 case Instruction::Mul:
762 case Instruction::SDiv:
763 case Instruction::UDiv:
764 case Instruction::FDiv:
765 case Instruction::URem:
766 case Instruction::SRem:
767 case Instruction::FRem:
768 case Instruction::And:
769 case Instruction::Or:
770 case Instruction::Xor:
771 case Instruction::ICmp:
772 case Instruction::Shl:
773 case Instruction::LShr:
774 case Instruction::AShr:
775 {
776 Out << '(';
777 bool NeedsClosingParens = printConstExprCast(CE);
778 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
779 switch (CE->getOpcode()) {
780 case Instruction::Add: Out << " + "; break;
781 case Instruction::Sub: Out << " - "; break;
782 case Instruction::Mul: Out << " * "; break;
783 case Instruction::URem:
784 case Instruction::SRem:
785 case Instruction::FRem: Out << " % "; break;
786 case Instruction::UDiv:
787 case Instruction::SDiv:
788 case Instruction::FDiv: Out << " / "; break;
789 case Instruction::And: Out << " & "; break;
790 case Instruction::Or: Out << " | "; break;
791 case Instruction::Xor: Out << " ^ "; break;
792 case Instruction::Shl: Out << " << "; break;
793 case Instruction::LShr:
794 case Instruction::AShr: Out << " >> "; break;
795 case Instruction::ICmp:
796 switch (CE->getPredicate()) {
797 case ICmpInst::ICMP_EQ: Out << " == "; break;
798 case ICmpInst::ICMP_NE: Out << " != "; break;
799 case ICmpInst::ICMP_SLT:
800 case ICmpInst::ICMP_ULT: Out << " < "; break;
801 case ICmpInst::ICMP_SLE:
802 case ICmpInst::ICMP_ULE: Out << " <= "; break;
803 case ICmpInst::ICMP_SGT:
804 case ICmpInst::ICMP_UGT: Out << " > "; break;
805 case ICmpInst::ICMP_SGE:
806 case ICmpInst::ICMP_UGE: Out << " >= "; break;
807 default: assert(0 && "Illegal ICmp predicate");
808 }
809 break;
810 default: assert(0 && "Illegal opcode here!");
811 }
812 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
813 if (NeedsClosingParens)
814 Out << "))";
815 Out << ')';
816 return;
817 }
818 case Instruction::FCmp: {
819 Out << '(';
820 bool NeedsClosingParens = printConstExprCast(CE);
821 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
822 Out << "0";
823 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
824 Out << "1";
825 else {
826 const char* op = 0;
827 switch (CE->getPredicate()) {
828 default: assert(0 && "Illegal FCmp predicate");
829 case FCmpInst::FCMP_ORD: op = "ord"; break;
830 case FCmpInst::FCMP_UNO: op = "uno"; break;
831 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
832 case FCmpInst::FCMP_UNE: op = "une"; break;
833 case FCmpInst::FCMP_ULT: op = "ult"; break;
834 case FCmpInst::FCMP_ULE: op = "ule"; break;
835 case FCmpInst::FCMP_UGT: op = "ugt"; break;
836 case FCmpInst::FCMP_UGE: op = "uge"; break;
837 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
838 case FCmpInst::FCMP_ONE: op = "one"; break;
839 case FCmpInst::FCMP_OLT: op = "olt"; break;
840 case FCmpInst::FCMP_OLE: op = "ole"; break;
841 case FCmpInst::FCMP_OGT: op = "ogt"; break;
842 case FCmpInst::FCMP_OGE: op = "oge"; break;
843 }
844 Out << "llvm_fcmp_" << op << "(";
845 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
846 Out << ", ";
847 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
848 Out << ")";
849 }
850 if (NeedsClosingParens)
851 Out << "))";
852 Out << ')';
853 }
854 default:
855 cerr << "CWriter Error: Unhandled constant expression: "
856 << *CE << "\n";
857 abort();
858 }
859 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
860 Out << "((";
861 printType(Out, CPV->getType()); // sign doesn't matter
862 Out << ")/*UNDEF*/0)";
863 return;
864 }
865
866 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
867 const Type* Ty = CI->getType();
868 if (Ty == Type::Int1Ty)
869 Out << (CI->getZExtValue() ? '1' : '0') ;
870 else {
871 Out << "((";
872 printSimpleType(Out, Ty, false) << ')';
873 if (CI->isMinValue(true))
874 Out << CI->getZExtValue() << 'u';
875 else
876 Out << CI->getSExtValue();
877 if (Ty->getPrimitiveSizeInBits() > 32)
878 Out << "ll";
879 Out << ')';
880 }
881 return;
882 }
883
884 switch (CPV->getType()->getTypeID()) {
885 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000886 case Type::DoubleTyID:
887 case Type::X86_FP80TyID:
888 case Type::PPC_FP128TyID:
889 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000890 ConstantFP *FPC = cast<ConstantFP>(CPV);
891 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
892 if (I != FPConstantMap.end()) {
893 // Because of FP precision problems we must load from a stack allocated
894 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000895 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
896 FPC->getType() == Type::DoubleTy ? "double" :
897 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000898 << "*)&FPConstant" << I->second << ')';
899 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000900 assert(FPC->getType() == Type::FloatTy ||
901 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000902 double V = FPC->getType() == Type::FloatTy ?
903 FPC->getValueAPF().convertToFloat() :
904 FPC->getValueAPF().convertToDouble();
905 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000906 // The value is NaN
907
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000908 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000909 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
910 // it's 0x7ff4.
911 const unsigned long QuietNaN = 0x7ff8UL;
912 //const unsigned long SignalNaN = 0x7ff4UL;
913
914 // We need to grab the first part of the FP #
915 char Buffer[100];
916
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000917 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000918 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
919
920 std::string Num(&Buffer[0], &Buffer[6]);
921 unsigned long Val = strtoul(Num.c_str(), 0, 16);
922
923 if (FPC->getType() == Type::FloatTy)
924 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
925 << Buffer << "\") /*nan*/ ";
926 else
927 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
928 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000929 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000930 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000931 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000932 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
933 << " /*inf*/ ";
934 } else {
935 std::string Num;
936#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
937 // Print out the constant as a floating point number.
938 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000939 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000940 Num = Buffer;
941#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000942 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000944 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000945 }
946 }
947 break;
948 }
949
950 case Type::ArrayTyID:
951 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
952 const ArrayType *AT = cast<ArrayType>(CPV->getType());
953 Out << '{';
954 if (AT->getNumElements()) {
955 Out << ' ';
956 Constant *CZ = Constant::getNullValue(AT->getElementType());
957 printConstant(CZ);
958 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
959 Out << ", ";
960 printConstant(CZ);
961 }
962 }
963 Out << " }";
964 } else {
965 printConstantArray(cast<ConstantArray>(CPV));
966 }
967 break;
968
969 case Type::VectorTyID:
970 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
971 const VectorType *AT = cast<VectorType>(CPV->getType());
972 Out << '{';
973 if (AT->getNumElements()) {
974 Out << ' ';
975 Constant *CZ = Constant::getNullValue(AT->getElementType());
976 printConstant(CZ);
977 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
978 Out << ", ";
979 printConstant(CZ);
980 }
981 }
982 Out << " }";
983 } else {
984 printConstantVector(cast<ConstantVector>(CPV));
985 }
986 break;
987
988 case Type::StructTyID:
989 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
990 const StructType *ST = cast<StructType>(CPV->getType());
991 Out << '{';
992 if (ST->getNumElements()) {
993 Out << ' ';
994 printConstant(Constant::getNullValue(ST->getElementType(0)));
995 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
996 Out << ", ";
997 printConstant(Constant::getNullValue(ST->getElementType(i)));
998 }
999 }
1000 Out << " }";
1001 } else {
1002 Out << '{';
1003 if (CPV->getNumOperands()) {
1004 Out << ' ';
1005 printConstant(cast<Constant>(CPV->getOperand(0)));
1006 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1007 Out << ", ";
1008 printConstant(cast<Constant>(CPV->getOperand(i)));
1009 }
1010 }
1011 Out << " }";
1012 }
1013 break;
1014
1015 case Type::PointerTyID:
1016 if (isa<ConstantPointerNull>(CPV)) {
1017 Out << "((";
1018 printType(Out, CPV->getType()); // sign doesn't matter
1019 Out << ")/*NULL*/0)";
1020 break;
1021 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1022 writeOperand(GV);
1023 break;
1024 }
1025 // FALL THROUGH
1026 default:
1027 cerr << "Unknown constant type: " << *CPV << "\n";
1028 abort();
1029 }
1030}
1031
1032// Some constant expressions need to be casted back to the original types
1033// because their operands were casted to the expected type. This function takes
1034// care of detecting that case and printing the cast for the ConstantExpr.
