Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 1 | //===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the X86MCCodeEmitter class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #define DEBUG_TYPE "x86-emitter" |
| 15 | #include "X86.h" |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 16 | #include "X86InstrInfo.h" |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 17 | #include "llvm/MC/MCCodeEmitter.h" |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 18 | #include "llvm/MC/MCInst.h" |
| 19 | #include "llvm/Support/raw_ostream.h" |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 20 | using namespace llvm; |
| 21 | |
| 22 | namespace { |
| 23 | class X86MCCodeEmitter : public MCCodeEmitter { |
| 24 | X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT |
| 25 | void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 26 | const TargetMachine &TM; |
| 27 | const TargetInstrInfo &TII; |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 28 | bool Is64BitMode; |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 29 | public: |
Chris Lattner | 00cb3fe | 2010-02-05 21:51:35 +0000 | [diff] [blame] | 30 | X86MCCodeEmitter(TargetMachine &tm, bool is64Bit) |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 31 | : TM(tm), TII(*TM.getInstrInfo()) { |
Chris Lattner | 00cb3fe | 2010-02-05 21:51:35 +0000 | [diff] [blame] | 32 | Is64BitMode = is64Bit; |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 33 | } |
| 34 | |
| 35 | ~X86MCCodeEmitter() {} |
Daniel Dunbar | 73c5574 | 2010-02-09 22:59:55 +0000 | [diff] [blame] | 36 | |
| 37 | unsigned getNumFixupKinds() const { |
| 38 | return 5; |
| 39 | } |
| 40 | |
| 41 | MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const { |
| 42 | static MCFixupKindInfo Infos[] = { |
| 43 | { "reloc_pcrel_word", 0, 4 * 8 }, |
| 44 | { "reloc_picrel_word", 0, 4 * 8 }, |
| 45 | { "reloc_absolute_word", 0, 4 * 8 }, |
| 46 | { "reloc_absolute_word_sext", 0, 4 * 8 }, |
| 47 | { "reloc_absolute_dword", 0, 8 * 8 } |
| 48 | }; |
| 49 | |
| 50 | assert(Kind >= FirstTargetFixupKind && Kind < MaxTargetFixupKind && |
| 51 | "Invalid kind!"); |
| 52 | return Infos[Kind - FirstTargetFixupKind]; |
| 53 | } |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 54 | |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 55 | static unsigned GetX86RegNum(const MCOperand &MO) { |
| 56 | return X86RegisterInfo::getX86RegNum(MO.getReg()); |
| 57 | } |
| 58 | |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 59 | void EmitByte(unsigned char C, raw_ostream &OS) const { |
| 60 | OS << (char)C; |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 61 | } |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 62 | |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 63 | void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const { |
| 64 | // Output the constant in little endian byte order. |
| 65 | for (unsigned i = 0; i != Size; ++i) { |
| 66 | EmitByte(Val & 255, OS); |
| 67 | Val >>= 8; |
| 68 | } |
| 69 | } |
Chris Lattner | 0e73c39 | 2010-02-05 06:16:07 +0000 | [diff] [blame] | 70 | |
| 71 | void EmitDisplacementField(const MCOperand *RelocOp, int DispVal, |
| 72 | int64_t Adj, bool IsPCRel, raw_ostream &OS) const; |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 73 | |
| 74 | inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, |
| 75 | unsigned RM) { |
| 76 | assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); |
| 77 | return RM | (RegOpcode << 3) | (Mod << 6); |
| 78 | } |
| 79 | |
| 80 | void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, |
| 81 | raw_ostream &OS) const { |
| 82 | EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS); |
| 83 | } |
| 84 | |
Chris Lattner | 0e73c39 | 2010-02-05 06:16:07 +0000 | [diff] [blame] | 85 | void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base, |
| 86 | raw_ostream &OS) const { |
| 87 | // SIB byte is in the same format as the ModRMByte... |
