blob: 01a7cd401f960e47b729bf346f695c0d31ac0042 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson1636de92007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000028
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029using namespace llvm;
30
Owen Anderson9a184ef2008-01-07 01:35:02 +000031namespace {
32 cl::opt<bool>
33 NoFusing("disable-spill-fusing",
34 cl::desc("Disable fusing of spill code into instructions"));
35 cl::opt<bool>
36 PrintFailedFusing("print-failed-fuse-candidates",
37 cl::desc("Print instructions that the allocator wants to"
38 " fuse, but the X86 backend currently can't"),
39 cl::Hidden);
Evan Cheng60490e62008-02-22 09:25:47 +000040 cl::opt<bool>
41 ReMatPICLoad("remat-pic-load",
42 cl::desc("Allow rematerializing pic load"),
Evan Cheng97226e92008-02-23 02:07:42 +000043 cl::init(true), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000044}
45
Dan Gohmanf17a25c2007-07-18 16:29:46 +000046X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000047 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000049 SmallVector<unsigned,16> AmbEntries;
50 static const unsigned OpTbl2Addr[][2] = {
51 { X86::ADC32ri, X86::ADC32mi },
52 { X86::ADC32ri8, X86::ADC32mi8 },
53 { X86::ADC32rr, X86::ADC32mr },
54 { X86::ADC64ri32, X86::ADC64mi32 },
55 { X86::ADC64ri8, X86::ADC64mi8 },
56 { X86::ADC64rr, X86::ADC64mr },
57 { X86::ADD16ri, X86::ADD16mi },
58 { X86::ADD16ri8, X86::ADD16mi8 },
59 { X86::ADD16rr, X86::ADD16mr },
60 { X86::ADD32ri, X86::ADD32mi },
61 { X86::ADD32ri8, X86::ADD32mi8 },
62 { X86::ADD32rr, X86::ADD32mr },
63 { X86::ADD64ri32, X86::ADD64mi32 },
64 { X86::ADD64ri8, X86::ADD64mi8 },
65 { X86::ADD64rr, X86::ADD64mr },
66 { X86::ADD8ri, X86::ADD8mi },
67 { X86::ADD8rr, X86::ADD8mr },
68 { X86::AND16ri, X86::AND16mi },
69 { X86::AND16ri8, X86::AND16mi8 },
70 { X86::AND16rr, X86::AND16mr },
71 { X86::AND32ri, X86::AND32mi },
72 { X86::AND32ri8, X86::AND32mi8 },
73 { X86::AND32rr, X86::AND32mr },
74 { X86::AND64ri32, X86::AND64mi32 },
75 { X86::AND64ri8, X86::AND64mi8 },
76 { X86::AND64rr, X86::AND64mr },
77 { X86::AND8ri, X86::AND8mi },
78 { X86::AND8rr, X86::AND8mr },
79 { X86::DEC16r, X86::DEC16m },
80 { X86::DEC32r, X86::DEC32m },
81 { X86::DEC64_16r, X86::DEC64_16m },
82 { X86::DEC64_32r, X86::DEC64_32m },
83 { X86::DEC64r, X86::DEC64m },
84 { X86::DEC8r, X86::DEC8m },
85 { X86::INC16r, X86::INC16m },
86 { X86::INC32r, X86::INC32m },
87 { X86::INC64_16r, X86::INC64_16m },
88 { X86::INC64_32r, X86::INC64_32m },
89 { X86::INC64r, X86::INC64m },
90 { X86::INC8r, X86::INC8m },
91 { X86::NEG16r, X86::NEG16m },
92 { X86::NEG32r, X86::NEG32m },
93 { X86::NEG64r, X86::NEG64m },
94 { X86::NEG8r, X86::NEG8m },
95 { X86::NOT16r, X86::NOT16m },
96 { X86::NOT32r, X86::NOT32m },
97 { X86::NOT64r, X86::NOT64m },
98 { X86::NOT8r, X86::NOT8m },
99 { X86::OR16ri, X86::OR16mi },
100 { X86::OR16ri8, X86::OR16mi8 },
101 { X86::OR16rr, X86::OR16mr },
102 { X86::OR32ri, X86::OR32mi },
103 { X86::OR32ri8, X86::OR32mi8 },
104 { X86::OR32rr, X86::OR32mr },
105 { X86::OR64ri32, X86::OR64mi32 },
106 { X86::OR64ri8, X86::OR64mi8 },
107 { X86::OR64rr, X86::OR64mr },
108 { X86::OR8ri, X86::OR8mi },
109 { X86::OR8rr, X86::OR8mr },
110 { X86::ROL16r1, X86::ROL16m1 },
111 { X86::ROL16rCL, X86::ROL16mCL },
112 { X86::ROL16ri, X86::ROL16mi },
113 { X86::ROL32r1, X86::ROL32m1 },
114 { X86::ROL32rCL, X86::ROL32mCL },
115 { X86::ROL32ri, X86::ROL32mi },
116 { X86::ROL64r1, X86::ROL64m1 },
117 { X86::ROL64rCL, X86::ROL64mCL },
118 { X86::ROL64ri, X86::ROL64mi },
119 { X86::ROL8r1, X86::ROL8m1 },
120 { X86::ROL8rCL, X86::ROL8mCL },
121 { X86::ROL8ri, X86::ROL8mi },
122 { X86::ROR16r1, X86::ROR16m1 },
123 { X86::ROR16rCL, X86::ROR16mCL },
124 { X86::ROR16ri, X86::ROR16mi },
125 { X86::ROR32r1, X86::ROR32m1 },
126 { X86::ROR32rCL, X86::ROR32mCL },
127 { X86::ROR32ri, X86::ROR32mi },
128 { X86::ROR64r1, X86::ROR64m1 },
129 { X86::ROR64rCL, X86::ROR64mCL },
130 { X86::ROR64ri, X86::ROR64mi },
131 { X86::ROR8r1, X86::ROR8m1 },
132 { X86::ROR8rCL, X86::ROR8mCL },
133 { X86::ROR8ri, X86::ROR8mi },
134 { X86::SAR16r1, X86::SAR16m1 },
135 { X86::SAR16rCL, X86::SAR16mCL },
136 { X86::SAR16ri, X86::SAR16mi },
137 { X86::SAR32r1, X86::SAR32m1 },
138 { X86::SAR32rCL, X86::SAR32mCL },
139 { X86::SAR32ri, X86::SAR32mi },
140 { X86::SAR64r1, X86::SAR64m1 },
141 { X86::SAR64rCL, X86::SAR64mCL },
142 { X86::SAR64ri, X86::SAR64mi },
143 { X86::SAR8r1, X86::SAR8m1 },
144 { X86::SAR8rCL, X86::SAR8mCL },
145 { X86::SAR8ri, X86::SAR8mi },
146 { X86::SBB32ri, X86::SBB32mi },
147 { X86::SBB32ri8, X86::SBB32mi8 },
148 { X86::SBB32rr, X86::SBB32mr },
149 { X86::SBB64ri32, X86::SBB64mi32 },
150 { X86::SBB64ri8, X86::SBB64mi8 },
151 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000152 { X86::SHL16rCL, X86::SHL16mCL },
153 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000154 { X86::SHL32rCL, X86::SHL32mCL },
155 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000156 { X86::SHL64rCL, X86::SHL64mCL },
157 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000158 { X86::SHL8rCL, X86::SHL8mCL },
159 { X86::SHL8ri, X86::SHL8mi },
160 { X86::SHLD16rrCL, X86::SHLD16mrCL },
161 { X86::SHLD16rri8, X86::SHLD16mri8 },
162 { X86::SHLD32rrCL, X86::SHLD32mrCL },
163 { X86::SHLD32rri8, X86::SHLD32mri8 },
164 { X86::SHLD64rrCL, X86::SHLD64mrCL },
165 { X86::SHLD64rri8, X86::SHLD64mri8 },
166 { X86::SHR16r1, X86::SHR16m1 },
167 { X86::SHR16rCL, X86::SHR16mCL },
168 { X86::SHR16ri, X86::SHR16mi },
169 { X86::SHR32r1, X86::SHR32m1 },
170 { X86::SHR32rCL, X86::SHR32mCL },
171 { X86::SHR32ri, X86::SHR32mi },
172 { X86::SHR64r1, X86::SHR64m1 },
173 { X86::SHR64rCL, X86::SHR64mCL },
174 { X86::SHR64ri, X86::SHR64mi },
175 { X86::SHR8r1, X86::SHR8m1 },
176 { X86::SHR8rCL, X86::SHR8mCL },
177 { X86::SHR8ri, X86::SHR8mi },
178 { X86::SHRD16rrCL, X86::SHRD16mrCL },
179 { X86::SHRD16rri8, X86::SHRD16mri8 },
180 { X86::SHRD32rrCL, X86::SHRD32mrCL },
181 { X86::SHRD32rri8, X86::SHRD32mri8 },
182 { X86::SHRD64rrCL, X86::SHRD64mrCL },
183 { X86::SHRD64rri8, X86::SHRD64mri8 },
184 { X86::SUB16ri, X86::SUB16mi },
185 { X86::SUB16ri8, X86::SUB16mi8 },
186 { X86::SUB16rr, X86::SUB16mr },
187 { X86::SUB32ri, X86::SUB32mi },
188 { X86::SUB32ri8, X86::SUB32mi8 },
189 { X86::SUB32rr, X86::SUB32mr },
190 { X86::SUB64ri32, X86::SUB64mi32 },
191 { X86::SUB64ri8, X86::SUB64mi8 },
192 { X86::SUB64rr, X86::SUB64mr },
193 { X86::SUB8ri, X86::SUB8mi },
194 { X86::SUB8rr, X86::SUB8mr },
195 { X86::XOR16ri, X86::XOR16mi },
196 { X86::XOR16ri8, X86::XOR16mi8 },
197 { X86::XOR16rr, X86::XOR16mr },
198 { X86::XOR32ri, X86::XOR32mi },
199 { X86::XOR32ri8, X86::XOR32mi8 },
200 { X86::XOR32rr, X86::XOR32mr },
201 { X86::XOR64ri32, X86::XOR64mi32 },
202 { X86::XOR64ri8, X86::XOR64mi8 },
203 { X86::XOR64rr, X86::XOR64mr },
204 { X86::XOR8ri, X86::XOR8mi },
205 { X86::XOR8rr, X86::XOR8mr }
206 };
207
208 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
209 unsigned RegOp = OpTbl2Addr[i][0];
210 unsigned MemOp = OpTbl2Addr[i][1];
211 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
212 assert(false && "Duplicated entries?");
213 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
214 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
215 std::make_pair(RegOp, AuxInfo))))
216 AmbEntries.push_back(MemOp);
217 }
218
219 // If the third value is 1, then it's folding either a load or a store.
