blob: 307c96b8c43f0647c5aa3197a4e128f36586b1da [file] [log] [blame]
Jia Liu31d157a2012-02-18 12:03:15 +00001//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000016#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000017#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000018#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
Dan Gohmand68a0762009-01-05 17:59:02 +000020#include "llvm/DerivedTypes.h"
Owen Anderson0a5372e2009-07-13 04:09:18 +000021#include "llvm/LLVMContext.h"
Owen Anderson718cb662007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Dan Gohman62c939d2008-12-03 05:21:24 +000023#include "llvm/CodeGen/MachineConstantPool.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000027#include "llvm/CodeGen/LiveVariables.h"
Craig Topper79aa3412012-03-17 18:46:09 +000028#include "llvm/MC/MCAsmInfo.h"
Chris Lattneree9eb412010-04-26 23:37:21 +000029#include "llvm/MC/MCInst.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000030#include "llvm/Support/CommandLine.h"
David Greene5b901322010-01-05 01:29:29 +000031#include "llvm/Support/Debug.h"
Torok Edwinab7c09b2009-07-08 18:01:40 +000032#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
Evan Cheng0488db92007-09-25 01:57:46 +000034#include "llvm/Target/TargetOptions.h"
David Greeneb87bc952009-11-12 20:55:29 +000035#include <limits>
36
Evan Cheng4db3cff2011-07-01 17:57:27 +000037#define GET_INSTRINFO_CTOR
Evan Cheng22fee2d2011-06-28 20:07:07 +000038#include "X86GenInstrInfo.inc"
39
Brian Gaeked0fde302003-11-11 22:41:34 +000040using namespace llvm;
41
Chris Lattner705e07f2009-08-23 03:41:05 +000042static cl::opt<bool>
43NoFusing("disable-spill-fusing",
44 cl::desc("Disable fusing of spill code into instructions"));
45static cl::opt<bool>
46PrintFailedFusing("print-failed-fuse-candidates",
47 cl::desc("Print instructions that the allocator wants to"
48 " fuse, but the X86 backend currently can't"),
49 cl::Hidden);
50static cl::opt<bool>
51ReMatPICStubLoad("remat-pic-stub-load",
52 cl::desc("Re-materialize load from stub in PIC mode"),
53 cl::init(false), cl::Hidden);
Owen Anderson43dbe052008-01-07 01:35:02 +000054
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +000055enum {
56 // Select which memory operand is being unfolded.
57 // (stored in bits 0 - 7)
58 TB_INDEX_0 = 0,
59 TB_INDEX_1 = 1,
60 TB_INDEX_2 = 2,
61 TB_INDEX_MASK = 0xff,
62
63 // Minimum alignment required for load/store.
64 // Used for RegOp->MemOp conversion.
65 // (stored in bits 8 - 15)
66 TB_ALIGN_SHIFT = 8,
67 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
68 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
69 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
70 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT,
71
72 // Do not insert the reverse map (MemOp -> RegOp) into the table.
73 // This may be needed because there is a many -> one mapping.
74 TB_NO_REVERSE = 1 << 16,
75
76 // Do not insert the forward map (RegOp -> MemOp) into the table.
77 // This is needed for Native Client, which prohibits branch
78 // instructions from using a memory operand.
79 TB_NO_FORWARD = 1 << 17,
80
81 TB_FOLDED_LOAD = 1 << 18,
82 TB_FOLDED_STORE = 1 << 19
83};
84
Craig Topper72051bf2012-03-09 07:45:21 +000085struct X86OpTblEntry {
86 uint16_t RegOp;
87 uint16_t MemOp;
88 uint32_t Flags;
89};
90
Evan Chengaa3c1412006-05-30 21:45:53 +000091X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Evan Cheng4db3cff2011-07-01 17:57:27 +000092 : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
93 ? X86::ADJCALLSTACKDOWN64
94 : X86::ADJCALLSTACKDOWN32),
95 (tm.getSubtarget<X86Subtarget>().is64Bit()
96 ? X86::ADJCALLSTACKUP64
97 : X86::ADJCALLSTACKUP32)),
Evan Cheng25ab6902006-09-08 06:48:29 +000098 TM(tm), RI(tm, *this) {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +000099
Craig Topper72051bf2012-03-09 07:45:21 +0000100 static const X86OpTblEntry OpTbl2Addr[] = {
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000101 { X86::ADC32ri, X86::ADC32mi, 0 },
102 { X86::ADC32ri8, X86::ADC32mi8, 0 },
103 { X86::ADC32rr, X86::ADC32mr, 0 },
104 { X86::ADC64ri32, X86::ADC64mi32, 0 },
105 { X86::ADC64ri8, X86::ADC64mi8, 0 },
106 { X86::ADC64rr, X86::ADC64mr, 0 },
107 { X86::ADD16ri, X86::ADD16mi, 0 },
108 { X86::ADD16ri8, X86::ADD16mi8, 0 },
109 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
110 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
111 { X86::ADD16rr, X86::ADD16mr, 0 },
112 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
113 { X86::ADD32ri, X86::ADD32mi, 0 },
114 { X86::ADD32ri8, X86::ADD32mi8, 0 },
115 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
116 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
117 { X86::ADD32rr, X86::ADD32mr, 0 },
118 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
119 { X86::ADD64ri32, X86::ADD64mi32, 0 },
120 { X86::ADD64ri8, X86::ADD64mi8, 0 },
121 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
122 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
123 { X86::ADD64rr, X86::ADD64mr, 0 },
124 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
125 { X86::ADD8ri, X86::ADD8mi, 0 },
126 { X86::ADD8rr, X86::ADD8mr, 0 },
127 { X86::AND16ri, X86::AND16mi, 0 },
128 { X86::AND16ri8, X86::AND16mi8, 0 },
129 { X86::AND16rr, X86::AND16mr, 0 },
130 { X86::AND32ri, X86::AND32mi, 0 },
131 { X86::AND32ri8, X86::AND32mi8, 0 },
132 { X86::AND32rr, X86::AND32mr, 0 },
133 { X86::AND64ri32, X86::AND64mi32, 0 },
134 { X86::AND64ri8, X86::AND64mi8, 0 },
135 { X86::AND64rr, X86::AND64mr, 0 },
136 { X86::AND8ri, X86::AND8mi, 0 },
137 { X86::AND8rr, X86::AND8mr, 0 },
138 { X86::DEC16r, X86::DEC16m, 0 },
139 { X86::DEC32r, X86::DEC32m, 0 },
140 { X86::DEC64_16r, X86::DEC64_16m, 0 },
141 { X86::DEC64_32r, X86::DEC64_32m, 0 },
142 { X86::DEC64r, X86::DEC64m, 0 },
143 { X86::DEC8r, X86::DEC8m, 0 },
144 { X86::INC16r, X86::INC16m, 0 },
145 { X86::INC32r, X86::INC32m, 0 },
146 { X86::INC64_16r, X86::INC64_16m, 0 },
147 { X86::INC64_32r, X86::INC64_32m, 0 },
148 { X86::INC64r, X86::INC64m, 0 },
149 { X86::INC8r, X86::INC8m, 0 },
150 { X86::NEG16r, X86::NEG16m, 0 },
151 { X86::NEG32r, X86::NEG32m, 0 },
152 { X86::NEG64r, X86::NEG64m, 0 },
153 { X86::NEG8r, X86::NEG8m, 0 },
154 { X86::NOT16r, X86::NOT16m, 0 },
155 { X86::NOT32r, X86::NOT32m, 0 },
156 { X86::NOT64r, X86::NOT64m, 0 },
157 { X86::NOT8r, X86::NOT8m, 0 },
158 { X86::OR16ri, X86::OR16mi, 0 },
159 { X86::OR16ri8, X86::OR16mi8, 0 },
160 { X86::OR16rr, X86::OR16mr, 0 },
161 { X86::OR32ri, X86::OR32mi, 0 },
162 { X86::OR32ri8, X86::OR32mi8, 0 },
163 { X86::OR32rr, X86::OR32mr, 0 },
164 { X86::OR64ri32, X86::OR64mi32, 0 },
165 { X86::OR64ri8, X86::OR64mi8, 0 },
166 { X86::OR64rr, X86::OR64mr, 0 },
167 { X86::OR8ri, X86::OR8mi, 0 },
168 { X86::OR8rr, X86::OR8mr, 0 },
169 { X86::ROL16r1, X86::ROL16m1, 0 },
170 { X86::ROL16rCL, X86::ROL16mCL, 0 },
171 { X86::ROL16ri, X86::ROL16mi, 0 },
172 { X86::ROL32r1, X86::ROL32m1, 0 },
173 { X86::ROL32rCL, X86::ROL32mCL, 0 },
174 { X86::ROL32ri, X86::ROL32mi, 0 },
175 { X86::ROL64r1, X86::ROL64m1, 0 },
176 { X86::ROL64rCL, X86::ROL64mCL, 0 },
177 { X86::ROL64ri, X86::ROL64mi, 0 },
178 { X86::ROL8r1, X86::ROL8m1, 0 },
179 { X86::ROL8rCL, X86::ROL8mCL, 0 },
180 { X86::ROL8ri, X86::ROL8mi, 0 },
181 { X86::ROR16r1, X86::ROR16m1, 0 },
182 { X86::ROR16rCL, X86::ROR16mCL, 0 },
183 { X86::ROR16ri, X86::ROR16mi, 0 },
184 { X86::ROR32r1, X86::ROR32m1, 0 },
185 { X86::ROR32rCL, X86::ROR32mCL, 0 },
186 { X86::ROR32ri, X86::ROR32mi, 0 },
187 { X86::ROR64r1, X86::ROR64m1, 0 },
188 { X86::ROR64rCL, X86::ROR64mCL, 0 },
189 { X86::ROR64ri, X86::ROR64mi, 0 },
190 { X86::ROR8r1, X86::ROR8m1, 0 },
191 { X86::ROR8rCL, X86::ROR8mCL, 0 },
192 { X86::ROR8ri, X86::ROR8mi, 0 },
193 { X86::SAR16r1, X86::SAR16m1, 0 },
194 { X86::SAR16rCL, X86::SAR16mCL, 0 },
195 { X86::SAR16ri, X86::SAR16mi, 0 },
196 { X86::SAR32r1, X86::SAR32m1, 0 },
197 { X86::SAR32rCL, X86::SAR32mCL, 0 },
198 { X86::SAR32ri, X86::SAR32mi, 0 },
199 { X86::SAR64r1, X86::SAR64m1, 0 },
200 { X86::SAR64rCL, X86::SAR64mCL, 0 },
201 { X86::SAR64ri, X86::SAR64mi, 0 },
202 { X86::SAR8r1, X86::SAR8m1, 0 },
203 { X86::SAR8rCL, X86::SAR8mCL, 0 },
204 { X86::SAR8ri, X86::SAR8mi, 0 },
205 { X86::SBB32ri, X86::SBB32mi, 0 },
206 { X86::SBB32ri8, X86::SBB32mi8, 0 },
207 { X86::SBB32rr, X86::SBB32mr, 0 },
208 { X86::SBB64ri32, X86::SBB64mi32, 0 },
209 { X86::SBB64ri8, X86::SBB64mi8, 0 },
210 { X86::SBB64rr, X86::SBB64mr, 0 },
211 { X86::SHL16rCL, X86::SHL16mCL, 0 },
212 { X86::SHL16ri, X86::SHL16mi, 0 },
213 { X86::SHL32rCL, X86::SHL32mCL, 0 },
214 { X86::SHL32ri, X86::SHL32mi, 0 },
215 { X86::SHL64rCL, X86::SHL64mCL, 0 },
216 { X86::SHL64ri, X86::SHL64mi, 0 },
217 { X86::SHL8rCL, X86::SHL8mCL, 0 },
218 { X86::SHL8ri, X86::SHL8mi, 0 },
219 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
220 { X86::SHLD16rri8, X86::SHLD16mri8, 0 },
221 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
222 { X86::SHLD32rri8, X86::SHLD32mri8, 0 },
223 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
224 { X86::SHLD64rri8, X86::SHLD64mri8, 0 },
225 { X86::SHR16r1, X86::SHR16m1, 0 },
226 { X86::SHR16rCL, X86::SHR16mCL, 0 },
227 { X86::SHR16ri, X86::SHR16mi, 0 },
228 { X86::SHR32r1, X86::SHR32m1, 0 },
229 { X86::SHR32rCL, X86::SHR32mCL, 0 },
230 { X86::SHR32ri, X86::SHR32mi, 0 },
231 { X86::SHR64r1, X86::SHR64m1, 0 },
232 { X86::SHR64rCL, X86::SHR64mCL, 0 },
233 { X86::SHR64ri, X86::SHR64mi, 0 },
234 { X86::SHR8r1, X86::SHR8m1, 0 },
235 { X86::SHR8rCL, X86::SHR8mCL, 0 },
236 { X86::SHR8ri, X86::SHR8mi, 0 },
237 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
238 { X86::SHRD16rri8, X86::SHRD16mri8, 0 },
239 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
240 { X86::SHRD32rri8, X86::SHRD32mri8, 0 },
241 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
242 { X86::SHRD64rri8, X86::SHRD64mri8, 0 },
243 { X86::SUB16ri, X86::SUB16mi, 0 },
244 { X86::SUB16ri8, X86::SUB16mi8, 0 },
245 { X86::SUB16rr, X86::SUB16mr, 0 },
246 { X86::SUB32ri, X86::SUB32mi, 0 },
247 { X86::SUB32ri8, X86::SUB32mi8, 0 },
248 { X86::SUB32rr, X86::SUB32mr, 0 },
249 { X86::SUB64ri32, X86::SUB64mi32, 0 },
250 { X86::SUB64ri8, X86::SUB64mi8, 0 },
251 { X86::SUB64rr, X86::SUB64mr, 0 },
252 { X86::SUB8ri, X86::SUB8mi, 0 },
253 { X86::SUB8rr, X86::SUB8mr, 0 },
254 { X86::XOR16ri, X86::XOR16mi, 0 },
255 { X86::XOR16ri8, X86::XOR16mi8, 0 },
256 { X86::XOR16rr, X86::XOR16mr, 0 },
257 { X86::XOR32ri, X86::XOR32mi, 0 },
258 { X86::XOR32ri8, X86::XOR32mi8, 0 },
259 { X86::XOR32rr, X86::XOR32mr, 0 },
260 { X86::XOR64ri32, X86::XOR64mi32, 0 },
261 { X86::XOR64ri8, X86::XOR64mi8, 0 },
262 { X86::XOR64rr, X86::XOR64mr, 0 },
263 { X86::XOR8ri, X86::XOR8mi, 0 },
264 { X86::XOR8rr, X86::XOR8mr, 0 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000265 };
266
267 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
Craig Topper72051bf2012-03-09 07:45:21 +0000268 unsigned RegOp = OpTbl2Addr[i].RegOp;
269 unsigned MemOp = OpTbl2Addr[i].MemOp;
270 unsigned Flags = OpTbl2Addr[i].Flags;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000271 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
272 RegOp, MemOp,
273 // Index 0, folded load and store, no alignment requirement.