| 88 | EmitByte(ModRMByte(SS, Index, Base), OS); |
| 89 | } |
| 90 | |
| 91 | |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 92 | void EmitMemModRMByte(const MCInst &MI, unsigned Op, |
| 93 | unsigned RegOpcodeField, intptr_t PCAdj, |
| 94 | raw_ostream &OS) const; |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 95 | |
Daniel Dunbar | 73c5574 | 2010-02-09 22:59:55 +0000 | [diff] [blame] | 96 | void EncodeInstruction(const MCInst &MI, raw_ostream &OS, |
| 97 | SmallVectorImpl<MCFixup> &Fixups) const; |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 98 | |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 99 | }; |
| 100 | |
| 101 | } // end anonymous namespace |
| 102 | |
| 103 | |
Chris Lattner | 00cb3fe | 2010-02-05 21:51:35 +0000 | [diff] [blame] | 104 | MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &, |
| 105 | TargetMachine &TM) { |
| 106 | return new X86MCCodeEmitter(TM, false); |
| 107 | } |
| 108 | |
| 109 | MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &, |
| 110 | TargetMachine &TM) { |
| 111 | return new X86MCCodeEmitter(TM, true); |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 112 | } |
| 113 | |
| 114 | |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 115 | /// isDisp8 - Return true if this signed displacement fits in a 8-bit |
| 116 | /// sign-extended field. |
| 117 | static bool isDisp8(int Value) { |
| 118 | return Value == (signed char)Value; |
| 119 | } |
| 120 | |
Chris Lattner | 0e73c39 | 2010-02-05 06:16:07 +0000 | [diff] [blame] | 121 | void X86MCCodeEmitter:: |
| 122 | EmitDisplacementField(const MCOperand *RelocOp, int DispVal, |
| 123 | int64_t Adj, bool IsPCRel, raw_ostream &OS) const { |
| 124 | // If this is a simple integer displacement that doesn't require a relocation, |
| 125 | // emit it now. |
| 126 | if (!RelocOp) { |
| 127 | EmitConstant(DispVal, 4, OS); |
| 128 | return; |
| 129 | } |
| 130 | |
| 131 | assert(0 && "Reloc not handled yet"); |
| 132 | #if 0 |
| 133 | // Otherwise, this is something that requires a relocation. Emit it as such |
| 134 | // now. |
| 135 | unsigned RelocType = Is64BitMode ? |
| 136 | (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext) |
| 137 | : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); |
| 138 | if (RelocOp->isGlobal()) { |
| 139 | // In 64-bit static small code model, we could potentially emit absolute. |
| 140 | // But it's probably not beneficial. If the MCE supports using RIP directly |
| 141 | // do it, otherwise fallback to absolute (this is determined by IsPCRel). |
| 142 | // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative |
| 143 | // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute |
| 144 | bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM); |
| 145 | emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(), |
| 146 | Adj, Indirect); |
| 147 | } else if (RelocOp->isSymbol()) { |
| 148 | emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType); |
| 149 | } else if (RelocOp->isCPI()) { |
| 150 | emitConstPoolAddress(RelocOp->getIndex(), RelocType, |
| 151 | RelocOp->getOffset(), Adj); |
| 152 | } else { |
| 153 | assert(RelocOp->isJTI() && "Unexpected machine operand!"); |
| 154 | emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj); |
| 155 | } |
| 156 | #endif |
| 157 | } |
| 158 | |
| 159 | |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 160 | void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, |
| 161 | unsigned RegOpcodeField, |
| 162 | intptr_t PCAdj, |
| 163 | raw_ostream &OS) const { |
| 164 | const MCOperand &Op3 = MI.getOperand(Op+3); |
| 165 | int DispVal = 0; |
| 166 | const MCOperand *DispForReloc = 0; |
| 167 | |
| 168 | // Figure out what sort of displacement we have to handle here. |
| 169 | if (Op3.isImm()) { |
| 170 | DispVal = Op3.getImm(); |
| 171 | } else { |
Chris Lattner | daa4555 | 2010-02-05 19:04:37 +0000 | [diff] [blame] | 172 | assert(0 && "relocatable operand"); |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 173 | #if 0 |