220 static const unsigned OpTbl0[][3] = {
221 { X86::CALL32r, X86::CALL32m, 1 },
222 { X86::CALL64r, X86::CALL64m, 1 },
223 { X86::CMP16ri, X86::CMP16mi, 1 },
224 { X86::CMP16ri8, X86::CMP16mi8, 1 },
225 { X86::CMP32ri, X86::CMP32mi, 1 },
226 { X86::CMP32ri8, X86::CMP32mi8, 1 },
227 { X86::CMP64ri32, X86::CMP64mi32, 1 },
228 { X86::CMP64ri8, X86::CMP64mi8, 1 },
229 { X86::CMP8ri, X86::CMP8mi, 1 },
230 { X86::DIV16r, X86::DIV16m, 1 },
231 { X86::DIV32r, X86::DIV32m, 1 },
232 { X86::DIV64r, X86::DIV64m, 1 },
233 { X86::DIV8r, X86::DIV8m, 1 },
234 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
235 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
236 { X86::IDIV16r, X86::IDIV16m, 1 },
237 { X86::IDIV32r, X86::IDIV32m, 1 },
238 { X86::IDIV64r, X86::IDIV64m, 1 },
239 { X86::IDIV8r, X86::IDIV8m, 1 },
240 { X86::IMUL16r, X86::IMUL16m, 1 },
241 { X86::IMUL32r, X86::IMUL32m, 1 },
242 { X86::IMUL64r, X86::IMUL64m, 1 },
243 { X86::IMUL8r, X86::IMUL8m, 1 },
244 { X86::JMP32r, X86::JMP32m, 1 },
245 { X86::JMP64r, X86::JMP64m, 1 },
246 { X86::MOV16ri, X86::MOV16mi, 0 },
247 { X86::MOV16rr, X86::MOV16mr, 0 },
248 { X86::MOV16to16_, X86::MOV16_mr, 0 },
249 { X86::MOV32ri, X86::MOV32mi, 0 },
250 { X86::MOV32rr, X86::MOV32mr, 0 },
251 { X86::MOV32to32_, X86::MOV32_mr, 0 },
252 { X86::MOV64ri32, X86::MOV64mi32, 0 },
253 { X86::MOV64rr, X86::MOV64mr, 0 },
254 { X86::MOV8ri, X86::MOV8mi, 0 },
255 { X86::MOV8rr, X86::MOV8mr, 0 },
256 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
257 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
258 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
259 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
260 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
261 { X86::MOVSDrr, X86::MOVSDmr, 0 },
262 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
263 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
264 { X86::MOVSSrr, X86::MOVSSmr, 0 },
265 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
266 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
267 { X86::MUL16r, X86::MUL16m, 1 },
268 { X86::MUL32r, X86::MUL32m, 1 },
269 { X86::MUL64r, X86::MUL64m, 1 },
270 { X86::MUL8r, X86::MUL8m, 1 },
271 { X86::SETAEr, X86::SETAEm, 0 },
272 { X86::SETAr, X86::SETAm, 0 },
273 { X86::SETBEr, X86::SETBEm, 0 },
274 { X86::SETBr, X86::SETBm, 0 },
275 { X86::SETEr, X86::SETEm, 0 },
276 { X86::SETGEr, X86::SETGEm, 0 },
277 { X86::SETGr, X86::SETGm, 0 },
278 { X86::SETLEr, X86::SETLEm, 0 },
279 { X86::SETLr, X86::SETLm, 0 },
280 { X86::SETNEr, X86::SETNEm, 0 },
281 { X86::SETNPr, X86::SETNPm, 0 },
282 { X86::SETNSr, X86::SETNSm, 0 },
283 { X86::SETPr, X86::SETPm, 0 },
284 { X86::SETSr, X86::SETSm, 0 },
285 { X86::TAILJMPr, X86::TAILJMPm, 1 },
286 { X86::TEST16ri, X86::TEST16mi, 1 },
287 { X86::TEST32ri, X86::TEST32mi, 1 },
288 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000289 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000290 };
291
292 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
293 unsigned RegOp = OpTbl0[i][0];
294 unsigned MemOp = OpTbl0[i][1];
295 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
296 assert(false && "Duplicated entries?");
297 unsigned FoldedLoad = OpTbl0[i][2];
298 // Index 0, folded load or store.
299 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
300 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
301 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
302 std::make_pair(RegOp, AuxInfo))))
303 AmbEntries.push_back(MemOp);
304 }
305
306 static const unsigned OpTbl1[][2] = {
307 { X86::CMP16rr, X86::CMP16rm },
308 { X86::CMP32rr, X86::CMP32rm },
309 { X86::CMP64rr, X86::CMP64rm },
310 { X86::CMP8rr, X86::CMP8rm },
311 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
312 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
313 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
314 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
315 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
316 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
317 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
318 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
319 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
320 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
321 { X86::FsMOVAPDrr, X86::MOVSDrm },
322 { X86::FsMOVAPSrr, X86::MOVSSrm },
323 { X86::IMUL16rri, X86::IMUL16rmi },
324 { X86::IMUL16rri8, X86::IMUL16rmi8 },
325 { X86::IMUL32rri, X86::IMUL32rmi },
326 { X86::IMUL32rri8, X86::IMUL32rmi8 },
327 { X86::IMUL64rri32, X86::IMUL64rmi32 },
328 { X86::IMUL64rri8, X86::IMUL64rmi8 },
329 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
330 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
331 { X86::Int_COMISDrr, X86::Int_COMISDrm },
332 { X86::Int_COMISSrr, X86::Int_COMISSrm },
333 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
334 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
335 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
336 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
337 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
338 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
339 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
340 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
341 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
342 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
343 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
344 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
345 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
346 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
347 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
348 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
349 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
350 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
351 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
352 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
353 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
354 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
355 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
356 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
357 { X86::MOV16rr, X86::MOV16rm },
358 { X86::MOV16to16_, X86::MOV16_rm },
359 { X86::MOV32rr, X86::MOV32rm },
360 { X86::MOV32to32_, X86::MOV32_rm },
361 { X86::MOV64rr, X86::MOV64rm },
362 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
363 { X86::MOV64toSDrr, X86::MOV64toSDrm },
364 { X86::MOV8rr, X86::MOV8rm },
365 { X86::MOVAPDrr, X86::MOVAPDrm },
366 { X86::MOVAPSrr, X86::MOVAPSrm },
367 { X86::MOVDDUPrr, X86::MOVDDUPrm },
368 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
369 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
370 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
371 { X86::MOVSDrr, X86::MOVSDrm },
372 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
373 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
374 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
375 { X86::MOVSSrr, X86::MOVSSrm },
376 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
377 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
378 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
379 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
380 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
381 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
382 { X86::MOVUPDrr, X86::MOVUPDrm },
383 { X86::MOVUPSrr, X86::MOVUPSrm },
384 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
385 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
386 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
387 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
388 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
389 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
390 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
391 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
392 { X86::PSHUFDri, X86::PSHUFDmi },
393 { X86::PSHUFHWri, X86::PSHUFHWmi },
394 { X86::PSHUFLWri, X86::PSHUFLWmi },
395 { X86::PsMOVZX64rr32, X86::PsMOVZX64rm32 },
396 { X86::RCPPSr, X86::RCPPSm },
397 { X86::RCPPSr_Int, X86::RCPPSm_Int },
398 { X86::RSQRTPSr, X86::RSQRTPSm },
399 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
400 { X86::RSQRTSSr, X86::RSQRTSSm },
401 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
402 { X86::SQRTPDr, X86::SQRTPDm },
403 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
404 { X86::SQRTPSr, X86::SQRTPSm },
405 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
406 { X86::SQRTSDr, X86::SQRTSDm },
407 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
408 { X86::SQRTSSr, X86::SQRTSSm },
409 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
410 { X86::TEST16rr, X86::TEST16rm },
411 { X86::TEST32rr, X86::TEST32rm },