1035bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1036 bool NeedsExplicitCast = false;
1037 const Type *Ty = CE->getOperand(0)->getType();
1038 bool TypeIsSigned = false;
1039 switch (CE->getOpcode()) {
1040 case Instruction::LShr:
1041 case Instruction::URem:
1042 case Instruction::UDiv: NeedsExplicitCast = true; break;
1043 case Instruction::AShr:
1044 case Instruction::SRem:
1045 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1046 case Instruction::SExt:
1047 Ty = CE->getType();
1048 NeedsExplicitCast = true;
1049 TypeIsSigned = true;
1050 break;
1051 case Instruction::ZExt:
1052 case Instruction::Trunc:
1053 case Instruction::FPTrunc:
1054 case Instruction::FPExt:
1055 case Instruction::UIToFP:
1056 case Instruction::SIToFP:
1057 case Instruction::FPToUI:
1058 case Instruction::FPToSI:
1059 case Instruction::PtrToInt:
1060 case Instruction::IntToPtr:
1061 case Instruction::BitCast:
1062 Ty = CE->getType();
1063 NeedsExplicitCast = true;
1064 break;
1065 default: break;
1066 }
1067 if (NeedsExplicitCast) {
1068 Out << "((";
1069 if (Ty->isInteger() && Ty != Type::Int1Ty)
1070 printSimpleType(Out, Ty, TypeIsSigned);
1071 else
1072 printType(Out, Ty); // not integer, sign doesn't matter
1073 Out << ")(";
1074 }
1075 return NeedsExplicitCast;
1076}
1077
1078// Print a constant assuming that it is the operand for a given Opcode. The
1079// opcodes that care about sign need to cast their operands to the expected
1080// type before the operation proceeds. This function does the casting.
1081void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1082
1083 // Extract the operand's type, we'll need it.
1084 const Type* OpTy = CPV->getType();
1085
1086 // Indicate whether to do the cast or not.
1087 bool shouldCast = false;
1088 bool typeIsSigned = false;
1089
1090 // Based on the Opcode for which this Constant is being written, determine
1091 // the new type to which the operand should be casted by setting the value
1092 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1093 // casted below.
1094 switch (Opcode) {
1095 default:
1096 // for most instructions, it doesn't matter
1097 break;
1098 case Instruction::LShr:
1099 case Instruction::UDiv:
1100 case Instruction::URem:
1101 shouldCast = true;
1102 break;
1103 case Instruction::AShr:
1104 case Instruction::SDiv:
1105 case Instruction::SRem:
1106 shouldCast = true;
1107 typeIsSigned = true;
1108 break;
1109 }
1110
1111 // Write out the casted constant if we should, otherwise just write the
1112 // operand.
1113 if (shouldCast) {
1114 Out << "((";
1115 printSimpleType(Out, OpTy, typeIsSigned);
1116 Out << ")";
1117 printConstant(CPV);
1118 Out << ")";
1119 } else
1120 printConstant(CPV);
1121}
1122
1123std::string CWriter::GetValueName(const Value *Operand) {
1124 std::string Name;
1125
1126 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1127 std::string VarName;
1128
1129 Name = Operand->getName();
1130 VarName.reserve(Name.capacity());
1131
1132 for (std::string::iterator I = Name.begin(), E = Name.end();
1133 I != E; ++I) {
1134 char ch = *I;
1135
1136 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
1137 (ch >= '0' && ch <= '9') || ch == '_'))
1138 VarName += '_';
1139 else
1140 VarName += ch;
1141 }
1142
1143 Name = "llvm_cbe_" + VarName;
1144 } else {
1145 Name = Mang->getValueName(Operand);
1146 }
1147
1148 return Name;
1149}
1150
1151void CWriter::writeOperandInternal(Value *Operand) {
1152 if (Instruction *I = dyn_cast<Instruction>(Operand))
1153 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1154 // Should we inline this instruction to build a tree?
1155 Out << '(';
1156 visit(*I);
1157 Out << ')';
1158 return;
1159 }
1160
1161 Constant* CPV = dyn_cast<Constant>(Operand);
1162
1163 if (CPV && !isa<GlobalValue>(CPV))
1164 printConstant(CPV);
1165 else
1166 Out << GetValueName(Operand);
1167}
1168
1169void CWriter::writeOperandRaw(Value *Operand) {
1170 Constant* CPV = dyn_cast<Constant>(Operand);
1171 if (CPV && !isa<GlobalValue>(CPV)) {
1172 printConstant(CPV);
1173 } else {
1174 Out << GetValueName(Operand);
1175 }
1176}
1177
1178void CWriter::writeOperand(Value *Operand) {
1179 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
1180 Out << "(&"; // Global variables are referenced as their addresses by llvm
1181
1182 writeOperandInternal(Operand);
1183
1184 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
1185 Out << ')';
1186}
1187
1188// Some instructions need to have their result value casted back to the
1189// original types because their operands were casted to the expected type.
1190// This function takes care of detecting that case and printing the cast
1191// for the Instruction.
1192bool CWriter::writeInstructionCast(const Instruction &I) {
1193 const Type *Ty = I.getOperand(0)->getType();
1194 switch (I.getOpcode()) {
1195 case Instruction::LShr:
1196 case Instruction::URem:
1197 case Instruction::UDiv:
1198 Out << "((";
1199 printSimpleType(Out, Ty, false);
1200 Out << ")(";
1201 return true;
1202 case Instruction::AShr:
1203 case Instruction::SRem:
1204 case Instruction::SDiv:
1205 Out << "((";
1206 printSimpleType(Out, Ty, true);
1207 Out << ")(";
1208 return true;
1209 default: break;
1210 }
1211 return false;
1212}
1213
1214// Write the operand with a cast to another type based on the Opcode being used.
1215// This will be used in cases where an instruction has specific type
1216// requirements (usually signedness) for its operands.
1217void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1218
1219 // Extract the operand's type, we'll need it.
1220 const Type* OpTy = Operand->getType();
1221
1222 // Indicate whether to do the cast or not.
1223 bool shouldCast = false;
1224
1225 // Indicate whether the cast should be to a signed type or not.
1226 bool castIsSigned = false;
1227
1228 // Based on the Opcode for which this Operand is being written, determine
1229 // the new type to which the operand should be casted by setting the value
1230 // of OpTy. If we change OpTy, also set shouldCast to true.
1231 switch (Opcode) {
1232 default:
1233 // for most instructions, it doesn't matter
1234 break;
1235 case Instruction::LShr:
1236 case Instruction::UDiv:
1237 case Instruction::URem: // Cast to unsigned first
1238 shouldCast = true;
1239 castIsSigned = false;
1240 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001241 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242 case Instruction::AShr:
1243 case Instruction::SDiv:
1244 case Instruction::SRem: // Cast to signed first
1245 shouldCast = true;
1246 castIsSigned = true;
1247 break;
1248 }
1249
1250 // Write out the casted operand if we should, otherwise just write the
1251 // operand.
1252 if (shouldCast) {
1253 Out << "((";
1254 printSimpleType(Out, OpTy, castIsSigned);
1255 Out << ")";
1256 writeOperand(Operand);
1257 Out << ")";
1258 } else
1259 writeOperand(Operand);
1260}
1261
1262// Write the operand with a cast to another type based on the icmp predicate
1263// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001264void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1265 // This has to do a cast to ensure the operand has the right signedness.
1266 // Also, if the operand is a pointer, we make sure to cast to an integer when
1267 // doing the comparison both for signedness and so that the C compiler doesn't
1268 // optimize things like "p < NULL" to false (p may contain an integer value
1269 // f.e.).
1270 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001271
1272 // Write out the casted operand if we should, otherwise just write the
1273 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001274 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001275 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001276 return;
1277 }
1278
1279 // Should this be a signed comparison? If so, convert to signed.
1280 bool castIsSigned = Cmp.isSignedPredicate();
1281
1282 // If the operand was a pointer, convert to a large integer type.
1283 const Type* OpTy = Operand->getType();
1284 if (isa<PointerType>(OpTy))
1285 OpTy = TD->getIntPtrType();
1286
1287 Out << "((";
1288 printSimpleType(Out, OpTy, castIsSigned);
1289 Out << ")";
1290 writeOperand(Operand);
1291 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001292}
1293
1294// generateCompilerSpecificCode - This is where we add conditional compilation
1295// directives to cater to specific compilers as need be.
1296//
1297static void generateCompilerSpecificCode(std::ostream& Out) {
1298 // Alloca is hard to get, and we don't want to include stdlib.h here.