| 174 | if (Op3.isGlobal()) { |
| 175 | DispForReloc = &Op3; |
| 176 | } else if (Op3.isSymbol()) { |
| 177 | DispForReloc = &Op3; |
| 178 | } else if (Op3.isCPI()) { |
| 179 | if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { |
| 180 | DispForReloc = &Op3; |
| 181 | } else { |
| 182 | DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex()); |
| 183 | DispVal += Op3.getOffset(); |
| 184 | } |
| 185 | } else { |
| 186 | assert(Op3.isJTI()); |
| 187 | if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { |
| 188 | DispForReloc = &Op3; |
| 189 | } else { |
| 190 | DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex()); |
| 191 | } |
| 192 | #endif |
| 193 | } |
| 194 | |
| 195 | const MCOperand &Base = MI.getOperand(Op); |
Chris Lattner | 0e73c39 | 2010-02-05 06:16:07 +0000 | [diff] [blame] | 196 | const MCOperand &Scale = MI.getOperand(Op+1); |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 197 | const MCOperand &IndexReg = MI.getOperand(Op+2); |
| 198 | unsigned BaseReg = Base.getReg(); |
| 199 | |
Chris Lattner | 0e73c39 | 2010-02-05 06:16:07 +0000 | [diff] [blame] | 200 | // FIXME: Eliminate! |
| 201 | bool IsPCRel = false; |
Chris Lattner | a8168ec | 2010-02-09 21:57:34 +0000 | [diff] [blame] | 202 | |
| 203 | // Determine whether a SIB byte is needed. |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 204 | // If no BaseReg, issue a RIP relative instruction only if the MCE can |
| 205 | // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table |
| 206 | // 2-7) and absolute references. |
Chris Lattner | a8168ec | 2010-02-09 21:57:34 +0000 | [diff] [blame] | 207 | if (// The SIB byte must be used if there is an index register. |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 208 | IndexReg.getReg() == 0 && |
Chris Lattner | a8168ec | 2010-02-09 21:57:34 +0000 | [diff] [blame] | 209 | // The SIB byte must be used if the base is ESP/RSP. |
| 210 | BaseReg != X86::ESP && BaseReg != X86::RSP && |
| 211 | // If there is no base register and we're in 64-bit mode, we need a SIB |
| 212 | // byte to emit an addr that is just 'disp32' (the non-RIP relative form). |
| 213 | (!Is64BitMode || BaseReg != 0)) { |
| 214 | |
| 215 | if (BaseReg == 0 || // [disp32] in X86-32 mode |
| 216 | BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 217 | EmitByte(ModRMByte(0, RegOpcodeField, 5), OS); |
Chris Lattner | 0e73c39 | 2010-02-05 06:16:07 +0000 | [diff] [blame] | 218 | EmitDisplacementField(DispForReloc, DispVal, PCAdj, true, OS); |
Chris Lattner | a8168ec | 2010-02-09 21:57:34 +0000 | [diff] [blame] | 219 | return; |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 220 | } |
Chris Lattner | a8168ec | 2010-02-09 21:57:34 +0000 | [diff] [blame] | 221 | |
| 222 | unsigned BaseRegNo = GetX86RegNum(Base); |
| 223 | |
| 224 | // If the base is not EBP/ESP and there is no displacement, use simple |
| 225 | // indirect register encoding, this handles addresses like [EAX]. The |
| 226 | // encoding for [EBP] with no displacement means [disp32] so we handle it |
| 227 | // by emitting a displacement of 0 below. |
| 228 | if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { |
| 229 | EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS); |
| 230 | return; |
| 231 | } |
| 232 | |
| 233 | // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. |
| 234 | if (!DispForReloc && isDisp8(DispVal)) { |
| 235 | EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS); |
| 236 | EmitConstant(DispVal, 1, OS); |
| 237 | return; |
| 238 | } |
| 239 | |
| 240 | // Otherwise, emit the most general non-SIB encoding: [REG+disp32] |
| 241 | EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS); |
| 242 | EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS); |
Chris Lattner | 0e73c39 | 2010-02-05 06:16:07 +0000 | [diff] [blame] | 243 | return; |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 244 | } |