412 { X86::TEST64rr, X86::TEST64rm },
413 { X86::TEST8rr, X86::TEST8rm },
414 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
415 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000416 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000417 };
418
419 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
420 unsigned RegOp = OpTbl1[i][0];
421 unsigned MemOp = OpTbl1[i][1];
422 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
423 assert(false && "Duplicated entries?");
424 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
425 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
426 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
427 std::make_pair(RegOp, AuxInfo))))
428 AmbEntries.push_back(MemOp);
429 }
430
431 static const unsigned OpTbl2[][2] = {
432 { X86::ADC32rr, X86::ADC32rm },
433 { X86::ADC64rr, X86::ADC64rm },
434 { X86::ADD16rr, X86::ADD16rm },
435 { X86::ADD32rr, X86::ADD32rm },
436 { X86::ADD64rr, X86::ADD64rm },
437 { X86::ADD8rr, X86::ADD8rm },
438 { X86::ADDPDrr, X86::ADDPDrm },
439 { X86::ADDPSrr, X86::ADDPSrm },
440 { X86::ADDSDrr, X86::ADDSDrm },
441 { X86::ADDSSrr, X86::ADDSSrm },
442 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
443 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
444 { X86::AND16rr, X86::AND16rm },
445 { X86::AND32rr, X86::AND32rm },
446 { X86::AND64rr, X86::AND64rm },
447 { X86::AND8rr, X86::AND8rm },
448 { X86::ANDNPDrr, X86::ANDNPDrm },
449 { X86::ANDNPSrr, X86::ANDNPSrm },
450 { X86::ANDPDrr, X86::ANDPDrm },
451 { X86::ANDPSrr, X86::ANDPSrm },
452 { X86::CMOVA16rr, X86::CMOVA16rm },
453 { X86::CMOVA32rr, X86::CMOVA32rm },
454 { X86::CMOVA64rr, X86::CMOVA64rm },
455 { X86::CMOVAE16rr, X86::CMOVAE16rm },
456 { X86::CMOVAE32rr, X86::CMOVAE32rm },
457 { X86::CMOVAE64rr, X86::CMOVAE64rm },
458 { X86::CMOVB16rr, X86::CMOVB16rm },
459 { X86::CMOVB32rr, X86::CMOVB32rm },
460 { X86::CMOVB64rr, X86::CMOVB64rm },
461 { X86::CMOVBE16rr, X86::CMOVBE16rm },
462 { X86::CMOVBE32rr, X86::CMOVBE32rm },
463 { X86::CMOVBE64rr, X86::CMOVBE64rm },
464 { X86::CMOVE16rr, X86::CMOVE16rm },
465 { X86::CMOVE32rr, X86::CMOVE32rm },
466 { X86::CMOVE64rr, X86::CMOVE64rm },
467 { X86::CMOVG16rr, X86::CMOVG16rm },
468 { X86::CMOVG32rr, X86::CMOVG32rm },
469 { X86::CMOVG64rr, X86::CMOVG64rm },
470 { X86::CMOVGE16rr, X86::CMOVGE16rm },
471 { X86::CMOVGE32rr, X86::CMOVGE32rm },
472 { X86::CMOVGE64rr, X86::CMOVGE64rm },
473 { X86::CMOVL16rr, X86::CMOVL16rm },
474 { X86::CMOVL32rr, X86::CMOVL32rm },
475 { X86::CMOVL64rr, X86::CMOVL64rm },
476 { X86::CMOVLE16rr, X86::CMOVLE16rm },
477 { X86::CMOVLE32rr, X86::CMOVLE32rm },
478 { X86::CMOVLE64rr, X86::CMOVLE64rm },
479 { X86::CMOVNE16rr, X86::CMOVNE16rm },
480 { X86::CMOVNE32rr, X86::CMOVNE32rm },
481 { X86::CMOVNE64rr, X86::CMOVNE64rm },
482 { X86::CMOVNP16rr, X86::CMOVNP16rm },
483 { X86::CMOVNP32rr, X86::CMOVNP32rm },
484 { X86::CMOVNP64rr, X86::CMOVNP64rm },
485 { X86::CMOVNS16rr, X86::CMOVNS16rm },
486 { X86::CMOVNS32rr, X86::CMOVNS32rm },
487 { X86::CMOVNS64rr, X86::CMOVNS64rm },
488 { X86::CMOVP16rr, X86::CMOVP16rm },
489 { X86::CMOVP32rr, X86::CMOVP32rm },
490 { X86::CMOVP64rr, X86::CMOVP64rm },
491 { X86::CMOVS16rr, X86::CMOVS16rm },
492 { X86::CMOVS32rr, X86::CMOVS32rm },
493 { X86::CMOVS64rr, X86::CMOVS64rm },
494 { X86::CMPPDrri, X86::CMPPDrmi },
495 { X86::CMPPSrri, X86::CMPPSrmi },
496 { X86::CMPSDrr, X86::CMPSDrm },
497 { X86::CMPSSrr, X86::CMPSSrm },
498 { X86::DIVPDrr, X86::DIVPDrm },
499 { X86::DIVPSrr, X86::DIVPSrm },
500 { X86::DIVSDrr, X86::DIVSDrm },
501 { X86::DIVSSrr, X86::DIVSSrm },
Evan Cheng63529862008-02-08 00:12:56 +0000502 { X86::FsANDNPDrr, X86::FsANDNPDrm },
503 { X86::FsANDNPSrr, X86::FsANDNPSrm },
504 { X86::FsANDPDrr, X86::FsANDPDrm },
505 { X86::FsANDPSrr, X86::FsANDPSrm },
506 { X86::FsORPDrr, X86::FsORPDrm },
507 { X86::FsORPSrr, X86::FsORPSrm },
508 { X86::FsXORPDrr, X86::FsXORPDrm },
509 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000510 { X86::HADDPDrr, X86::HADDPDrm },
511 { X86::HADDPSrr, X86::HADDPSrm },
512 { X86::HSUBPDrr, X86::HSUBPDrm },
513 { X86::HSUBPSrr, X86::HSUBPSrm },
514 { X86::IMUL16rr, X86::IMUL16rm },
515 { X86::IMUL32rr, X86::IMUL32rm },
516 { X86::IMUL64rr, X86::IMUL64rm },
517 { X86::MAXPDrr, X86::MAXPDrm },
518 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
519 { X86::MAXPSrr, X86::MAXPSrm },
520 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
521 { X86::MAXSDrr, X86::MAXSDrm },
522 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
523 { X86::MAXSSrr, X86::MAXSSrm },
524 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
525 { X86::MINPDrr, X86::MINPDrm },
526 { X86::MINPDrr_Int, X86::MINPDrm_Int },
527 { X86::MINPSrr, X86::MINPSrm },
528 { X86::MINPSrr_Int, X86::MINPSrm_Int },
529 { X86::MINSDrr, X86::MINSDrm },
530 { X86::MINSDrr_Int, X86::MINSDrm_Int },
531 { X86::MINSSrr, X86::MINSSrm },
532 { X86::MINSSrr_Int, X86::MINSSrm_Int },
533 { X86::MULPDrr, X86::MULPDrm },
534 { X86::MULPSrr, X86::MULPSrm },
535 { X86::MULSDrr, X86::MULSDrm },
536 { X86::MULSSrr, X86::MULSSrm },
537 { X86::OR16rr, X86::OR16rm },
538 { X86::OR32rr, X86::OR32rm },
539 { X86::OR64rr, X86::OR64rm },
540 { X86::OR8rr, X86::OR8rm },
541 { X86::ORPDrr, X86::ORPDrm },
542 { X86::ORPSrr, X86::ORPSrm },
543 { X86::PACKSSDWrr, X86::PACKSSDWrm },
544 { X86::PACKSSWBrr, X86::PACKSSWBrm },
545 { X86::PACKUSWBrr, X86::PACKUSWBrm },
546 { X86::PADDBrr, X86::PADDBrm },
547 { X86::PADDDrr, X86::PADDDrm },
548 { X86::PADDQrr, X86::PADDQrm },
549 { X86::PADDSBrr, X86::PADDSBrm },
550 { X86::PADDSWrr, X86::PADDSWrm },
551 { X86::PADDWrr, X86::PADDWrm },
552 { X86::PANDNrr, X86::PANDNrm },
553 { X86::PANDrr, X86::PANDrm },
554 { X86::PAVGBrr, X86::PAVGBrm },
555 { X86::PAVGWrr, X86::PAVGWrm },
556 { X86::PCMPEQBrr, X86::PCMPEQBrm },
557 { X86::PCMPEQDrr, X86::PCMPEQDrm },
558 { X86::PCMPEQWrr, X86::PCMPEQWrm },
559 { X86::PCMPGTBrr, X86::PCMPGTBrm },
560 { X86::PCMPGTDrr, X86::PCMPGTDrm },
561 { X86::PCMPGTWrr, X86::PCMPGTWrm },
562 { X86::PINSRWrri, X86::PINSRWrmi },
563 { X86::PMADDWDrr, X86::PMADDWDrm },
564 { X86::PMAXSWrr, X86::PMAXSWrm },
565 { X86::PMAXUBrr, X86::PMAXUBrm },
566 { X86::PMINSWrr, X86::PMINSWrm },
567 { X86::PMINUBrr, X86::PMINUBrm },
568 { X86::PMULHUWrr, X86::PMULHUWrm },
569 { X86::PMULHWrr, X86::PMULHWrm },
570 { X86::PMULLWrr, X86::PMULLWrm },
571 { X86::PMULUDQrr, X86::PMULUDQrm },
572 { X86::PORrr, X86::PORrm },
573 { X86::PSADBWrr, X86::PSADBWrm },
574 { X86::PSLLDrr, X86::PSLLDrm },
575 { X86::PSLLQrr, X86::PSLLQrm },
576 { X86::PSLLWrr, X86::PSLLWrm },
577 { X86::PSRADrr, X86::PSRADrm },
578 { X86::PSRAWrr, X86::PSRAWrm },
579 { X86::PSRLDrr, X86::PSRLDrm },
580 { X86::PSRLQrr, X86::PSRLQrm },
581 { X86::PSRLWrr, X86::PSRLWrm },
582 { X86::PSUBBrr, X86::PSUBBrm },
583 { X86::PSUBDrr, X86::PSUBDrm },
584 { X86::PSUBSBrr, X86::PSUBSBrm },
585 { X86::PSUBSWrr, X86::PSUBSWrm },
586 { X86::PSUBWrr, X86::PSUBWrm },
587 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
588 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
589 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
590 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
591 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
592 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
593 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
594 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
595 { X86::PXORrr, X86::PXORrm },
596 { X86::SBB32rr, X86::SBB32rm },
597 { X86::SBB64rr, X86::SBB64rm },
598 { X86::SHUFPDrri, X86::SHUFPDrmi },
599 { X86::SHUFPSrri, X86::SHUFPSrmi },
600 { X86::SUB16rr, X86::SUB16rm },
601 { X86::SUB32rr, X86::SUB32rm },
602 { X86::SUB64rr, X86::SUB64rm },
603 { X86::SUB8rr, X86::SUB8rm },
604 { X86::SUBPDrr, X86::SUBPDrm },
605 { X86::SUBPSrr, X86::SUBPSrm },
606 { X86::SUBSDrr, X86::SUBSDrm },
607 { X86::SUBSSrr, X86::SUBSSrm },
608 // FIXME: TEST*rr -> swapped operand of TEST*mr.
609 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
610 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
611 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
612 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
613 { X86::XOR16rr, X86::XOR16rm },
614 { X86::XOR32rr, X86::XOR32rm },
615 { X86::XOR64rr, X86::XOR64rm },
616 { X86::XOR8rr, X86::XOR8rm },
617 { X86::XORPDrr, X86::XORPDrm },
618 { X86::XORPSrr, X86::XORPSrm }
619 };
620
621 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
622 unsigned RegOp = OpTbl2[i][0];
623 unsigned MemOp = OpTbl2[i][1];
624 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
625 assert(false && "Duplicated entries?");
626 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
627 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
628 std::make_pair(RegOp, AuxInfo))))
629 AmbEntries.push_back(MemOp);
630 }
631
632 // Remove ambiguous entries.