1299 Out << "/* get a declaration for alloca */\n"
1300 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1301 << "#define alloca(x) __builtin_alloca((x))\n"
1302 << "#define _alloca(x) __builtin_alloca((x))\n"
1303 << "#elif defined(__APPLE__)\n"
1304 << "extern void *__builtin_alloca(unsigned long);\n"
1305 << "#define alloca(x) __builtin_alloca(x)\n"
1306 << "#define longjmp _longjmp\n"
1307 << "#define setjmp _setjmp\n"
1308 << "#elif defined(__sun__)\n"
1309 << "#if defined(__sparcv9)\n"
1310 << "extern void *__builtin_alloca(unsigned long);\n"
1311 << "#else\n"
1312 << "extern void *__builtin_alloca(unsigned int);\n"
1313 << "#endif\n"
1314 << "#define alloca(x) __builtin_alloca(x)\n"
1315 << "#elif defined(__FreeBSD__) || defined(__OpenBSD__)\n"
1316 << "#define alloca(x) __builtin_alloca(x)\n"
1317 << "#elif defined(_MSC_VER)\n"
1318 << "#define inline _inline\n"
1319 << "#define alloca(x) _alloca(x)\n"
1320 << "#else\n"
1321 << "#include <alloca.h>\n"
1322 << "#endif\n\n";
1323
1324 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1325 // If we aren't being compiled with GCC, just drop these attributes.
1326 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1327 << "#define __attribute__(X)\n"
1328 << "#endif\n\n";
1329
1330 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1331 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1332 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1333 << "#elif defined(__GNUC__)\n"
1334 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1335 << "#else\n"
1336 << "#define __EXTERNAL_WEAK__\n"
1337 << "#endif\n\n";
1338
1339 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1340 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1341 << "#define __ATTRIBUTE_WEAK__\n"
1342 << "#elif defined(__GNUC__)\n"
1343 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1344 << "#else\n"
1345 << "#define __ATTRIBUTE_WEAK__\n"
1346 << "#endif\n\n";
1347
1348 // Add hidden visibility support. FIXME: APPLE_CC?
1349 Out << "#if defined(__GNUC__)\n"
1350 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1351 << "#endif\n\n";
1352
1353 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1354 // From the GCC documentation:
1355 //
1356 // double __builtin_nan (const char *str)
1357 //
1358 // This is an implementation of the ISO C99 function nan.
1359 //
1360 // Since ISO C99 defines this function in terms of strtod, which we do
1361 // not implement, a description of the parsing is in order. The string is
1362 // parsed as by strtol; that is, the base is recognized by leading 0 or
1363 // 0x prefixes. The number parsed is placed in the significand such that
1364 // the least significant bit of the number is at the least significant
1365 // bit of the significand. The number is truncated to fit the significand
1366 // field provided. The significand is forced to be a quiet NaN.
1367 //
1368 // This function, if given a string literal, is evaluated early enough
1369 // that it is considered a compile-time constant.
1370 //
1371 // float __builtin_nanf (const char *str)
1372 //
1373 // Similar to __builtin_nan, except the return type is float.
1374 //
1375 // double __builtin_inf (void)
1376 //
1377 // Similar to __builtin_huge_val, except a warning is generated if the
1378 // target floating-point format does not support infinities. This
1379 // function is suitable for implementing the ISO C99 macro INFINITY.
1380 //
1381 // float __builtin_inff (void)
1382 //
1383 // Similar to __builtin_inf, except the return type is float.
1384 Out << "#ifdef __GNUC__\n"
1385 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1386 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1387 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1388 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1389 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1390 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1391 << "#define LLVM_PREFETCH(addr,rw,locality) "
1392 "__builtin_prefetch(addr,rw,locality)\n"
1393 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1394 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1395 << "#define LLVM_ASM __asm__\n"
1396 << "#else\n"
1397 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1398 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1399 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1400 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1401 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1402 << "#define LLVM_INFF 0.0F /* Float */\n"
1403 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1404 << "#define __ATTRIBUTE_CTOR__\n"
1405 << "#define __ATTRIBUTE_DTOR__\n"
1406 << "#define LLVM_ASM(X)\n"
1407 << "#endif\n\n";
1408
1409 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1410 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1411 << "#define __builtin_stack_restore(X) /* noop */\n"
1412 << "#endif\n\n";
1413
1414 // Output target-specific code that should be inserted into main.
1415 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001416}
1417
1418/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1419/// the StaticTors set.
1420static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1421 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1422 if (!InitList) return;
1423
1424 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1425 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1426 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1427
1428 if (CS->getOperand(1)->isNullValue())
1429 return; // Found a null terminator, exit printing.
1430 Constant *FP = CS->getOperand(1);
1431 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1432 if (CE->isCast())
1433 FP = CE->getOperand(0);
1434 if (Function *F = dyn_cast<Function>(FP))
1435 StaticTors.insert(F);
1436 }
1437}
1438
1439enum SpecialGlobalClass {
1440 NotSpecial = 0,
1441 GlobalCtors, GlobalDtors,
1442 NotPrinted
1443};
1444
1445/// getGlobalVariableClass - If this is a global that is specially recognized
1446/// by LLVM, return a code that indicates how we should handle it.
1447static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1448 // If this is a global ctors/dtors list, handle it now.
1449 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1450 if (GV->getName() == "llvm.global_ctors")
1451 return GlobalCtors;
1452 else if (GV->getName() == "llvm.global_dtors")
1453 return GlobalDtors;
1454 }
1455
1456 // Otherwise, it it is other metadata, don't print it. This catches things
1457 // like debug information.
1458 if (GV->getSection() == "llvm.metadata")
1459 return NotPrinted;
1460
1461 return NotSpecial;
1462}
1463
1464
1465bool CWriter::doInitialization(Module &M) {
1466 // Initialize
1467 TheModule = &M;
1468
1469 TD = new TargetData(&M);
1470 IL = new IntrinsicLowering(*TD);
1471 IL->AddPrototypes(M);
1472
1473 // Ensure that all structure types have names...
1474 Mang = new Mangler(M);
1475 Mang->markCharUnacceptable('.');
1476
1477 // Keep track of which functions are static ctors/dtors so they can have
1478 // an attribute added to their prototypes.
1479 std::set<Function*> StaticCtors, StaticDtors;
1480 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1481 I != E; ++I) {
1482 switch (getGlobalVariableClass(I)) {
1483 default: break;
1484 case GlobalCtors:
1485 FindStaticTors(I, StaticCtors);
1486 break;
1487 case GlobalDtors:
1488 FindStaticTors(I, StaticDtors);
1489 break;
1490 }
1491 }
1492
1493 // get declaration for alloca
1494 Out << "/* Provide Declarations */\n";
1495 Out << "#include <stdarg.h>\n"; // Varargs support
1496 Out << "#include <setjmp.h>\n"; // Unwind support
1497 generateCompilerSpecificCode(Out);
1498
1499 // Provide a definition for `bool' if not compiling with a C++ compiler.
1500 Out << "\n"
1501 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1502
1503 << "\n\n/* Support for floating point constants */\n"
1504 << "typedef unsigned long long ConstantDoubleTy;\n"
1505 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001506 << "typedef struct { unsigned long long f1; unsigned short f2; "
1507 "unsigned short pad[3]; } ConstantFP80Ty;\n"
1508 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1509 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001510 << "\n\n/* Global Declarations */\n";
1511
1512 // First output all the declarations for the program, because C requires
1513 // Functions & globals to be declared before they are used.
1514 //
1515
1516 // Loop over the symbol table, emitting all named constants...
1517 printModuleTypes(M.getTypeSymbolTable());
1518
1519 // Global variable declarations...
1520 if (!M.global_empty()) {
1521 Out << "\n/* External Global Variable Declarations */\n";
1522 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1523 I != E; ++I) {
1524
1525 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1526 Out << "extern ";
1527 else if (I->hasDLLImportLinkage())
1528 Out << "__declspec(dllimport) ";
1529 else
1530 continue; // Internal Global
1531
1532 // Thread Local Storage
1533 if (I->isThreadLocal())
1534 Out << "__thread ";
1535
1536 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1537
1538 if (I->hasExternalWeakLinkage())
1539 Out << " __EXTERNAL_WEAK__";
1540 Out << ";\n";
1541 }
1542 }
1543
1544 // Function declarations
1545 Out << "\n/* Function Declarations */\n";
1546 Out << "double fmod(double, double);\n"; // Support for FP rem
1547 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001548 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001549
1550 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1551 // Don't print declarations for intrinsic functions.
1552 if (!I->getIntrinsicID() && I->getName() != "setjmp" &&
1553 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1554 if (I->hasExternalWeakLinkage())
1555 Out << "extern ";
1556 printFunctionSignature(I, true);
1557 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1558 Out << " __ATTRIBUTE_WEAK__";
1559 if (I->hasExternalWeakLinkage())
1560 Out << " __EXTERNAL_WEAK__";
1561 if (StaticCtors.count(I))
1562 Out << " __ATTRIBUTE_CTOR__";
1563 if (StaticDtors.count(I))
1564 Out << " __ATTRIBUTE_DTOR__";
1565 if (I->hasHiddenVisibility())
1566 Out << " __HIDDEN__";
1567
1568 if (I->hasName() && I->getName()[0] == 1)
1569 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1570
1571 Out << ";\n";
1572 }
1573 }
1574
1575 // Output the global variable declarations
1576 if (!M.global_empty()) {
1577 Out << "\n\n/* Global Variable Declarations */\n";
1578 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1579 I != E; ++I)
1580 if (!I->isDeclaration()) {
1581 // Ignore special globals, such as debug info.