274 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
Owen Anderson43dbe052008-01-07 01:35:02 +0000275 }
276
Craig Topper72051bf2012-03-09 07:45:21 +0000277 static const X86OpTblEntry OpTbl0[] = {
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000278 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
279 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
280 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
281 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
282 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000283 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
284 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
285 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
286 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
287 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
288 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
289 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
290 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
291 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
292 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
293 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
294 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
295 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
296 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
297 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
298 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
299 { X86::FsMOVAPDrr, X86::MOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE },
300 { X86::FsMOVAPSrr, X86::MOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000301 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
302 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
303 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
304 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
305 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
306 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
307 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
308 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
309 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
310 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
311 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
312 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
313 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
314 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
315 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
316 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
317 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
318 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
319 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
320 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
321 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
322 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000323 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
324 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
325 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
326 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
327 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
328 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000329 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
330 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
331 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
332 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
333 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
334 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
335 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
336 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
337 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
338 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
339 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
340 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
341 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
342 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
343 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
344 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
345 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
346 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
347 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
348 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
349 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
350 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
351 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
352 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
353 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000354 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
355 // AVX 128-bit versions of foldable instructions
356 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
357 { X86::FsVMOVAPDrr, X86::VMOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE },
358 { X86::FsVMOVAPSrr, X86::VMOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE },
Craig Topper446626d2012-01-14 18:14:53 +0000359 { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000360 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
361 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
362 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
363 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
364 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
365 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
366 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
367 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
368 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
369 // AVX 256-bit foldable instructions
Craig Topper446626d2012-01-14 18:14:53 +0000370 { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000371 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
372 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
373 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
374 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
375 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE }
Owen Anderson43dbe052008-01-07 01:35:02 +0000376 };
377
378 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
Craig Topper72051bf2012-03-09 07:45:21 +0000379 unsigned RegOp = OpTbl0[i].RegOp;
380 unsigned MemOp = OpTbl0[i].MemOp;
381 unsigned Flags = OpTbl0[i].Flags;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000382 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
383 RegOp, MemOp, TB_INDEX_0 | Flags);
Owen Anderson43dbe052008-01-07 01:35:02 +0000384 }
385
Craig Topper72051bf2012-03-09 07:45:21 +0000386 static const X86OpTblEntry OpTbl1[] = {
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000387 { X86::CMP16rr, X86::CMP16rm, 0 },
388 { X86::CMP32rr, X86::CMP32rm, 0 },
389 { X86::CMP64rr, X86::CMP64rm, 0 },
390 { X86::CMP8rr, X86::CMP8rm, 0 },
391 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
392 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
393 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
394 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
395 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
396 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
397 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
398 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
399 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
400 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
401 { X86::FsMOVAPDrr, X86::MOVSDrm, TB_NO_REVERSE },
402 { X86::FsMOVAPSrr, X86::MOVSSrm, TB_NO_REVERSE },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000403 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
404 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
405 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
406 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
407 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
408 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
409 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
410 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
411 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, TB_ALIGN_16 },
412 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, TB_ALIGN_16 },
413 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, TB_ALIGN_16 },
414 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, TB_ALIGN_16 },
415 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, TB_ALIGN_16 },
416 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
417 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
418 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
419 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
420 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
421 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
422 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
423 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
424 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
425 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
426 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
427 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
428 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
429 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
430 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
431 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
432 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000433 { X86::MOV16rr, X86::MOV16rm, 0 },
434 { X86::MOV32rr, X86::MOV32rm, 0 },
435 { X86::MOV64rr, X86::MOV64rm, 0 },
436 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
437 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
438 { X86::MOV8rr, X86::MOV8rm, 0 },
439 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
440 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000441 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
442 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
443 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
444 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000445 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
446 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
447 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
448 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
449 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
450 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
451 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
452 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
453 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
454 { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000455 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
456 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
457 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
458 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
459 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
460 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
461 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
462 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
463 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
464 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
Craig Topperdcce2442011-11-14 08:07:55 +0000465 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
466 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
467 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000468 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
469 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
470 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
471 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
472 { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 },
473 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
474 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 },
475 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
476 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
477 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
478 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, TB_ALIGN_16 },
479 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
480 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, TB_ALIGN_16 },
481 { X86::SQRTSDr, X86::SQRTSDm, 0 },
482 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
483 { X86::SQRTSSr, X86::SQRTSSm, 0 },
484 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
485 { X86::TEST16rr, X86::TEST16rm, 0 },
486 { X86::TEST32rr, X86::TEST32rm, 0 },
487 { X86::TEST64rr, X86::TEST64rm, 0 },
488 { X86::TEST8rr, X86::TEST8rm, 0 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000489 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000490 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
491 { X86::UCOMISSrr, X86::UCOMISSrm, 0 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000492 // AVX 128-bit versions of foldable instructions
493 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
494 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
495 { X86::Int_VCVTDQ2PDrr, X86::Int_VCVTDQ2PDrm, TB_ALIGN_16 },
496 { X86::Int_VCVTDQ2PSrr, X86::Int_VCVTDQ2PSrm, TB_ALIGN_16 },
497 { X86::Int_VCVTPD2DQrr, X86::Int_VCVTPD2DQrm, TB_ALIGN_16 },
498 { X86::Int_VCVTPD2PSrr, X86::Int_VCVTPD2PSrm, TB_ALIGN_16 },
499 { X86::Int_VCVTPS2DQrr, X86::Int_VCVTPS2DQrm, TB_ALIGN_16 },
500 { X86::Int_VCVTPS2PDrr, X86::Int_VCVTPS2PDrm, 0 },
501 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
502 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
503 { X86::FsVMOVAPDrr, X86::VMOVSDrm, TB_NO_REVERSE },
504 { X86::FsVMOVAPSrr, X86::VMOVSSrm, TB_NO_REVERSE },
505 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
506 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
507 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
508 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
509 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
510 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
511 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
512 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
513 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 },
514 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 },
515 { X86::VMOVUPDrr, X86::VMOVUPDrm, TB_ALIGN_16 },
516 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
517 { X86::VMOVZDI2PDIrr, X86::VMOVZDI2PDIrm, 0 },
518 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
519 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000520 { X86::VPABSBrr128, X86::VPABSBrm128, TB_ALIGN_16 },
521 { X86::VPABSDrr128, X86::VPABSDrm128, TB_ALIGN_16 },
522 { X86::VPABSWrr128, X86::VPABSWrm128, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000523 { X86::VPERMILPDri, X86::VPERMILPDmi, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000524 { X86::VPERMILPSri, X86::VPERMILPSmi, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000525 { X86::VPSHUFDri, X86::VPSHUFDmi, TB_ALIGN_16 },
526 { X86::VPSHUFHWri, X86::VPSHUFHWmi, TB_ALIGN_16 },
527 { X86::VPSHUFLWri, X86::VPSHUFLWmi, TB_ALIGN_16 },
528 { X86::VRCPPSr, X86::VRCPPSm, TB_ALIGN_16 },
529 { X86::VRCPPSr_Int, X86::VRCPPSm_Int, TB_ALIGN_16 },
530 { X86::VRSQRTPSr, X86::VRSQRTPSm, TB_ALIGN_16 },
531 { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, TB_ALIGN_16 },
532 { X86::VSQRTPDr, X86::VSQRTPDm, TB_ALIGN_16 },
533 { X86::VSQRTPDr_Int, X86::VSQRTPDm_Int, TB_ALIGN_16 },
534 { X86::VSQRTPSr, X86::VSQRTPSm, TB_ALIGN_16 },
535 { X86::VSQRTPSr_Int, X86::VSQRTPSm_Int, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000536 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000537 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
538 // AVX 256-bit foldable instructions
539 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
540 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
Craig Topper40385c82012-01-19 08:50:38 +0000541 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000542 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
Craig Topperdcce2442011-11-14 08:07:55 +0000543 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
Craig Topper40385c82012-01-19 08:50:38 +0000544 { X86::VPERMILPDYri, X86::VPERMILPDYmi, TB_ALIGN_32 },
545 { X86::VPERMILPSYri, X86::VPERMILPSYmi, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +0000546 // AVX2 foldable instructions
Craig Topper40385c82012-01-19 08:50:38 +0000547 { X86::VPABSBrr256, X86::VPABSBrm256, TB_ALIGN_32 },
548 { X86::VPABSDrr256, X86::VPABSDrm256, TB_ALIGN_32 },
549 { X86::VPABSWrr256, X86::VPABSWrm256, TB_ALIGN_32 },
550 { X86::VPSHUFDYri, X86::VPSHUFDYmi, TB_ALIGN_32 },
551 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, TB_ALIGN_32 },
552 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, TB_ALIGN_32 },
553 { X86::VRCPPSYr, X86::VRCPPSYm, TB_ALIGN_32 },
554 { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, TB_ALIGN_32 },
555 { X86::VRSQRTPSYr, X86::VRSQRTPSYm, TB_ALIGN_32 },
556 { X86::VRSQRTPSYr_Int, X86::VRSQRTPSYm_Int, TB_ALIGN_32 },
557 { X86::VSQRTPDYr, X86::VSQRTPDYm, TB_ALIGN_32 },
558 { X86::VSQRTPDYr_Int, X86::VSQRTPDYm_Int, TB_ALIGN_32 },
559 { X86::VSQRTPSYr, X86::VSQRTPSYm, TB_ALIGN_32 },
560 { X86::VSQRTPSYr_Int, X86::VSQRTPSYm_Int, TB_ALIGN_32 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000561 };
562
563 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
Craig Topper72051bf2012-03-09 07:45:21 +0000564 unsigned RegOp = OpTbl1[i].RegOp;
565 unsigned MemOp = OpTbl1[i].MemOp;
566 unsigned Flags = OpTbl1[i].Flags;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000567 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
568 RegOp, MemOp,
569 // Index 1, folded load
570 Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
Owen Anderson43dbe052008-01-07 01:35:02 +0000571 }
572
Craig Topper72051bf2012-03-09 07:45:21 +0000573 static const X86OpTblEntry OpTbl2[] = {
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000574 { X86::ADC32rr, X86::ADC32rm, 0 },
575 { X86::ADC64rr, X86::ADC64rm, 0 },
576 { X86::ADD16rr, X86::ADD16rm, 0 },
577 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
578 { X86::ADD32rr, X86::ADD32rm, 0 },
579 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
580 { X86::ADD64rr, X86::ADD64rm, 0 },
581 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
582 { X86::ADD8rr, X86::ADD8rm, 0 },
583 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
584 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
585 { X86::ADDSDrr, X86::ADDSDrm, 0 },
586 { X86::ADDSSrr, X86::ADDSSrm, 0 },
587 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
588 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
589 { X86::AND16rr, X86::AND16rm, 0 },
590 { X86::AND32rr, X86::AND32rm, 0 },
591 { X86::AND64rr, X86::AND64rm, 0 },
592 { X86::AND8rr, X86::AND8rm, 0 },
593 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
594 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
595 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
596 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000597 { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 },
598 { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 },
599 { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 },
600 { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000601 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
602 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
603 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
604 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
605 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
606 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
607 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
608 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
609 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
610 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
611 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
612 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
613 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
614 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
615 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
616 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
617 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
618 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
619 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
620 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
621 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
622 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
623 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
624 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
625 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
626 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
627 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
628 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
629 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
630 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
631 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
632 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
633 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
634 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
635 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
636 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
637 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
638 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
639 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
640 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
641 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
642 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
643 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
644 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
645 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
646 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
647 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
648 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
649 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
650 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
651 { X86::CMPSDrr, X86::CMPSDrm, 0 },
652 { X86::CMPSSrr, X86::CMPSSrm, 0 },
653 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
654 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
655 { X86::DIVSDrr, X86::DIVSDrm, 0 },
656 { X86::DIVSSrr, X86::DIVSSrm, 0 },
657 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
658 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
659 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
660 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
661 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
662 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
663 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
664 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
665 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
666 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
667 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
668 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
669 { X86::IMUL16rr, X86::IMUL16rm, 0 },
670 { X86::IMUL32rr, X86::IMUL32rm, 0 },
671 { X86::IMUL64rr, X86::IMUL64rm, 0 },
672 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
673 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
674 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
675 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, TB_ALIGN_16 },
676 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
677 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, TB_ALIGN_16 },
678 { X86::MAXSDrr, X86::MAXSDrm, 0 },
679 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
680 { X86::MAXSSrr, X86::MAXSSrm, 0 },
681 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
682 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
683 { X86::MINPDrr_Int, X86::MINPDrm_Int, TB_ALIGN_16 },
684 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
685 { X86::MINPSrr_Int, X86::MINPSrm_Int, TB_ALIGN_16 },
686 { X86::MINSDrr, X86::MINSDrm, 0 },
687 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
688 { X86::MINSSrr, X86::MINSSrm, 0 },
689 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
Craig Topperdcce2442011-11-14 08:07:55 +0000690 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000691 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
692 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
693 { X86::MULSDrr, X86::MULSDrm, 0 },
694 { X86::MULSSrr, X86::MULSSrm, 0 },
695 { X86::OR16rr, X86::OR16rm, 0 },
696 { X86::OR32rr, X86::OR32rm, 0 },
697 { X86::OR64rr, X86::OR64rm, 0 },
698 { X86::OR8rr, X86::OR8rm, 0 },
699 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
700 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
701 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
702 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000703 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000704 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
705 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
706 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
707 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
708 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
709 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000710 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
711 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000712 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000713 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000714 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
715 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
716 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
717 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000718 { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000719 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
720 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000721 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000722 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
723 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
724 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000725 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000726 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
Craig Topper4bb3f342012-01-25 05:37:32 +0000727 { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 },
728 { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000729 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
Craig Topper4bb3f342012-01-25 05:37:32 +0000730 { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000731 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
Craig Topper4bb3f342012-01-25 05:37:32 +0000732 { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000733 { X86::PINSRWrri, X86::PINSRWrmi, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000734 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000735 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
736 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
737 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
738 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
739 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
740 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000741 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000742 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
743 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
744 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
745 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
746 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
747 { X86::PORrr, X86::PORrm, TB_ALIGN_16 },
748 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
Craig Topper969ba282012-01-25 06:43:11 +0000749 { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 },
750 { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 },
751 { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 },
752 { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000753 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
754 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
755 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
756 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
757 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
758 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
759 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
760 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
761 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
762 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
763 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
764 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
765 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
766 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
767 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
768 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
769 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
770 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
771 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
772 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
773 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
774 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
775 { X86::SBB32rr, X86::SBB32rm, 0 },
776 { X86::SBB64rr, X86::SBB64rm, 0 },
777 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
778 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
779 { X86::SUB16rr, X86::SUB16rm, 0 },
780 { X86::SUB32rr, X86::SUB32rm, 0 },
781 { X86::SUB64rr, X86::SUB64rm, 0 },