633 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000634}
635
636bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
637 unsigned& sourceReg,
638 unsigned& destReg) const {
Chris Lattner99aa3372008-01-07 02:48:55 +0000639 unsigned oc = MI.getOpcode();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000640 if (oc == X86::MOV8rr || oc == X86::MOV16rr ||
641 oc == X86::MOV32rr || oc == X86::MOV64rr ||
642 oc == X86::MOV16to16_ || oc == X86::MOV32to32_ ||
643 oc == X86::MOV_Fp3232 || oc == X86::MOVSSrr || oc == X86::MOVSDrr ||
644 oc == X86::MOV_Fp3264 || oc == X86::MOV_Fp6432 || oc == X86::MOV_Fp6464 ||
645 oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr ||
646 oc == X86::MOVAPSrr || oc == X86::MOVAPDrr ||
647 oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr ||
648 oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr ||
649 oc == X86::MMX_MOVD64rr || oc == X86::MMX_MOVQ64rr) {
650 assert(MI.getNumOperands() >= 2 &&
651 MI.getOperand(0).isRegister() &&
652 MI.getOperand(1).isRegister() &&
653 "invalid register-register move instruction");
654 sourceReg = MI.getOperand(1).getReg();
655 destReg = MI.getOperand(0).getReg();
656 return true;
657 }
658 return false;
659}
660
661unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
662 int &FrameIndex) const {
663 switch (MI->getOpcode()) {
664 default: break;
665 case X86::MOV8rm:
666 case X86::MOV16rm:
667 case X86::MOV16_rm:
668 case X86::MOV32rm:
669 case X86::MOV32_rm:
670 case X86::MOV64rm:
671 case X86::LD_Fp64m:
672 case X86::MOVSSrm:
673 case X86::MOVSDrm:
674 case X86::MOVAPSrm:
675 case X86::MOVAPDrm:
676 case X86::MMX_MOVD64rm:
677 case X86::MMX_MOVQ64rm:
Chris Lattner6017d482007-12-30 23:10:15 +0000678 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
679 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000680 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000682 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000683 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000684 return MI->getOperand(0).getReg();
685 }
686 break;
687 }
688 return 0;
689}
690
691unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
692 int &FrameIndex) const {
693 switch (MI->getOpcode()) {
694 default: break;
695 case X86::MOV8mr:
696 case X86::MOV16mr:
697 case X86::MOV16_mr:
698 case X86::MOV32mr:
699 case X86::MOV32_mr:
700 case X86::MOV64mr:
701 case X86::ST_FpP64m:
702 case X86::MOVSSmr:
703 case X86::MOVSDmr:
704 case X86::MOVAPSmr:
705 case X86::MOVAPDmr:
706 case X86::MMX_MOVD64mr:
707 case X86::MMX_MOVQ64mr:
708 case X86::MMX_MOVNTQmr:
Chris Lattner6017d482007-12-30 23:10:15 +0000709 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
710 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000711 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000713 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000714 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715 return MI->getOperand(4).getReg();
716 }
717 break;
718 }
719 return 0;
720}
721
722
Bill Wendling0fe34c22007-12-08 23:58:46 +0000723bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 switch (MI->getOpcode()) {
725 default: break;
726 case X86::MOV8rm:
727 case X86::MOV16rm:
728 case X86::MOV16_rm:
729 case X86::MOV32rm:
730 case X86::MOV32_rm:
731 case X86::MOV64rm:
732 case X86::LD_Fp64m:
733 case X86::MOVSSrm:
734 case X86::MOVSDrm:
735 case X86::MOVAPSrm:
736 case X86::MOVAPDrm:
737 case X86::MMX_MOVD64rm:
738 case X86::MMX_MOVQ64rm:
739 // Loads from constant pools are trivially rematerializable.
Chris Lattner00e46fa2008-01-05 05:28:30 +0000740 if (MI->getOperand(1).isReg() && MI->getOperand(2).isImm() &&
741 MI->getOperand(3).isReg() && MI->getOperand(4).isCPI() &&
Chris Lattner00e46fa2008-01-05 05:28:30 +0000742 MI->getOperand(2).getImm() == 1 &&
Evan Cheng60490e62008-02-22 09:25:47 +0000743 MI->getOperand(3).getReg() == 0) {
744 unsigned BaseReg = MI->getOperand(1).getReg();
745 if (BaseReg == 0)
746 return true;
747 if (!ReMatPICLoad)
748 return false;
749 // Allow re-materialization of PIC load.
750 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
751 bool isPICBase = false;
752 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
753 E = MRI.def_end(); I != E; ++I) {
754 MachineInstr *DefMI = I.getOperand().getParent();
755 if (DefMI->getOpcode() != X86::MOVPC32r)
756 return false;
757 assert(!isPICBase && "More than one PIC base?");
758 isPICBase = true;
759 }
760 return isPICBase;
761 }
Chris Lattner5c6ee7a2008-01-05 06:10:42 +0000762
Chris Lattner00e46fa2008-01-05 05:28:30 +0000763 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764 }
765 // All other instructions marked M_REMATERIALIZABLE are always trivially
766 // rematerializable.
767 return true;
768}
769
Chris Lattnerea3a1812008-01-10 23:08:24 +0000770/// isInvariantLoad - Return true if the specified instruction (which is marked
771/// mayLoad) is loading from a location whose value is invariant across the
772/// function. For example, loading a value from the constant pool or from
773/// from the argument area of a function if it does not change. This should
774/// only return true of *all* loads the instruction does are invariant (if it
775/// does multiple loads).
776bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000777 // This code cares about loads from three cases: constant pool entries,
778 // invariant argument slots, and global stubs. In order to handle these cases
779 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000780 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000781 // none of these three cases is ever used as anything other than a load base
782 // and X86 doesn't have any instructions that load from multiple places.
783
784 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
785 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000786 // Loads from constant pools are trivially invariant.
Chris Lattner0875b572008-01-12 00:35:08 +0000787 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000788 return true;
Chris Lattner0875b572008-01-12 00:35:08 +0000789
790 if (MO.isGlobal()) {
791 if (TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(MO.getGlobal(),
792 TM, false))
793 return true;
794 return false;
795 }
796
797 // If this is a load from an invariant stack slot, the load is a constant.
798 if (MO.isFI()) {
799 const MachineFrameInfo &MFI =
800 *MI->getParent()->getParent()->getFrameInfo();
801 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000802 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
803 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000804 }
Chris Lattner0875b572008-01-12 00:35:08 +0000805
Chris Lattnerea3a1812008-01-10 23:08:24 +0000806 // All other instances of these instructions are presumed to have other
807 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000808 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000809}
810
Evan Chengfa1a4952007-10-05 08:04:01 +0000811/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
812/// is not marked dead.
813static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000814 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
815 MachineOperand &MO = MI->getOperand(i);
816 if (MO.isRegister() && MO.isDef() &&
817 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
818 return true;
819 }
820 }
821 return false;
822}
823
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000824/// convertToThreeAddress - This method must be implemented by targets that
825/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
826/// may be able to convert a two-address instruction into a true
827/// three-address instruction on demand. This allows the X86 target (for
828/// example) to convert ADD and SHL instructions into LEA instructions if they
829/// would require register copies due to two-addressness.
830///
831/// This method returns a null pointer if the transformation cannot be
832/// performed, otherwise it returns the new instruction.
833///
834MachineInstr *
835X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
836 MachineBasicBlock::iterator &MBBI,
837 LiveVariables &LV) const {
838 MachineInstr *MI = MBBI;
839 // All instructions input are two-addr instructions. Get the known operands.
840 unsigned Dest = MI->getOperand(0).getReg();
841 unsigned Src = MI->getOperand(1).getReg();
842
843 MachineInstr *NewMI = NULL;
844 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
845 // we have better subtarget support, enable the 16-bit LEA generation here.
846 bool DisableLEA16 = true;
847
Evan Cheng6b96ed32007-10-05 20:34:26 +0000848 unsigned MIOpc = MI->getOpcode();
849 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000850 case X86::SHUFPSrri: {
851 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
852 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
853
854 unsigned A = MI->getOperand(0).getReg();
855 unsigned B = MI->getOperand(1).getReg();
856 unsigned C = MI->getOperand(2).getReg();
857 unsigned M = MI->getOperand(3).getImm();
858 if (B != C) return 0;
859 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
860 break;
861 }
862 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +0000863 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000864 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
865 // the flags produced by a shift yet, so this is safe.
866 unsigned Dest = MI->getOperand(0).getReg();
867 unsigned Src = MI->getOperand(1).getReg();
868 unsigned ShAmt = MI->getOperand(2).getImm();
869 if (ShAmt == 0 || ShAmt >= 4) return 0;
870
871 NewMI = BuildMI(get(X86::LEA64r), Dest)
872 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
873 break;
874 }
875 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +0000876 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000877 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
878 // the flags produced by a shift yet, so this is safe.
879 unsigned Dest = MI->getOperand(0).getReg();
880 unsigned Src = MI->getOperand(1).getReg();
881 unsigned ShAmt = MI->getOperand(2).getImm();
882 if (ShAmt == 0 || ShAmt >= 4) return 0;
883
884 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
885 X86::LEA64_32r : X86::LEA32r;
886 NewMI = BuildMI(get(Opc), Dest)
887 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
888 break;
889 }
890 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +0000891 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +0000892 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
893 // the flags produced by a shift yet, so this is safe.
894 unsigned Dest = MI->getOperand(0).getReg();
895 unsigned Src = MI->getOperand(1).getReg();
896 unsigned ShAmt = MI->getOperand(2).getImm();
897 if (ShAmt == 0 || ShAmt >= 4) return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000898
Christopher Lamb380c6272007-08-10 21:18:25 +0000899 if (DisableLEA16) {
900 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +0000901 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +0000902 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
903 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +0000904 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
905 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Christopher Lamb380c6272007-08-10 21:18:25 +0000906
Evan Cheng0b1e8712007-09-06 00:14:41 +0000907 MachineInstr *Ins =
908 BuildMI(get(X86::INSERT_SUBREG), leaInReg).addReg(Src).addImm(2);
Christopher Lamb380c6272007-08-10 21:18:25 +0000909 Ins->copyKillDeadInfo(MI);
910
911 NewMI = BuildMI(get(Opc), leaOutReg)
912 .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
913
Evan Cheng0b1e8712007-09-06 00:14:41 +0000914 MachineInstr *Ext =
915 BuildMI(get(X86::EXTRACT_SUBREG), Dest).addReg(leaOutReg).addImm(2);
Christopher Lamb380c6272007-08-10 21:18:25 +0000916 Ext->copyKillDeadInfo(MI);
917
918 MFI->insert(MBBI, Ins); // Insert the insert_subreg
919 LV.instructionChanged(MI, NewMI); // Update live variables
920 LV.addVirtualRegisterKilled(leaInReg, NewMI);
921 MFI->insert(MBBI, NewMI); // Insert the new inst
922 LV.addVirtualRegisterKilled(leaOutReg, Ext);
Evan Cheng0b1e8712007-09-06 00:14:41 +0000923 MFI->insert(MBBI, Ext); // Insert the extract_subreg
Christopher Lamb380c6272007-08-10 21:18:25 +0000924 return Ext;
925 } else {
926 NewMI = BuildMI(get(X86::LEA16r), Dest)
927 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
928 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000929 break;
930 }
Evan Cheng6b96ed32007-10-05 20:34:26 +0000931 default: {
932 // The following opcodes also sets the condition code register(s). Only
933 // convert them to equivalent lea if the condition code register def's
934 // are dead!