1582 if (getGlobalVariableClass(I))
1583 continue;
1584
1585 if (I->hasInternalLinkage())
1586 Out << "static ";
1587 else
1588 Out << "extern ";
1589
1590 // Thread Local Storage
1591 if (I->isThreadLocal())
1592 Out << "__thread ";
1593
1594 printType(Out, I->getType()->getElementType(), false,
1595 GetValueName(I));
1596
1597 if (I->hasLinkOnceLinkage())
1598 Out << " __attribute__((common))";
1599 else if (I->hasWeakLinkage())
1600 Out << " __ATTRIBUTE_WEAK__";
1601 else if (I->hasExternalWeakLinkage())
1602 Out << " __EXTERNAL_WEAK__";
1603 if (I->hasHiddenVisibility())
1604 Out << " __HIDDEN__";
1605 Out << ";\n";
1606 }
1607 }
1608
1609 // Output the global variable definitions and contents...
1610 if (!M.global_empty()) {
1611 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1612 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1613 I != E; ++I)
1614 if (!I->isDeclaration()) {
1615 // Ignore special globals, such as debug info.
1616 if (getGlobalVariableClass(I))
1617 continue;
1618
1619 if (I->hasInternalLinkage())
1620 Out << "static ";
1621 else if (I->hasDLLImportLinkage())
1622 Out << "__declspec(dllimport) ";
1623 else if (I->hasDLLExportLinkage())
1624 Out << "__declspec(dllexport) ";
1625
1626 // Thread Local Storage
1627 if (I->isThreadLocal())
1628 Out << "__thread ";
1629
1630 printType(Out, I->getType()->getElementType(), false,
1631 GetValueName(I));
1632 if (I->hasLinkOnceLinkage())
1633 Out << " __attribute__((common))";
1634 else if (I->hasWeakLinkage())
1635 Out << " __ATTRIBUTE_WEAK__";
1636
1637 if (I->hasHiddenVisibility())
1638 Out << " __HIDDEN__";
1639
1640 // If the initializer is not null, emit the initializer. If it is null,
1641 // we try to avoid emitting large amounts of zeros. The problem with
1642 // this, however, occurs when the variable has weak linkage. In this
1643 // case, the assembler will complain about the variable being both weak
1644 // and common, so we disable this optimization.
1645 if (!I->getInitializer()->isNullValue()) {
1646 Out << " = " ;
1647 writeOperand(I->getInitializer());
1648 } else if (I->hasWeakLinkage()) {
1649 // We have to specify an initializer, but it doesn't have to be
1650 // complete. If the value is an aggregate, print out { 0 }, and let
1651 // the compiler figure out the rest of the zeros.
1652 Out << " = " ;
1653 if (isa<StructType>(I->getInitializer()->getType()) ||
1654 isa<ArrayType>(I->getInitializer()->getType()) ||
1655 isa<VectorType>(I->getInitializer()->getType())) {
1656 Out << "{ 0 }";
1657 } else {
1658 // Just print it out normally.
1659 writeOperand(I->getInitializer());
1660 }
1661 }
1662 Out << ";\n";
1663 }
1664 }
1665
1666 if (!M.empty())
1667 Out << "\n\n/* Function Bodies */\n";
1668
1669 // Emit some helper functions for dealing with FCMP instruction's
1670 // predicates
1671 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1672 Out << "return X == X && Y == Y; }\n";
1673 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1674 Out << "return X != X || Y != Y; }\n";
1675 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1676 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1677 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1678 Out << "return X != Y; }\n";
1679 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1680 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1681 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1682 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1683 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1684 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1685 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1686 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1687 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1688 Out << "return X == Y ; }\n";
1689 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1690 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1691 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1692 Out << "return X < Y ; }\n";
1693 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1694 Out << "return X > Y ; }\n";
1695 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1696 Out << "return X <= Y ; }\n";
1697 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1698 Out << "return X >= Y ; }\n";
1699 return false;
1700}
1701
1702
1703/// Output all floating point constants that cannot be printed accurately...
1704void CWriter::printFloatingPointConstants(Function &F) {
1705 // Scan the module for floating point constants. If any FP constant is used
1706 // in the function, we want to redirect it here so that we do not depend on
1707 // the precision of the printed form, unless the printed form preserves
1708 // precision.
1709 //
1710 static unsigned FPCounter = 0;
1711 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1712 I != E; ++I)
1713 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1714 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1715 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001716 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1717
1718 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001719 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001720 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001721 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001722 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001723 << "ULL; /* " << Val << " */\n";
1724 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001725 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001726 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1727 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001728 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001729 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001730 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001731 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001732 // api needed to prevent premature destruction
1733 APInt api = FPC->getValueAPF().convertToAPInt();
1734 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001735 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1736 << " = { 0x" << std::hex
1737 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1738 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1739 << "}; /* Long double constant */\n" << std::dec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001740 } else
1741 assert(0 && "Unknown float type!");
1742 }
1743
1744 Out << '\n';
1745}
1746
1747
1748/// printSymbolTable - Run through symbol table looking for type names. If a
1749/// type name is found, emit its declaration...
1750///
1751void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1752 Out << "/* Helper union for bitcasts */\n";
1753 Out << "typedef union {\n";
1754 Out << " unsigned int Int32;\n";
1755 Out << " unsigned long long Int64;\n";
1756 Out << " float Float;\n";
1757 Out << " double Double;\n";
1758 Out << "} llvmBitCastUnion;\n";
1759
1760 // We are only interested in the type plane of the symbol table.
1761 TypeSymbolTable::const_iterator I = TST.begin();
1762 TypeSymbolTable::const_iterator End = TST.end();
1763
1764 // If there are no type names, exit early.
1765 if (I == End) return;
1766
1767 // Print out forward declarations for structure types before anything else!
1768 Out << "/* Structure forward decls */\n";
1769 for (; I != End; ++I) {
1770 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1771 Out << Name << ";\n";
1772 TypeNames.insert(std::make_pair(I->second, Name));
1773 }
1774
1775 Out << '\n';
1776
1777 // Now we can print out typedefs. Above, we guaranteed that this can only be
1778 // for struct or opaque types.
1779 Out << "/* Typedefs */\n";
1780 for (I = TST.begin(); I != End; ++I) {
1781 std::string Name = "l_" + Mang->makeNameProper(I->first);
1782 Out << "typedef ";
1783 printType(Out, I->second, false, Name);
1784 Out << ";\n";
1785 }
1786
1787 Out << '\n';
1788
1789 // Keep track of which structures have been printed so far...
1790 std::set<const StructType *> StructPrinted;
1791
1792 // Loop over all structures then push them into the stack so they are
1793 // printed in the correct order.
1794 //
1795 Out << "/* Structure contents */\n";
1796 for (I = TST.begin(); I != End; ++I)
1797 if (const StructType *STy = dyn_cast<StructType>(I->second))
1798 // Only print out used types!
1799 printContainedStructs(STy, StructPrinted);
1800}
1801
1802// Push the struct onto the stack and recursively push all structs
1803// this one depends on.
1804//
1805// TODO: Make this work properly with vector types
1806//
1807void CWriter::printContainedStructs(const Type *Ty,
1808 std::set<const StructType*> &StructPrinted){
1809 // Don't walk through pointers.
1810 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1811
1812 // Print all contained types first.
1813 for (Type::subtype_iterator I = Ty->subtype_begin(),
1814 E = Ty->subtype_end(); I != E; ++I)
1815 printContainedStructs(*I, StructPrinted);
1816
1817 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1818 // Check to see if we have already printed this struct.
1819 if (StructPrinted.insert(STy).second) {
1820 // Print structure type out.
1821 std::string Name = TypeNames[STy];
1822 printType(Out, STy, false, Name, true);
1823 Out << ";\n\n";
1824 }
1825 }
1826}
1827
1828void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1829 /// isStructReturn - Should this function actually return a struct by-value?
1830 bool isStructReturn = F->getFunctionType()->isStructReturn();
1831
1832 if (F->hasInternalLinkage()) Out << "static ";
1833 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1834 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1835 switch (F->getCallingConv()) {
1836 case CallingConv::X86_StdCall:
1837 Out << "__stdcall ";
1838 break;
1839 case CallingConv::X86_FastCall:
1840 Out << "__fastcall ";
1841 break;
1842 }
1843
1844 // Loop over the arguments, printing them...
1845 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
1846 const ParamAttrsList *Attrs = FT->getParamAttrs();
1847
1848 std::stringstream FunctionInnards;
1849
1850 // Print out the name...