Chris Lattner | 0e73c39 | 2010-02-05 06:16:07 +0000 | [diff] [blame] | 245 | |
| 246 | // We need a SIB byte, so start by outputting the ModR/M byte first |
| 247 | assert(IndexReg.getReg() != X86::ESP && |
| 248 | IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); |
| 249 | |
| 250 | bool ForceDisp32 = false; |
| 251 | bool ForceDisp8 = false; |
| 252 | if (BaseReg == 0) { |
| 253 | // If there is no base register, we emit the special case SIB byte with |
| 254 | // MOD=0, BASE=5, to JUST get the index, scale, and displacement. |
| 255 | EmitByte(ModRMByte(0, RegOpcodeField, 4), OS); |
| 256 | ForceDisp32 = true; |
| 257 | } else if (DispForReloc) { |
| 258 | // Emit the normal disp32 encoding. |
| 259 | EmitByte(ModRMByte(2, RegOpcodeField, 4), OS); |
| 260 | ForceDisp32 = true; |
| 261 | } else if (DispVal == 0 && BaseReg != X86::EBP) { |
| 262 | // Emit no displacement ModR/M byte |
| 263 | EmitByte(ModRMByte(0, RegOpcodeField, 4), OS); |
| 264 | } else if (isDisp8(DispVal)) { |
| 265 | // Emit the disp8 encoding. |
| 266 | EmitByte(ModRMByte(1, RegOpcodeField, 4), OS); |
| 267 | ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP |
| 268 | } else { |
| 269 | // Emit the normal disp32 encoding. |
| 270 | EmitByte(ModRMByte(2, RegOpcodeField, 4), OS); |
| 271 | } |
| 272 | |
| 273 | // Calculate what the SS field value should be... |
| 274 | static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; |
| 275 | unsigned SS = SSTable[Scale.getImm()]; |
| 276 | |
| 277 | if (BaseReg == 0) { |
| 278 | // Handle the SIB byte for the case where there is no base, see Intel |
| 279 | // Manual 2A, table 2-7. The displacement has already been output. |
| 280 | unsigned IndexRegNo; |
| 281 | if (IndexReg.getReg()) |
| 282 | IndexRegNo = GetX86RegNum(IndexReg); |
| 283 | else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) |
| 284 | IndexRegNo = 4; |
| 285 | EmitSIBByte(SS, IndexRegNo, 5, OS); |
| 286 | } else { |
| 287 | unsigned IndexRegNo; |
| 288 | if (IndexReg.getReg()) |
| 289 | IndexRegNo = GetX86RegNum(IndexReg); |
| 290 | else |
| 291 | IndexRegNo = 4; // For example [ESP+1*<noreg>+4] |
| 292 | EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), OS); |
| 293 | } |
| 294 | |
| 295 | // Do we need to output a displacement? |
| 296 | if (ForceDisp8) |
| 297 | EmitConstant(DispVal, 1, OS); |
| 298 | else if (DispVal != 0 || ForceDisp32) |
| 299 | EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS); |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 300 | } |
| 301 | |
Chris Lattner | 39a612e | 2010-02-05 22:10:22 +0000 | [diff] [blame] | 302 | /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64 |
| 303 | /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand |
| 304 | /// size, and 3) use of X86-64 extended registers. |
| 305 | static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags, |
| 306 | const TargetInstrDesc &Desc) { |
| 307 | unsigned REX = 0; |
| 308 | |
| 309 | // Pseudo instructions do not need REX prefix byte. |
| 310 | if ((TSFlags & X86II::FormMask) == X86II::Pseudo) |
| 311 | return 0; |
| 312 | if (TSFlags & X86II::REX_W) |
| 313 | REX |= 1 << 3; |
| 314 | |
| 315 | if (MI.getNumOperands() == 0) return REX; |
| 316 | |
| 317 | unsigned NumOps = MI.getNumOperands(); |
| 318 | // FIXME: MCInst should explicitize the two-addrness. |
| 319 | bool isTwoAddr = NumOps > 1 && |
| 320 | Desc.getOperandConstraint(1, TOI::TIED_TO) != -1; |
| 321 | |
| 322 | // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. |
| 323 | unsigned i = isTwoAddr ? 1 : 0; |
| 324 | for (; i != NumOps; ++i) { |
| 325 | const MCOperand &MO = MI.getOperand(i); |
| 326 | if (!MO.isReg()) continue; |
| 327 | unsigned Reg = MO.getReg(); |
| 328 | if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue; |
Chris Lattner | faa75f6f | 2010-02-05 22:48:33 +0000 | [diff] [blame] | 329 | // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything |
| 330 | // that returns non-zero. |