935 if (hasLiveCondCodeDef(MI))
936 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000937
Evan Chenga28a9562007-10-09 07:14:53 +0000938 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +0000939 switch (MIOpc) {
940 default: return 0;
941 case X86::INC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +0000942 case X86::INC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +0000943 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +0000944 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
945 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng6b96ed32007-10-05 20:34:26 +0000946 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
947 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000948 }
Evan Cheng6b96ed32007-10-05 20:34:26 +0000949 case X86::INC16r:
950 case X86::INC64_16r:
951 if (DisableLEA16) return 0;
952 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
953 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
954 break;
955 case X86::DEC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +0000956 case X86::DEC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +0000957 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +0000958 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
959 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng6b96ed32007-10-05 20:34:26 +0000960 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
961 break;
962 }
963 case X86::DEC16r:
964 case X86::DEC64_16r:
965 if (DisableLEA16) return 0;
966 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
967 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
968 break;
969 case X86::ADD64rr:
970 case X86::ADD32rr: {
971 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +0000972 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
973 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng6b96ed32007-10-05 20:34:26 +0000974 NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
975 MI->getOperand(2).getReg());
976 break;
977 }
978 case X86::ADD16rr:
979 if (DisableLEA16) return 0;
980 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
981 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
982 MI->getOperand(2).getReg());
983 break;
984 case X86::ADD64ri32:
985 case X86::ADD64ri8:
986 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
987 if (MI->getOperand(2).isImmediate())
988 NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
Chris Lattnera96056a2007-12-30 20:49:49 +0000989 MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +0000990 break;
991 case X86::ADD32ri:
992 case X86::ADD32ri8:
993 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +0000994 if (MI->getOperand(2).isImmediate()) {
995 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
996 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
Chris Lattnera96056a2007-12-30 20:49:49 +0000997 MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +0000998 }
Evan Cheng6b96ed32007-10-05 20:34:26 +0000999 break;
1000 case X86::ADD16ri:
1001 case X86::ADD16ri8:
1002 if (DisableLEA16) return 0;
1003 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1004 if (MI->getOperand(2).isImmediate())
1005 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
Chris Lattnera96056a2007-12-30 20:49:49 +00001006 MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001007 break;
1008 case X86::SHL16ri:
1009 if (DisableLEA16) return 0;
1010 case X86::SHL32ri:
1011 case X86::SHL64ri: {
1012 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1013 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001014 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001015 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1016 X86AddressMode AM;
1017 AM.Scale = 1 << ShAmt;
1018 AM.IndexReg = Src;
1019 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001020 : (MIOpc == X86::SHL32ri
1021 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001022 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
1023 }
1024 break;
1025 }
1026 }
1027 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028 }
1029
Evan Chengc3cb24d2008-02-07 08:29:53 +00001030 if (!NewMI) return 0;
1031
Evan Cheng6b96ed32007-10-05 20:34:26 +00001032 NewMI->copyKillDeadInfo(MI);
1033 LV.instructionChanged(MI, NewMI); // Update live variables
1034 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 return NewMI;
1036}
1037
1038/// commuteInstruction - We have a few instructions that must be hacked on to
1039/// commute them.
1040///
1041MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001042 switch (MI->getOpcode()) {
1043 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1044 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1045 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001046 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1047 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1048 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001049 unsigned Opc;
1050 unsigned Size;
1051 switch (MI->getOpcode()) {
1052 default: assert(0 && "Unreachable!");
1053 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1054 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1055 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1056 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001057 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1058 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001059 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001060 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001061 unsigned A = MI->getOperand(0).getReg();
1062 unsigned B = MI->getOperand(1).getReg();
1063 unsigned C = MI->getOperand(2).getReg();
1064 bool BisKill = MI->getOperand(1).isKill();
1065 bool CisKill = MI->getOperand(2).isKill();
Evan Chengb554e532008-02-13 02:46:49 +00001066 // If machine instrs are no longer in two-address forms, update
1067 // destination register as well.
1068 if (A == B) {
1069 // Must be two address instruction!
1070 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1071 "Expecting a two-address instruction!");
1072 A = C;
1073 CisKill = false;
1074 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001075 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
1076 .addReg(B, false, false, BisKill).addImm(Size-Amt);
1077 }
Evan Cheng926658c2007-10-05 23:13:21 +00001078 case X86::CMOVB16rr:
1079 case X86::CMOVB32rr:
1080 case X86::CMOVB64rr:
1081 case X86::CMOVAE16rr:
1082 case X86::CMOVAE32rr:
1083 case X86::CMOVAE64rr:
1084 case X86::CMOVE16rr:
1085 case X86::CMOVE32rr:
1086 case X86::CMOVE64rr:
1087 case X86::CMOVNE16rr:
1088 case X86::CMOVNE32rr:
1089 case X86::CMOVNE64rr:
1090 case X86::CMOVBE16rr:
1091 case X86::CMOVBE32rr:
1092 case X86::CMOVBE64rr:
1093 case X86::CMOVA16rr:
1094 case X86::CMOVA32rr:
1095 case X86::CMOVA64rr:
1096 case X86::CMOVL16rr:
1097 case X86::CMOVL32rr:
1098 case X86::CMOVL64rr:
1099 case X86::CMOVGE16rr:
1100 case X86::CMOVGE32rr:
1101 case X86::CMOVGE64rr:
1102 case X86::CMOVLE16rr:
1103 case X86::CMOVLE32rr:
1104 case X86::CMOVLE64rr:
1105 case X86::CMOVG16rr:
1106 case X86::CMOVG32rr:
1107 case X86::CMOVG64rr:
1108 case X86::CMOVS16rr:
1109 case X86::CMOVS32rr:
1110 case X86::CMOVS64rr:
1111 case X86::CMOVNS16rr:
1112 case X86::CMOVNS32rr:
1113 case X86::CMOVNS64rr:
1114 case X86::CMOVP16rr:
1115 case X86::CMOVP32rr:
1116 case X86::CMOVP64rr:
1117 case X86::CMOVNP16rr:
1118 case X86::CMOVNP32rr:
1119 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001120 unsigned Opc = 0;
1121 switch (MI->getOpcode()) {
1122 default: break;
1123 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1124 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1125 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1126 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1127 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1128 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1129 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1130 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1131 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1132 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1133 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1134 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1135 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1136 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1137 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1138 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1139 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1140 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1141 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1142 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1143 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1144 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1145 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1146 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1147 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1148 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1149 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1150 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1151 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1152 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1153 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1154 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1155 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1156 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1157 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1158 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1159 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1160 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1161 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1162 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1163 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1164 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1165 }
1166
Chris Lattner86bb02f2008-01-11 18:10:50 +00001167 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001168 // Fallthrough intended.
1169 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001170 default:
Chris Lattner6ca3a8e2008-01-01 01:05:34 +00001171 return TargetInstrInfoImpl::commuteInstruction(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001172 }
1173}
1174
1175static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1176 switch (BrOpc) {
1177 default: return X86::COND_INVALID;
1178 case X86::JE: return X86::COND_E;
1179 case X86::JNE: return X86::COND_NE;
1180 case X86::JL: return X86::COND_L;
1181 case X86::JLE: return X86::COND_LE;
1182 case X86::JG: return X86::COND_G;
1183 case X86::JGE: return X86::COND_GE;
1184 case X86::JB: return X86::COND_B;
1185 case X86::JBE: return X86::COND_BE;
1186 case X86::JA: return X86::COND_A;
1187 case X86::JAE: return X86::COND_AE;
1188 case X86::JS: return X86::COND_S;
1189 case X86::JNS: return X86::COND_NS;
1190 case X86::JP: return X86::COND_P;
1191 case X86::JNP: return X86::COND_NP;
1192 case X86::JO: return X86::COND_O;
1193 case X86::JNO: return X86::COND_NO;
1194 }
1195}
1196
1197unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1198 switch (CC) {
1199 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001200 case X86::COND_E: return X86::JE;
1201 case X86::COND_NE: return X86::JNE;
1202 case X86::COND_L: return X86::JL;
1203 case X86::COND_LE: return X86::JLE;
1204 case X86::COND_G: return X86::JG;
1205 case X86::COND_GE: return X86::JGE;
1206 case X86::COND_B: return X86::JB;
1207 case X86::COND_BE: return X86::JBE;
1208 case X86::COND_A: return X86::JA;
1209 case X86::COND_AE: return X86::JAE;
1210 case X86::COND_S: return X86::JS;
1211 case X86::COND_NS: return X86::JNS;
1212 case X86::COND_P: return X86::JP;
1213 case X86::COND_NP: return X86::JNP;
1214 case X86::COND_O: return X86::JO;
1215 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001216 }
1217}
1218
1219/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1220/// e.g. turning COND_E to COND_NE.