782 { X86::SUB8rr, X86::SUB8rm, 0 },
783 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
784 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
785 { X86::SUBSDrr, X86::SUBSDrm, 0 },
786 { X86::SUBSSrr, X86::SUBSSrm, 0 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000787 // FIXME: TEST*rr -> swapped operand of TEST*mr.
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000788 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
789 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
790 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
791 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
792 { X86::XOR16rr, X86::XOR16rm, 0 },
793 { X86::XOR32rr, X86::XOR32rm, 0 },
794 { X86::XOR64rr, X86::XOR64rm, 0 },
795 { X86::XOR8rr, X86::XOR8rm, 0 },
796 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000797 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
798 // AVX 128-bit versions of foldable instructions
799 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
800 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
801 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
802 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
803 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
804 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
805 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
806 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
807 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
808 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
809 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
810 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
811 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
812 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm, 0 },
813 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
814 { X86::Int_VCVTTSD2SIrr, X86::Int_VCVTTSD2SIrm, 0 },
815 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
816 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm, 0 },
817 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
818 { X86::Int_VCVTTSS2SIrr, X86::Int_VCVTTSS2SIrm, 0 },
819 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
820 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
821 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQrm, TB_ALIGN_16 },
822 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, TB_ALIGN_16 },
823 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
824 { X86::VSQRTSDr, X86::VSQRTSDm, 0 },
825 { X86::VSQRTSSr, X86::VSQRTSSm, 0 },
826 { X86::VADDPDrr, X86::VADDPDrm, TB_ALIGN_16 },
827 { X86::VADDPSrr, X86::VADDPSrm, TB_ALIGN_16 },
828 { X86::VADDSDrr, X86::VADDSDrm, 0 },
829 { X86::VADDSSrr, X86::VADDSSrm, 0 },
830 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, TB_ALIGN_16 },
831 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, TB_ALIGN_16 },
832 { X86::VANDNPDrr, X86::VANDNPDrm, TB_ALIGN_16 },
833 { X86::VANDNPSrr, X86::VANDNPSrm, TB_ALIGN_16 },
834 { X86::VANDPDrr, X86::VANDPDrm, TB_ALIGN_16 },
835 { X86::VANDPSrr, X86::VANDPSrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000836 { X86::VBLENDPDrri, X86::VBLENDPDrmi, TB_ALIGN_16 },
837 { X86::VBLENDPSrri, X86::VBLENDPSrmi, TB_ALIGN_16 },
838 { X86::VBLENDVPDrr, X86::VBLENDVPDrm, TB_ALIGN_16 },
839 { X86::VBLENDVPSrr, X86::VBLENDVPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000840 { X86::VCMPPDrri, X86::VCMPPDrmi, TB_ALIGN_16 },
841 { X86::VCMPPSrri, X86::VCMPPSrmi, TB_ALIGN_16 },
842 { X86::VCMPSDrr, X86::VCMPSDrm, 0 },
843 { X86::VCMPSSrr, X86::VCMPSSrm, 0 },
844 { X86::VDIVPDrr, X86::VDIVPDrm, TB_ALIGN_16 },
845 { X86::VDIVPSrr, X86::VDIVPSrm, TB_ALIGN_16 },
846 { X86::VDIVSDrr, X86::VDIVSDrm, 0 },
847 { X86::VDIVSSrr, X86::VDIVSSrm, 0 },
848 { X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 },
849 { X86::VFsANDNPSrr, X86::VFsANDNPSrm, TB_ALIGN_16 },
850 { X86::VFsANDPDrr, X86::VFsANDPDrm, TB_ALIGN_16 },
851 { X86::VFsANDPSrr, X86::VFsANDPSrm, TB_ALIGN_16 },
852 { X86::VFsORPDrr, X86::VFsORPDrm, TB_ALIGN_16 },
853 { X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 },
854 { X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 },
855 { X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 },
856 { X86::VHADDPDrr, X86::VHADDPDrm, TB_ALIGN_16 },
857 { X86::VHADDPSrr, X86::VHADDPSrm, TB_ALIGN_16 },
858 { X86::VHSUBPDrr, X86::VHSUBPDrm, TB_ALIGN_16 },
859 { X86::VHSUBPSrr, X86::VHSUBPSrm, TB_ALIGN_16 },
860 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
861 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
862 { X86::VMAXPDrr, X86::VMAXPDrm, TB_ALIGN_16 },
863 { X86::VMAXPDrr_Int, X86::VMAXPDrm_Int, TB_ALIGN_16 },
864 { X86::VMAXPSrr, X86::VMAXPSrm, TB_ALIGN_16 },
865 { X86::VMAXPSrr_Int, X86::VMAXPSrm_Int, TB_ALIGN_16 },
866 { X86::VMAXSDrr, X86::VMAXSDrm, 0 },
867 { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 },
868 { X86::VMAXSSrr, X86::VMAXSSrm, 0 },
869 { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 },
870 { X86::VMINPDrr, X86::VMINPDrm, TB_ALIGN_16 },
871 { X86::VMINPDrr_Int, X86::VMINPDrm_Int, TB_ALIGN_16 },
872 { X86::VMINPSrr, X86::VMINPSrm, TB_ALIGN_16 },
873 { X86::VMINPSrr_Int, X86::VMINPSrm_Int, TB_ALIGN_16 },
874 { X86::VMINSDrr, X86::VMINSDrm, 0 },
875 { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 },
876 { X86::VMINSSrr, X86::VMINSSrm, 0 },
877 { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 },
Craig Topperdcce2442011-11-14 08:07:55 +0000878 { X86::VMPSADBWrri, X86::VMPSADBWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000879 { X86::VMULPDrr, X86::VMULPDrm, TB_ALIGN_16 },
880 { X86::VMULPSrr, X86::VMULPSrm, TB_ALIGN_16 },
881 { X86::VMULSDrr, X86::VMULSDrm, 0 },
882 { X86::VMULSSrr, X86::VMULSSrm, 0 },
883 { X86::VORPDrr, X86::VORPDrm, TB_ALIGN_16 },
884 { X86::VORPSrr, X86::VORPSrm, TB_ALIGN_16 },
885 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, TB_ALIGN_16 },
886 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000887 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000888 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, TB_ALIGN_16 },
889 { X86::VPADDBrr, X86::VPADDBrm, TB_ALIGN_16 },
890 { X86::VPADDDrr, X86::VPADDDrm, TB_ALIGN_16 },
891 { X86::VPADDQrr, X86::VPADDQrm, TB_ALIGN_16 },
892 { X86::VPADDSBrr, X86::VPADDSBrm, TB_ALIGN_16 },
893 { X86::VPADDSWrr, X86::VPADDSWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000894 { X86::VPADDUSBrr, X86::VPADDUSBrm, TB_ALIGN_16 },
895 { X86::VPADDUSWrr, X86::VPADDUSWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000896 { X86::VPADDWrr, X86::VPADDWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000897 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000898 { X86::VPANDNrr, X86::VPANDNrm, TB_ALIGN_16 },
899 { X86::VPANDrr, X86::VPANDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000900 { X86::VPAVGBrr, X86::VPAVGBrm, TB_ALIGN_16 },
901 { X86::VPAVGWrr, X86::VPAVGWrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000902 { X86::VPBLENDWrri, X86::VPBLENDWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000903 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, TB_ALIGN_16 },
904 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000905 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000906 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, TB_ALIGN_16 },
907 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, TB_ALIGN_16 },
908 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000909 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000910 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, TB_ALIGN_16 },
Craig Topper4bb3f342012-01-25 05:37:32 +0000911 { X86::VPHADDDrr, X86::VPHADDDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000912 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, TB_ALIGN_16 },
Craig Topper4bb3f342012-01-25 05:37:32 +0000913 { X86::VPHADDWrr, X86::VPHADDWrm, TB_ALIGN_16 },
914 { X86::VPHSUBDrr, X86::VPHSUBDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000915 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, TB_ALIGN_16 },
Craig Topper4bb3f342012-01-25 05:37:32 +0000916 { X86::VPHSUBWrr, X86::VPHSUBWrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000917 { X86::VPERMILPDrr, X86::VPERMILPDrm, TB_ALIGN_16 },
918 { X86::VPERMILPSrr, X86::VPERMILPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000919 { X86::VPINSRWrri, X86::VPINSRWrmi, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000920 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000921 { X86::VPMADDWDrr, X86::VPMADDWDrm, TB_ALIGN_16 },
922 { X86::VPMAXSWrr, X86::VPMAXSWrm, TB_ALIGN_16 },
923 { X86::VPMAXUBrr, X86::VPMAXUBrm, TB_ALIGN_16 },
924 { X86::VPMINSWrr, X86::VPMINSWrm, TB_ALIGN_16 },
925 { X86::VPMINUBrr, X86::VPMINUBrm, TB_ALIGN_16 },
926 { X86::VPMULDQrr, X86::VPMULDQrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000927 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000928 { X86::VPMULHUWrr, X86::VPMULHUWrm, TB_ALIGN_16 },
929 { X86::VPMULHWrr, X86::VPMULHWrm, TB_ALIGN_16 },
930 { X86::VPMULLDrr, X86::VPMULLDrm, TB_ALIGN_16 },
931 { X86::VPMULLWrr, X86::VPMULLWrm, TB_ALIGN_16 },
932 { X86::VPMULUDQrr, X86::VPMULUDQrm, TB_ALIGN_16 },
933 { X86::VPORrr, X86::VPORrm, TB_ALIGN_16 },
934 { X86::VPSADBWrr, X86::VPSADBWrm, TB_ALIGN_16 },
Craig Topper969ba282012-01-25 06:43:11 +0000935 { X86::VPSHUFBrr, X86::VPSHUFBrm, TB_ALIGN_16 },
936 { X86::VPSIGNBrr, X86::VPSIGNBrm, TB_ALIGN_16 },
937 { X86::VPSIGNWrr, X86::VPSIGNWrm, TB_ALIGN_16 },
938 { X86::VPSIGNDrr, X86::VPSIGNDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000939 { X86::VPSLLDrr, X86::VPSLLDrm, TB_ALIGN_16 },
940 { X86::VPSLLQrr, X86::VPSLLQrm, TB_ALIGN_16 },
941 { X86::VPSLLWrr, X86::VPSLLWrm, TB_ALIGN_16 },
942 { X86::VPSRADrr, X86::VPSRADrm, TB_ALIGN_16 },
943 { X86::VPSRAWrr, X86::VPSRAWrm, TB_ALIGN_16 },
944 { X86::VPSRLDrr, X86::VPSRLDrm, TB_ALIGN_16 },
945 { X86::VPSRLQrr, X86::VPSRLQrm, TB_ALIGN_16 },
946 { X86::VPSRLWrr, X86::VPSRLWrm, TB_ALIGN_16 },
947 { X86::VPSUBBrr, X86::VPSUBBrm, TB_ALIGN_16 },
948 { X86::VPSUBDrr, X86::VPSUBDrm, TB_ALIGN_16 },
949 { X86::VPSUBSBrr, X86::VPSUBSBrm, TB_ALIGN_16 },
950 { X86::VPSUBSWrr, X86::VPSUBSWrm, TB_ALIGN_16 },
951 { X86::VPSUBWrr, X86::VPSUBWrm, TB_ALIGN_16 },
952 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, TB_ALIGN_16 },
953 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, TB_ALIGN_16 },
954 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, TB_ALIGN_16 },
955 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, TB_ALIGN_16 },
956 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, TB_ALIGN_16 },
957 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, TB_ALIGN_16 },
958 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, TB_ALIGN_16 },
959 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, TB_ALIGN_16 },
960 { X86::VPXORrr, X86::VPXORrm, TB_ALIGN_16 },
961 { X86::VSHUFPDrri, X86::VSHUFPDrmi, TB_ALIGN_16 },
962 { X86::VSHUFPSrri, X86::VSHUFPSrmi, TB_ALIGN_16 },
963 { X86::VSUBPDrr, X86::VSUBPDrm, TB_ALIGN_16 },
964 { X86::VSUBPSrr, X86::VSUBPSrm, TB_ALIGN_16 },
965 { X86::VSUBSDrr, X86::VSUBSDrm, 0 },
966 { X86::VSUBSSrr, X86::VSUBSSrm, 0 },
967 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, TB_ALIGN_16 },
968 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, TB_ALIGN_16 },
969 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, TB_ALIGN_16 },
970 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, TB_ALIGN_16 },
971 { X86::VXORPDrr, X86::VXORPDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000972 { X86::VXORPSrr, X86::VXORPSrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000973 // AVX 256-bit foldable instructions
974 { X86::VADDPDYrr, X86::VADDPDYrm, TB_ALIGN_32 },
975 { X86::VADDPSYrr, X86::VADDPSYrm, TB_ALIGN_32 },
976 { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, TB_ALIGN_32 },
977 { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, TB_ALIGN_32 },
978 { X86::VANDNPDYrr, X86::VANDNPDYrm, TB_ALIGN_32 },
979 { X86::VANDNPSYrr, X86::VANDNPSYrm, TB_ALIGN_32 },
980 { X86::VANDPDYrr, X86::VANDPDYrm, TB_ALIGN_32 },
981 { X86::VANDPSYrr, X86::VANDPSYrm, TB_ALIGN_32 },
982 { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, TB_ALIGN_32 },
983 { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, TB_ALIGN_32 },
984 { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, TB_ALIGN_32 },
985 { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, TB_ALIGN_32 },
986 { X86::VCMPPDYrri, X86::VCMPPDYrmi, TB_ALIGN_32 },
987 { X86::VCMPPSYrri, X86::VCMPPSYrmi, TB_ALIGN_32 },
988 { X86::VDIVPDYrr, X86::VDIVPDYrm, TB_ALIGN_32 },
989 { X86::VDIVPSYrr, X86::VDIVPSYrm, TB_ALIGN_32 },
990 { X86::VHADDPDYrr, X86::VHADDPDYrm, TB_ALIGN_32 },
991 { X86::VHADDPSYrr, X86::VHADDPSYrm, TB_ALIGN_32 },
992 { X86::VHSUBPDYrr, X86::VHSUBPDYrm, TB_ALIGN_32 },
993 { X86::VHSUBPSYrr, X86::VHSUBPSYrm, TB_ALIGN_32 },
994 { X86::VINSERTF128rr, X86::VINSERTF128rm, TB_ALIGN_32 },
995 { X86::VMAXPDYrr, X86::VMAXPDYrm, TB_ALIGN_32 },
996 { X86::VMAXPDYrr_Int, X86::VMAXPDYrm_Int, TB_ALIGN_32 },
997 { X86::VMAXPSYrr, X86::VMAXPSYrm, TB_ALIGN_32 },
998 { X86::VMAXPSYrr_Int, X86::VMAXPSYrm_Int, TB_ALIGN_32 },
999 { X86::VMINPDYrr, X86::VMINPDYrm, TB_ALIGN_32 },
1000 { X86::VMINPDYrr_Int, X86::VMINPDYrm_Int, TB_ALIGN_32 },
1001 { X86::VMINPSYrr, X86::VMINPSYrm, TB_ALIGN_32 },
1002 { X86::VMINPSYrr_Int, X86::VMINPSYrm_Int, TB_ALIGN_32 },
1003 { X86::VMULPDYrr, X86::VMULPDYrm, TB_ALIGN_32 },
1004 { X86::VMULPSYrr, X86::VMULPSYrm, TB_ALIGN_32 },
1005 { X86::VORPDYrr, X86::VORPDYrm, TB_ALIGN_32 },
1006 { X86::VORPSYrr, X86::VORPSYrm, TB_ALIGN_32 },
1007 { X86::VPERM2F128rr, X86::VPERM2F128rm, TB_ALIGN_32 },
1008 { X86::VPERMILPDYrr, X86::VPERMILPDYrm, TB_ALIGN_32 },
1009 { X86::VPERMILPSYrr, X86::VPERMILPSYrm, TB_ALIGN_32 },
1010 { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, TB_ALIGN_32 },
1011 { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, TB_ALIGN_32 },
1012 { X86::VSUBPDYrr, X86::VSUBPDYrm, TB_ALIGN_32 },
1013 { X86::VSUBPSYrr, X86::VSUBPSYrm, TB_ALIGN_32 },
1014 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, TB_ALIGN_32 },
1015 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, TB_ALIGN_32 },
1016 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, TB_ALIGN_32 },
1017 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, TB_ALIGN_32 },
1018 { X86::VXORPDYrr, X86::VXORPDYrm, TB_ALIGN_32 },
1019 { X86::VXORPSYrr, X86::VXORPSYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001020 // AVX2 foldable instructions
Craig Topper446626d2012-01-14 18:14:53 +00001021 { X86::VINSERTI128rr, X86::VINSERTI128rm, TB_ALIGN_16 },
1022 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, TB_ALIGN_32 },
1023 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, TB_ALIGN_32 },
1024 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, TB_ALIGN_32 },
1025 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, TB_ALIGN_32 },
1026 { X86::VPADDBYrr, X86::VPADDBYrm, TB_ALIGN_32 },
1027 { X86::VPADDDYrr, X86::VPADDDYrm, TB_ALIGN_32 },
1028 { X86::VPADDQYrr, X86::VPADDQYrm, TB_ALIGN_32 },
1029 { X86::VPADDSBYrr, X86::VPADDSBYrm, TB_ALIGN_32 },
1030 { X86::VPADDSWYrr, X86::VPADDSWYrm, TB_ALIGN_32 },
1031 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, TB_ALIGN_32 },
1032 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, TB_ALIGN_32 },
1033 { X86::VPADDWYrr, X86::VPADDWYrm, TB_ALIGN_32 },
1034 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, TB_ALIGN_32 },
1035 { X86::VPANDNYrr, X86::VPANDNYrm, TB_ALIGN_32 },
1036 { X86::VPANDYrr, X86::VPANDYrm, TB_ALIGN_32 },
1037 { X86::VPAVGBYrr, X86::VPAVGBYrm, TB_ALIGN_32 },
1038 { X86::VPAVGWYrr, X86::VPAVGWYrm, TB_ALIGN_32 },
1039 { X86::VPBLENDDrri, X86::VPBLENDDrmi, TB_ALIGN_32 },
1040 { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, TB_ALIGN_32 },
1041 { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, TB_ALIGN_32 },
1042 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, TB_ALIGN_32 },
1043 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, TB_ALIGN_32 },
1044 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, TB_ALIGN_32 },
1045 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, TB_ALIGN_32 },
1046 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, TB_ALIGN_32 },
1047 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, TB_ALIGN_32 },
1048 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, TB_ALIGN_32 },
1049 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, TB_ALIGN_32 },
1050 { X86::VPERM2I128rr, X86::VPERM2I128rm, TB_ALIGN_32 },
Craig Topper40385c82012-01-19 08:50:38 +00001051 { X86::VPERMDYrr, X86::VPERMDYrm, TB_ALIGN_32 },
1052 { X86::VPERMPDYrr, X86::VPERMPDYrm, TB_ALIGN_32 },
1053 { X86::VPERMPSYrr, X86::VPERMPSYrm, TB_ALIGN_32 },
1054 { X86::VPERMQYrr, X86::VPERMQYrm, TB_ALIGN_32 },
Craig Topper4bb3f342012-01-25 05:37:32 +00001055 { X86::VPHADDDYrr, X86::VPHADDDYrm, TB_ALIGN_32 },
Craig Topper446626d2012-01-14 18:14:53 +00001056 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, TB_ALIGN_32 },
Craig Topper4bb3f342012-01-25 05:37:32 +00001057 { X86::VPHADDWYrr, X86::VPHADDWYrm, TB_ALIGN_32 },
1058 { X86::VPHSUBDYrr, X86::VPHSUBDYrm, TB_ALIGN_32 },
Craig Topper446626d2012-01-14 18:14:53 +00001059 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, TB_ALIGN_32 },
Craig Topper4bb3f342012-01-25 05:37:32 +00001060 { X86::VPHSUBWYrr, X86::VPHSUBWYrm, TB_ALIGN_32 },
Craig Topper446626d2012-01-14 18:14:53 +00001061 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, TB_ALIGN_32 },
1062 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, TB_ALIGN_32 },
1063 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, TB_ALIGN_32 },
1064 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, TB_ALIGN_32 },
1065 { X86::VPMINSWYrr, X86::VPMINSWYrm, TB_ALIGN_32 },
1066 { X86::VPMINUBYrr, X86::VPMINUBYrm, TB_ALIGN_32 },
1067 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, TB_ALIGN_32 },
1068 { X86::VPMULDQYrr, X86::VPMULDQYrm, TB_ALIGN_32 },
1069 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, TB_ALIGN_32 },
1070 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, TB_ALIGN_32 },
1071 { X86::VPMULHWYrr, X86::VPMULHWYrm, TB_ALIGN_32 },
1072 { X86::VPMULLDYrr, X86::VPMULLDYrm, TB_ALIGN_32 },
1073 { X86::VPMULLWYrr, X86::VPMULLWYrm, TB_ALIGN_32 },
1074 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, TB_ALIGN_32 },
1075 { X86::VPORYrr, X86::VPORYrm, TB_ALIGN_32 },
1076 { X86::VPSADBWYrr, X86::VPSADBWYrm, TB_ALIGN_32 },
Craig Topper969ba282012-01-25 06:43:11 +00001077 { X86::VPSHUFBYrr, X86::VPSHUFBYrm, TB_ALIGN_32 },
1078 { X86::VPSIGNBYrr, X86::VPSIGNBYrm, TB_ALIGN_32 },
1079 { X86::VPSIGNWYrr, X86::VPSIGNWYrm, TB_ALIGN_32 },
1080 { X86::VPSIGNDYrr, X86::VPSIGNDYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001081 { X86::VPSLLDYrr, X86::VPSLLDYrm, TB_ALIGN_16 },
1082 { X86::VPSLLQYrr, X86::VPSLLQYrm, TB_ALIGN_16 },
1083 { X86::VPSLLWYrr, X86::VPSLLWYrm, TB_ALIGN_16 },
1084 { X86::VPSLLVDrr, X86::VPSLLVDrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +00001085 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001086 { X86::VPSLLVQrr, X86::VPSLLVQrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +00001087 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001088 { X86::VPSRADYrr, X86::VPSRADYrm, TB_ALIGN_16 },
1089 { X86::VPSRAWYrr, X86::VPSRAWYrm, TB_ALIGN_16 },
1090 { X86::VPSRAVDrr, X86::VPSRAVDrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +00001091 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001092 { X86::VPSRLDYrr, X86::VPSRLDYrm, TB_ALIGN_16 },
1093 { X86::VPSRLQYrr, X86::VPSRLQYrm, TB_ALIGN_16 },
1094 { X86::VPSRLWYrr, X86::VPSRLWYrm, TB_ALIGN_16 },
1095 { X86::VPSRLVDrr, X86::VPSRLVDrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +00001096 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001097 { X86::VPSRLVQrr, X86::VPSRLVQrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +00001098 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, TB_ALIGN_32 },
1099 { X86::VPSUBBYrr, X86::VPSUBBYrm, TB_ALIGN_32 },
1100 { X86::VPSUBDYrr, X86::VPSUBDYrm, TB_ALIGN_32 },
1101 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, TB_ALIGN_32 },
1102 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, TB_ALIGN_32 },
1103 { X86::VPSUBWYrr, X86::VPSUBWYrm, TB_ALIGN_32 },
1104 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, TB_ALIGN_32 },
1105 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001106 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +00001107 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, TB_ALIGN_32 },
1108 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, TB_ALIGN_32 },
1109 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, TB_ALIGN_32 },
1110 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, TB_ALIGN_32 },
1111 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, TB_ALIGN_32 },
1112 { X86::VPXORYrr, X86::VPXORYrm, TB_ALIGN_32 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00001113 // FIXME: add AVX 256-bit foldable instructions
Owen Anderson43dbe052008-01-07 01:35:02 +00001114 };
1115
1116 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
Craig Topper72051bf2012-03-09 07:45:21 +00001117 unsigned RegOp = OpTbl2[i].RegOp;
1118 unsigned MemOp = OpTbl2[i].MemOp;
1119 unsigned Flags = OpTbl2[i].Flags;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00001120 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1121 RegOp, MemOp,
1122 // Index 2, folded load
1123 Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
Owen Anderson43dbe052008-01-07 01:35:02 +00001124 }
Chris Lattner72614082002-10-25 22:55:53 +00001125}
1126
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00001127void
1128X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1129 MemOp2RegOpTableType &M2RTable,
1130 unsigned RegOp, unsigned MemOp, unsigned Flags) {
1131 if ((Flags & TB_NO_FORWARD) == 0) {
1132 assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1133 R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1134 }
1135 if ((Flags & TB_NO_REVERSE) == 0) {
1136 assert(!M2RTable.count(MemOp) &&
1137 "Duplicated entries in unfolding maps?");
1138 M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1139 }
1140}
1141
Evan Chenga5a81d72010-01-12 00:09:37 +00001142bool
Evan Cheng7da9ecf2010-01-13 00:30:23 +00001143X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1144 unsigned &SrcReg, unsigned &DstReg,
1145 unsigned &SubIdx) const {
Evan Chenga5a81d72010-01-12 00:09:37 +00001146 switch (MI.getOpcode()) {
1147 default: break;
1148 case X86::MOVSX16rr8:
1149 case X86::MOVZX16rr8:
1150 case X86::MOVSX32rr8:
1151 case X86::MOVZX32rr8:
1152 case X86::MOVSX64rr8:
1153 case X86::MOVZX64rr8:
Evan Cheng57d1d932010-01-13 08:01:32 +00001154 if (!TM.getSubtarget<X86Subtarget>().is64Bit())
1155 // It's not always legal to reference the low 8-bit of the larger
1156 // register in 32-bit mode.
1157 return false;
Evan Chenga5a81d72010-01-12 00:09:37 +00001158 case X86::MOVSX32rr16:
1159 case X86::MOVZX32rr16:
1160 case X86::MOVSX64rr16:
1161 case X86::MOVZX64rr16:
1162 case X86::MOVSX64rr32:
1163 case X86::MOVZX64rr32: {
1164 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
1165 // Be conservative.
1166 return false;
Evan Chenga5a81d72010-01-12 00:09:37 +00001167 SrcReg = MI.getOperand(1).getReg();
1168 DstReg = MI.getOperand(0).getReg();
Evan Chenga5a81d72010-01-12 00:09:37 +00001169 switch (MI.getOpcode()) {
1170 default:
1171 llvm_unreachable(0);
Evan Chenga5a81d72010-01-12 00:09:37 +00001172 case X86::MOVSX16rr8:
1173 case X86::MOVZX16rr8:
1174 case X86::MOVSX32rr8:
1175 case X86::MOVZX32rr8:
1176 case X86::MOVSX64rr8:
1177 case X86::MOVZX64rr8:
Jakob Stoklund Olesen22c0e972010-05-25 17:04:16 +00001178 SubIdx = X86::sub_8bit;
Evan Chenga5a81d72010-01-12 00:09:37 +00001179 break;
1180 case X86::MOVSX32rr16:
1181 case X86::MOVZX32rr16:
1182 case X86::MOVSX64rr16:
1183 case X86::MOVZX64rr16:
Jakob Stoklund Olesen22c0e972010-05-25 17:04:16 +00001184 SubIdx = X86::sub_16bit;
Evan Chenga5a81d72010-01-12 00:09:37 +00001185 break;
1186 case X86::MOVSX64rr32:
1187 case X86::MOVZX64rr32:
Jakob Stoklund Olesen22c0e972010-05-25 17:04:16 +00001188 SubIdx = X86::sub_32bit;
Evan Chenga5a81d72010-01-12 00:09:37 +00001189 break;
1190 }
Evan Cheng7da9ecf2010-01-13 00:30:23 +00001191 return true;
Evan Chenga5a81d72010-01-12 00:09:37 +00001192 }
1193 }
Evan Cheng7da9ecf2010-01-13 00:30:23 +00001194 return false;
Evan Chenga5a81d72010-01-12 00:09:37 +00001195}
1196
David Greeneb87bc952009-11-12 20:55:29 +00001197/// isFrameOperand - Return true and the FrameIndex if the specified
1198/// operand and follow operands form a reference to the stack frame.
1199bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
1200 int &FrameIndex) const {
1201 if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
1202 MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
1203 MI->getOperand(Op+1).getImm() == 1 &&
1204 MI->getOperand(Op+2).getReg() == 0 &&
1205 MI->getOperand(Op+3).getImm() == 0) {
1206 FrameIndex = MI->getOperand(Op).getIndex();
1207 return true;
1208 }
1209 return false;
1210}
1211
David Greenedda39782009-11-13 00:29:53 +00001212static bool isFrameLoadOpcode(int Opcode) {
1213 switch (Opcode) {
David Blaikie4d6ccb52012-01-20 21:51:11 +00001214 default:
1215 return false;
Chris Lattner40839602006-02-02 20:12:32 +00001216 case X86::MOV8rm:
1217 case X86::MOV16rm:
1218 case X86::MOV32rm:
Evan Cheng25ab6902006-09-08 06:48:29 +00001219 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +00001220 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +00001221 case X86::MOVSSrm:
1222 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +00001223 case X86::MOVAPSrm:
1224 case X86::MOVAPDrm:
Dan Gohman54462742009-01-09 02:40:34 +00001225 case X86::MOVDQArm:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00001226 case X86::VMOVSSrm:
1227 case X86::VMOVSDrm:
1228 case X86::VMOVAPSrm:
1229 case X86::VMOVAPDrm:
1230 case X86::VMOVDQArm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00001231 case X86::VMOVAPSYrm:
1232 case X86::VMOVAPDYrm:
1233 case X86::VMOVDQAYrm:
Bill Wendling823efee2007-04-03 06:00:37 +00001234 case X86::MMX_MOVD64rm:
1235 case X86::MMX_MOVQ64rm:
David Greenedda39782009-11-13 00:29:53 +00001236 return true;
David Greenedda39782009-11-13 00:29:53 +00001237 }
David Greenedda39782009-11-13 00:29:53 +00001238}
1239
1240static bool isFrameStoreOpcode(int Opcode) {
1241 switch (Opcode) {
1242 default: break;
1243 case X86::MOV8mr:
1244 case X86::MOV16mr:
1245 case X86::MOV32mr:
1246 case X86::MOV64mr:
1247 case X86::ST_FpP64m:
1248 case X86::MOVSSmr:
1249 case X86::MOVSDmr:
1250 case X86::MOVAPSmr:
1251 case X86::MOVAPDmr:
1252 case X86::MOVDQAmr:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00001253 case X86::VMOVSSmr:
1254 case X86::VMOVSDmr:
1255 case X86::VMOVAPSmr:
1256 case X86::VMOVAPDmr:
1257 case X86::VMOVDQAmr:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00001258 case X86::VMOVAPSYmr:
1259 case X86::VMOVAPDYmr:
1260 case X86::VMOVDQAYmr:
David Greenedda39782009-11-13 00:29:53 +00001261 case X86::MMX_MOVD64mr:
1262 case X86::MMX_MOVQ64mr:
1263 case X86::MMX_MOVNTQmr:
1264 return true;
1265 }
1266 return false;
1267}
1268
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001269unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
David Greenedda39782009-11-13 00:29:53 +00001270 int &FrameIndex) const {
1271 if (isFrameLoadOpcode(MI->getOpcode()))
Jakob Stoklund Olesen81c7b192010-07-27 04:17:01 +00001272 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
Chris Lattner40839602006-02-02 20:12:32 +00001273 return MI->getOperand(0).getReg();
David Greenedda39782009-11-13 00:29:53 +00001274 return 0;
1275}
1276
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001277unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
David Greenedda39782009-11-13 00:29:53 +00001278 int &FrameIndex) const {
1279 if (isFrameLoadOpcode(MI->getOpcode())) {
1280 unsigned Reg;
1281 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
1282 return Reg;
David Greeneb87bc952009-11-12 20:55:29 +00001283 // Check for post-frame index elimination operations
David Greene29dbf502009-12-04 22:38:46 +00001284 const MachineMemOperand *Dummy;
1285 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
Chris Lattner40839602006-02-02 20:12:32 +00001286 }
1287 return 0;
1288}
1289
Dan Gohmancbad42c2008-11-18 19:49:32 +00001290unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Chris Lattner40839602006-02-02 20:12:32 +00001291 int &FrameIndex) const {
David Greenedda39782009-11-13 00:29:53 +00001292 if (isFrameStoreOpcode(MI->getOpcode()))
Jakob Stoklund Olesen81c7b192010-07-27 04:17:01 +00001293 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
1294 isFrameOperand(MI, 0, FrameIndex))
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00001295 return MI->getOperand(X86::AddrNumOperands).getReg();
David Greenedda39782009-11-13 00:29:53 +00001296 return 0;
1297}
1298
1299unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1300 int &FrameIndex) const {
1301 if (isFrameStoreOpcode(MI->getOpcode())) {
1302 unsigned Reg;
1303 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
1304 return Reg;
David Greeneb87bc952009-11-12 20:55:29 +00001305 // Check for post-frame index elimination operations
David Greene29dbf502009-12-04 22:38:46 +00001306 const MachineMemOperand *Dummy;
1307 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
Chris Lattner40839602006-02-02 20:12:32 +00001308 }
1309 return 0;
1310}
1311
Evan Chenge3d8dbf2008-03-27 01:45:11 +00001312/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
1313/// X86::MOVPC32r.