1851 FunctionInnards << GetValueName(F) << '(';
1852
1853 bool PrintedArg = false;
1854 if (!F->isDeclaration()) {
1855 if (!F->arg_empty()) {
1856 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1857
1858 // If this is a struct-return function, don't print the hidden
1859 // struct-return argument.
1860 if (isStructReturn) {
1861 assert(I != E && "Invalid struct return function!");
1862 ++I;
1863 }
1864
1865 std::string ArgName;
1866 unsigned Idx = 1;
1867 for (; I != E; ++I) {
1868 if (PrintedArg) FunctionInnards << ", ";
1869 if (I->hasName() || !Prototype)
1870 ArgName = GetValueName(I);
1871 else
1872 ArgName = "";
1873 printType(FunctionInnards, I->getType(),
1874 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt),
1875 ArgName);
1876 PrintedArg = true;
1877 ++Idx;
1878 }
1879 }
1880 } else {
1881 // Loop over the arguments, printing them.
1882 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
1883
1884 // If this is a struct-return function, don't print the hidden
1885 // struct-return argument.
1886 if (isStructReturn) {
1887 assert(I != E && "Invalid struct return function!");
1888 ++I;
1889 }
1890
1891 unsigned Idx = 1;
1892 for (; I != E; ++I) {
1893 if (PrintedArg) FunctionInnards << ", ";
1894 printType(FunctionInnards, *I,
1895 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
1896 PrintedArg = true;
1897 ++Idx;
1898 }
1899 }
1900
1901 // Finish printing arguments... if this is a vararg function, print the ...,
1902 // unless there are no known types, in which case, we just emit ().
1903 //
1904 if (FT->isVarArg() && PrintedArg) {
1905 if (PrintedArg) FunctionInnards << ", ";
1906 FunctionInnards << "..."; // Output varargs portion of signature!
1907 } else if (!FT->isVarArg() && !PrintedArg) {
1908 FunctionInnards << "void"; // ret() -> ret(void) in C.
1909 }
1910 FunctionInnards << ')';
1911
1912 // Get the return tpe for the function.
1913 const Type *RetTy;
1914 if (!isStructReturn)
1915 RetTy = F->getReturnType();
1916 else {
1917 // If this is a struct-return function, print the struct-return type.
1918 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
1919 }
1920
1921 // Print out the return type and the signature built above.
1922 printType(Out, RetTy,
1923 /*isSigned=*/ Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
1924 FunctionInnards.str());
1925}
1926
1927static inline bool isFPIntBitCast(const Instruction &I) {
1928 if (!isa<BitCastInst>(I))
1929 return false;
1930 const Type *SrcTy = I.getOperand(0)->getType();
1931 const Type *DstTy = I.getType();
1932 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
1933 (DstTy->isFloatingPoint() && SrcTy->isInteger());
1934}
1935
1936void CWriter::printFunction(Function &F) {
1937 /// isStructReturn - Should this function actually return a struct by-value?
1938 bool isStructReturn = F.getFunctionType()->isStructReturn();
1939
1940 printFunctionSignature(&F, false);
1941 Out << " {\n";
1942
1943 // If this is a struct return function, handle the result with magic.
1944 if (isStructReturn) {
1945 const Type *StructTy =
1946 cast<PointerType>(F.arg_begin()->getType())->getElementType();
1947 Out << " ";
1948 printType(Out, StructTy, false, "StructReturn");
1949 Out << "; /* Struct return temporary */\n";
1950
1951 Out << " ";
1952 printType(Out, F.arg_begin()->getType(), false,
1953 GetValueName(F.arg_begin()));
1954 Out << " = &StructReturn;\n";
1955 }
1956
1957 bool PrintedVar = false;
1958
1959 // print local variable information for the function
1960 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
1961 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
1962 Out << " ";
1963 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
1964 Out << "; /* Address-exposed local */\n";
1965 PrintedVar = true;
1966 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
1967 Out << " ";
1968 printType(Out, I->getType(), false, GetValueName(&*I));
1969 Out << ";\n";
1970
1971 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
1972 Out << " ";
1973 printType(Out, I->getType(), false,
1974 GetValueName(&*I)+"__PHI_TEMPORARY");
1975 Out << ";\n";
1976 }
1977 PrintedVar = true;
1978 }
1979 // We need a temporary for the BitCast to use so it can pluck a value out
1980 // of a union to do the BitCast. This is separate from the need for a
1981 // variable to hold the result of the BitCast.
1982 if (isFPIntBitCast(*I)) {
1983 Out << " llvmBitCastUnion " << GetValueName(&*I)
1984 << "__BITCAST_TEMPORARY;\n";
1985 PrintedVar = true;
1986 }
1987 }
1988
1989 if (PrintedVar)
1990 Out << '\n';
1991
1992 if (F.hasExternalLinkage() && F.getName() == "main")
1993 Out << " CODE_FOR_MAIN();\n";
1994
1995 // print the basic blocks
1996 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1997 if (Loop *L = LI->getLoopFor(BB)) {
1998 if (L->getHeader() == BB && L->getParentLoop() == 0)
1999 printLoop(L);
2000 } else {
2001 printBasicBlock(BB);
2002 }
2003 }
2004
2005 Out << "}\n\n";
2006}
2007
2008void CWriter::printLoop(Loop *L) {
2009 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2010 << "' to make GCC happy */\n";
2011 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2012 BasicBlock *BB = L->getBlocks()[i];
2013 Loop *BBLoop = LI->getLoopFor(BB);
2014 if (BBLoop == L)
2015 printBasicBlock(BB);
2016 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2017 printLoop(BBLoop);
2018 }
2019 Out << " } while (1); /* end of syntactic loop '"
2020 << L->getHeader()->getName() << "' */\n";
2021}
2022
2023void CWriter::printBasicBlock(BasicBlock *BB) {
2024
2025 // Don't print the label for the basic block if there are no uses, or if
2026 // the only terminator use is the predecessor basic block's terminator.
2027 // We have to scan the use list because PHI nodes use basic blocks too but
2028 // do not require a label to be generated.
2029 //
2030 bool NeedsLabel = false;
2031 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2032 if (isGotoCodeNecessary(*PI, BB)) {
2033 NeedsLabel = true;
2034 break;
2035 }
2036
2037 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2038
2039 // Output all of the instructions in the basic block...
2040 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2041 ++II) {
2042 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2043 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2044 outputLValue(II);
2045 else
2046 Out << " ";
2047 visit(*II);
2048 Out << ";\n";
2049 }
2050 }
2051
2052 // Don't emit prefix or suffix for the terminator...
2053 visit(*BB->getTerminator());
2054}
2055
2056
2057// Specific Instruction type classes... note that all of the casts are
2058// necessary because we use the instruction classes as opaque types...
2059//
2060void CWriter::visitReturnInst(ReturnInst &I) {
2061 // If this is a struct return function, return the temporary struct.
2062 bool isStructReturn = I.getParent()->getParent()->
2063 getFunctionType()->isStructReturn();
2064
2065 if (isStructReturn) {
2066 Out << " return StructReturn;\n";
2067 return;
2068 }
2069
2070 // Don't output a void return if this is the last basic block in the function
2071 if (I.getNumOperands() == 0 &&
2072 &*--I.getParent()->getParent()->end() == I.getParent() &&
2073 !I.getParent()->size() == 1) {
2074 return;
2075 }
2076
2077 Out << " return";
2078 if (I.getNumOperands()) {
2079 Out << ' ';
2080 writeOperand(I.getOperand(0));
2081 }
2082 Out << ";\n";
2083}
2084
2085void CWriter::visitSwitchInst(SwitchInst &SI) {
2086
2087 Out << " switch (";
2088 writeOperand(SI.getOperand(0));
2089 Out << ") {\n default:\n";
2090 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2091 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2092 Out << ";\n";
2093 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2094 Out << " case ";
2095 writeOperand(SI.getOperand(i));
2096 Out << ":\n";
2097 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2098 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2099 printBranchToBlock(SI.getParent(), Succ, 2);
2100 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2101 Out << " break;\n";
2102 }
2103 Out << " }\n";
2104}
2105
2106void CWriter::visitUnreachableInst(UnreachableInst &I) {
2107 Out << " /*UNREACHABLE*/;\n";
2108}
2109
2110bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2111 /// FIXME: This should be reenabled, but loop reordering safe!!
2112 return true;
2113
2114 if (next(Function::iterator(From)) != Function::iterator(To))
2115 return true; // Not the direct successor, we need a goto.
2116
2117 //isa<SwitchInst>(From->getTerminator())
2118
2119 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2120 return true;
2121 return false;
2122}
2123
2124void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2125 BasicBlock *Successor,
2126 unsigned Indent) {
2127 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2128 PHINode *PN = cast<PHINode>(I);
2129 // Now we have to do the printing.