Chris Lattner | 39a612e | 2010-02-05 22:10:22 +0000 | [diff] [blame] | 331 | REX |= 0x40; |
| 332 | break; |
| 333 | } |
| 334 | |
| 335 | switch (TSFlags & X86II::FormMask) { |
| 336 | case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!"); |
| 337 | case X86II::MRMSrcReg: |
| 338 | if (MI.getOperand(0).isReg() && |
| 339 | X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) |
| 340 | REX |= 1 << 2; |
| 341 | i = isTwoAddr ? 2 : 1; |
| 342 | for (; i != NumOps; ++i) { |
| 343 | const MCOperand &MO = MI.getOperand(i); |
| 344 | if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) |
| 345 | REX |= 1 << 0; |
| 346 | } |
| 347 | break; |
| 348 | case X86II::MRMSrcMem: { |
| 349 | if (MI.getOperand(0).isReg() && |
| 350 | X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) |
| 351 | REX |= 1 << 2; |
| 352 | unsigned Bit = 0; |
| 353 | i = isTwoAddr ? 2 : 1; |
| 354 | for (; i != NumOps; ++i) { |
| 355 | const MCOperand &MO = MI.getOperand(i); |
| 356 | if (MO.isReg()) { |
| 357 | if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) |
| 358 | REX |= 1 << Bit; |
| 359 | Bit++; |
| 360 | } |
| 361 | } |
| 362 | break; |
| 363 | } |
| 364 | case X86II::MRM0m: case X86II::MRM1m: |
| 365 | case X86II::MRM2m: case X86II::MRM3m: |
| 366 | case X86II::MRM4m: case X86II::MRM5m: |
| 367 | case X86II::MRM6m: case X86II::MRM7m: |
| 368 | case X86II::MRMDestMem: { |
| 369 | unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands); |
| 370 | i = isTwoAddr ? 1 : 0; |
| 371 | if (NumOps > e && MI.getOperand(e).isReg() && |
| 372 | X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg())) |
| 373 | REX |= 1 << 2; |
| 374 | unsigned Bit = 0; |
| 375 | for (; i != e; ++i) { |
| 376 | const MCOperand &MO = MI.getOperand(i); |
| 377 | if (MO.isReg()) { |
| 378 | if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) |
| 379 | REX |= 1 << Bit; |
| 380 | Bit++; |
| 381 | } |
| 382 | } |
| 383 | break; |
| 384 | } |
| 385 | default: |
| 386 | if (MI.getOperand(0).isReg() && |
| 387 | X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) |
| 388 | REX |= 1 << 0; |
| 389 | i = isTwoAddr ? 2 : 1; |
| 390 | for (unsigned e = NumOps; i != e; ++i) { |
| 391 | const MCOperand &MO = MI.getOperand(i); |
| 392 | if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) |
| 393 | REX |= 1 << 2; |
| 394 | } |
| 395 | break; |
| 396 | } |
| 397 | return REX; |
| 398 | } |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 399 | |
| 400 | void X86MCCodeEmitter:: |
Daniel Dunbar | 73c5574 | 2010-02-09 22:59:55 +0000 | [diff] [blame] | 401 | EncodeInstruction(const MCInst &MI, raw_ostream &OS, |
| 402 | SmallVectorImpl<MCFixup> &Fixups) const { |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 403 | unsigned Opcode = MI.getOpcode(); |
| 404 | const TargetInstrDesc &Desc = TII.get(Opcode); |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 405 | unsigned TSFlags = Desc.TSFlags; |
| 406 | |
| 407 | // FIXME: We should emit the prefixes in exactly the same order as GAS does, |
| 408 | // in order to provide diffability. |
| 409 | |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 410 | // Emit the lock opcode prefix as needed. |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 411 | if (TSFlags & X86II::LOCK) |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 412 | EmitByte(0xF0, OS); |
| 413 | |
| 414 | // Emit segment override opcode prefix as needed. |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 415 | switch (TSFlags & X86II::SegOvrMask) { |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 416 | default: assert(0 && "Invalid segment!"); |
| 417 | case 0: break; // No segment override! |
| 418 | case X86II::FS: |
| 419 | EmitByte(0x64, OS); |
| 420 | break; |
| 421 | case X86II::GS: |
| 422 | EmitByte(0x65, OS); |
| 423 | break; |
| 424 | } |
| 425 | |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 426 | // Emit the repeat opcode prefix as needed. |