1221X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1222 switch (CC) {
1223 default: assert(0 && "Illegal condition code!");
1224 case X86::COND_E: return X86::COND_NE;
1225 case X86::COND_NE: return X86::COND_E;
1226 case X86::COND_L: return X86::COND_GE;
1227 case X86::COND_LE: return X86::COND_G;
1228 case X86::COND_G: return X86::COND_LE;
1229 case X86::COND_GE: return X86::COND_L;
1230 case X86::COND_B: return X86::COND_AE;
1231 case X86::COND_BE: return X86::COND_A;
1232 case X86::COND_A: return X86::COND_BE;
1233 case X86::COND_AE: return X86::COND_B;
1234 case X86::COND_S: return X86::COND_NS;
1235 case X86::COND_NS: return X86::COND_S;
1236 case X86::COND_P: return X86::COND_NP;
1237 case X86::COND_NP: return X86::COND_P;
1238 case X86::COND_O: return X86::COND_NO;
1239 case X86::COND_NO: return X86::COND_O;
1240 }
1241}
1242
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001243bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001244 const TargetInstrDesc &TID = MI->getDesc();
1245 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001246
1247 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001248 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001249 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001250 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001251 return true;
1252 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001253}
1254
Evan Cheng12515792007-07-26 17:32:14 +00001255// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1256static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1257 const X86InstrInfo &TII) {
1258 if (MI->getOpcode() == X86::FP_REG_KILL)
1259 return false;
1260 return TII.isUnpredicatedTerminator(MI);
1261}
1262
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001263bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1264 MachineBasicBlock *&TBB,
1265 MachineBasicBlock *&FBB,
1266 std::vector<MachineOperand> &Cond) const {
1267 // If the block has no terminators, it just falls into the block after it.
1268 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng12515792007-07-26 17:32:14 +00001269 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001270 return false;
1271
1272 // Get the last instruction in the block.
1273 MachineInstr *LastInst = I;
1274
1275 // If there is only one terminator instruction, process it.
Evan Cheng12515792007-07-26 17:32:14 +00001276 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner5b930372008-01-07 07:27:27 +00001277 if (!LastInst->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001278 return true;
1279
1280 // If the block ends with a branch there are 3 possibilities:
1281 // it's an unconditional, conditional, or indirect branch.
1282
1283 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001284 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001285 return false;
1286 }
1287 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1288 if (BranchCode == X86::COND_INVALID)
1289 return true; // Can't handle indirect branch.
1290
1291 // Otherwise, block ends with fall-through condbranch.
Chris Lattner6017d482007-12-30 23:10:15 +00001292 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001293 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1294 return false;
1295 }
1296
1297 // Get the instruction before it if it's a terminator.
1298 MachineInstr *SecondLastInst = I;
1299
1300 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng12515792007-07-26 17:32:14 +00001301 if (SecondLastInst && I != MBB.begin() &&
1302 isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001303 return true;
1304
1305 // If the block ends with X86::JMP and a conditional branch, handle it.
1306 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1307 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001308 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001309 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner6017d482007-12-30 23:10:15 +00001310 FBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001311 return false;
1312 }
1313
1314 // If the block ends with two X86::JMPs, handle it. The second one is not
1315 // executed, so remove it.
1316 if (SecondLastInst->getOpcode() == X86::JMP &&
1317 LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001318 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001319 I = LastInst;
1320 I->eraseFromParent();
1321 return false;
1322 }
1323
1324 // Otherwise, can't handle this.
1325 return true;
1326}
1327
1328unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1329 MachineBasicBlock::iterator I = MBB.end();
1330 if (I == MBB.begin()) return 0;
1331 --I;
1332 if (I->getOpcode() != X86::JMP &&
1333 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1334 return 0;
1335
1336 // Remove the branch.
1337 I->eraseFromParent();
1338
1339 I = MBB.end();
1340
1341 if (I == MBB.begin()) return 1;
1342 --I;
1343 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1344 return 1;
1345
1346 // Remove the branch.
1347 I->eraseFromParent();
1348 return 2;
1349}
1350
Owen Anderson81875432008-01-01 21:11:32 +00001351static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1352 MachineOperand &MO) {
1353 if (MO.isRegister())
1354 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1355 false, false, MO.getSubReg());
1356 else if (MO.isImmediate())
1357 MIB = MIB.addImm(MO.getImm());
1358 else if (MO.isFrameIndex())
1359 MIB = MIB.addFrameIndex(MO.getIndex());
1360 else if (MO.isGlobalAddress())
1361 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1362 else if (MO.isConstantPoolIndex())
1363 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1364 else if (MO.isJumpTableIndex())
1365 MIB = MIB.addJumpTableIndex(MO.getIndex());
1366 else if (MO.isExternalSymbol())
1367 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1368 else
1369 assert(0 && "Unknown operand for X86InstrAddOperand!");
1370
1371 return MIB;
1372}
1373
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001374unsigned
1375X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1376 MachineBasicBlock *FBB,
1377 const std::vector<MachineOperand> &Cond) const {
1378 // Shouldn't be a fall through.
1379 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1380 assert((Cond.size() == 1 || Cond.size() == 0) &&
1381 "X86 branch conditions have one component!");
1382
1383 if (FBB == 0) { // One way branch.
1384 if (Cond.empty()) {
1385 // Unconditional branch?
1386 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1387 } else {
1388 // Conditional branch.
1389 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1390 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1391 }
1392 return 1;
1393 }
1394
1395 // Two-way Conditional branch.
1396 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1397 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1398 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1399 return 2;
1400}
1401
Owen Anderson8f2c8932007-12-31 06:32:00 +00001402void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001403 MachineBasicBlock::iterator MI,
1404 unsigned DestReg, unsigned SrcReg,
1405 const TargetRegisterClass *DestRC,
1406 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001407 if (DestRC == SrcRC) {
1408 unsigned Opc;
1409 if (DestRC == &X86::GR64RegClass) {
1410 Opc = X86::MOV64rr;
1411 } else if (DestRC == &X86::GR32RegClass) {
1412 Opc = X86::MOV32rr;
1413 } else if (DestRC == &X86::GR16RegClass) {
1414 Opc = X86::MOV16rr;
1415 } else if (DestRC == &X86::GR8RegClass) {
1416 Opc = X86::MOV8rr;
1417 } else if (DestRC == &X86::GR32_RegClass) {
1418 Opc = X86::MOV32_rr;
1419 } else if (DestRC == &X86::GR16_RegClass) {
1420 Opc = X86::MOV16_rr;
1421 } else if (DestRC == &X86::RFP32RegClass) {
1422 Opc = X86::MOV_Fp3232;
1423 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1424 Opc = X86::MOV_Fp6464;
1425 } else if (DestRC == &X86::RFP80RegClass) {
1426 Opc = X86::MOV_Fp8080;
1427 } else if (DestRC == &X86::FR32RegClass) {
1428 Opc = X86::FsMOVAPSrr;
1429 } else if (DestRC == &X86::FR64RegClass) {
1430 Opc = X86::FsMOVAPDrr;
1431 } else if (DestRC == &X86::VR128RegClass) {
1432 Opc = X86::MOVAPSrr;
1433 } else if (DestRC == &X86::VR64RegClass) {
1434 Opc = X86::MMX_MOVQ64rr;
1435 } else {
1436 assert(0 && "Unknown regclass");
1437 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001438 }
Chris Lattner59707122008-03-09 07:58:04 +00001439 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1440 return;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001441 }
Chris Lattner59707122008-03-09 07:58:04 +00001442
1443 // Moving EFLAGS to / from another register requires a push and a pop.
1444 if (SrcRC == &X86::CCRRegClass) {
1445 assert(SrcReg == X86::EFLAGS);
1446 if (DestRC == &X86::GR64RegClass) {
1447 BuildMI(MBB, MI, get(X86::PUSHFQ));
1448 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1449 return;
1450 } else if (DestRC == &X86::GR32RegClass) {
1451 BuildMI(MBB, MI, get(X86::PUSHFD));
1452 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1453 return;
1454 }
1455 } else if (DestRC == &X86::CCRRegClass) {
1456 assert(DestReg == X86::EFLAGS);
1457 if (SrcRC == &X86::GR64RegClass) {
1458 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1459 BuildMI(MBB, MI, get(X86::POPFQ));
1460 return;
1461 } else if (SrcRC == &X86::GR32RegClass) {
1462 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1463 BuildMI(MBB, MI, get(X86::POPFD));
1464 return;
1465 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001466 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001467
1468 // Moving ST(0) to/from a register turns into FpGET_ST0_32 etc.
1469 if (SrcRC == &X86::RSTRegClass) {
1470 // Copying from ST(0). FIXME: handle ST(1) also
1471 assert(SrcReg == X86::ST0 && "Can only copy from TOS right now");
1472 unsigned Opc;
1473 if (DestRC == &X86::RFP32RegClass)
1474 Opc = X86::FpGET_ST0_32;
1475 else if (DestRC == &X86::RFP64RegClass)
1476 Opc = X86::FpGET_ST0_64;
1477 else {
1478 assert(DestRC == &X86::RFP80RegClass);
1479 Opc = X86::FpGET_ST0_80;
1480 }
1481 BuildMI(MBB, MI, get(Opc), DestReg);
1482 return;
1483 }
1484
Chris Lattner59707122008-03-09 07:58:04 +00001485 cerr << "Not yet supported!";
1486 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001487}
1488
Owen Anderson81875432008-01-01 21:11:32 +00001489static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1490 unsigned StackAlign) {
1491 unsigned Opc = 0;
1492 if (RC == &X86::GR64RegClass) {
1493 Opc = X86::MOV64mr;
1494 } else if (RC == &X86::GR32RegClass) {
1495 Opc = X86::MOV32mr;
1496 } else if (RC == &X86::GR16RegClass) {
1497 Opc = X86::MOV16mr;
1498 } else if (RC == &X86::GR8RegClass) {
1499 Opc = X86::MOV8mr;
1500 } else if (RC == &X86::GR32_RegClass) {
1501 Opc = X86::MOV32_mr;
1502 } else if (RC == &X86::GR16_RegClass) {
1503 Opc = X86::MOV16_mr;
1504 } else if (RC == &X86::RFP80RegClass) {
1505 Opc = X86::ST_FpP80m; // pops
1506 } else if (RC == &X86::RFP64RegClass) {
1507 Opc = X86::ST_Fp64m;
1508 } else if (RC == &X86::RFP32RegClass) {
1509 Opc = X86::ST_Fp32m;
1510 } else if (RC == &X86::FR32RegClass) {
1511 Opc = X86::MOVSSmr;
1512 } else if (RC == &X86::FR64RegClass) {
1513 Opc = X86::MOVSDmr;
1514 } else if (RC == &X86::VR128RegClass) {
1515 // FIXME: Use movaps once we are capable of selectively
1516 // aligning functions that spill SSE registers on 16-byte boundaries.