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001314static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chenge3d8dbf2008-03-27 01:45:11 +00001315 bool isPICBase = false;
1316 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1317 E = MRI.def_end(); I != E; ++I) {
1318 MachineInstr *DefMI = I.getOperand().getParent();
1319 if (DefMI->getOpcode() != X86::MOVPC32r)
1320 return false;
1321 assert(!isPICBase && "More than one PIC base?");
1322 isPICBase = true;
1323 }
1324 return isPICBase;
1325}
Evan Cheng9d15abe2008-03-31 07:54:19 +00001326
Bill Wendling9f8fea32008-05-12 20:54:26 +00001327bool
Dan Gohman3731bc02009-10-10 00:34:18 +00001328X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
1329 AliasAnalysis *AA) const {
Dan Gohmanc101e952007-06-14 20:50:44 +00001330 switch (MI->getOpcode()) {
1331 default: break;
Evan Chenge771ebd2008-03-27 01:41:09 +00001332 case X86::MOV8rm:
1333 case X86::MOV16rm:
Evan Chenge771ebd2008-03-27 01:41:09 +00001334 case X86::MOV32rm:
Evan Chenge771ebd2008-03-27 01:41:09 +00001335 case X86::MOV64rm:
1336 case X86::LD_Fp64m:
1337 case X86::MOVSSrm:
1338 case X86::MOVSDrm:
1339 case X86::MOVAPSrm:
Evan Cheng600c0432009-11-16 21:56:03 +00001340 case X86::MOVUPSrm:
Evan Chenge771ebd2008-03-27 01:41:09 +00001341 case X86::MOVAPDrm:
Dan Gohman54462742009-01-09 02:40:34 +00001342 case X86::MOVDQArm:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00001343 case X86::VMOVSSrm:
1344 case X86::VMOVSDrm:
1345 case X86::VMOVAPSrm:
1346 case X86::VMOVUPSrm:
1347 case X86::VMOVAPDrm:
1348 case X86::VMOVDQArm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00001349 case X86::VMOVAPSYrm:
1350 case X86::VMOVUPSYrm:
1351 case X86::VMOVAPDYrm:
1352 case X86::VMOVDQAYrm:
Evan Chenge771ebd2008-03-27 01:41:09 +00001353 case X86::MMX_MOVD64rm:
Evan Chengd15ac2f2009-11-17 09:51:18 +00001354 case X86::MMX_MOVQ64rm:
Bruno Cardoso Lopes0e59a042011-09-03 00:46:45 +00001355 case X86::FsVMOVAPSrm:
1356 case X86::FsVMOVAPDrm:
Evan Chengd15ac2f2009-11-17 09:51:18 +00001357 case X86::FsMOVAPSrm:
1358 case X86::FsMOVAPDrm: {
Evan Chenge771ebd2008-03-27 01:41:09 +00001359 // Loads from constant pools are trivially rematerializable.
Dan Gohmand735b802008-10-03 15:45:36 +00001360 if (MI->getOperand(1).isReg() &&
1361 MI->getOperand(2).isImm() &&
1362 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Dan Gohman3731bc02009-10-10 00:34:18 +00001363 MI->isInvariantLoad(AA)) {
Evan Chenge771ebd2008-03-27 01:41:09 +00001364 unsigned BaseReg = MI->getOperand(1).getReg();
Chris Lattner18c59872009-06-27 04:16:01 +00001365 if (BaseReg == 0 || BaseReg == X86::RIP)
Evan Chenge771ebd2008-03-27 01:41:09 +00001366 return true;
1367 // Allow re-materialization of PIC load.
Dan Gohmand735b802008-10-03 15:45:36 +00001368 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengffe2eb02008-04-01 23:26:12 +00001369 return false;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001370 const MachineFunction &MF = *MI->getParent()->getParent();
1371 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chenge771ebd2008-03-27 01:41:09 +00001372 bool isPICBase = false;
1373 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1374 E = MRI.def_end(); I != E; ++I) {
1375 MachineInstr *DefMI = I.getOperand().getParent();
1376 if (DefMI->getOpcode() != X86::MOVPC32r)
1377 return false;
1378 assert(!isPICBase && "More than one PIC base?");
1379 isPICBase = true;
1380 }
1381 return isPICBase;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001382 }
Evan Chenge771ebd2008-03-27 01:41:09 +00001383 return false;
Evan Chengd8850a52008-02-22 09:25:47 +00001384 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001385
Evan Chenge771ebd2008-03-27 01:41:09 +00001386 case X86::LEA32r:
1387 case X86::LEA64r: {
Dan Gohmand735b802008-10-03 15:45:36 +00001388 if (MI->getOperand(2).isImm() &&
1389 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1390 !MI->getOperand(4).isReg()) {
Evan Chenge771ebd2008-03-27 01:41:09 +00001391 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmand735b802008-10-03 15:45:36 +00001392 if (!MI->getOperand(1).isReg())
Dan Gohman83ccd142008-09-26 21:30:20 +00001393 return true;
Evan Chenge771ebd2008-03-27 01:41:09 +00001394 unsigned BaseReg = MI->getOperand(1).getReg();
1395 if (BaseReg == 0)
1396 return true;
1397 // Allow re-materialization of lea PICBase + x.
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001398 const MachineFunction &MF = *MI->getParent()->getParent();
1399 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chenge3d8dbf2008-03-27 01:45:11 +00001400 return regIsPICBase(BaseReg, MRI);
Evan Chenge771ebd2008-03-27 01:41:09 +00001401 }
1402 return false;
1403 }
Dan Gohmanc101e952007-06-14 20:50:44 +00001404 }
Evan Chenge771ebd2008-03-27 01:41:09 +00001405
Dan Gohmand45eddd2007-06-26 00:48:07 +00001406 // All other instructions marked M_REMATERIALIZABLE are always trivially
1407 // rematerializable.
1408 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +00001409}
1410
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001411/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
1412/// would clobber the EFLAGS condition register. Note the result may be
1413/// conservative. If it cannot definitely determine the safety after visiting
Dan Gohman1b1764b2009-10-14 00:08:59 +00001414/// a few instructions in each direction it assumes it's not safe.
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001415static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
1416 MachineBasicBlock::iterator I) {
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001417 MachineBasicBlock::iterator E = MBB.end();
1418
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001419 // For compile time consideration, if we are not able to determine the
Dan Gohman1b1764b2009-10-14 00:08:59 +00001420 // safety after visiting 4 instructions in each direction, we will assume
1421 // it's not safe.
1422 MachineBasicBlock::iterator Iter = I;
Jakob Stoklund Olesenb8e052e2011-09-02 23:52:52 +00001423 for (unsigned i = 0; Iter != E && i < 4; ++i) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001424 bool SeenDef = false;
Dan Gohman1b1764b2009-10-14 00:08:59 +00001425 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1426 MachineOperand &MO = Iter->getOperand(j);
Jakob Stoklund Olesen450b3852012-02-09 00:17:22 +00001427 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1428 SeenDef = true;
Dan Gohmand735b802008-10-03 15:45:36 +00001429 if (!MO.isReg())
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001430 continue;
1431 if (MO.getReg() == X86::EFLAGS) {
1432 if (MO.isUse())
1433 return false;
1434 SeenDef = true;
1435 }
1436 }
1437
1438 if (SeenDef)
1439 // This instruction defines EFLAGS, no need to look any further.
1440 return true;
Dan Gohman1b1764b2009-10-14 00:08:59 +00001441 ++Iter;
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001442 // Skip over DBG_VALUE.
1443 while (Iter != E && Iter->isDebugValue())
1444 ++Iter;
Jakob Stoklund Olesenb8e052e2011-09-02 23:52:52 +00001445 }
Dan Gohman3afda6e2008-10-21 03:24:31 +00001446
Jakob Stoklund Olesenb8e052e2011-09-02 23:52:52 +00001447 // It is safe to clobber EFLAGS at the end of a block of no successor has it
1448 // live in.
1449 if (Iter == E) {
1450 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
1451 SE = MBB.succ_end(); SI != SE; ++SI)
1452 if ((*SI)->isLiveIn(X86::EFLAGS))
1453 return false;
1454 return true;
Dan Gohman1b1764b2009-10-14 00:08:59 +00001455 }
1456
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001457 MachineBasicBlock::iterator B = MBB.begin();
Dan Gohman1b1764b2009-10-14 00:08:59 +00001458 Iter = I;
1459 for (unsigned i = 0; i < 4; ++i) {
1460 // If we make it to the beginning of the block, it's safe to clobber
1461 // EFLAGS iff EFLAGS is not live-in.
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001462 if (Iter == B)
Dan Gohman1b1764b2009-10-14 00:08:59 +00001463 return !MBB.isLiveIn(X86::EFLAGS);
1464
1465 --Iter;
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001466 // Skip over DBG_VALUE.
1467 while (Iter != B && Iter->isDebugValue())
1468 --Iter;
1469
Dan Gohman1b1764b2009-10-14 00:08:59 +00001470 bool SawKill = false;
1471 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1472 MachineOperand &MO = Iter->getOperand(j);
Jakob Stoklund Olesen450b3852012-02-09 00:17:22 +00001473 // A register mask may clobber EFLAGS, but we should still look for a
1474 // live EFLAGS def.
1475 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1476 SawKill = true;
Dan Gohman1b1764b2009-10-14 00:08:59 +00001477 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1478 if (MO.isDef()) return MO.isDead();
1479 if (MO.isKill()) SawKill = true;
1480 }
1481 }
1482
1483 if (SawKill)
1484 // This instruction kills EFLAGS and doesn't redefine it, so
1485 // there's no need to look further.
Dan Gohman3afda6e2008-10-21 03:24:31 +00001486 return true;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001487 }
1488
1489 // Conservative answer.
1490 return false;
1491}
1492
Evan Chengca1267c2008-03-31 20:40:39 +00001493void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1494 MachineBasicBlock::iterator I,
Evan Cheng37844532009-07-16 09:20:10 +00001495 unsigned DestReg, unsigned SubIdx,
Evan Chengd57cdd52009-11-14 02:55:43 +00001496 const MachineInstr *Orig,
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +00001497 const TargetRegisterInfo &TRI) const {
Dan Gohman0d881042010-05-07 01:28:10 +00001498 DebugLoc DL = Orig->getDebugLoc();
Bill Wendlingfbef3102009-02-11 21:51:19 +00001499
Evan Chengca1267c2008-03-31 20:40:39 +00001500 // MOV32r0 etc. are implemented with xor which clobbers condition code.
1501 // Re-materialize them as movri instructions to avoid side effects.
Evan Cheng37844532009-07-16 09:20:10 +00001502 bool Clone = true;
1503 unsigned Opc = Orig->getOpcode();
1504 switch (Opc) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001505 default: break;
Evan Chengca1267c2008-03-31 20:40:39 +00001506 case X86::MOV8r0:
Dan Gohmanf1b4d262010-01-12 04:42:54 +00001507 case X86::MOV16r0:
1508 case X86::MOV32r0:
1509 case X86::MOV64r0: {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001510 if (!isSafeToClobberEFLAGS(MBB, I)) {
Evan Cheng37844532009-07-16 09:20:10 +00001511 switch (Opc) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001512 default: break;
1513 case X86::MOV8r0: Opc = X86::MOV8ri; break;
Dan Gohmanf1b4d262010-01-12 04:42:54 +00001514 case X86::MOV16r0: Opc = X86::MOV16ri; break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001515 case X86::MOV32r0: Opc = X86::MOV32ri; break;
Dan Gohman6fe0df22010-02-26 16:49:27 +00001516 case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001517 }
Evan Cheng37844532009-07-16 09:20:10 +00001518 Clone = false;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001519 }
Evan Chengca1267c2008-03-31 20:40:39 +00001520 break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001521 }
1522 }
1523
Evan Cheng37844532009-07-16 09:20:10 +00001524 if (Clone) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001525 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Chengca1267c2008-03-31 20:40:39 +00001526 MBB.insert(I, MI);
Evan Cheng37844532009-07-16 09:20:10 +00001527 } else {
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +00001528 BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
Evan Chengca1267c2008-03-31 20:40:39 +00001529 }
Evan Cheng03eb3882008-04-16 23:44:44 +00001530
Evan Cheng37844532009-07-16 09:20:10 +00001531 MachineInstr *NewMI = prior(I);
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +00001532 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
Evan Chengca1267c2008-03-31 20:40:39 +00001533}
1534
Evan Cheng3f411c72007-10-05 08:04:01 +00001535/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1536/// is not marked dead.
1537static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +00001538 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1539 MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001540 if (MO.isReg() && MO.isDef() &&
Evan Cheng3f411c72007-10-05 08:04:01 +00001541 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1542 return true;
1543 }
1544 }
1545 return false;
1546}
1547
Evan Chengdd99f3a2009-12-12 20:03:14 +00001548/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
Evan Cheng656e5142009-12-11 06:01:48 +00001549/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1550/// to a 32-bit superregister and then truncating back down to a 16-bit
1551/// subregister.
1552MachineInstr *
1553X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1554 MachineFunction::iterator &MFI,
1555 MachineBasicBlock::iterator &MBBI,
1556 LiveVariables *LV) const {
1557 MachineInstr *MI = MBBI;
1558 unsigned Dest = MI->getOperand(0).getReg();
1559 unsigned Src = MI->getOperand(1).getReg();
1560 bool isDead = MI->getOperand(0).isDead();
1561 bool isKill = MI->getOperand(1).isKill();
1562
1563 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1564 ? X86::LEA64_32r : X86::LEA32r;
1565 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001566 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Evan Cheng656e5142009-12-11 06:01:48 +00001567 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001568
Evan Cheng656e5142009-12-11 06:01:48 +00001569 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001570 // well be shifting and then extracting the lower 16-bits.
Evan Chengdd99f3a2009-12-12 20:03:14 +00001571 // This has the potential to cause partial register stall. e.g.
Evan Cheng04ab19c2009-12-12 18:55:26 +00001572 // movw (%rbp,%rcx,2), %dx
1573 // leal -65(%rdx), %esi
Evan Chengdd99f3a2009-12-12 20:03:14 +00001574 // But testing has shown this *does* help performance in 64-bit mode (at
1575 // least on modern x86 machines).
Evan Cheng656e5142009-12-11 06:01:48 +00001576 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1577 MachineInstr *InsMI =
Jakob Stoklund Olesen5c00e072010-07-08 16:40:15 +00001578 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1579 .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1580 .addReg(Src, getKillRegState(isKill));
Evan Cheng656e5142009-12-11 06:01:48 +00001581
1582 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1583 get(Opc), leaOutReg);
1584 switch (MIOpc) {
1585 default:
1586 llvm_unreachable(0);
Evan Cheng656e5142009-12-11 06:01:48 +00001587 case X86::SHL16ri: {
1588 unsigned ShAmt = MI->getOperand(2).getImm();
1589 MIB.addReg(0).addImm(1 << ShAmt)
Chris Lattner599b5312010-07-08 23:46:44 +00001590 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
Evan Cheng656e5142009-12-11 06:01:48 +00001591 break;
1592 }
1593 case X86::INC16r:
1594 case X86::INC64_16r:
Chris Lattner599b5312010-07-08 23:46:44 +00001595 addRegOffset(MIB, leaInReg, true, 1);
Evan Cheng656e5142009-12-11 06:01:48 +00001596 break;
1597 case X86::DEC16r:
1598 case X86::DEC64_16r:
Chris Lattner599b5312010-07-08 23:46:44 +00001599 addRegOffset(MIB, leaInReg, true, -1);
Evan Cheng656e5142009-12-11 06:01:48 +00001600 break;
1601 case X86::ADD16ri:
1602 case X86::ADD16ri8:
Chris Lattner15df55d2010-10-08 03:57:25 +00001603 case X86::ADD16ri_DB:
1604 case X86::ADD16ri8_DB:
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001605 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
Evan Cheng656e5142009-12-11 06:01:48 +00001606 break;
Chris Lattner99ae6652010-10-08 03:54:52 +00001607 case X86::ADD16rr:
1608 case X86::ADD16rr_DB: {
Evan Cheng656e5142009-12-11 06:01:48 +00001609 unsigned Src2 = MI->getOperand(2).getReg();
1610 bool isKill2 = MI->getOperand(2).isKill();
1611 unsigned leaInReg2 = 0;
1612 MachineInstr *InsMI2 = 0;
1613 if (Src == Src2) {
1614 // ADD16rr %reg1028<kill>, %reg1028
1615 // just a single insert_subreg.
1616 addRegReg(MIB, leaInReg, true, leaInReg, false);
1617 } else {
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001618 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Evan Cheng656e5142009-12-11 06:01:48 +00001619 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001620 // well be shifting and then extracting the lower 16-bits.
Evan Chengddfd1372011-12-14 02:11:42 +00001621 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
Evan Cheng656e5142009-12-11 06:01:48 +00001622 InsMI2 =
Evan Chengddfd1372011-12-14 02:11:42 +00001623 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
Jakob Stoklund Olesen5c00e072010-07-08 16:40:15 +00001624 .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1625 .addReg(Src2, getKillRegState(isKill2));
Evan Cheng656e5142009-12-11 06:01:48 +00001626 addRegReg(MIB, leaInReg, true, leaInReg2, true);
1627 }
1628 if (LV && isKill2 && InsMI2)
1629 LV->replaceKillInstruction(Src2, MI, InsMI2);
1630 break;
1631 }
1632 }
1633
1634 MachineInstr *NewMI = MIB;
1635 MachineInstr *ExtMI =
Jakob Stoklund Olesen0bc25f42010-07-08 16:40:22 +00001636 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
Evan Cheng656e5142009-12-11 06:01:48 +00001637 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Jakob Stoklund Olesen0bc25f42010-07-08 16:40:22 +00001638 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
Evan Cheng656e5142009-12-11 06:01:48 +00001639
1640 if (LV) {
1641 // Update live variables
1642 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1643 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1644 if (isKill)
1645 LV->replaceKillInstruction(Src, MI, InsMI);
1646 if (isDead)
1647 LV->replaceKillInstruction(Dest, MI, ExtMI);
1648 }
1649
1650 return ExtMI;
1651}
1652
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001653/// convertToThreeAddress - This method must be implemented by targets that
1654/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1655/// may be able to convert a two-address instruction into a true
1656/// three-address instruction on demand. This allows the X86 target (for
1657/// example) to convert ADD and SHL instructions into LEA instructions if they
1658/// would require register copies due to two-addressness.
1659///
1660/// This method returns a null pointer if the transformation cannot be
1661/// performed, otherwise it returns the new instruction.
1662///
Evan Cheng258ff672006-12-01 21:52:41 +00001663MachineInstr *
1664X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1665 MachineBasicBlock::iterator &MBBI,
Owen Andersonf660c172008-07-02 23:41:07 +00001666 LiveVariables *LV) const {
Evan Cheng258ff672006-12-01 21:52:41 +00001667 MachineInstr *MI = MBBI;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001668 MachineFunction &MF = *MI->getParent()->getParent();
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001669 // All instructions input are two-addr instructions. Get the known operands.
1670 unsigned Dest = MI->getOperand(0).getReg();
1671 unsigned Src = MI->getOperand(1).getReg();
Evan Cheng9f1c8312008-07-03 09:09:37 +00001672 bool isDead = MI->getOperand(0).isDead();
1673 bool isKill = MI->getOperand(1).isKill();
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001674
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001675 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +00001676 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001677 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Chengdd99f3a2009-12-12 20:03:14 +00001678 // 16-bit LEA is also slow on Core2.
Evan Cheng258ff672006-12-01 21:52:41 +00001679 bool DisableLEA16 = true;
Evan Chengdd99f3a2009-12-12 20:03:14 +00001680 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng258ff672006-12-01 21:52:41 +00001681
Evan Cheng559dc462007-10-05 20:34:26 +00001682 unsigned MIOpc = MI->getOpcode();
1683 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +00001684 case X86::SHUFPSrri: {
1685 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001686 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001687
Evan Chengaa3c1412006-05-30 21:45:53 +00001688 unsigned B = MI->getOperand(1).getReg();
1689 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001690 if (B != C) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001691 unsigned A = MI->getOperand(0).getReg();
1692 unsigned M = MI->getOperand(3).getImm();
Bill Wendlingfbef3102009-02-11 21:51:19 +00001693 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
Bill Wendling587daed2009-05-13 21:33:08 +00001694 .addReg(A, RegState::Define | getDeadRegState(isDead))
1695 .addReg(B, getKillRegState(isKill)).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001696 break;
1697 }
Craig Topper05189702012-01-13 09:21:41 +00001698 case X86::SHUFPDrri: {
1699 assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
1700 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1701
1702 unsigned B = MI->getOperand(1).getReg();
1703 unsigned C = MI->getOperand(2).getReg();
1704 if (B != C) return 0;
1705 unsigned A = MI->getOperand(0).getReg();
1706 unsigned M = MI->getOperand(3).getImm();
1707
1708 // Convert to PSHUFD mask.