| 427 | if ((TSFlags & X86II::Op0Mask) == X86II::REP) |
| 428 | EmitByte(0xF3, OS); |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 429 | |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 430 | // Emit the operand size opcode prefix as needed. |
| 431 | if (TSFlags & X86II::OpSize) |
| 432 | EmitByte(0x66, OS); |
| 433 | |
| 434 | // Emit the address size opcode prefix as needed. |
| 435 | if (TSFlags & X86II::AdSize) |
| 436 | EmitByte(0x67, OS); |
| 437 | |
| 438 | bool Need0FPrefix = false; |
| 439 | switch (TSFlags & X86II::Op0Mask) { |
| 440 | default: assert(0 && "Invalid prefix!"); |
| 441 | case 0: break; // No prefix! |
| 442 | case X86II::REP: break; // already handled. |
| 443 | case X86II::TB: // Two-byte opcode prefix |
| 444 | case X86II::T8: // 0F 38 |
| 445 | case X86II::TA: // 0F 3A |
| 446 | Need0FPrefix = true; |
| 447 | break; |
| 448 | case X86II::TF: // F2 0F 38 |
| 449 | EmitByte(0xF2, OS); |
| 450 | Need0FPrefix = true; |
| 451 | break; |
| 452 | case X86II::XS: // F3 0F |
| 453 | EmitByte(0xF3, OS); |
| 454 | Need0FPrefix = true; |
| 455 | break; |
| 456 | case X86II::XD: // F2 0F |
| 457 | EmitByte(0xF2, OS); |
| 458 | Need0FPrefix = true; |
| 459 | break; |
| 460 | case X86II::D8: EmitByte(0xD8, OS); break; |
| 461 | case X86II::D9: EmitByte(0xD9, OS); break; |
| 462 | case X86II::DA: EmitByte(0xDA, OS); break; |
| 463 | case X86II::DB: EmitByte(0xDB, OS); break; |
| 464 | case X86II::DC: EmitByte(0xDC, OS); break; |
| 465 | case X86II::DD: EmitByte(0xDD, OS); break; |
| 466 | case X86II::DE: EmitByte(0xDE, OS); break; |
| 467 | case X86II::DF: EmitByte(0xDF, OS); break; |
| 468 | } |
| 469 | |
| 470 | // Handle REX prefix. |
Chris Lattner | 39a612e | 2010-02-05 22:10:22 +0000 | [diff] [blame] | 471 | // FIXME: Can this come before F2 etc to simplify emission? |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 472 | if (Is64BitMode) { |
Chris Lattner | 39a612e | 2010-02-05 22:10:22 +0000 | [diff] [blame] | 473 | if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc)) |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 474 | EmitByte(0x40 | REX, OS); |
| 475 | } |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 476 | |
| 477 | // 0x0F escape code must be emitted just before the opcode. |
| 478 | if (Need0FPrefix) |
| 479 | EmitByte(0x0F, OS); |
| 480 | |
| 481 | // FIXME: Pull this up into previous switch if REX can be moved earlier. |
| 482 | switch (TSFlags & X86II::Op0Mask) { |
| 483 | case X86II::TF: // F2 0F 38 |
| 484 | case X86II::T8: // 0F 38 |
| 485 | EmitByte(0x38, OS); |
| 486 | break; |
| 487 | case X86II::TA: // 0F 3A |
| 488 | EmitByte(0x3A, OS); |
| 489 | break; |
| 490 | } |
| 491 | |
| 492 | // If this is a two-address instruction, skip one of the register operands. |
| 493 | unsigned NumOps = Desc.getNumOperands(); |
| 494 | unsigned CurOp = 0; |
| 495 | if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1) |
| 496 | ++CurOp; |
| 497 | else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) |
| 498 | // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 |
| 499 | --NumOps; |
| 500 | |
Chris Lattner | 74a2151 | 2010-02-05 19:24:13 +0000 | [diff] [blame] | 501 | unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 502 | switch (TSFlags & X86II::FormMask) { |
Chris Lattner | be1778f | 2010-02-05 21:34:18 +0000 | [diff] [blame] | 503 | case X86II::MRMInitReg: |
| 504 | assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!"); |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 505 | default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n"; |
| 506 | assert(0 && "Unknown FormMask value in X86MCCodeEmitter!"); |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 507 | case X86II::RawFrm: { |
| 508 | EmitByte(BaseOpcode, OS); |
| 509 | |
| 510 | if (CurOp == NumOps) |
| 511 | break; |