1517 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1518 } else if (RC == &X86::VR64RegClass) {
1519 Opc = X86::MMX_MOVQ64mr;
1520 } else {
1521 assert(0 && "Unknown regclass");
1522 abort();
1523 }
1524
1525 return Opc;
1526}
1527
1528void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1529 MachineBasicBlock::iterator MI,
1530 unsigned SrcReg, bool isKill, int FrameIdx,
1531 const TargetRegisterClass *RC) const {
1532 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1533 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1534 .addReg(SrcReg, false, false, isKill);
1535}
1536
1537void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1538 bool isKill,
1539 SmallVectorImpl<MachineOperand> &Addr,
1540 const TargetRegisterClass *RC,
1541 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1542 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1543 MachineInstrBuilder MIB = BuildMI(get(Opc));
1544 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1545 MIB = X86InstrAddOperand(MIB, Addr[i]);
1546 MIB.addReg(SrcReg, false, false, isKill);
1547 NewMIs.push_back(MIB);
1548}
1549
1550static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1551 unsigned StackAlign) {
1552 unsigned Opc = 0;
1553 if (RC == &X86::GR64RegClass) {
1554 Opc = X86::MOV64rm;
1555 } else if (RC == &X86::GR32RegClass) {
1556 Opc = X86::MOV32rm;
1557 } else if (RC == &X86::GR16RegClass) {
1558 Opc = X86::MOV16rm;
1559 } else if (RC == &X86::GR8RegClass) {
1560 Opc = X86::MOV8rm;
1561 } else if (RC == &X86::GR32_RegClass) {
1562 Opc = X86::MOV32_rm;
1563 } else if (RC == &X86::GR16_RegClass) {
1564 Opc = X86::MOV16_rm;
1565 } else if (RC == &X86::RFP80RegClass) {
1566 Opc = X86::LD_Fp80m;
1567 } else if (RC == &X86::RFP64RegClass) {
1568 Opc = X86::LD_Fp64m;
1569 } else if (RC == &X86::RFP32RegClass) {
1570 Opc = X86::LD_Fp32m;
1571 } else if (RC == &X86::FR32RegClass) {
1572 Opc = X86::MOVSSrm;
1573 } else if (RC == &X86::FR64RegClass) {
1574 Opc = X86::MOVSDrm;
1575 } else if (RC == &X86::VR128RegClass) {
1576 // FIXME: Use movaps once we are capable of selectively
1577 // aligning functions that spill SSE registers on 16-byte boundaries.
1578 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1579 } else if (RC == &X86::VR64RegClass) {
1580 Opc = X86::MMX_MOVQ64rm;
1581 } else {
1582 assert(0 && "Unknown regclass");
1583 abort();
1584 }
1585
1586 return Opc;
1587}
1588
1589void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1590 MachineBasicBlock::iterator MI,
1591 unsigned DestReg, int FrameIdx,
1592 const TargetRegisterClass *RC) const{
1593 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1594 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1595}
1596
1597void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1598 SmallVectorImpl<MachineOperand> &Addr,
1599 const TargetRegisterClass *RC,
1600 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1601 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1602 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1603 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1604 MIB = X86InstrAddOperand(MIB, Addr[i]);
1605 NewMIs.push_back(MIB);
1606}
1607
Owen Anderson6690c7f2008-01-04 23:57:37 +00001608bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1609 MachineBasicBlock::iterator MI,
1610 const std::vector<CalleeSavedInfo> &CSI) const {
1611 if (CSI.empty())
1612 return false;
1613
1614 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1615 unsigned SlotSize = is64Bit ? 8 : 4;
1616
1617 MachineFunction &MF = *MBB.getParent();
1618 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1619 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1620
1621 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1622 for (unsigned i = CSI.size(); i != 0; --i) {
1623 unsigned Reg = CSI[i-1].getReg();
1624 // Add the callee-saved register as live-in. It's killed at the spill.
1625 MBB.addLiveIn(Reg);
1626 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1627 }
1628 return true;
1629}
1630
1631bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1632 MachineBasicBlock::iterator MI,
1633 const std::vector<CalleeSavedInfo> &CSI) const {
1634 if (CSI.empty())
1635 return false;
1636
1637 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1638
1639 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1640 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1641 unsigned Reg = CSI[i].getReg();
1642 BuildMI(MBB, MI, get(Opc), Reg);
1643 }
1644 return true;
1645}
1646
Owen Anderson9a184ef2008-01-07 01:35:02 +00001647static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1648 SmallVector<MachineOperand,4> &MOs,
1649 MachineInstr *MI, const TargetInstrInfo &TII) {
1650 // Create the base instruction with the memory operand as the first part.
1651 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1652 MachineInstrBuilder MIB(NewMI);
1653 unsigned NumAddrOps = MOs.size();
1654 for (unsigned i = 0; i != NumAddrOps; ++i)
1655 MIB = X86InstrAddOperand(MIB, MOs[i]);
1656 if (NumAddrOps < 4) // FrameIndex only
1657 MIB.addImm(1).addReg(0).addImm(0);
1658
1659 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001660 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001661 for (unsigned i = 0; i != NumOps; ++i) {
1662 MachineOperand &MO = MI->getOperand(i+2);
1663 MIB = X86InstrAddOperand(MIB, MO);
1664 }
1665 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1666 MachineOperand &MO = MI->getOperand(i);
1667 MIB = X86InstrAddOperand(MIB, MO);
1668 }
1669 return MIB;
1670}
1671
1672static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1673 SmallVector<MachineOperand,4> &MOs,
1674 MachineInstr *MI, const TargetInstrInfo &TII) {
1675 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1676 MachineInstrBuilder MIB(NewMI);
1677
1678 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1679 MachineOperand &MO = MI->getOperand(i);
1680 if (i == OpNo) {
1681 assert(MO.isRegister() && "Expected to fold into reg operand!");
1682 unsigned NumAddrOps = MOs.size();
1683 for (unsigned i = 0; i != NumAddrOps; ++i)
1684 MIB = X86InstrAddOperand(MIB, MOs[i]);
1685 if (NumAddrOps < 4) // FrameIndex only
1686 MIB.addImm(1).addReg(0).addImm(0);
1687 } else {
1688 MIB = X86InstrAddOperand(MIB, MO);
1689 }
1690 }
1691 return MIB;
1692}
1693
1694static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1695 SmallVector<MachineOperand,4> &MOs,
1696 MachineInstr *MI) {
1697 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1698
1699 unsigned NumAddrOps = MOs.size();
1700 for (unsigned i = 0; i != NumAddrOps; ++i)
1701 MIB = X86InstrAddOperand(MIB, MOs[i]);
1702 if (NumAddrOps < 4) // FrameIndex only
1703 MIB.addImm(1).addReg(0).addImm(0);
1704 return MIB.addImm(0);
1705}
1706
1707MachineInstr*
1708X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001709 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001710 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1711 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001712 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001713 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001714 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001715
1716 MachineInstr *NewMI = NULL;
1717 // Folding a memory location into the two-address part of a two-address
1718 // instruction is different than folding it other places. It requires
1719 // replacing the *two* registers with the memory location.
1720 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1721 MI->getOperand(0).isRegister() &&
1722 MI->getOperand(1).isRegister() &&
1723 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1724 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1725 isTwoAddrFold = true;
1726 } else if (i == 0) { // If operand 0
1727 if (MI->getOpcode() == X86::MOV16r0)
1728 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1729 else if (MI->getOpcode() == X86::MOV32r0)
1730 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1731 else if (MI->getOpcode() == X86::MOV64r0)
1732 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1733 else if (MI->getOpcode() == X86::MOV8r0)
1734 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1735 if (NewMI) {
1736 NewMI->copyKillDeadInfo(MI);
1737 return NewMI;
1738 }
1739
1740 OpcodeTablePtr = &RegOp2MemOpTable0;
1741 } else if (i == 1) {
1742 OpcodeTablePtr = &RegOp2MemOpTable1;
1743 } else if (i == 2) {
1744 OpcodeTablePtr = &RegOp2MemOpTable2;
1745 }
1746
1747 // If table selected...
1748 if (OpcodeTablePtr) {
1749 // Find the Opcode to fuse
1750 DenseMap<unsigned*, unsigned>::iterator I =
1751 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1752 if (I != OpcodeTablePtr->end()) {
1753 if (isTwoAddrFold)
1754 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1755 else
1756 NewMI = FuseInst(I->second, i, MOs, MI, *this);
1757 NewMI->copyKillDeadInfo(MI);
1758 return NewMI;
1759 }
1760 }
1761
1762 // No fusion
1763 if (PrintFailedFusing)
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001764 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001765 return NULL;
1766}
1767
1768
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001769MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1770 MachineInstr *MI,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001771 SmallVectorImpl<unsigned> &Ops,
1772 int FrameIndex) const {
1773 // Check switch flag
1774 if (NoFusing) return NULL;
1775
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001776 const MachineFrameInfo *MFI = MF.getFrameInfo();
1777 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1778 // FIXME: Move alignment requirement into tables?
1779 if (Alignment < 16) {
1780 switch (MI->getOpcode()) {
1781 default: break;
1782 // Not always safe to fold movsd into these instructions since their load
1783 // folding variants expects the address to be 16 byte aligned.
1784 case X86::FsANDNPDrr:
1785 case X86::FsANDNPSrr:
1786 case X86::FsANDPDrr:
1787 case X86::FsANDPSrr:
1788 case X86::FsORPDrr:
1789 case X86::FsORPSrr:
1790 case X86::FsXORPDrr:
1791 case X86::FsXORPSrr:
1792 return NULL;
1793 }
1794 }
1795
Owen Anderson9a184ef2008-01-07 01:35:02 +00001796 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1797 unsigned NewOpc = 0;
1798 switch (MI->getOpcode()) {
1799 default: return NULL;
1800 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1801 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1802 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1803 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1804 }
1805 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00001806 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001807 MI->getOperand(1).ChangeToImmediate(0);
1808 } else if (Ops.size() != 1)
1809 return NULL;
1810
1811 SmallVector<MachineOperand,4> MOs;
1812 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
1813 return foldMemoryOperand(MI, Ops[0], MOs);
1814}
1815
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001816MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1817 MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001818 SmallVectorImpl<unsigned> &Ops,
1819 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001820 // Check switch flag
1821 if (NoFusing) return NULL;
1822
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001823 unsigned Alignment = 0;
1824 for (unsigned i = 0, e = LoadMI->getNumMemOperands(); i != e; ++i) {
1825 const MemOperand &MRO = LoadMI->getMemOperand(i);
1826 unsigned Align = MRO.getAlignment();
1827 if (Align > Alignment)
1828 Alignment = Align;
1829 }
1830
1831 // FIXME: Move alignment requirement into tables?