2130 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2131 if (!isa<UndefValue>(IV)) {
2132 Out << std::string(Indent, ' ');
2133 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2134 writeOperand(IV);
2135 Out << "; /* for PHI node */\n";
2136 }
2137 }
2138}
2139
2140void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2141 unsigned Indent) {
2142 if (isGotoCodeNecessary(CurBB, Succ)) {
2143 Out << std::string(Indent, ' ') << " goto ";
2144 writeOperand(Succ);
2145 Out << ";\n";
2146 }
2147}
2148
2149// Branch instruction printing - Avoid printing out a branch to a basic block
2150// that immediately succeeds the current one.
2151//
2152void CWriter::visitBranchInst(BranchInst &I) {
2153
2154 if (I.isConditional()) {
2155 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2156 Out << " if (";
2157 writeOperand(I.getCondition());
2158 Out << ") {\n";
2159
2160 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2161 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2162
2163 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2164 Out << " } else {\n";
2165 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2166 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2167 }
2168 } else {
2169 // First goto not necessary, assume second one is...
2170 Out << " if (!";
2171 writeOperand(I.getCondition());
2172 Out << ") {\n";
2173
2174 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2175 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2176 }
2177
2178 Out << " }\n";
2179 } else {
2180 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2181 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2182 }
2183 Out << "\n";
2184}
2185
2186// PHI nodes get copied into temporary values at the end of predecessor basic
2187// blocks. We now need to copy these temporary values into the REAL value for
2188// the PHI.
2189void CWriter::visitPHINode(PHINode &I) {
2190 writeOperand(&I);
2191 Out << "__PHI_TEMPORARY";
2192}
2193
2194
2195void CWriter::visitBinaryOperator(Instruction &I) {
2196 // binary instructions, shift instructions, setCond instructions.
2197 assert(!isa<PointerType>(I.getType()));
2198
2199 // We must cast the results of binary operations which might be promoted.
2200 bool needsCast = false;
2201 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2202 || (I.getType() == Type::FloatTy)) {
2203 needsCast = true;
2204 Out << "((";
2205 printType(Out, I.getType(), false);
2206 Out << ")(";
2207 }
2208
2209 // If this is a negation operation, print it out as such. For FP, we don't
2210 // want to print "-0.0 - X".
2211 if (BinaryOperator::isNeg(&I)) {
2212 Out << "-(";
2213 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2214 Out << ")";
2215 } else if (I.getOpcode() == Instruction::FRem) {
2216 // Output a call to fmod/fmodf instead of emitting a%b
2217 if (I.getType() == Type::FloatTy)
2218 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002219 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002220 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002221 else // all 3 flavors of long double
2222 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002223 writeOperand(I.getOperand(0));
2224 Out << ", ";
2225 writeOperand(I.getOperand(1));
2226 Out << ")";
2227 } else {
2228
2229 // Write out the cast of the instruction's value back to the proper type
2230 // if necessary.
2231 bool NeedsClosingParens = writeInstructionCast(I);
2232
2233 // Certain instructions require the operand to be forced to a specific type
2234 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2235 // below for operand 1
2236 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2237
2238 switch (I.getOpcode()) {
2239 case Instruction::Add: Out << " + "; break;
2240 case Instruction::Sub: Out << " - "; break;
2241 case Instruction::Mul: Out << " * "; break;
2242 case Instruction::URem:
2243 case Instruction::SRem:
2244 case Instruction::FRem: Out << " % "; break;
2245 case Instruction::UDiv:
2246 case Instruction::SDiv:
2247 case Instruction::FDiv: Out << " / "; break;
2248 case Instruction::And: Out << " & "; break;
2249 case Instruction::Or: Out << " | "; break;
2250 case Instruction::Xor: Out << " ^ "; break;
2251 case Instruction::Shl : Out << " << "; break;
2252 case Instruction::LShr:
2253 case Instruction::AShr: Out << " >> "; break;
2254 default: cerr << "Invalid operator type!" << I; abort();
2255 }
2256
2257 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2258 if (NeedsClosingParens)
2259 Out << "))";
2260 }
2261
2262 if (needsCast) {
2263 Out << "))";
2264 }
2265}
2266
2267void CWriter::visitICmpInst(ICmpInst &I) {
2268 // We must cast the results of icmp which might be promoted.
2269 bool needsCast = false;
2270
2271 // Write out the cast of the instruction's value back to the proper type
2272 // if necessary.
2273 bool NeedsClosingParens = writeInstructionCast(I);
2274
2275 // Certain icmp predicate require the operand to be forced to a specific type
2276 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2277 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002278 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002279
2280 switch (I.getPredicate()) {
2281 case ICmpInst::ICMP_EQ: Out << " == "; break;
2282 case ICmpInst::ICMP_NE: Out << " != "; break;
2283 case ICmpInst::ICMP_ULE:
2284 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2285 case ICmpInst::ICMP_UGE:
2286 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2287 case ICmpInst::ICMP_ULT:
2288 case ICmpInst::ICMP_SLT: Out << " < "; break;
2289 case ICmpInst::ICMP_UGT:
2290 case ICmpInst::ICMP_SGT: Out << " > "; break;
2291 default: cerr << "Invalid icmp predicate!" << I; abort();
2292 }
2293
Chris Lattner389c9142007-09-15 06:51:03 +00002294 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002295 if (NeedsClosingParens)
2296 Out << "))";
2297
2298 if (needsCast) {
2299 Out << "))";
2300 }
2301}
2302
2303void CWriter::visitFCmpInst(FCmpInst &I) {
2304 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2305 Out << "0";
2306 return;
2307 }
2308 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2309 Out << "1";
2310 return;
2311 }
2312
2313 const char* op = 0;
2314 switch (I.getPredicate()) {
2315 default: assert(0 && "Illegal FCmp predicate");
2316 case FCmpInst::FCMP_ORD: op = "ord"; break;
2317 case FCmpInst::FCMP_UNO: op = "uno"; break;
2318 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2319 case FCmpInst::FCMP_UNE: op = "une"; break;
2320 case FCmpInst::FCMP_ULT: op = "ult"; break;
2321 case FCmpInst::FCMP_ULE: op = "ule"; break;
2322 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2323 case FCmpInst::FCMP_UGE: op = "uge"; break;
2324 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2325 case FCmpInst::FCMP_ONE: op = "one"; break;
2326 case FCmpInst::FCMP_OLT: op = "olt"; break;
2327 case FCmpInst::FCMP_OLE: op = "ole"; break;
2328 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2329 case FCmpInst::FCMP_OGE: op = "oge"; break;
2330 }
2331
2332 Out << "llvm_fcmp_" << op << "(";
2333 // Write the first operand
2334 writeOperand(I.getOperand(0));
2335 Out << ", ";
2336 // Write the second operand
2337 writeOperand(I.getOperand(1));
2338 Out << ")";
2339}
2340
2341static const char * getFloatBitCastField(const Type *Ty) {
2342 switch (Ty->getTypeID()) {
2343 default: assert(0 && "Invalid Type");
2344 case Type::FloatTyID: return "Float";
2345 case Type::DoubleTyID: return "Double";
2346 case Type::IntegerTyID: {
2347 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2348 if (NumBits <= 32)
2349 return "Int32";
2350 else
2351 return "Int64";
2352 }
2353 }
2354}
2355
2356void CWriter::visitCastInst(CastInst &I) {
2357 const Type *DstTy = I.getType();
2358 const Type *SrcTy = I.getOperand(0)->getType();
2359 Out << '(';
2360 if (isFPIntBitCast(I)) {
2361 // These int<->float and long<->double casts need to be handled specially
2362 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2363 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2364 writeOperand(I.getOperand(0));
2365 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2366 << getFloatBitCastField(I.getType());
2367 } else {
2368 printCast(I.getOpcode(), SrcTy, DstTy);
2369 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2370 // Make sure we really get a sext from bool by subtracing the bool from 0
2371 Out << "0-";
2372 }
2373 writeOperand(I.getOperand(0));
2374 if (DstTy == Type::Int1Ty &&
2375 (I.getOpcode() == Instruction::Trunc ||
2376 I.getOpcode() == Instruction::FPToUI ||
2377 I.getOpcode() == Instruction::FPToSI ||
2378 I.getOpcode() == Instruction::PtrToInt)) {
2379 // Make sure we really get a trunc to bool by anding the operand with 1
2380 Out << "&1u";
2381 }
2382 }
2383 Out << ')';
2384}
2385
2386void CWriter::visitSelectInst(SelectInst &I) {
2387 Out << "((";
2388 writeOperand(I.getCondition());
2389 Out << ") ? (";
2390 writeOperand(I.getTrueValue());
2391 Out << ") : (";
2392 writeOperand(I.getFalseValue());
2393 Out << "))";
2394}
2395
2396
2397void CWriter::lowerIntrinsics(Function &F) {
2398 // This is used to keep track of intrinsics that get generated to a lowered
2399 // function. We must generate the prototypes before the function body which
2400 // will only be expanded on first use (by the loop below).