| 512 | |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 513 | assert(0 && "Unimpl RawFrm expr"); |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 514 | break; |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 515 | } |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 516 | |
| 517 | case X86II::AddRegFrm: { |
| 518 | EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS); |
| 519 | if (CurOp == NumOps) |
| 520 | break; |
| 521 | |
| 522 | const MCOperand &MO1 = MI.getOperand(CurOp++); |
| 523 | if (MO1.isImm()) { |
Chris Lattner | 74a2151 | 2010-02-05 19:24:13 +0000 | [diff] [blame] | 524 | unsigned Size = X86II::getSizeOfImm(TSFlags); |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 525 | EmitConstant(MO1.getImm(), Size, OS); |
| 526 | break; |
| 527 | } |
| 528 | |
| 529 | assert(0 && "Unimpl AddRegFrm expr"); |
| 530 | break; |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 531 | } |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 532 | |
| 533 | case X86II::MRMDestReg: |
| 534 | EmitByte(BaseOpcode, OS); |
| 535 | EmitRegModRMByte(MI.getOperand(CurOp), |
| 536 | GetX86RegNum(MI.getOperand(CurOp+1)), OS); |
| 537 | CurOp += 2; |
| 538 | if (CurOp != NumOps) |
| 539 | EmitConstant(MI.getOperand(CurOp++).getImm(), |
Chris Lattner | 74a2151 | 2010-02-05 19:24:13 +0000 | [diff] [blame] | 540 | X86II::getSizeOfImm(TSFlags), OS); |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 541 | break; |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 542 | |
| 543 | case X86II::MRMDestMem: |
| 544 | EmitByte(BaseOpcode, OS); |
| 545 | EmitMemModRMByte(MI, CurOp, |
| 546 | GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)), |
| 547 | 0, OS); |
Chris Lattner | 82ed17e | 2010-02-05 19:37:31 +0000 | [diff] [blame] | 548 | CurOp += X86AddrNumOperands + 1; |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 549 | if (CurOp != NumOps) |
| 550 | EmitConstant(MI.getOperand(CurOp++).getImm(), |
Chris Lattner | 74a2151 | 2010-02-05 19:24:13 +0000 | [diff] [blame] | 551 | X86II::getSizeOfImm(TSFlags), OS); |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame] | 552 | break; |
Chris Lattner | daa4555 | 2010-02-05 19:04:37 +0000 | [diff] [blame] | 553 | |
| 554 | case X86II::MRMSrcReg: |
| 555 | EmitByte(BaseOpcode, OS); |
| 556 | EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)), |
| 557 | OS); |
| 558 | CurOp += 2; |
| 559 | if (CurOp != NumOps) |
| 560 | EmitConstant(MI.getOperand(CurOp++).getImm(), |
Chris Lattner | 74a2151 | 2010-02-05 19:24:13 +0000 | [diff] [blame] | 561 | X86II::getSizeOfImm(TSFlags), OS); |
Chris Lattner | daa4555 | 2010-02-05 19:04:37 +0000 | [diff] [blame] | 562 | break; |
| 563 | |
| 564 | case X86II::MRMSrcMem: { |
| 565 | EmitByte(BaseOpcode, OS); |
| 566 | |
| 567 | // FIXME: Maybe lea should have its own form? This is a horrible hack. |
| 568 | int AddrOperands; |
| 569 | if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || |
| 570 | Opcode == X86::LEA16r || Opcode == X86::LEA32r) |
| 571 | AddrOperands = X86AddrNumOperands - 1; // No segment register |
| 572 | else |
| 573 | AddrOperands = X86AddrNumOperands; |
| 574 | |
| 575 | // FIXME: What is this actually doing? |
| 576 | intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ? |
Chris Lattner | 74a2151 | 2010-02-05 19:24:13 +0000 | [diff] [blame] | 577 | X86II::getSizeOfImm(TSFlags) : 0; |
Chris Lattner | daa4555 | 2010-02-05 19:04:37 +0000 | [diff] [blame] | 578 | |
| 579 | EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)), |
| 580 | PCAdj, OS); |
| 581 | CurOp += AddrOperands + 1; |
| 582 | if (CurOp != NumOps) |
| 583 | EmitConstant(MI.getOperand(CurOp++).getImm(), |
Chris Lattner | 74a2151 | 2010-02-05 19:24:13 +0000 | [diff] [blame] | 584 | X86II::getSizeOfImm(TSFlags), OS); |
Chris Lattner | daa4555 | 2010-02-05 19:04:37 +0000 | [diff] [blame] | 585 | break; |
| 586 | } |
Chris Lattner | 82ed17e | 2010-02-05 19:37:31 +0000 | [diff] [blame] | 587 | |
| 588 | case X86II::MRM0r: case X86II::MRM1r: |
| 589 | case X86II::MRM2r: case X86II::MRM3r: |
| 590 | case X86II::MRM4r: case X86II::MRM5r: |