1709 M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
1710
1711 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1712 .addReg(A, RegState::Define | getDeadRegState(isDead))
1713 .addReg(B, getKillRegState(isKill)).addImm(M);
1714 break;
1715 }
Chris Lattner995f5502007-03-28 18:12:31 +00001716 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001717 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +00001718 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1719 // the flags produced by a shift yet, so this is safe.
Chris Lattner995f5502007-03-28 18:12:31 +00001720 unsigned ShAmt = MI->getOperand(2).getImm();
1721 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001722
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001723 // LEA can't handle RSP.
1724 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1725 !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
1726 return 0;
1727
Bill Wendlingfbef3102009-02-11 21:51:19 +00001728 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling587daed2009-05-13 21:33:08 +00001729 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1730 .addReg(0).addImm(1 << ShAmt)
1731 .addReg(Src, getKillRegState(isKill))
Chris Lattner599b5312010-07-08 23:46:44 +00001732 .addImm(0).addReg(0);
Chris Lattner995f5502007-03-28 18:12:31 +00001733 break;
1734 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001735 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001736 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001737 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1738 // the flags produced by a shift yet, so this is safe.
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001739 unsigned ShAmt = MI->getOperand(2).getImm();
1740 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001741
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001742 // LEA can't handle ESP.
1743 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1744 !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
1745 return 0;
1746
Evan Chengdd99f3a2009-12-12 20:03:14 +00001747 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Bill Wendlingfbef3102009-02-11 21:51:19 +00001748 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001749 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001750 .addReg(0).addImm(1 << ShAmt)
Chris Lattner599b5312010-07-08 23:46:44 +00001751 .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001752 break;
1753 }
1754 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001755 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +00001756 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1757 // the flags produced by a shift yet, so this is safe.
Evan Cheng61d9c862007-09-06 00:14:41 +00001758 unsigned ShAmt = MI->getOperand(2).getImm();
1759 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001760
Evan Cheng656e5142009-12-11 06:01:48 +00001761 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001762 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng656e5142009-12-11 06:01:48 +00001763 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1764 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1765 .addReg(0).addImm(1 << ShAmt)
1766 .addReg(Src, getKillRegState(isKill))
Chris Lattner599b5312010-07-08 23:46:44 +00001767 .addImm(0).addReg(0);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001768 break;
Evan Chengccba76b2006-05-30 20:26:50 +00001769 }
Evan Cheng559dc462007-10-05 20:34:26 +00001770 default: {
1771 // The following opcodes also sets the condition code register(s). Only
1772 // convert them to equivalent lea if the condition code register def's
1773 // are dead!
1774 if (hasLiveCondCodeDef(MI))
1775 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +00001776
Evan Cheng559dc462007-10-05 20:34:26 +00001777 switch (MIOpc) {
1778 default: return 0;
1779 case X86::INC64r:
Dan Gohmancca29832009-01-06 23:34:46 +00001780 case X86::INC32r:
1781 case X86::INC64_32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001782 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001783 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1784 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001785
1786 // LEA can't handle RSP.
1787 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1788 !MF.getRegInfo().constrainRegClass(Src,
1789 MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass :
1790 X86::GR32_NOSPRegisterClass))
1791 return 0;
1792
Chris Lattner599b5312010-07-08 23:46:44 +00001793 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001794 .addReg(Dest, RegState::Define |
1795 getDeadRegState(isDead)),
Rafael Espindola094fad32009-04-08 21:14:34 +00001796 Src, isKill, 1);
Evan Cheng559dc462007-10-05 20:34:26 +00001797 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001798 }
Evan Cheng559dc462007-10-05 20:34:26 +00001799 case X86::INC16r:
1800 case X86::INC64_16r:
Evan Cheng656e5142009-12-11 06:01:48 +00001801 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001802 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng559dc462007-10-05 20:34:26 +00001803 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Bill Wendlingfbef3102009-02-11 21:51:19 +00001804 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling587daed2009-05-13 21:33:08 +00001805 .addReg(Dest, RegState::Define |
1806 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001807 Src, isKill, 1);
Evan Cheng559dc462007-10-05 20:34:26 +00001808 break;
1809 case X86::DEC64r:
Dan Gohmancca29832009-01-06 23:34:46 +00001810 case X86::DEC32r:
1811 case X86::DEC64_32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001812 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001813 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1814 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001815 // LEA can't handle RSP.
1816 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1817 !MF.getRegInfo().constrainRegClass(Src,
1818 MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass :
1819 X86::GR32_NOSPRegisterClass))
1820 return 0;
1821
Chris Lattner599b5312010-07-08 23:46:44 +00001822 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001823 .addReg(Dest, RegState::Define |
1824 getDeadRegState(isDead)),
Rafael Espindola094fad32009-04-08 21:14:34 +00001825 Src, isKill, -1);
Evan Cheng559dc462007-10-05 20:34:26 +00001826 break;
1827 }
1828 case X86::DEC16r:
1829 case X86::DEC64_16r:
Evan Cheng656e5142009-12-11 06:01:48 +00001830 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001831 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng559dc462007-10-05 20:34:26 +00001832 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Bill Wendlingfbef3102009-02-11 21:51:19 +00001833 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling587daed2009-05-13 21:33:08 +00001834 .addReg(Dest, RegState::Define |
1835 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001836 Src, isKill, -1);
Evan Cheng559dc462007-10-05 20:34:26 +00001837 break;
1838 case X86::ADD64rr:
Chris Lattner99ae6652010-10-08 03:54:52 +00001839 case X86::ADD64rr_DB:
1840 case X86::ADD32rr:
1841 case X86::ADD32rr_DB: {
Evan Cheng559dc462007-10-05 20:34:26 +00001842 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner99ae6652010-10-08 03:54:52 +00001843 unsigned Opc;
Craig Topper44d23822012-02-22 05:59:10 +00001844 const TargetRegisterClass *RC;
Chris Lattner99ae6652010-10-08 03:54:52 +00001845 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
1846 Opc = X86::LEA64r;
1847 RC = X86::GR64_NOSPRegisterClass;
1848 } else {
1849 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1850 RC = X86::GR32_NOSPRegisterClass;
1851 }
1852
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001853
Evan Cheng9f1c8312008-07-03 09:09:37 +00001854 unsigned Src2 = MI->getOperand(2).getReg();
1855 bool isKill2 = MI->getOperand(2).isKill();
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001856
1857 // LEA can't handle RSP.
1858 if (TargetRegisterInfo::isVirtualRegister(Src2) &&
Chris Lattner99ae6652010-10-08 03:54:52 +00001859 !MF.getRegInfo().constrainRegClass(Src2, RC))
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001860 return 0;
1861
Bill Wendlingfbef3102009-02-11 21:51:19 +00001862 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001863 .addReg(Dest, RegState::Define |
1864 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001865 Src, isKill, Src2, isKill2);
1866 if (LV && isKill2)
1867 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng559dc462007-10-05 20:34:26 +00001868 break;
1869 }
Chris Lattner99ae6652010-10-08 03:54:52 +00001870 case X86::ADD16rr:
1871 case X86::ADD16rr_DB: {
Evan Cheng656e5142009-12-11 06:01:48 +00001872 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001873 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng559dc462007-10-05 20:34:26 +00001874 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Cheng9f1c8312008-07-03 09:09:37 +00001875 unsigned Src2 = MI->getOperand(2).getReg();
1876 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendlingfbef3102009-02-11 21:51:19 +00001877 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling587daed2009-05-13 21:33:08 +00001878 .addReg(Dest, RegState::Define |
1879 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001880 Src, isKill, Src2, isKill2);
1881 if (LV && isKill2)
1882 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng559dc462007-10-05 20:34:26 +00001883 break;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001884 }
Evan Cheng559dc462007-10-05 20:34:26 +00001885 case X86::ADD64ri32:
1886 case X86::ADD64ri8:
Chris Lattner15df55d2010-10-08 03:57:25 +00001887 case X86::ADD64ri32_DB:
1888 case X86::ADD64ri8_DB:
Evan Cheng559dc462007-10-05 20:34:26 +00001889 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner599b5312010-07-08 23:46:44 +00001890 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Evan Cheng656e5142009-12-11 06:01:48 +00001891 .addReg(Dest, RegState::Define |
1892 getDeadRegState(isDead)),
1893 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001894 break;
1895 case X86::ADD32ri:
Chris Lattner15df55d2010-10-08 03:57:25 +00001896 case X86::ADD32ri8:
1897 case X86::ADD32ri_DB:
1898 case X86::ADD32ri8_DB: {
Evan Cheng559dc462007-10-05 20:34:26 +00001899 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Cheng656e5142009-12-11 06:01:48 +00001900 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner599b5312010-07-08 23:46:44 +00001901 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Cheng656e5142009-12-11 06:01:48 +00001902 .addReg(Dest, RegState::Define |
1903 getDeadRegState(isDead)),
Rafael Espindola094fad32009-04-08 21:14:34 +00001904 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001905 break;
1906 }
Evan Cheng656e5142009-12-11 06:01:48 +00001907 case X86::ADD16ri:
1908 case X86::ADD16ri8:
Chris Lattner15df55d2010-10-08 03:57:25 +00001909 case X86::ADD16ri_DB:
1910 case X86::ADD16ri8_DB:
Evan Cheng656e5142009-12-11 06:01:48 +00001911 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001912 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng656e5142009-12-11 06:01:48 +00001913 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner599b5312010-07-08 23:46:44 +00001914 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Cheng656e5142009-12-11 06:01:48 +00001915 .addReg(Dest, RegState::Define |
1916 getDeadRegState(isDead)),
1917 Src, isKill, MI->getOperand(2).getImm());
1918 break;
Evan Cheng559dc462007-10-05 20:34:26 +00001919 }
1920 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001921 }
1922
Evan Cheng15246732008-02-07 08:29:53 +00001923 if (!NewMI) return 0;
1924
Evan Cheng9f1c8312008-07-03 09:09:37 +00001925 if (LV) { // Update live variables
1926 if (isKill)
1927 LV->replaceKillInstruction(Src, MI, NewMI);
1928 if (isDead)
1929 LV->replaceKillInstruction(Dest, MI, NewMI);
1930 }
1931
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001932 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001933 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001934}
1935
Chris Lattner41e431b2005-01-19 07:11:01 +00001936/// commuteInstruction - We have a few instructions that must be hacked on to
1937/// commute them.
1938///
Evan Cheng58dcb0e2008-06-16 07:33:11 +00001939MachineInstr *
1940X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Chris Lattner41e431b2005-01-19 07:11:01 +00001941 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00001942 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1943 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00001944 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00001945 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1946 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1947 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00001948 unsigned Opc;
1949 unsigned Size;
1950 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001951 default: llvm_unreachable("Unreachable!");
Chris Lattner0df53d22005-01-19 07:31:24 +00001952 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1953 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1954 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1955 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00001956 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1957 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00001958 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001959 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman74feef22008-10-17 01:23:35 +00001960 if (NewMI) {
1961 MachineFunction &MF = *MI->getParent()->getParent();
1962 MI = MF.CloneMachineInstr(MI);
1963 NewMI = false;
Evan Chenga4d16a12008-02-13 02:46:49 +00001964 }
Dan Gohman74feef22008-10-17 01:23:35 +00001965 MI->setDesc(get(Opc));
1966 MI->getOperand(3).setImm(Size-Amt);
1967 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001968 }
Evan Cheng7ad42d92007-10-05 23:13:21 +00001969 case X86::CMOVB16rr:
1970 case X86::CMOVB32rr:
1971 case X86::CMOVB64rr:
1972 case X86::CMOVAE16rr:
1973 case X86::CMOVAE32rr:
1974 case X86::CMOVAE64rr:
1975 case X86::CMOVE16rr:
1976 case X86::CMOVE32rr:
1977 case X86::CMOVE64rr:
1978 case X86::CMOVNE16rr:
1979 case X86::CMOVNE32rr:
1980 case X86::CMOVNE64rr:
Chris Lattner25cbf502010-10-05 23:00:14 +00001981 case X86::CMOVBE16rr:
1982 case X86::CMOVBE32rr:
1983 case X86::CMOVBE64rr:
Evan Cheng7ad42d92007-10-05 23:13:21 +00001984 case X86::CMOVA16rr:
1985 case X86::CMOVA32rr:
1986 case X86::CMOVA64rr:
1987 case X86::CMOVL16rr:
1988 case X86::CMOVL32rr:
1989 case X86::CMOVL64rr:
1990 case X86::CMOVGE16rr:
1991 case X86::CMOVGE32rr:
1992 case X86::CMOVGE64rr:
1993 case X86::CMOVLE16rr:
1994 case X86::CMOVLE32rr:
1995 case X86::CMOVLE64rr:
1996 case X86::CMOVG16rr:
1997 case X86::CMOVG32rr:
1998 case X86::CMOVG64rr:
1999 case X86::CMOVS16rr:
2000 case X86::CMOVS32rr:
2001 case X86::CMOVS64rr:
2002 case X86::CMOVNS16rr:
2003 case X86::CMOVNS32rr:
2004 case X86::CMOVNS64rr:
2005 case X86::CMOVP16rr:
2006 case X86::CMOVP32rr:
2007 case X86::CMOVP64rr:
2008 case X86::CMOVNP16rr:
2009 case X86::CMOVNP32rr:
Dan Gohman305fceb2009-01-07 00:35:10 +00002010 case X86::CMOVNP64rr:
2011 case X86::CMOVO16rr:
2012 case X86::CMOVO32rr:
2013 case X86::CMOVO64rr:
2014 case X86::CMOVNO16rr:
2015 case X86::CMOVNO32rr:
2016 case X86::CMOVNO64rr: {
Evan Cheng7ad42d92007-10-05 23:13:21 +00002017 unsigned Opc = 0;
2018 switch (MI->getOpcode()) {
2019 default: break;
2020 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
2021 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
2022 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
2023 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
2024 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
2025 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
2026 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
2027 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
2028 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
2029 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
2030 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
2031 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
Chris Lattner25cbf502010-10-05 23:00:14 +00002032 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
2033 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
2034 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
2035 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
2036 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
2037 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00002038 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
2039 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
2040 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
2041 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
2042 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
2043 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
2044 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
2045 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
2046 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
2047 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
2048 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
2049 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
2050 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
2051 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
Mon P Wang0bd07fc2009-04-18 05:16:01 +00002052 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00002053 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
2054 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
2055 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
2056 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
2057 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
Mon P Wang0bd07fc2009-04-18 05:16:01 +00002058 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00002059 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
2060 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
2061 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman305fceb2009-01-07 00:35:10 +00002062 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
2063 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
Mon P Wang0bd07fc2009-04-18 05:16:01 +00002064 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
Dan Gohman305fceb2009-01-07 00:35:10 +00002065 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
2066 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
2067 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00002068 }
Dan Gohman74feef22008-10-17 01:23:35 +00002069 if (NewMI) {
2070 MachineFunction &MF = *MI->getParent()->getParent();
2071 MI = MF.CloneMachineInstr(MI);
2072 NewMI = false;
2073 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00002074 MI->setDesc(get(Opc));
Evan Cheng7ad42d92007-10-05 23:13:21 +00002075 // Fallthrough intended.
2076 }
Chris Lattner41e431b2005-01-19 07:11:01 +00002077 default:
Evan Cheng58dcb0e2008-06-16 07:33:11 +00002078 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Chris Lattner41e431b2005-01-19 07:11:01 +00002079 }
2080}
2081
Chris Lattner7fbe9722006-10-20 17:42:20 +00002082static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
2083 switch (BrOpc) {
2084 default: return X86::COND_INVALID;
Chris Lattnerbd13fb62010-02-11 19:25:55 +00002085 case X86::JE_4: return X86::COND_E;
2086 case X86::JNE_4: return X86::COND_NE;
2087 case X86::JL_4: return X86::COND_L;
2088 case X86::JLE_4: return X86::COND_LE;
2089 case X86::JG_4: return X86::COND_G;
2090 case X86::JGE_4: return X86::COND_GE;
2091 case X86::JB_4: return X86::COND_B;
2092 case X86::JBE_4: return X86::COND_BE;
2093 case X86::JA_4: return X86::COND_A;
2094 case X86::JAE_4: return X86::COND_AE;
2095 case X86::JS_4: return X86::COND_S;
2096 case X86::JNS_4: return X86::COND_NS;
2097 case X86::JP_4: return X86::COND_P;
2098 case X86::JNP_4: return X86::COND_NP;
2099 case X86::JO_4: return X86::COND_O;
2100 case X86::JNO_4: return X86::COND_NO;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002101 }
2102}
2103
2104unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
2105 switch (CC) {
Torok Edwinc23197a2009-07-14 16:55:14 +00002106 default: llvm_unreachable("Illegal condition code!");
Chris Lattnerbd13fb62010-02-11 19:25:55 +00002107 case X86::COND_E: return X86::JE_4;
2108 case X86::COND_NE: return X86::JNE_4;
2109 case X86::COND_L: return X86::JL_4;
2110 case X86::COND_LE: return X86::JLE_4;
2111 case X86::COND_G: return X86::JG_4;
2112 case X86::COND_GE: return X86::JGE_4;
2113 case X86::COND_B: return X86::JB_4;
2114 case X86::COND_BE: return X86::JBE_4;
2115 case X86::COND_A: return X86::JA_4;
2116 case X86::COND_AE: return X86::JAE_4;
2117 case X86::COND_S: return X86::JS_4;
2118 case X86::COND_NS: return X86::JNS_4;
2119 case X86::COND_P: return X86::JP_4;
2120 case X86::COND_NP: return X86::JNP_4;
2121 case X86::COND_O: return X86::JO_4;
2122 case X86::COND_NO: return X86::JNO_4;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002123 }
2124}
2125
Chris Lattner9cd68752006-10-21 05:52:40 +00002126/// GetOppositeBranchCondition - Return the inverse of the specified condition,
2127/// e.g. turning COND_E to COND_NE.
2128X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2129 switch (CC) {
Torok Edwinc23197a2009-07-14 16:55:14 +00002130 default: llvm_unreachable("Illegal condition code!");
Chris Lattner9cd68752006-10-21 05:52:40 +00002131 case X86::COND_E: return X86::COND_NE;
2132 case X86::COND_NE: return X86::COND_E;
2133 case X86::COND_L: return X86::COND_GE;
2134 case X86::COND_LE: return X86::COND_G;
2135 case X86::COND_G: return X86::COND_LE;
2136 case X86::COND_GE: return X86::COND_L;
2137 case X86::COND_B: return X86::COND_AE;
2138 case X86::COND_BE: return X86::COND_A;
2139 case X86::COND_A: return X86::COND_BE;
2140 case X86::COND_AE: return X86::COND_B;
2141 case X86::COND_S: return X86::COND_NS;
2142 case X86::COND_NS: return X86::COND_S;
2143 case X86::COND_P: return X86::COND_NP;
2144 case X86::COND_NP: return X86::COND_P;
2145 case X86::COND_O: return X86::COND_NO;
2146 case X86::COND_NO: return X86::COND_O;
2147 }
2148}
2149
Dale Johannesen318093b2007-06-14 22:03:45 +00002150bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Evan Cheng5a96b3d2011-12-07 07:15:52 +00002151 if (!MI->isTerminator()) return false;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002152
Chris Lattner69244302008-01-07 01:56:04 +00002153 // Conditional branch is a special case.
Evan Cheng5a96b3d2011-12-07 07:15:52 +00002154 if (MI->isBranch() && !MI->isBarrier())
Chris Lattner69244302008-01-07 01:56:04 +00002155 return true;
Evan Cheng5a96b3d2011-12-07 07:15:52 +00002156 if (!MI->isPredicable())
Chris Lattner69244302008-01-07 01:56:04 +00002157 return true;
2158 return !isPredicated(MI);
Dale Johannesen318093b2007-06-14 22:03:45 +00002159}
Chris Lattner9cd68752006-10-21 05:52:40 +00002160
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002161bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
Chris Lattner7fbe9722006-10-20 17:42:20 +00002162 MachineBasicBlock *&TBB,
2163 MachineBasicBlock *&FBB,
Evan Chengdc54d312009-02-09 07:14:22 +00002164 SmallVectorImpl<MachineOperand> &Cond,
2165 bool AllowModify) const {
Dan Gohman279c22e2008-10-21 03:29:32 +00002166 // Start from the bottom of the block and work up, examining the
2167 // terminator instructions.