2401 std::vector<Function*> prototypesToGen;
2402
2403 // Examine all the instructions in this function to find the intrinsics that
2404 // need to be lowered.
2405 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2406 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2407 if (CallInst *CI = dyn_cast<CallInst>(I++))
2408 if (Function *F = CI->getCalledFunction())
2409 switch (F->getIntrinsicID()) {
2410 case Intrinsic::not_intrinsic:
2411 case Intrinsic::vastart:
2412 case Intrinsic::vacopy:
2413 case Intrinsic::vaend:
2414 case Intrinsic::returnaddress:
2415 case Intrinsic::frameaddress:
2416 case Intrinsic::setjmp:
2417 case Intrinsic::longjmp:
2418 case Intrinsic::prefetch:
2419 case Intrinsic::dbg_stoppoint:
2420 case Intrinsic::powi_f32:
2421 case Intrinsic::powi_f64:
2422 // We directly implement these intrinsics
2423 break;
2424 default:
2425 // If this is an intrinsic that directly corresponds to a GCC
2426 // builtin, we handle it.
2427 const char *BuiltinName = "";
2428#define GET_GCC_BUILTIN_NAME
2429#include "llvm/Intrinsics.gen"
2430#undef GET_GCC_BUILTIN_NAME
2431 // If we handle it, don't lower it.
2432 if (BuiltinName[0]) break;
2433
2434 // All other intrinsic calls we must lower.
2435 Instruction *Before = 0;
2436 if (CI != &BB->front())
2437 Before = prior(BasicBlock::iterator(CI));
2438
2439 IL->LowerIntrinsicCall(CI);
2440 if (Before) { // Move iterator to instruction after call
2441 I = Before; ++I;
2442 } else {
2443 I = BB->begin();
2444 }
2445 // If the intrinsic got lowered to another call, and that call has
2446 // a definition then we need to make sure its prototype is emitted
2447 // before any calls to it.
2448 if (CallInst *Call = dyn_cast<CallInst>(I))
2449 if (Function *NewF = Call->getCalledFunction())
2450 if (!NewF->isDeclaration())
2451 prototypesToGen.push_back(NewF);
2452
2453 break;
2454 }
2455
2456 // We may have collected some prototypes to emit in the loop above.
2457 // Emit them now, before the function that uses them is emitted. But,
2458 // be careful not to emit them twice.
2459 std::vector<Function*>::iterator I = prototypesToGen.begin();
2460 std::vector<Function*>::iterator E = prototypesToGen.end();
2461 for ( ; I != E; ++I) {
2462 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2463 Out << '\n';
2464 printFunctionSignature(*I, true);
2465 Out << ";\n";
2466 }
2467 }
2468}
2469
2470
2471void CWriter::visitCallInst(CallInst &I) {
2472 //check if we have inline asm
2473 if (isInlineAsm(I)) {
2474 visitInlineAsm(I);
2475 return;
2476 }
2477
2478 bool WroteCallee = false;
2479
2480 // Handle intrinsic function calls first...
2481 if (Function *F = I.getCalledFunction())
2482 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
2483 switch (ID) {
2484 default: {
2485 // If this is an intrinsic that directly corresponds to a GCC
2486 // builtin, we emit it here.
2487 const char *BuiltinName = "";
2488#define GET_GCC_BUILTIN_NAME
2489#include "llvm/Intrinsics.gen"
2490#undef GET_GCC_BUILTIN_NAME
2491 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2492
2493 Out << BuiltinName;
2494 WroteCallee = true;
2495 break;
2496 }
2497 case Intrinsic::vastart:
2498 Out << "0; ";
2499
2500 Out << "va_start(*(va_list*)";
2501 writeOperand(I.getOperand(1));
2502 Out << ", ";
2503 // Output the last argument to the enclosing function...
2504 if (I.getParent()->getParent()->arg_empty()) {
2505 cerr << "The C backend does not currently support zero "
2506 << "argument varargs functions, such as '"
2507 << I.getParent()->getParent()->getName() << "'!\n";
2508 abort();
2509 }
2510 writeOperand(--I.getParent()->getParent()->arg_end());
2511 Out << ')';
2512 return;
2513 case Intrinsic::vaend:
2514 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2515 Out << "0; va_end(*(va_list*)";
2516 writeOperand(I.getOperand(1));
2517 Out << ')';
2518 } else {
2519 Out << "va_end(*(va_list*)0)";
2520 }
2521 return;
2522 case Intrinsic::vacopy:
2523 Out << "0; ";
2524 Out << "va_copy(*(va_list*)";
2525 writeOperand(I.getOperand(1));
2526 Out << ", *(va_list*)";
2527 writeOperand(I.getOperand(2));
2528 Out << ')';
2529 return;
2530 case Intrinsic::returnaddress:
2531 Out << "__builtin_return_address(";
2532 writeOperand(I.getOperand(1));
2533 Out << ')';
2534 return;
2535 case Intrinsic::frameaddress:
2536 Out << "__builtin_frame_address(";
2537 writeOperand(I.getOperand(1));
2538 Out << ')';
2539 return;
2540 case Intrinsic::powi_f32:
2541 case Intrinsic::powi_f64:
2542 Out << "__builtin_powi(";
2543 writeOperand(I.getOperand(1));
2544 Out << ", ";
2545 writeOperand(I.getOperand(2));
2546 Out << ')';
2547 return;
2548 case Intrinsic::setjmp:
2549 Out << "setjmp(*(jmp_buf*)";
2550 writeOperand(I.getOperand(1));
2551 Out << ')';
2552 return;
2553 case Intrinsic::longjmp:
2554 Out << "longjmp(*(jmp_buf*)";
2555 writeOperand(I.getOperand(1));
2556 Out << ", ";
2557 writeOperand(I.getOperand(2));
2558 Out << ')';
2559 return;
2560 case Intrinsic::prefetch:
2561 Out << "LLVM_PREFETCH((const void *)";
2562 writeOperand(I.getOperand(1));
2563 Out << ", ";
2564 writeOperand(I.getOperand(2));
2565 Out << ", ";
2566 writeOperand(I.getOperand(3));
2567 Out << ")";
2568 return;
2569 case Intrinsic::dbg_stoppoint: {
2570 // If we use writeOperand directly we get a "u" suffix which is rejected
2571 // by gcc.
2572 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2573
2574 Out << "\n#line "
2575 << SPI.getLine()
2576 << " \"" << SPI.getDirectory()
2577 << SPI.getFileName() << "\"\n";
2578 return;
2579 }
2580 }
2581 }
2582
2583 Value *Callee = I.getCalledValue();
2584
2585 const PointerType *PTy = cast<PointerType>(Callee->getType());
2586 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2587
2588 // If this is a call to a struct-return function, assign to the first
2589 // parameter instead of passing it to the call.
2590 bool isStructRet = FTy->isStructReturn();
2591 if (isStructRet) {
2592 Out << "*(";
2593 writeOperand(I.getOperand(1));
2594 Out << ") = ";
2595 }
2596
2597 if (I.isTailCall()) Out << " /*tail*/ ";
2598
2599 if (!WroteCallee) {
2600 // If this is an indirect call to a struct return function, we need to cast
2601 // the pointer.
2602 bool NeedsCast = isStructRet && !isa<Function>(Callee);
2603
2604 // GCC is a real PITA. It does not permit codegening casts of functions to
2605 // function pointers if they are in a call (it generates a trap instruction
2606 // instead!). We work around this by inserting a cast to void* in between
2607 // the function and the function pointer cast. Unfortunately, we can't just
2608 // form the constant expression here, because the folder will immediately
2609 // nuke it.
2610 //
2611 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2612 // that void* and function pointers have the same size. :( To deal with this
2613 // in the common case, we handle casts where the number of arguments passed
2614 // match exactly.
2615 //
2616 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2617 if (CE->isCast())
2618 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2619 NeedsCast = true;
2620 Callee = RF;
2621 }
2622
2623 if (NeedsCast) {
2624 // Ok, just cast the pointer type.
2625 Out << "((";
2626 if (!isStructRet)
2627 printType(Out, I.getCalledValue()->getType());
2628 else
2629 printStructReturnPointerFunctionType(Out,
2630 cast<PointerType>(I.getCalledValue()->getType()));
2631 Out << ")(void*)";
2632 }
2633 writeOperand(Callee);
2634 if (NeedsCast) Out << ')';
2635 }
2636
2637 Out << '(';
2638
2639 unsigned NumDeclaredParams = FTy->getNumParams();
2640
2641 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2642 unsigned ArgNo = 0;
2643 if (isStructRet) { // Skip struct return argument.