1832 if (Alignment < 16) {
1833 switch (MI->getOpcode()) {
1834 default: break;
1835 // Not always safe to fold movsd into these instructions since their load
1836 // folding variants expects the address to be 16 byte aligned.
1837 case X86::FsANDNPDrr:
1838 case X86::FsANDNPSrr:
1839 case X86::FsANDPDrr:
1840 case X86::FsANDPSrr:
1841 case X86::FsORPDrr:
1842 case X86::FsORPSrr:
1843 case X86::FsXORPDrr:
1844 case X86::FsXORPSrr:
1845 return NULL;
1846 }
1847 }
1848
Owen Anderson9a184ef2008-01-07 01:35:02 +00001849 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1850 unsigned NewOpc = 0;
1851 switch (MI->getOpcode()) {
1852 default: return NULL;
1853 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1854 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1855 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1856 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1857 }
1858 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00001859 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001860 MI->getOperand(1).ChangeToImmediate(0);
1861 } else if (Ops.size() != 1)
1862 return NULL;
1863
1864 SmallVector<MachineOperand,4> MOs;
Chris Lattner5b930372008-01-07 07:27:27 +00001865 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001866 for (unsigned i = NumOps - 4; i != NumOps; ++i)
1867 MOs.push_back(LoadMI->getOperand(i));
1868 return foldMemoryOperand(MI, Ops[0], MOs);
1869}
1870
1871
1872bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001873 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001874 // Check switch flag
1875 if (NoFusing) return 0;
1876
1877 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1878 switch (MI->getOpcode()) {
1879 default: return false;
1880 case X86::TEST8rr:
1881 case X86::TEST16rr:
1882 case X86::TEST32rr:
1883 case X86::TEST64rr:
1884 return true;
1885 }
1886 }
1887
1888 if (Ops.size() != 1)
1889 return false;
1890
1891 unsigned OpNum = Ops[0];
1892 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00001893 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001894 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001895 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001896
1897 // Folding a memory location into the two-address part of a two-address
1898 // instruction is different than folding it other places. It requires
1899 // replacing the *two* registers with the memory location.
1900 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1901 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
1902 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1903 } else if (OpNum == 0) { // If operand 0
1904 switch (Opc) {
1905 case X86::MOV16r0:
1906 case X86::MOV32r0:
1907 case X86::MOV64r0:
1908 case X86::MOV8r0:
1909 return true;
1910 default: break;
1911 }
1912 OpcodeTablePtr = &RegOp2MemOpTable0;
1913 } else if (OpNum == 1) {
1914 OpcodeTablePtr = &RegOp2MemOpTable1;
1915 } else if (OpNum == 2) {
1916 OpcodeTablePtr = &RegOp2MemOpTable2;
1917 }
1918
1919 if (OpcodeTablePtr) {
1920 // Find the Opcode to fuse
1921 DenseMap<unsigned*, unsigned>::iterator I =
1922 OpcodeTablePtr->find((unsigned*)Opc);
1923 if (I != OpcodeTablePtr->end())
1924 return true;
1925 }
1926 return false;
1927}
1928
1929bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
1930 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
1931 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1932 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1933 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
1934 if (I == MemOp2RegOpTable.end())
1935 return false;
1936 unsigned Opc = I->second.first;
1937 unsigned Index = I->second.second & 0xf;
1938 bool FoldedLoad = I->second.second & (1 << 4);
1939 bool FoldedStore = I->second.second & (1 << 5);
1940 if (UnfoldLoad && !FoldedLoad)
1941 return false;
1942 UnfoldLoad &= FoldedLoad;
1943 if (UnfoldStore && !FoldedStore)
1944 return false;
1945 UnfoldStore &= FoldedStore;
1946
Chris Lattner5b930372008-01-07 07:27:27 +00001947 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001948 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00001949 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00001950 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
1951 SmallVector<MachineOperand,4> AddrOps;
1952 SmallVector<MachineOperand,2> BeforeOps;
1953 SmallVector<MachineOperand,2> AfterOps;
1954 SmallVector<MachineOperand,4> ImpOps;
1955 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1956 MachineOperand &Op = MI->getOperand(i);
1957 if (i >= Index && i < Index+4)
1958 AddrOps.push_back(Op);
1959 else if (Op.isRegister() && Op.isImplicit())
1960 ImpOps.push_back(Op);
1961 else if (i < Index)
1962 BeforeOps.push_back(Op);
1963 else if (i > Index)
1964 AfterOps.push_back(Op);
1965 }
1966
1967 // Emit the load instruction.
1968 if (UnfoldLoad) {
1969 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
1970 if (UnfoldStore) {
1971 // Address operands cannot be marked isKill.
1972 for (unsigned i = 1; i != 5; ++i) {
1973 MachineOperand &MO = NewMIs[0]->getOperand(i);
1974 if (MO.isRegister())
1975 MO.setIsKill(false);
1976 }
1977 }
1978 }
1979
1980 // Emit the data processing instruction.
1981 MachineInstr *DataMI = new MachineInstr(TID, true);
1982 MachineInstrBuilder MIB(DataMI);
1983
1984 if (FoldedStore)
1985 MIB.addReg(Reg, true);
1986 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
1987 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
1988 if (FoldedLoad)
1989 MIB.addReg(Reg);
1990 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
1991 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
1992 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
1993 MachineOperand &MO = ImpOps[i];
1994 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
1995 }
1996 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
1997 unsigned NewOpc = 0;
1998 switch (DataMI->getOpcode()) {
1999 default: break;
2000 case X86::CMP64ri32:
2001 case X86::CMP32ri:
2002 case X86::CMP16ri:
2003 case X86::CMP8ri: {
2004 MachineOperand &MO0 = DataMI->getOperand(0);
2005 MachineOperand &MO1 = DataMI->getOperand(1);
2006 if (MO1.getImm() == 0) {
2007 switch (DataMI->getOpcode()) {
2008 default: break;
2009 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2010 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2011 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2012 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2013 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002014 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002015 MO1.ChangeToRegister(MO0.getReg(), false);
2016 }
2017 }
2018 }
2019 NewMIs.push_back(DataMI);
2020
2021 // Emit the store instruction.
2022 if (UnfoldStore) {
2023 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002024 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002025 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2026 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2027 }
2028
2029 return true;
2030}
2031
2032bool
2033X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2034 SmallVectorImpl<SDNode*> &NewNodes) const {
2035 if (!N->isTargetOpcode())
2036 return false;
2037
2038 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2039 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
2040 if (I == MemOp2RegOpTable.end())
2041 return false;
2042 unsigned Opc = I->second.first;
2043 unsigned Index = I->second.second & 0xf;
2044 bool FoldedLoad = I->second.second & (1 << 4);
2045 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002046 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002047 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002048 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002049 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2050 std::vector<SDOperand> AddrOps;
2051 std::vector<SDOperand> BeforeOps;
2052 std::vector<SDOperand> AfterOps;
2053 unsigned NumOps = N->getNumOperands();
2054 for (unsigned i = 0; i != NumOps-1; ++i) {
2055 SDOperand Op = N->getOperand(i);
2056 if (i >= Index && i < Index+4)
2057 AddrOps.push_back(Op);
2058 else if (i < Index)
2059 BeforeOps.push_back(Op);
2060 else if (i > Index)
2061 AfterOps.push_back(Op);
2062 }
2063 SDOperand Chain = N->getOperand(NumOps-1);
2064 AddrOps.push_back(Chain);
2065
2066 // Emit the load instruction.
2067 SDNode *Load = 0;
2068 if (FoldedLoad) {
2069 MVT::ValueType VT = *RC->vt_begin();
2070 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2071 MVT::Other, &AddrOps[0], AddrOps.size());
2072 NewNodes.push_back(Load);
2073 }
2074
2075 // Emit the data processing instruction.
2076 std::vector<MVT::ValueType> VTs;
2077 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002078 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002079 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002080 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002081 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2082 VTs.push_back(*DstRC->vt_begin());
2083 }
2084 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2085 MVT::ValueType VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002086 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002087 VTs.push_back(VT);
2088 }
2089 if (Load)
2090 BeforeOps.push_back(SDOperand(Load, 0));
2091 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2092 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2093 NewNodes.push_back(NewNode);
2094
2095 // Emit the store instruction.
2096 if (FoldedStore) {
2097 AddrOps.pop_back();
2098 AddrOps.push_back(SDOperand(NewNode, 0));
2099 AddrOps.push_back(Chain);
2100 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2101 MVT::Other, &AddrOps[0], AddrOps.size());
2102 NewNodes.push_back(Store);
2103 }
2104
2105 return true;
2106}
2107
2108unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2109 bool UnfoldLoad, bool UnfoldStore) const {
2110 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2111 MemOp2RegOpTable.find((unsigned*)Opc);
2112 if (I == MemOp2RegOpTable.end())
2113 return 0;
2114 bool FoldedLoad = I->second.second & (1 << 4);
2115 bool FoldedStore = I->second.second & (1 << 5);
2116 if (UnfoldLoad && !FoldedLoad)
2117 return 0;
2118 if (UnfoldStore && !FoldedStore)
2119 return 0;
2120 return I->second.first;
2121}
2122
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002123bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2124 if (MBB.empty()) return false;
2125
2126 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002127 case X86::TCRETURNri:
2128 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002129 case X86::RET: // Return.
2130 case X86::RETI:
2131 case X86::TAILJMPd:
2132 case X86::TAILJMPr:
2133 case X86::TAILJMPm:
2134 case X86::JMP: // Uncond branch.
2135 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002136 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002137 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002138 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002139 return true;
2140 default: return false;
2141 }
2142}
2143
2144bool X86InstrInfo::
2145ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
2146 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2147 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2148 return false;
2149}
2150
2151const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2152 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2153 if (Subtarget->is64Bit())
2154 return &X86::GR64RegClass;
2155 else
2156 return &X86::GR32RegClass;
2157}