Chris Lattner7fbe9722006-10-20 17:42:20 +00002168 MachineBasicBlock::iterator I = MBB.end();
Evan Chengfc5a03e2010-04-13 18:50:27 +00002169 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00002170 while (I != MBB.begin()) {
2171 --I;
Dale Johannesen93d6a7e2010-04-02 01:38:09 +00002172 if (I->isDebugValue())
2173 continue;
Bill Wendling85de1e52009-12-14 06:51:19 +00002174
2175 // Working from the bottom, when we see a non-terminator instruction, we're
2176 // done.
Jakob Stoklund Olesen468a2a42010-07-16 17:41:44 +00002177 if (!isUnpredicatedTerminator(I))
Dan Gohman279c22e2008-10-21 03:29:32 +00002178 break;
Bill Wendling85de1e52009-12-14 06:51:19 +00002179
2180 // A terminator that isn't a branch can't easily be handled by this
2181 // analysis.
Evan Cheng5a96b3d2011-12-07 07:15:52 +00002182 if (!I->isBranch())
Chris Lattner7fbe9722006-10-20 17:42:20 +00002183 return true;
Bill Wendling85de1e52009-12-14 06:51:19 +00002184
Dan Gohman279c22e2008-10-21 03:29:32 +00002185 // Handle unconditional branches.
Chris Lattnerbd13fb62010-02-11 19:25:55 +00002186 if (I->getOpcode() == X86::JMP_4) {
Evan Chengfc5a03e2010-04-13 18:50:27 +00002187 UnCondBrIter = I;
2188
Evan Chengdc54d312009-02-09 07:14:22 +00002189 if (!AllowModify) {
2190 TBB = I->getOperand(0).getMBB();
Evan Cheng45e00102009-05-08 06:34:09 +00002191 continue;
Evan Chengdc54d312009-02-09 07:14:22 +00002192 }
2193
Dan Gohman279c22e2008-10-21 03:29:32 +00002194 // If the block has any instructions after a JMP, delete them.
Chris Lattner7896c9f2009-12-03 00:50:42 +00002195 while (llvm::next(I) != MBB.end())
2196 llvm::next(I)->eraseFromParent();
Bill Wendling85de1e52009-12-14 06:51:19 +00002197
Dan Gohman279c22e2008-10-21 03:29:32 +00002198 Cond.clear();
2199 FBB = 0;
Bill Wendling85de1e52009-12-14 06:51:19 +00002200
Dan Gohman279c22e2008-10-21 03:29:32 +00002201 // Delete the JMP if it's equivalent to a fall-through.
2202 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2203 TBB = 0;
2204 I->eraseFromParent();
2205 I = MBB.end();
Evan Chengfc5a03e2010-04-13 18:50:27 +00002206 UnCondBrIter = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00002207 continue;
2208 }
Bill Wendling85de1e52009-12-14 06:51:19 +00002209
Evan Chengfc5a03e2010-04-13 18:50:27 +00002210 // TBB is used to indicate the unconditional destination.
Dan Gohman279c22e2008-10-21 03:29:32 +00002211 TBB = I->getOperand(0).getMBB();
2212 continue;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002213 }
Bill Wendling85de1e52009-12-14 06:51:19 +00002214
Dan Gohman279c22e2008-10-21 03:29:32 +00002215 // Handle conditional branches.
2216 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Chris Lattner7fbe9722006-10-20 17:42:20 +00002217 if (BranchCode == X86::COND_INVALID)
2218 return true; // Can't handle indirect branch.
Bill Wendling85de1e52009-12-14 06:51:19 +00002219
Dan Gohman279c22e2008-10-21 03:29:32 +00002220 // Working from the bottom, handle the first conditional branch.
2221 if (Cond.empty()) {
Evan Chengfc5a03e2010-04-13 18:50:27 +00002222 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2223 if (AllowModify && UnCondBrIter != MBB.end() &&
2224 MBB.isLayoutSuccessor(TargetBB)) {
2225 // If we can modify the code and it ends in something like:
2226 //
2227 // jCC L1
2228 // jmp L2
2229 // L1:
2230 // ...
2231 // L2:
2232 //
2233 // Then we can change this to:
2234 //
2235 // jnCC L2
2236 // L1:
2237 // ...
2238 // L2:
2239 //
2240 // Which is a bit more efficient.
2241 // We conditionally jump to the fall-through block.
2242 BranchCode = GetOppositeBranchCondition(BranchCode);
2243 unsigned JNCC = GetCondBranchFromCond(BranchCode);
2244 MachineBasicBlock::iterator OldInst = I;
2245
2246 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2247 .addMBB(UnCondBrIter->getOperand(0).getMBB());
2248 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
2249 .addMBB(TargetBB);
Evan Chengfc5a03e2010-04-13 18:50:27 +00002250
2251 OldInst->eraseFromParent();
2252 UnCondBrIter->eraseFromParent();
2253
2254 // Restart the analysis.
2255 UnCondBrIter = MBB.end();
2256 I = MBB.end();
2257 continue;
2258 }
2259
Dan Gohman279c22e2008-10-21 03:29:32 +00002260 FBB = TBB;
2261 TBB = I->getOperand(0).getMBB();
2262 Cond.push_back(MachineOperand::CreateImm(BranchCode));
2263 continue;
2264 }
Bill Wendling85de1e52009-12-14 06:51:19 +00002265
2266 // Handle subsequent conditional branches. Only handle the case where all
2267 // conditional branches branch to the same destination and their condition
2268 // opcodes fit one of the special multi-branch idioms.
Dan Gohman279c22e2008-10-21 03:29:32 +00002269 assert(Cond.size() == 1);
2270 assert(TBB);
Bill Wendling85de1e52009-12-14 06:51:19 +00002271
2272 // Only handle the case where all conditional branches branch to the same
2273 // destination.
Dan Gohman279c22e2008-10-21 03:29:32 +00002274 if (TBB != I->getOperand(0).getMBB())
2275 return true;
Bill Wendling85de1e52009-12-14 06:51:19 +00002276
Dan Gohman279c22e2008-10-21 03:29:32 +00002277 // If the conditions are the same, we can leave them alone.
Bill Wendling85de1e52009-12-14 06:51:19 +00002278 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
Dan Gohman279c22e2008-10-21 03:29:32 +00002279 if (OldBranchCode == BranchCode)
2280 continue;
Bill Wendling85de1e52009-12-14 06:51:19 +00002281
2282 // If they differ, see if they fit one of the known patterns. Theoretically,
2283 // we could handle more patterns here, but we shouldn't expect to see them
2284 // if instruction selection has done a reasonable job.
Dan Gohman279c22e2008-10-21 03:29:32 +00002285 if ((OldBranchCode == X86::COND_NP &&
2286 BranchCode == X86::COND_E) ||
2287 (OldBranchCode == X86::COND_E &&
2288 BranchCode == X86::COND_NP))
2289 BranchCode = X86::COND_NP_OR_E;
2290 else if ((OldBranchCode == X86::COND_P &&
2291 BranchCode == X86::COND_NE) ||
2292 (OldBranchCode == X86::COND_NE &&
2293 BranchCode == X86::COND_P))
2294 BranchCode = X86::COND_NE_OR_P;
2295 else
2296 return true;
Bill Wendling85de1e52009-12-14 06:51:19 +00002297
Dan Gohman279c22e2008-10-21 03:29:32 +00002298 // Update the MachineOperand.
2299 Cond[0].setImm(BranchCode);
Chris Lattner6ce64432006-10-30 22:27:23 +00002300 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00002301
Dan Gohman279c22e2008-10-21 03:29:32 +00002302 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002303}
2304
Evan Cheng6ae36262007-05-18 00:18:17 +00002305unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00002306 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00002307 unsigned Count = 0;
2308
2309 while (I != MBB.begin()) {
2310 --I;
Dale Johannesen93d6a7e2010-04-02 01:38:09 +00002311 if (I->isDebugValue())
2312 continue;
Chris Lattnerbd13fb62010-02-11 19:25:55 +00002313 if (I->getOpcode() != X86::JMP_4 &&
Dan Gohman279c22e2008-10-21 03:29:32 +00002314 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
2315 break;
2316 // Remove the branch.
2317 I->eraseFromParent();
2318 I = MBB.end();
2319 ++Count;
2320 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002321
Dan Gohman279c22e2008-10-21 03:29:32 +00002322 return Count;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002323}
2324
Evan Cheng6ae36262007-05-18 00:18:17 +00002325unsigned
2326X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
2327 MachineBasicBlock *FBB,
Stuart Hastings3bf91252010-06-17 22:43:56 +00002328 const SmallVectorImpl<MachineOperand> &Cond,
2329 DebugLoc DL) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00002330 // Shouldn't be a fall through.
2331 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00002332 assert((Cond.size() == 1 || Cond.size() == 0) &&
2333 "X86 branch conditions have one component!");
2334
Dan Gohman279c22e2008-10-21 03:29:32 +00002335 if (Cond.empty()) {
2336 // Unconditional branch?
2337 assert(!FBB && "Unconditional branch with multiple successors!");
Stuart Hastings3bf91252010-06-17 22:43:56 +00002338 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00002339 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002340 }
Dan Gohman279c22e2008-10-21 03:29:32 +00002341
2342 // Conditional branch.
2343 unsigned Count = 0;
2344 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2345 switch (CC) {
2346 case X86::COND_NP_OR_E:
2347 // Synthesize NP_OR_E with two branches.
Stuart Hastings3bf91252010-06-17 22:43:56 +00002348 BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002349 ++Count;
Stuart Hastings3bf91252010-06-17 22:43:56 +00002350 BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002351 ++Count;
Dan Gohman279c22e2008-10-21 03:29:32 +00002352 break;
2353 case X86::COND_NE_OR_P:
2354 // Synthesize NE_OR_P with two branches.
Stuart Hastings3bf91252010-06-17 22:43:56 +00002355 BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002356 ++Count;
Stuart Hastings3bf91252010-06-17 22:43:56 +00002357 BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002358 ++Count;
Dan Gohman279c22e2008-10-21 03:29:32 +00002359 break;
Bill Wendling18ce64e2010-03-05 00:33:59 +00002360 default: {
2361 unsigned Opc = GetCondBranchFromCond(CC);
Stuart Hastings3bf91252010-06-17 22:43:56 +00002362 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002363 ++Count;
Dan Gohman279c22e2008-10-21 03:29:32 +00002364 }
Bill Wendling18ce64e2010-03-05 00:33:59 +00002365 }
Dan Gohman279c22e2008-10-21 03:29:32 +00002366 if (FBB) {
2367 // Two-way Conditional branch. Insert the second branch.
Stuart Hastings3bf91252010-06-17 22:43:56 +00002368 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
Dan Gohman279c22e2008-10-21 03:29:32 +00002369 ++Count;
2370 }
2371 return Count;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002372}
2373
Dan Gohman6d9305c2009-04-15 00:04:23 +00002374/// isHReg - Test if the given register is a physical h register.
2375static bool isHReg(unsigned Reg) {
Dan Gohman4af325d2009-04-27 16:41:36 +00002376 return X86::GR8_ABCD_HRegClass.contains(Reg);
Dan Gohman6d9305c2009-04-15 00:04:23 +00002377}
2378
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002379// Try and copy between VR128/VR64 and GR64 registers.
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002380static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2381 bool HasAVX) {
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002382 // SrcReg(VR128) -> DestReg(GR64)
2383 // SrcReg(VR64) -> DestReg(GR64)
2384 // SrcReg(GR64) -> DestReg(VR128)
2385 // SrcReg(GR64) -> DestReg(VR64)
2386
2387 if (X86::GR64RegClass.contains(DestReg)) {
2388 if (X86::VR128RegClass.contains(SrcReg)) {
2389 // Copy from a VR128 register to a GR64 register.
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002390 return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002391 } else if (X86::VR64RegClass.contains(SrcReg)) {
2392 // Copy from a VR64 register to a GR64 register.
2393 return X86::MOVSDto64rr;
2394 }
2395 } else if (X86::GR64RegClass.contains(SrcReg)) {
2396 // Copy from a GR64 register to a VR128 register.
2397 if (X86::VR128RegClass.contains(DestReg))
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002398 return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002399 // Copy from a GR64 register to a VR64 register.
2400 else if (X86::VR64RegClass.contains(DestReg))
2401 return X86::MOV64toSDrr;
2402 }
2403
Jakob Stoklund Olesen4bd89872011-09-22 22:45:24 +00002404 // SrcReg(FR32) -> DestReg(GR32)
2405 // SrcReg(GR32) -> DestReg(FR32)
2406
2407 if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
2408 // Copy from a FR32 register to a GR32 register.
2409 return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
2410
2411 if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
2412 // Copy from a GR32 register to a FR32 register.
2413 return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
2414
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002415 return 0;
2416}
2417
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002418void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2419 MachineBasicBlock::iterator MI, DebugLoc DL,
2420 unsigned DestReg, unsigned SrcReg,
2421 bool KillSrc) const {
2422 // First deal with the normal symmetric copies.
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002423 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002424 unsigned Opc = 0;
2425 if (X86::GR64RegClass.contains(DestReg, SrcReg))
2426 Opc = X86::MOV64rr;
2427 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2428 Opc = X86::MOV32rr;
2429 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2430 Opc = X86::MOV16rr;
2431 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2432 // Copying to or from a physical H register on x86-64 requires a NOREX
2433 // move. Otherwise use a normal move.
2434 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
Jakob Stoklund Olesenb66f1842011-10-07 20:15:54 +00002435 TM.getSubtarget<X86Subtarget>().is64Bit()) {
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002436 Opc = X86::MOV8rr_NOREX;
Jakob Stoklund Olesenb66f1842011-10-07 20:15:54 +00002437 // Both operands must be encodable without an REX prefix.
2438 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2439 "8-bit H register can not be copied outside GR8_NOREX");
2440 } else
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002441 Opc = X86::MOV8rr;
2442 } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002443 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00002444 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
2445 Opc = X86::VMOVAPSYrr;
Jakob Stoklund Olesen61c8ecc2010-07-08 22:30:35 +00002446 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2447 Opc = X86::MMX_MOVQ64rr;
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002448 else
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002449 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002450
2451 if (Opc) {
2452 BuildMI(MBB, MI, DL, get(Opc), DestReg)
2453 .addReg(SrcReg, getKillRegState(KillSrc));
2454 return;
2455 }
2456
2457 // Moving EFLAGS to / from another register requires a push and a pop.
2458 if (SrcReg == X86::EFLAGS) {
2459 if (X86::GR64RegClass.contains(DestReg)) {
2460 BuildMI(MBB, MI, DL, get(X86::PUSHF64));
2461 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
2462 return;
2463 } else if (X86::GR32RegClass.contains(DestReg)) {
2464 BuildMI(MBB, MI, DL, get(X86::PUSHF32));
2465 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
2466 return;
2467 }
2468 }
2469 if (DestReg == X86::EFLAGS) {
2470 if (X86::GR64RegClass.contains(SrcReg)) {
2471 BuildMI(MBB, MI, DL, get(X86::PUSH64r))
2472 .addReg(SrcReg, getKillRegState(KillSrc));
2473 BuildMI(MBB, MI, DL, get(X86::POPF64));
2474 return;
2475 } else if (X86::GR32RegClass.contains(SrcReg)) {
2476 BuildMI(MBB, MI, DL, get(X86::PUSH32r))
2477 .addReg(SrcReg, getKillRegState(KillSrc));
2478 BuildMI(MBB, MI, DL, get(X86::POPF32));
2479 return;
2480 }
2481 }
2482
2483 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
2484 << " to " << RI.getName(DestReg) << '\n');
2485 llvm_unreachable("Cannot emit physreg copy instruction");
2486}
2487
Rafael Espindola21d238f2010-06-12 20:13:29 +00002488static unsigned getLoadStoreRegOpcode(unsigned Reg,
2489 const TargetRegisterClass *RC,
2490 bool isStackAligned,
2491 const TargetMachine &TM,
2492 bool load) {
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002493 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002494 switch (RC->getSize()) {
Rafael Espindola5a717a32010-07-12 03:43:04 +00002495 default:
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002496 llvm_unreachable("Unknown spill size");
2497 case 1:
2498 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
Rafael Espindola21d238f2010-06-12 20:13:29 +00002499 if (TM.getSubtarget<X86Subtarget>().is64Bit())
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002500 // Copying to or from a physical H register on x86-64 requires a NOREX
2501 // move. Otherwise use a normal move.
2502 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2503 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2504 return load ? X86::MOV8rm : X86::MOV8mr;
2505 case 2:
2506 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
2507 return load ? X86::MOV16rm : X86::MOV16mr;
2508 case 4:
2509 if (X86::GR32RegClass.hasSubClassEq(RC))
2510 return load ? X86::MOV32rm : X86::MOV32mr;
2511 if (X86::FR32RegClass.hasSubClassEq(RC))
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002512 return load ?
2513 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
2514 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002515 if (X86::RFP32RegClass.hasSubClassEq(RC))
2516 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2517 llvm_unreachable("Unknown 4-byte regclass");
2518 case 8:
2519 if (X86::GR64RegClass.hasSubClassEq(RC))
2520 return load ? X86::MOV64rm : X86::MOV64mr;
2521 if (X86::FR64RegClass.hasSubClassEq(RC))
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002522 return load ?
2523 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
2524 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002525 if (X86::VR64RegClass.hasSubClassEq(RC))
2526 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2527 if (X86::RFP64RegClass.hasSubClassEq(RC))
2528 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2529 llvm_unreachable("Unknown 8-byte regclass");
2530 case 10:
2531 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
Rafael Espindola21d238f2010-06-12 20:13:29 +00002532 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002533 case 16: {
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002534 assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
Rafael Espindola21d238f2010-06-12 20:13:29 +00002535 // If stack is realigned we can use aligned stores.
2536 if (isStackAligned)
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002537 return load ?
2538 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
2539 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
Rafael Espindola21d238f2010-06-12 20:13:29 +00002540 else
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002541 return load ?
2542 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
2543 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
2544 }
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00002545 case 32:
2546 assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
2547 // If stack is realigned we can use aligned stores.
2548 if (isStackAligned)
2549 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
2550 else
2551 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
Rafael Espindola21d238f2010-06-12 20:13:29 +00002552 }
2553}
2554
Dan Gohman4af325d2009-04-27 16:41:36 +00002555static unsigned getStoreRegOpcode(unsigned SrcReg,
2556 const TargetRegisterClass *RC,
2557 bool isStackAligned,
2558 TargetMachine &TM) {
Rafael Espindola21d238f2010-06-12 20:13:29 +00002559 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2560}
Owen Andersonf6372aa2008-01-01 21:11:32 +00002561
Rafael Espindola21d238f2010-06-12 20:13:29 +00002562
2563static unsigned getLoadRegOpcode(unsigned DestReg,
2564 const TargetRegisterClass *RC,
2565 bool isStackAligned,
2566 const TargetMachine &TM) {
2567 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002568}
2569
2570void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2571 MachineBasicBlock::iterator MI,
2572 unsigned SrcReg, bool isKill, int FrameIdx,
Evan Cheng746ad692010-05-06 19:06:44 +00002573 const TargetRegisterClass *RC,
2574 const TargetRegisterInfo *TRI) const {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002575 const MachineFunction &MF = *MBB.getParent();
Jakob Stoklund Olesen516cd452010-07-27 04:16:58 +00002576 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2577 "Stack slot too small for store");
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002578 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2579 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
Evan Cheng2fa82bc2011-06-23 01:53:43 +00002580 RI.canRealignStack(MF);
Dan Gohman4af325d2009-04-27 16:41:36 +00002581 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Dale Johannesen6ec25f52010-01-26 00:03:12 +00002582 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendlingfbef3102009-02-11 21:51:19 +00002583 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
Bill Wendling587daed2009-05-13 21:33:08 +00002584 .addReg(SrcReg, getKillRegState(isKill));
Owen Andersonf6372aa2008-01-01 21:11:32 +00002585}
2586
2587void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2588 bool isKill,
2589 SmallVectorImpl<MachineOperand> &Addr,
2590 const TargetRegisterClass *RC,
Dan Gohman91e69c32009-10-09 18:10:05 +00002591 MachineInstr::mmo_iterator MMOBegin,
2592 MachineInstr::mmo_iterator MMOEnd,
Owen Andersonf6372aa2008-01-01 21:11:32 +00002593 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002594 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2595 bool isAligned = MMOBegin != MMOEnd &&
2596 (*MMOBegin)->getAlignment() >= Alignment;
Dan Gohman4af325d2009-04-27 16:41:36 +00002597 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Chris Lattnerc7f3ace2010-04-02 20:16:16 +00002598 DebugLoc DL;
Dale Johannesen21b55412009-02-12 23:08:38 +00002599 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Andersonf6372aa2008-01-01 21:11:32 +00002600 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002601 MIB.addOperand(Addr[i]);
Bill Wendling587daed2009-05-13 21:33:08 +00002602 MIB.addReg(SrcReg, getKillRegState(isKill));
Dan Gohman91e69c32009-10-09 18:10:05 +00002603 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002604 NewMIs.push_back(MIB);
2605}
2606
Owen Andersonf6372aa2008-01-01 21:11:32 +00002607
2608void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002609 MachineBasicBlock::iterator MI,
2610 unsigned DestReg, int FrameIdx,
Evan Cheng746ad692010-05-06 19:06:44 +00002611 const TargetRegisterClass *RC,
2612 const TargetRegisterInfo *TRI) const {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002613 const MachineFunction &MF = *MBB.getParent();
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002614 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2615 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
Evan Cheng2fa82bc2011-06-23 01:53:43 +00002616 RI.canRealignStack(MF);
Dan Gohman4af325d2009-04-27 16:41:36 +00002617 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Dale Johannesen6ec25f52010-01-26 00:03:12 +00002618 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendlingfbef3102009-02-11 21:51:19 +00002619 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002620}
2621
2622void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Cheng9f1c8312008-07-03 09:09:37 +00002623 SmallVectorImpl<MachineOperand> &Addr,
2624 const TargetRegisterClass *RC,
Dan Gohman91e69c32009-10-09 18:10:05 +00002625 MachineInstr::mmo_iterator MMOBegin,
2626 MachineInstr::mmo_iterator MMOEnd,
Owen Andersonf6372aa2008-01-01 21:11:32 +00002627 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002628 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2629 bool isAligned = MMOBegin != MMOEnd &&
2630 (*MMOBegin)->getAlignment() >= Alignment;
Dan Gohman4af325d2009-04-27 16:41:36 +00002631 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Chris Lattnerc7f3ace2010-04-02 20:16:16 +00002632 DebugLoc DL;
Dale Johannesen21b55412009-02-12 23:08:38 +00002633 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002634 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002635 MIB.addOperand(Addr[i]);
Dan Gohman91e69c32009-10-09 18:10:05 +00002636 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002637 NewMIs.push_back(MIB);
2638}
2639
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00002640/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
2641/// instruction with two undef reads of the register being defined. This is
2642/// used for mapping:
2643/// %xmm4 = V_SET0
2644/// to:
2645/// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
2646///
2647static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) {
2648 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
2649 unsigned Reg = MI->getOperand(0).getReg();
2650 MI->setDesc(Desc);
2651
2652 // MachineInstr::addOperand() will insert explicit operands before any
2653 // implicit operands.