| 591 | case X86II::MRM6r: case X86II::MRM7r: { |
| 592 | EmitByte(BaseOpcode, OS); |
| 593 | |
| 594 | // Special handling of lfence, mfence, monitor, and mwait. |
| 595 | // FIXME: This is terrible, they should get proper encoding bits in TSFlags. |
| 596 | if (Opcode == X86::LFENCE || Opcode == X86::MFENCE || |
| 597 | Opcode == X86::MONITOR || Opcode == X86::MWAIT) { |
| 598 | EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0), OS); |
| 599 | |
| 600 | switch (Opcode) { |
| 601 | default: break; |
| 602 | case X86::MONITOR: EmitByte(0xC8, OS); break; |
| 603 | case X86::MWAIT: EmitByte(0xC9, OS); break; |
| 604 | } |
| 605 | } else { |
| 606 | EmitRegModRMByte(MI.getOperand(CurOp++), |
| 607 | (TSFlags & X86II::FormMask)-X86II::MRM0r, |
| 608 | OS); |
| 609 | } |
| 610 | |
| 611 | if (CurOp == NumOps) |
| 612 | break; |
| 613 | |
| 614 | const MCOperand &MO1 = MI.getOperand(CurOp++); |
| 615 | if (MO1.isImm()) { |
| 616 | EmitConstant(MO1.getImm(), X86II::getSizeOfImm(TSFlags), OS); |
| 617 | break; |
| 618 | } |
| 619 | |
| 620 | assert(0 && "relo unimpl"); |
| 621 | #if 0 |
| 622 | unsigned rt = Is64BitMode ? X86::reloc_pcrel_word |
| 623 | : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); |
| 624 | if (Opcode == X86::MOV64ri32) |
| 625 | rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag? |
| 626 | if (MO1.isGlobal()) { |
| 627 | bool Indirect = gvNeedsNonLazyPtr(MO1, TM); |
| 628 | emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, |
| 629 | Indirect); |
| 630 | } else if (MO1.isSymbol()) |
| 631 | emitExternalSymbolAddress(MO1.getSymbolName(), rt); |
| 632 | else if (MO1.isCPI()) |
| 633 | emitConstPoolAddress(MO1.getIndex(), rt); |
| 634 | else if (MO1.isJTI()) |
| 635 | emitJumpTableAddress(MO1.getIndex(), rt); |
| 636 | break; |
| 637 | #endif |
| 638 | } |
| 639 | case X86II::MRM0m: case X86II::MRM1m: |
| 640 | case X86II::MRM2m: case X86II::MRM3m: |
| 641 | case X86II::MRM4m: case X86II::MRM5m: |
| 642 | case X86II::MRM6m: case X86II::MRM7m: { |
| 643 | intptr_t PCAdj = 0; |
| 644 | if (CurOp + X86AddrNumOperands != NumOps) { |
| 645 | if (MI.getOperand(CurOp+X86AddrNumOperands).isImm()) |
| 646 | PCAdj = X86II::getSizeOfImm(TSFlags); |
| 647 | else |
| 648 | PCAdj = 4; |
| 649 | } |
| 650 | |
| 651 | EmitByte(BaseOpcode, OS); |
| 652 | EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m, |
| 653 | PCAdj, OS); |
| 654 | CurOp += X86AddrNumOperands; |
| 655 | |
| 656 | if (CurOp == NumOps) |
| 657 | break; |
| 658 | |
| 659 | const MCOperand &MO = MI.getOperand(CurOp++); |
| 660 | if (MO.isImm()) { |
| 661 | EmitConstant(MO.getImm(), X86II::getSizeOfImm(TSFlags), OS); |
| 662 | break; |
| 663 | } |
| 664 | |
| 665 | assert(0 && "relo not handled"); |
| 666 | #if 0 |
| 667 | unsigned rt = Is64BitMode ? X86::reloc_pcrel_word |
| 668 | : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); |
| 669 | if (Opcode == X86::MOV64mi32) |
| 670 | rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag? |
| 671 | if (MO.isGlobal()) { |
| 672 | bool Indirect = gvNeedsNonLazyPtr(MO, TM); |
| 673 | emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0, |
| 674 | Indirect); |
| 675 | } else if (MO.isSymbol()) |
| 676 | emitExternalSymbolAddress(MO.getSymbolName(), rt); |
| 677 | else if (MO.isCPI()) |
| 678 | emitConstPoolAddress(MO.getIndex(), rt); |
| 679 | else if (MO.isJTI()) |
| 680 | emitJumpTableAddress(MO.getIndex(), rt); |
| 681 | #endif |
| 682 | break; |
| 683 | } |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 684 | } |
| 685 | |
| 686 | #ifndef NDEBUG |
Chris Lattner | 82ed17e | 2010-02-05 19:37:31 +0000 | [diff] [blame] | 687 | // FIXME: Verify. |
| 688 | if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 689 | errs() << "Cannot encode all operands of: "; |
| 690 | MI.dump(); |
| 691 | errs() << '\n'; |
| 692 | abort(); |
| 693 | } |
| 694 | #endif |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 695 | } |