2644 ++AI;
2645 ++ArgNo;
2646 }
2647
2648 const ParamAttrsList *Attrs = FTy->getParamAttrs();
2649 bool PrintedArg = false;
2650 unsigned Idx = 1;
2651 for (; AI != AE; ++AI, ++ArgNo, ++Idx) {
2652 if (PrintedArg) Out << ", ";
2653 if (ArgNo < NumDeclaredParams &&
2654 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2655 Out << '(';
2656 printType(Out, FTy->getParamType(ArgNo),
2657 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
2658 Out << ')';
2659 }
2660 writeOperand(*AI);
2661 PrintedArg = true;
2662 }
2663 Out << ')';
2664}
2665
2666
2667//This converts the llvm constraint string to something gcc is expecting.
2668//TODO: work out platform independent constraints and factor those out
2669// of the per target tables
2670// handle multiple constraint codes
2671std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2672
2673 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2674
2675 const char** table = 0;
2676
2677 //Grab the translation table from TargetAsmInfo if it exists
2678 if (!TAsm) {
2679 std::string E;
2680 const TargetMachineRegistry::Entry* Match =
2681 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2682 if (Match) {
2683 //Per platform Target Machines don't exist, so create it
2684 // this must be done only once
2685 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2686 TAsm = TM->getTargetAsmInfo();
2687 }
2688 }
2689 if (TAsm)
2690 table = TAsm->getAsmCBE();
2691
2692 //Search the translation table if it exists
2693 for (int i = 0; table && table[i]; i += 2)
2694 if (c.Codes[0] == table[i])
2695 return table[i+1];
2696
2697 //default is identity
2698 return c.Codes[0];
2699}
2700
2701//TODO: import logic from AsmPrinter.cpp
2702static std::string gccifyAsm(std::string asmstr) {
2703 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2704 if (asmstr[i] == '\n')
2705 asmstr.replace(i, 1, "\\n");
2706 else if (asmstr[i] == '\t')
2707 asmstr.replace(i, 1, "\\t");
2708 else if (asmstr[i] == '$') {
2709 if (asmstr[i + 1] == '{') {
2710 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2711 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2712 std::string n = "%" +
2713 asmstr.substr(a + 1, b - a - 1) +
2714 asmstr.substr(i + 2, a - i - 2);
2715 asmstr.replace(i, b - i + 1, n);
2716 i += n.size() - 1;
2717 } else
2718 asmstr.replace(i, 1, "%");
2719 }
2720 else if (asmstr[i] == '%')//grr
2721 { asmstr.replace(i, 1, "%%"); ++i;}
2722
2723 return asmstr;
2724}
2725
2726//TODO: assumptions about what consume arguments from the call are likely wrong
2727// handle communitivity
2728void CWriter::visitInlineAsm(CallInst &CI) {
2729 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2730 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2731 std::vector<std::pair<std::string, Value*> > Input;
2732 std::vector<std::pair<std::string, Value*> > Output;
2733 std::string Clobber;
2734 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2735 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2736 E = Constraints.end(); I != E; ++I) {
2737 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2738 std::string c =
2739 InterpretASMConstraint(*I);
2740 switch(I->Type) {
2741 default:
2742 assert(0 && "Unknown asm constraint");
2743 break;
2744 case InlineAsm::isInput: {
2745 if (c.size()) {
2746 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2747 ++count; //consume arg
2748 }
2749 break;
2750 }
2751 case InlineAsm::isOutput: {
2752 if (c.size()) {
2753 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2754 count ? CI.getOperand(count) : &CI));
2755 ++count; //consume arg
2756 }
2757 break;
2758 }
2759 case InlineAsm::isClobber: {
2760 if (c.size())
2761 Clobber += ",\"" + c + "\"";
2762 break;
2763 }
2764 }
2765 }
2766
2767 //fix up the asm string for gcc
2768 std::string asmstr = gccifyAsm(as->getAsmString());
2769
2770 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2771 Out << " :";
2772 for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
2773 E = Output.end(); I != E; ++I) {
2774 Out << "\"" << I->first << "\"(";
2775 writeOperandRaw(I->second);
2776 Out << ")";
2777 if (I + 1 != E)
2778 Out << ",";
2779 }
2780 Out << "\n :";
2781 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2782 E = Input.end(); I != E; ++I) {
2783 Out << "\"" << I->first << "\"(";
2784 writeOperandRaw(I->second);
2785 Out << ")";
2786 if (I + 1 != E)
2787 Out << ",";
2788 }
2789 if (Clobber.size())
2790 Out << "\n :" << Clobber.substr(1);
2791 Out << ")";
2792}
2793
2794void CWriter::visitMallocInst(MallocInst &I) {
2795 assert(0 && "lowerallocations pass didn't work!");
2796}
2797
2798void CWriter::visitAllocaInst(AllocaInst &I) {
2799 Out << '(';
2800 printType(Out, I.getType());
2801 Out << ") alloca(sizeof(";
2802 printType(Out, I.getType()->getElementType());
2803 Out << ')';
2804 if (I.isArrayAllocation()) {
2805 Out << " * " ;
2806 writeOperand(I.getOperand(0));
2807 }
2808 Out << ')';
2809}
2810
2811void CWriter::visitFreeInst(FreeInst &I) {
2812 assert(0 && "lowerallocations pass didn't work!");
2813}
2814
2815void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
2816 gep_type_iterator E) {
2817 bool HasImplicitAddress = false;
2818 // If accessing a global value with no indexing, avoid *(&GV) syndrome
2819 if (isa<GlobalValue>(Ptr)) {
2820 HasImplicitAddress = true;
2821 } else if (isDirectAlloca(Ptr)) {
2822 HasImplicitAddress = true;
2823 }
2824
2825 if (I == E) {
2826 if (!HasImplicitAddress)
2827 Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
2828
2829 writeOperandInternal(Ptr);
2830 return;
2831 }
2832
2833 const Constant *CI = dyn_cast<Constant>(I.getOperand());
2834 if (HasImplicitAddress && (!CI || !CI->isNullValue()))
2835 Out << "(&";
2836
2837 writeOperandInternal(Ptr);
2838
2839 if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
2840 Out << ')';
2841 HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
2842 }
2843
2844 assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
2845 "Can only have implicit address with direct accessing");
2846
2847 if (HasImplicitAddress) {
2848 ++I;
2849 } else if (CI && CI->isNullValue()) {
2850 gep_type_iterator TmpI = I; ++TmpI;
2851
2852 // Print out the -> operator if possible...
2853 if (TmpI != E && isa<StructType>(*TmpI)) {
2854 Out << (HasImplicitAddress ? "." : "->");
2855 Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
2856 I = ++TmpI;
2857 }
2858 }
2859
2860 for (; I != E; ++I)
2861 if (isa<StructType>(*I)) {
2862 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
2863 } else {
2864 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00002865 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002866 Out << ']';
2867 }
2868}
2869
2870void CWriter::visitLoadInst(LoadInst &I) {
2871 Out << '*';
2872 if (I.isVolatile()) {
2873 Out << "((";
2874 printType(Out, I.getType(), false, "volatile*");
2875 Out << ")";
2876 }
2877
2878 writeOperand(I.getOperand(0));
2879
2880 if (I.isVolatile())
2881 Out << ')';
2882}
2883
2884void CWriter::visitStoreInst(StoreInst &I) {
2885 Out << '*';
2886 if (I.isVolatile()) {
2887 Out << "((";
2888 printType(Out, I.getOperand(0)->getType(), false, " volatile*");
2889 Out << ")";
2890 }
2891 writeOperand(I.getPointerOperand());
2892 if (I.isVolatile()) Out << ')';
2893 Out << " = ";
2894 Value *Operand = I.getOperand(0);
2895 Constant *BitMask = 0;
2896 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
2897 if (!ITy->isPowerOf2ByteWidth())
2898 // We have a bit width that doesn't match an even power-of-2 byte
2899 // size. Consequently we must & the value with the type's bit mask
2900 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
2901 if (BitMask)
2902 Out << "((";
2903 writeOperand(Operand);
2904 if (BitMask) {
2905 Out << ") & ";
2906 printConstant(BitMask);
2907 Out << ")";
2908 }
2909}
2910
2911void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
2912 Out << '&';
2913 printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
2914 gep_type_end(I));
2915}
2916
2917void CWriter::visitVAArgInst(VAArgInst &I) {
2918 Out << "va_arg(*(va_list*)";
2919 writeOperand(I.getOperand(0));
2920 Out << ", ";
2921 printType(Out, I.getType());
2922 Out << ");\n ";
2923}
2924
2925//===----------------------------------------------------------------------===//
2926// External Interface declaration
2927//===----------------------------------------------------------------------===//
2928
2929bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
2930 std::ostream &o,
2931 CodeGenFileType FileType,
2932 bool Fast) {
2933 if (FileType != TargetMachine::AssemblyFile) return true;
2934
2935 PM.add(createLowerGCPass());
2936 PM.add(createLowerAllocationsPass(true));
2937 PM.add(createLowerInvokePass());
2938 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
2939 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
2940 PM.add(new CWriter(o));
2941 return false;
2942}