2654 MachineInstrBuilder(MI).addReg(Reg, RegState::Undef)
2655 .addReg(Reg, RegState::Undef);
2656 // But we don't trust that.
2657 assert(MI->getOperand(1).getReg() == Reg &&
2658 MI->getOperand(2).getReg() == Reg && "Misplaced operand");
2659 return true;
2660}
2661
2662bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
2663 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2664 switch (MI->getOpcode()) {
2665 case X86::V_SET0:
Jakob Stoklund Olesen0edd83b2011-11-29 22:27:25 +00002666 case X86::FsFLD0SS:
2667 case X86::FsFLD0SD:
Jakob Stoklund Olesen3e5d5c52011-11-07 19:15:58 +00002668 return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
Jakob Stoklund Olesened744822011-10-08 18:28:28 +00002669 case X86::TEST8ri_NOREX:
2670 MI->setDesc(get(X86::TEST8ri));
2671 return true;
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00002672 }
2673 return false;
2674}
2675
Evan Cheng962021b2010-04-26 07:38:55 +00002676MachineInstr*
2677X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
Evan Cheng8601a3d2010-04-29 01:13:30 +00002678 int FrameIx, uint64_t Offset,
Evan Cheng962021b2010-04-26 07:38:55 +00002679 const MDNode *MDPtr,
2680 DebugLoc DL) const {
Evan Cheng962021b2010-04-26 07:38:55 +00002681 X86AddressMode AM;
2682 AM.BaseType = X86AddressMode::FrameIndexBase;
2683 AM.Base.FrameIndex = FrameIx;
2684 MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2685 addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2686 return &*MIB;
2687}
2688
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002689static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmand68a0762009-01-05 17:59:02 +00002690 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendling9bc96a52009-02-03 00:55:04 +00002691 MachineInstr *MI,
2692 const TargetInstrInfo &TII) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002693 // Create the base instruction with the memory operand as the first part.
Bill Wendling9bc96a52009-02-03 00:55:04 +00002694 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2695 MI->getDebugLoc(), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00002696 MachineInstrBuilder MIB(NewMI);
2697 unsigned NumAddrOps = MOs.size();
2698 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002699 MIB.addOperand(MOs[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00002700 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola094fad32009-04-08 21:14:34 +00002701 addOffset(MIB, 0);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002702
Owen Anderson43dbe052008-01-07 01:35:02 +00002703 // Loop over the rest of the ri operands, converting them over.
Chris Lattner749c6f62008-01-07 07:27:27 +00002704 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson43dbe052008-01-07 01:35:02 +00002705 for (unsigned i = 0; i != NumOps; ++i) {
2706 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohman97357612009-02-18 05:45:50 +00002707 MIB.addOperand(MO);
Owen Anderson43dbe052008-01-07 01:35:02 +00002708 }
2709 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2710 MachineOperand &MO = MI->getOperand(i);
Dan Gohman97357612009-02-18 05:45:50 +00002711 MIB.addOperand(MO);
Owen Anderson43dbe052008-01-07 01:35:02 +00002712 }
2713 return MIB;
2714}
2715
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002716static MachineInstr *FuseInst(MachineFunction &MF,
2717 unsigned Opcode, unsigned OpNo,
Dan Gohmand68a0762009-01-05 17:59:02 +00002718 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00002719 MachineInstr *MI, const TargetInstrInfo &TII) {
Bill Wendling9bc96a52009-02-03 00:55:04 +00002720 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2721 MI->getDebugLoc(), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00002722 MachineInstrBuilder MIB(NewMI);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002723
Owen Anderson43dbe052008-01-07 01:35:02 +00002724 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2725 MachineOperand &MO = MI->getOperand(i);
2726 if (i == OpNo) {
Dan Gohmand735b802008-10-03 15:45:36 +00002727 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson43dbe052008-01-07 01:35:02 +00002728 unsigned NumAddrOps = MOs.size();
2729 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002730 MIB.addOperand(MOs[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00002731 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola094fad32009-04-08 21:14:34 +00002732 addOffset(MIB, 0);
Owen Anderson43dbe052008-01-07 01:35:02 +00002733 } else {
Dan Gohman97357612009-02-18 05:45:50 +00002734 MIB.addOperand(MO);
Owen Anderson43dbe052008-01-07 01:35:02 +00002735 }
2736 }
2737 return MIB;
2738}
2739
2740static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmand68a0762009-01-05 17:59:02 +00002741 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00002742 MachineInstr *MI) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002743 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendlingfbef3102009-02-11 21:51:19 +00002744 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson43dbe052008-01-07 01:35:02 +00002745
2746 unsigned NumAddrOps = MOs.size();
2747 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002748 MIB.addOperand(MOs[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00002749 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola094fad32009-04-08 21:14:34 +00002750 addOffset(MIB, 0);
Owen Anderson43dbe052008-01-07 01:35:02 +00002751 return MIB.addImm(0);
2752}
2753
2754MachineInstr*
Dan Gohmanc54baa22008-12-03 18:43:12 +00002755X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2756 MachineInstr *MI, unsigned i,
Evan Chengf9b36f02009-07-15 06:10:07 +00002757 const SmallVectorImpl<MachineOperand> &MOs,
Evan Cheng9cef48e2009-09-11 00:39:26 +00002758 unsigned Size, unsigned Align) const {
Chris Lattner45a1cb22010-10-07 23:08:41 +00002759 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
Owen Anderson43dbe052008-01-07 01:35:02 +00002760 bool isTwoAddrFold = false;
Chris Lattner749c6f62008-01-07 07:27:27 +00002761 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00002762 bool isTwoAddr = NumOps > 1 &&
Evan Chenge837dea2011-06-28 19:10:37 +00002763 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00002764
Jakob Stoklund Olesen60045c22011-04-30 23:00:05 +00002765 // FIXME: AsmPrinter doesn't know how to handle
2766 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
2767 if (MI->getOpcode() == X86::ADD32ri &&
2768 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
2769 return NULL;
2770
Owen Anderson43dbe052008-01-07 01:35:02 +00002771 MachineInstr *NewMI = NULL;
2772 // Folding a memory location into the two-address part of a two-address
2773 // instruction is different than folding it other places. It requires
2774 // replacing the *two* registers with the memory location.
2775 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmand735b802008-10-03 15:45:36 +00002776 MI->getOperand(0).isReg() &&
2777 MI->getOperand(1).isReg() &&
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002778 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002779 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2780 isTwoAddrFold = true;
2781 } else if (i == 0) { // If operand 0
Dan Gohmanf1b4d262010-01-12 04:42:54 +00002782 if (MI->getOpcode() == X86::MOV64r0)
2783 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2784 else if (MI->getOpcode() == X86::MOV32r0)
Owen Anderson43dbe052008-01-07 01:35:02 +00002785 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
Dan Gohmanf1b4d262010-01-12 04:42:54 +00002786 else if (MI->getOpcode() == X86::MOV16r0)
2787 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
Owen Anderson43dbe052008-01-07 01:35:02 +00002788 else if (MI->getOpcode() == X86::MOV8r0)
2789 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Cheng9f1c8312008-07-03 09:09:37 +00002790 if (NewMI)
Owen Anderson43dbe052008-01-07 01:35:02 +00002791 return NewMI;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002792
Owen Anderson43dbe052008-01-07 01:35:02 +00002793 OpcodeTablePtr = &RegOp2MemOpTable0;
2794 } else if (i == 1) {
2795 OpcodeTablePtr = &RegOp2MemOpTable1;
2796 } else if (i == 2) {
2797 OpcodeTablePtr = &RegOp2MemOpTable2;
2798 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002799
Owen Anderson43dbe052008-01-07 01:35:02 +00002800 // If table selected...
2801 if (OpcodeTablePtr) {
2802 // Find the Opcode to fuse
Chris Lattner45a1cb22010-10-07 23:08:41 +00002803 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2804 OpcodeTablePtr->find(MI->getOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00002805 if (I != OpcodeTablePtr->end()) {
Evan Cheng9cef48e2009-09-11 00:39:26 +00002806 unsigned Opcode = I->second.first;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00002807 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
Evan Chengf9b36f02009-07-15 06:10:07 +00002808 if (Align < MinAlign)
2809 return NULL;
Evan Cheng879caea2009-09-11 01:01:31 +00002810 bool NarrowToMOV32rm = false;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002811 if (Size) {
Evan Cheng15993f82011-06-27 21:26:13 +00002812 unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize();
Evan Cheng9cef48e2009-09-11 00:39:26 +00002813 if (Size < RCSize) {
2814 // Check if it's safe to fold the load. If the size of the object is
2815 // narrower than the load width, then it's not.
2816 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2817 return NULL;
2818 // If this is a 64-bit load, but the spill slot is 32, then we can do
2819 // a 32-bit load which is implicitly zero-extended. This likely is due
2820 // to liveintervalanalysis remat'ing a load from stack slot.
Evan Cheng879caea2009-09-11 01:01:31 +00002821 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2822 return NULL;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002823 Opcode = X86::MOV32rm;
Evan Cheng879caea2009-09-11 01:01:31 +00002824 NarrowToMOV32rm = true;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002825 }
2826 }
2827
Owen Anderson43dbe052008-01-07 01:35:02 +00002828 if (isTwoAddrFold)
Evan Cheng9cef48e2009-09-11 00:39:26 +00002829 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
Owen Anderson43dbe052008-01-07 01:35:02 +00002830 else
Evan Cheng9cef48e2009-09-11 00:39:26 +00002831 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
Evan Cheng879caea2009-09-11 01:01:31 +00002832
2833 if (NarrowToMOV32rm) {
2834 // If this is the special case where we use a MOV32rm to load a 32-bit
2835 // value and zero-extend the top bits. Change the destination register
2836 // to a 32-bit one.
2837 unsigned DstReg = NewMI->getOperand(0).getReg();
2838 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2839 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
Jakob Stoklund Olesen3458e9e2010-05-24 14:48:17 +00002840 X86::sub_32bit));
Evan Cheng879caea2009-09-11 01:01:31 +00002841 else
Jakob Stoklund Olesen3458e9e2010-05-24 14:48:17 +00002842 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
Evan Cheng879caea2009-09-11 01:01:31 +00002843 }
Owen Anderson43dbe052008-01-07 01:35:02 +00002844 return NewMI;
2845 }
2846 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002847
2848 // No fusion
Jakob Stoklund Olesen9c50e8b2010-07-09 20:43:09 +00002849 if (PrintFailedFusing && !MI->isCopy())
David Greene5b901322010-01-05 01:29:29 +00002850 dbgs() << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson43dbe052008-01-07 01:35:02 +00002851 return NULL;
2852}
2853
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002854/// hasPartialRegUpdate - Return true for all instructions that only update
2855/// the first 32 or 64-bits of the destination register and leave the rest
2856/// unmodified. This can be used to avoid folding loads if the instructions
2857/// only update part of the destination register, and the non-updated part is
2858/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
2859/// instructions breaks the partial register dependency and it can improve
2860/// performance. e.g.:
2861///
2862/// movss (%rdi), %xmm0
2863/// cvtss2sd %xmm0, %xmm0
2864///
2865/// Instead of
2866/// cvtss2sd (%rdi), %xmm0
2867///
Bruno Cardoso Lopes6b5b79c2011-09-15 23:04:24 +00002868/// FIXME: This should be turned into a TSFlags.
2869///
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002870static bool hasPartialRegUpdate(unsigned Opcode) {
2871 switch (Opcode) {
Jakob Stoklund Olesenc2ecf3e2011-11-15 01:15:30 +00002872 case X86::CVTSI2SSrr:
2873 case X86::CVTSI2SS64rr:
2874 case X86::CVTSI2SDrr:
2875 case X86::CVTSI2SD64rr:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002876 case X86::CVTSD2SSrr:
2877 case X86::Int_CVTSD2SSrr:
2878 case X86::CVTSS2SDrr:
2879 case X86::Int_CVTSS2SDrr:
2880 case X86::RCPSSr:
2881 case X86::RCPSSr_Int:
2882 case X86::ROUNDSDr:
Benjamin Kramera73fb9a2011-12-09 15:43:55 +00002883 case X86::ROUNDSDr_Int:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002884 case X86::ROUNDSSr:
Benjamin Kramera73fb9a2011-12-09 15:43:55 +00002885 case X86::ROUNDSSr_Int:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002886 case X86::RSQRTSSr:
2887 case X86::RSQRTSSr_Int:
2888 case X86::SQRTSSr:
2889 case X86::SQRTSSr_Int:
2890 // AVX encoded versions
2891 case X86::VCVTSD2SSrr:
2892 case X86::Int_VCVTSD2SSrr:
2893 case X86::VCVTSS2SDrr:
2894 case X86::Int_VCVTSS2SDrr:
2895 case X86::VRCPSSr:
2896 case X86::VROUNDSDr:
Benjamin Kramera73fb9a2011-12-09 15:43:55 +00002897 case X86::VROUNDSDr_Int:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002898 case X86::VROUNDSSr:
Benjamin Kramera73fb9a2011-12-09 15:43:55 +00002899 case X86::VROUNDSSr_Int:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002900 case X86::VRSQRTSSr:
2901 case X86::VSQRTSSr:
2902 return true;
2903 }
2904
2905 return false;
2906}
Owen Anderson43dbe052008-01-07 01:35:02 +00002907
Jakob Stoklund Olesenc2ecf3e2011-11-15 01:15:30 +00002908/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
2909/// instructions we would like before a partial register update.
2910unsigned X86InstrInfo::
2911getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
2912 const TargetRegisterInfo *TRI) const {
2913 if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
2914 return 0;
2915
2916 // If MI is marked as reading Reg, the partial register update is wanted.
2917 const MachineOperand &MO = MI->getOperand(0);
2918 unsigned Reg = MO.getReg();
2919 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2920 if (MO.readsReg() || MI->readsVirtualRegister(Reg))
2921 return 0;
2922 } else {
2923 if (MI->readsRegister(Reg, TRI))
2924 return 0;
2925 }
2926
2927 // If any of the preceding 16 instructions are reading Reg, insert a
2928 // dependency breaking instruction. The magic number is based on a few
2929 // Nehalem experiments.
2930 return 16;
2931}
2932
2933void X86InstrInfo::
2934breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
2935 const TargetRegisterInfo *TRI) const {
2936 unsigned Reg = MI->getOperand(OpNum).getReg();
2937 if (X86::VR128RegClass.contains(Reg)) {
2938 // These instructions are all floating point domain, so xorps is the best
2939 // choice.
2940 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2941 unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
2942 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
2943 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
2944 } else if (X86::VR256RegClass.contains(Reg)) {
2945 // Use vxorps to clear the full ymm register.
2946 // It wants to read and write the xmm sub-register.
2947 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
2948 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
2949 .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
2950 .addReg(Reg, RegState::ImplicitDefine);
2951 } else
2952 return;
2953 MI->addRegisterKilled(Reg, TRI, true);
2954}
2955
Dan Gohmanc54baa22008-12-03 18:43:12 +00002956MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2957 MachineInstr *MI,
Evan Chengf9b36f02009-07-15 06:10:07 +00002958 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanc54baa22008-12-03 18:43:12 +00002959 int FrameIndex) const {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002960 // Check switch flag
Owen Anderson43dbe052008-01-07 01:35:02 +00002961 if (NoFusing) return NULL;
2962
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002963 // Unless optimizing for size, don't fold to avoid partial
2964 // register update stalls
2965 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
2966 hasPartialRegUpdate(MI->getOpcode()))
2967 return 0;
Evan Cheng400073d2009-12-18 07:40:29 +00002968
Evan Cheng5fd79d02008-02-08 21:20:40 +00002969 const MachineFrameInfo *MFI = MF.getFrameInfo();
Evan Cheng9cef48e2009-09-11 00:39:26 +00002970 unsigned Size = MFI->getObjectSize(FrameIndex);
Evan Cheng5fd79d02008-02-08 21:20:40 +00002971 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
Owen Anderson43dbe052008-01-07 01:35:02 +00002972 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2973 unsigned NewOpc = 0;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002974 unsigned RCSize = 0;
Owen Anderson43dbe052008-01-07 01:35:02 +00002975 switch (MI->getOpcode()) {
2976 default: return NULL;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002977 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
Dan Gohmane5efbaf2010-05-18 21:42:03 +00002978 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2979 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2980 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
Owen Anderson43dbe052008-01-07 01:35:02 +00002981 }
Evan Cheng9cef48e2009-09-11 00:39:26 +00002982 // Check if it's safe to fold the load. If the size of the object is
2983 // narrower than the load width, then it's not.
2984 if (Size < RCSize)
2985 return NULL;
Owen Anderson43dbe052008-01-07 01:35:02 +00002986 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00002987 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002988 MI->getOperand(1).ChangeToImmediate(0);
2989 } else if (Ops.size() != 1)
2990 return NULL;
2991
2992 SmallVector<MachineOperand,4> MOs;
2993 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Evan Cheng9cef48e2009-09-11 00:39:26 +00002994 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
Owen Anderson43dbe052008-01-07 01:35:02 +00002995}
2996
Dan Gohmanc54baa22008-12-03 18:43:12 +00002997MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2998 MachineInstr *MI,
Evan Chengf9b36f02009-07-15 06:10:07 +00002999 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanc54baa22008-12-03 18:43:12 +00003000 MachineInstr *LoadMI) const {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003001 // Check switch flag
Owen Anderson43dbe052008-01-07 01:35:02 +00003002 if (NoFusing) return NULL;
3003
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00003004 // Unless optimizing for size, don't fold to avoid partial
3005 // register update stalls
3006 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
3007 hasPartialRegUpdate(MI->getOpcode()))
3008 return 0;
Evan Cheng400073d2009-12-18 07:40:29 +00003009
Dan Gohmancddc11e2008-07-12 00:10:52 +00003010 // Determine the alignment of the load.
Evan Cheng5fd79d02008-02-08 21:20:40 +00003011 unsigned Alignment = 0;
Dan Gohmancddc11e2008-07-12 00:10:52 +00003012 if (LoadMI->hasOneMemOperand())
Dan Gohmanc76909a2009-09-25 20:36:54 +00003013 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003014 else
3015 switch (LoadMI->getOpcode()) {
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003016 case X86::AVX_SET0PSY:
3017 case X86::AVX_SET0PDY:
Craig Topper745a86b2011-11-19 22:34:59 +00003018 case X86::AVX2_SETALLONES:
Craig Topper12216172012-01-13 08:12:35 +00003019 case X86::AVX2_SET0:
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003020 Alignment = 32;
3021 break;
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00003022 case X86::V_SET0:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003023 case X86::V_SETALLONES:
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00003024 case X86::AVX_SETALLONES:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003025 Alignment = 16;
3026 break;
3027 case X86::FsFLD0SD:
3028 Alignment = 8;
3029 break;
3030 case X86::FsFLD0SS:
3031 Alignment = 4;
3032 break;
3033 default:
Eli Friedmanbe5cbaa2011-06-10 01:13:01 +00003034 return 0;
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003035 }
Owen Anderson43dbe052008-01-07 01:35:02 +00003036 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3037 unsigned NewOpc = 0;
3038 switch (MI->getOpcode()) {
3039 default: return NULL;
3040 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003041 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
3042 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
3043 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
Owen Anderson43dbe052008-01-07 01:35:02 +00003044 }
3045 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00003046 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00003047 MI->getOperand(1).ChangeToImmediate(0);
3048 } else if (Ops.size() != 1)
3049 return NULL;
3050
Jakob Stoklund Olesend29583b2010-08-11 23:08:22 +00003051 // Make sure the subregisters match.
3052 // Otherwise we risk changing the size of the load.
3053 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
3054 return NULL;
3055
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003056 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003057 switch (LoadMI->getOpcode()) {
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00003058 case X86::V_SET0:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003059 case X86::V_SETALLONES:
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003060 case X86::AVX_SET0PSY:
3061 case X86::AVX_SET0PDY:
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00003062 case X86::AVX_SETALLONES:
Craig Topper745a86b2011-11-19 22:34:59 +00003063 case X86::AVX2_SETALLONES:
Craig Topper12216172012-01-13 08:12:35 +00003064 case X86::AVX2_SET0:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003065 case X86::FsFLD0SD:
Jakob Stoklund Olesen0edd83b2011-11-29 22:27:25 +00003066 case X86::FsFLD0SS: {
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00003067 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
Dan Gohman62c939d2008-12-03 05:21:24 +00003068 // Create a constant-pool entry and operands to load from it.
3069
Dan Gohman81d0c362010-03-09 03:01:40 +00003070 // Medium and large mode can't fold loads this way.
3071 if (TM.getCodeModel() != CodeModel::Small &&
3072 TM.getCodeModel() != CodeModel::Kernel)
3073 return NULL;
3074
Dan Gohman62c939d2008-12-03 05:21:24 +00003075 // x86-32 PIC requires a PIC base register for constant pools.
3076 unsigned PICBase = 0;
Jakob Stoklund Olesen93e55de2009-07-16 21:24:13 +00003077 if (TM.getRelocationModel() == Reloc::PIC_) {
Evan Cheng2b48ab92009-07-16 18:44:05 +00003078 if (TM.getSubtarget<X86Subtarget>().is64Bit())
3079 PICBase = X86::RIP;
Jakob Stoklund Olesen93e55de2009-07-16 21:24:13 +00003080 else
Dan Gohman84023e02010-07-10 09:00:22 +00003081 // FIXME: PICBase = getGlobalBaseReg(&MF);
Evan Cheng2b48ab92009-07-16 18:44:05 +00003082 // This doesn't work for several reasons.
3083 // 1. GlobalBaseReg may have been spilled.
3084 // 2. It may not be live at MI.
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003085 return NULL;
Jakob Stoklund Olesen93e55de2009-07-16 21:24:13 +00003086 }
Dan Gohman62c939d2008-12-03 05:21:24 +00003087
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003088 // Create a constant-pool entry.
Dan Gohman62c939d2008-12-03 05:21:24 +00003089 MachineConstantPool &MCP = *MF.getConstantPool();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003090 Type *Ty;
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003091 unsigned Opc = LoadMI->getOpcode();
Jakob Stoklund Olesen0edd83b2011-11-29 22:27:25 +00003092 if (Opc == X86::FsFLD0SS)
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003093 Ty = Type::getFloatTy(MF.getFunction()->getContext());
Jakob Stoklund Olesen0edd83b2011-11-29 22:27:25 +00003094 else if (Opc == X86::FsFLD0SD)
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003095 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003096 else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
3097 Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
Craig Topper12216172012-01-13 08:12:35 +00003098 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX2_SET0)
Craig Topperb9c7f652012-01-13 06:12:41 +00003099 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003100 else
3101 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00003102
Craig Topper745a86b2011-11-19 22:34:59 +00003103 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES ||
3104 Opc == X86::AVX2_SETALLONES);
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00003105 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
3106 Constant::getNullValue(Ty);
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003107 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
Dan Gohman62c939d2008-12-03 05:21:24 +00003108
3109 // Create operands to load from the constant pool entry.
3110 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
3111 MOs.push_back(MachineOperand::CreateImm(1));
3112 MOs.push_back(MachineOperand::CreateReg(0, false));
3113 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindola094fad32009-04-08 21:14:34 +00003114 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003115 break;
3116 }
3117 default: {
Dan Gohman62c939d2008-12-03 05:21:24 +00003118 // Folding a normal load. Just copy the load's address operands.
3119 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003120 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
Dan Gohman62c939d2008-12-03 05:21:24 +00003121 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003122 break;
3123 }
Dan Gohman62c939d2008-12-03 05:21:24 +00003124 }
Evan Cheng9cef48e2009-09-11 00:39:26 +00003125 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
Owen Anderson43dbe052008-01-07 01:35:02 +00003126}
3127
3128
Dan Gohman8e8b8a22008-10-16 01:49:15 +00003129bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
3130 const SmallVectorImpl<unsigned> &Ops) const {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003131 // Check switch flag
Owen Anderson43dbe052008-01-07 01:35:02 +00003132 if (NoFusing) return 0;
3133
3134 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3135 switch (MI->getOpcode()) {
3136 default: return false;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003137 case X86::TEST8rr:
Owen Anderson43dbe052008-01-07 01:35:02 +00003138 case X86::TEST16rr:
3139 case X86::TEST32rr:
3140 case X86::TEST64rr:
3141 return true;
Jakob Stoklund Olesen60045c22011-04-30 23:00:05 +00003142 case X86::ADD32ri:
3143 // FIXME: AsmPrinter doesn't know how to handle
3144 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
3145 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
3146 return false;
3147 break;
Owen Anderson43dbe052008-01-07 01:35:02 +00003148 }
3149 }
3150
3151 if (Ops.size() != 1)
3152 return false;
3153
3154 unsigned OpNum = Ops[0];
3155 unsigned Opc = MI->getOpcode();
Chris Lattner749c6f62008-01-07 07:27:27 +00003156 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00003157 bool isTwoAddr = NumOps > 1 &&
Evan Chenge837dea2011-06-28 19:10:37 +00003158 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00003159
3160 // Folding a memory location into the two-address part of a two-address
3161 // instruction is different than folding it other places. It requires
3162 // replacing the *two* registers with the memory location.
Chris Lattner45a1cb22010-10-07 23:08:41 +00003163 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003164 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
Owen Anderson43dbe052008-01-07 01:35:02 +00003165 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
3166 } else if (OpNum == 0) { // If operand 0
3167 switch (Opc) {
Chris Lattner9ac75422009-07-14 20:19:57 +00003168 case X86::MOV8r0:
Dan Gohmanf1b4d262010-01-12 04:42:54 +00003169 case X86::MOV16r0:
Owen Anderson43dbe052008-01-07 01:35:02 +00003170 case X86::MOV32r0:
Chris Lattner45a1cb22010-10-07 23:08:41 +00003171 case X86::MOV64r0: return true;
Owen Anderson43dbe052008-01-07 01:35:02 +00003172 default: break;
3173 }
3174 OpcodeTablePtr = &RegOp2MemOpTable0;
3175 } else if (OpNum == 1) {
3176 OpcodeTablePtr = &RegOp2MemOpTable1;
3177 } else if (OpNum == 2) {
3178 OpcodeTablePtr = &RegOp2MemOpTable2;
3179 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003180
Chris Lattner99ae6652010-10-08 03:54:52 +00003181 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
3182 return true;
Jakob Stoklund Olesen1f323402010-07-09 20:43:13 +00003183 return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
Owen Anderson43dbe052008-01-07 01:35:02 +00003184}
3185
3186bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
3187 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendlingfbef3102009-02-11 21:51:19 +00003188 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Chris Lattner45a1cb22010-10-07 23:08:41 +00003189 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3190 MemOp2RegOpTable.find(MI->getOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00003191 if (I == MemOp2RegOpTable.end())
3192 return false;
3193 unsigned Opc = I->second.first;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00003194 unsigned Index = I->second.second & TB_INDEX_MASK;
3195 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3196 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Owen Anderson43dbe052008-01-07 01:35:02 +00003197 if (UnfoldLoad && !FoldedLoad)
3198 return false;
3199 UnfoldLoad &= FoldedLoad;
3200 if (UnfoldStore && !FoldedStore)
3201 return false;
3202 UnfoldStore &= FoldedStore;
3203
Evan Chenge837dea2011-06-28 19:10:37 +00003204 const MCInstrDesc &MCID = get(Opc);
3205 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
Evan Cheng98ec91e2010-07-02 20:36:18 +00003206 if (!MI->hasOneMemOperand() &&
3207 RC == &X86::VR128RegClass &&
3208 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3209 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
3210 // conservatively assume the address is unaligned. That's bad for
3211 // performance.
3212 return false;
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003213 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
Owen Anderson43dbe052008-01-07 01:35:02 +00003214 SmallVector<MachineOperand,2> BeforeOps;
3215 SmallVector<MachineOperand,2> AfterOps;
3216 SmallVector<MachineOperand,4> ImpOps;
3217 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
3218 MachineOperand &Op = MI->getOperand(i);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003219 if (i >= Index && i < Index + X86::AddrNumOperands)
Owen Anderson43dbe052008-01-07 01:35:02 +00003220 AddrOps.push_back(Op);
Dan Gohmand735b802008-10-03 15:45:36 +00003221 else if (Op.isReg() && Op.isImplicit())
Owen Anderson43dbe052008-01-07 01:35:02 +00003222 ImpOps.push_back(Op);
3223 else if (i < Index)
3224 BeforeOps.push_back(Op);
3225 else if (i > Index)
3226 AfterOps.push_back(Op);
3227 }
3228
3229 // Emit the load instruction.
3230 if (UnfoldLoad) {
Dan Gohman91e69c32009-10-09 18:10:05 +00003231 std::pair<MachineInstr::mmo_iterator,
3232 MachineInstr::mmo_iterator> MMOs =
3233 MF.extractLoadMemRefs(MI->memoperands_begin(),
3234 MI->memoperands_end());
3235 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson43dbe052008-01-07 01:35:02 +00003236 if (UnfoldStore) {
3237 // Address operands cannot be marked isKill.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003238 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
Owen Anderson43dbe052008-01-07 01:35:02 +00003239 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00003240 if (MO.isReg())
Owen Anderson43dbe052008-01-07 01:35:02 +00003241 MO.setIsKill(false);
3242 }
3243 }
3244 }
3245
3246 // Emit the data processing instruction.
Evan Chenge837dea2011-06-28 19:10:37 +00003247 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00003248 MachineInstrBuilder MIB(DataMI);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003249
Owen Anderson43dbe052008-01-07 01:35:02 +00003250 if (FoldedStore)
Bill Wendling587daed2009-05-13 21:33:08 +00003251 MIB.addReg(Reg, RegState::Define);
Owen Anderson43dbe052008-01-07 01:35:02 +00003252 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00003253 MIB.addOperand(BeforeOps[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00003254 if (FoldedLoad)
3255 MIB.addReg(Reg);
3256 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00003257 MIB.addOperand(AfterOps[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00003258 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
3259 MachineOperand &MO = ImpOps[i];
Bill Wendling587daed2009-05-13 21:33:08 +00003260 MIB.addReg(MO.getReg(),
3261 getDefRegState(MO.isDef()) |
3262 RegState::Implicit |
3263 getKillRegState(MO.isKill()) |
Evan Cheng4784f1f2009-06-30 08:49:04 +00003264 getDeadRegState(MO.isDead()) |
3265 getUndefRegState(MO.isUndef()));
Owen Anderson43dbe052008-01-07 01:35:02 +00003266 }
3267 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
3268 unsigned NewOpc = 0;
3269 switch (DataMI->getOpcode()) {
3270 default: break;
3271 case X86::CMP64ri32:
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003272 case X86::CMP64ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00003273 case X86::CMP32ri:
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003274 case X86::CMP32ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00003275 case X86::CMP16ri:
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003276 case X86::CMP16ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00003277 case X86::CMP8ri: {
3278 MachineOperand &MO0 = DataMI->getOperand(0);
3279 MachineOperand &MO1 = DataMI->getOperand(1);
3280 if (MO1.getImm() == 0) {
3281 switch (DataMI->getOpcode()) {
3282 default: break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003283 case X86::CMP64ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00003284 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003285 case X86::CMP32ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00003286 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003287 case X86::CMP16ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00003288 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
3289 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
3290 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00003291 DataMI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00003292 MO1.ChangeToRegister(MO0.getReg(), false);
3293 }
3294 }
3295 }
3296 NewMIs.push_back(DataMI);
3297
3298 // Emit the store instruction.
3299 if (UnfoldStore) {
Evan Chenge837dea2011-06-28 19:10:37 +00003300 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI);
Dan Gohman91e69c32009-10-09 18:10:05 +00003301 std::pair<MachineInstr::mmo_iterator,
3302 MachineInstr::mmo_iterator> MMOs =
3303 MF.extractStoreMemRefs(MI->memoperands_begin(),
3304 MI->memoperands_end());
3305 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson43dbe052008-01-07 01:35:02 +00003306 }
3307
3308 return true;
3309}
3310
3311bool
3312X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendlingfbef3102009-02-11 21:51:19 +00003313 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmane8be6c62008-07-17 19:10:17 +00003314 if (!N->isMachineOpcode())
Owen Anderson43dbe052008-01-07 01:35:02 +00003315 return false;
3316
Chris Lattner45a1cb22010-10-07 23:08:41 +00003317 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3318 MemOp2RegOpTable.find(N->getMachineOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00003319 if (I == MemOp2RegOpTable.end())
3320 return false;
3321 unsigned Opc = I->second.first;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00003322 unsigned Index = I->second.second & TB_INDEX_MASK;
3323 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3324 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Evan Chenge837dea2011-06-28 19:10:37 +00003325 const MCInstrDesc &MCID = get(Opc);
3326 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
3327 unsigned NumDefs = MCID.NumDefs;
Dan Gohman475871a2008-07-27 21:46:04 +00003328 std::vector<SDValue> AddrOps;
3329 std::vector<SDValue> BeforeOps;
3330 std::vector<SDValue> AfterOps;
Dale Johannesened2eee62009-02-06 01:31:28 +00003331 DebugLoc dl = N->getDebugLoc();
Owen Anderson43dbe052008-01-07 01:35:02 +00003332 unsigned NumOps = N->getNumOperands();
Dan Gohmanc76909a2009-09-25 20:36:54 +00003333 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman475871a2008-07-27 21:46:04 +00003334 SDValue Op = N->getOperand(i);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003335 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
Owen Anderson43dbe052008-01-07 01:35:02 +00003336 AddrOps.push_back(Op);
Dan Gohmanb37a8202009-03-04 19:23:38 +00003337 else if (i < Index-NumDefs)
Owen Anderson43dbe052008-01-07 01:35:02 +00003338 BeforeOps.push_back(Op);
Dan Gohmanb37a8202009-03-04 19:23:38 +00003339 else if (i > Index-NumDefs)
Owen Anderson43dbe052008-01-07 01:35:02 +00003340 AfterOps.push_back(Op);
3341 }
Dan Gohman475871a2008-07-27 21:46:04 +00003342 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson43dbe052008-01-07 01:35:02 +00003343 AddrOps.push_back(Chain);
3344
3345 // Emit the load instruction.
3346 SDNode *Load = 0;
Dan Gohman91e69c32009-10-09 18:10:05 +00003347 MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson43dbe052008-01-07 01:35:02 +00003348 if (FoldedLoad) {
Owen Andersone50ed302009-08-10 22:56:29 +00003349 EVT VT = *RC->vt_begin();
Evan Cheng600c0432009-11-16 21:56:03 +00003350 std::pair<MachineInstr::mmo_iterator,
3351 MachineInstr::mmo_iterator> MMOs =
3352 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
3353 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng98ec91e2010-07-02 20:36:18 +00003354 if (!(*MMOs.first) &&
3355 RC == &X86::VR128RegClass &&
3356 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3357 // Do not introduce a slow unaligned load.
3358 return false;
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00003359 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
3360 bool isAligned = (*MMOs.first) &&
3361 (*MMOs.first)->getAlignment() >= Alignment;
Dan Gohman602b0c82009-09-25 18:54:59 +00003362 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
3363 VT, MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00003364 NewNodes.push_back(Load);
Dan Gohman91e69c32009-10-09 18:10:05 +00003365
3366 // Preserve memory reference information.
Dan Gohman91e69c32009-10-09 18:10:05 +00003367 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson43dbe052008-01-07 01:35:02 +00003368 }
3369
3370 // Emit the data processing instruction.
Owen Andersone50ed302009-08-10 22:56:29 +00003371 std::vector<EVT> VTs;
Owen Anderson43dbe052008-01-07 01:35:02 +00003372 const TargetRegisterClass *DstRC = 0;
Evan Chenge837dea2011-06-28 19:10:37 +00003373 if (MCID.getNumDefs() > 0) {
3374 DstRC = getRegClass(MCID, 0, &RI);
Owen Anderson43dbe052008-01-07 01:35:02 +00003375 VTs.push_back(*DstRC->vt_begin());
3376 }
3377 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Owen Andersone50ed302009-08-10 22:56:29 +00003378 EVT VT = N->getValueType(i);
Evan Chenge837dea2011-06-28 19:10:37 +00003379 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
Owen Anderson43dbe052008-01-07 01:35:02 +00003380 VTs.push_back(VT);
3381 }
3382 if (Load)
Dan Gohman475871a2008-07-27 21:46:04 +00003383 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson43dbe052008-01-07 01:35:02 +00003384 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Dan Gohman602b0c82009-09-25 18:54:59 +00003385 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
3386 BeforeOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00003387 NewNodes.push_back(NewNode);
3388
3389 // Emit the store instruction.
3390 if (FoldedStore) {
3391 AddrOps.pop_back();
Dan Gohman475871a2008-07-27 21:46:04 +00003392 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson43dbe052008-01-07 01:35:02 +00003393 AddrOps.push_back(Chain);
Evan Cheng600c0432009-11-16 21:56:03 +00003394 std::pair<MachineInstr::mmo_iterator,
3395 MachineInstr::mmo_iterator> MMOs =
3396 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
3397 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng98ec91e2010-07-02 20:36:18 +00003398 if (!(*MMOs.first) &&
3399 RC == &X86::VR128RegClass &&
3400 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3401 // Do not introduce a slow unaligned store.
3402 return false;
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00003403 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
3404 bool isAligned = (*MMOs.first) &&
3405 (*MMOs.first)->getAlignment() >= Alignment;
Dan Gohman602b0c82009-09-25 18:54:59 +00003406 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
3407 isAligned, TM),
3408 dl, MVT::Other,
3409 &AddrOps[0], AddrOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00003410 NewNodes.push_back(Store);
Dan Gohman91e69c32009-10-09 18:10:05 +00003411
3412 // Preserve memory reference information.
Dan Gohman91e69c32009-10-09 18:10:05 +00003413 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson43dbe052008-01-07 01:35:02 +00003414 }
3415
3416 return true;
3417}
3418
3419unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
Dan Gohman0115e162009-10-30 22:18:41 +00003420 bool UnfoldLoad, bool UnfoldStore,
3421 unsigned *LoadRegIndex) const {
Chris Lattner45a1cb22010-10-07 23:08:41 +00003422 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3423 MemOp2RegOpTable.find(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00003424 if (I == MemOp2RegOpTable.end())
3425 return 0;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00003426 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3427 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Owen Anderson43dbe052008-01-07 01:35:02 +00003428 if (UnfoldLoad && !FoldedLoad)
3429 return 0;
3430 if (UnfoldStore && !FoldedStore)
3431 return 0;
Dan Gohman0115e162009-10-30 22:18:41 +00003432 if (LoadRegIndex)
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00003433 *LoadRegIndex = I->second.second & TB_INDEX_MASK;
Owen Anderson43dbe052008-01-07 01:35:02 +00003434 return I->second.first;
3435}
3436
Evan Cheng96dc1152010-01-22 03:34:51 +00003437bool
3438X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
3439 int64_t &Offset1, int64_t &Offset2) const {
3440 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
3441 return false;
3442 unsigned Opc1 = Load1->getMachineOpcode();
3443 unsigned Opc2 = Load2->getMachineOpcode();
3444 switch (Opc1) {
3445 default: return false;
3446 case X86::MOV8rm:
3447 case X86::MOV16rm:
3448 case X86::MOV32rm:
3449 case X86::MOV64rm:
3450 case X86::LD_Fp32m:
3451 case X86::LD_Fp64m:
3452 case X86::LD_Fp80m:
3453 case X86::MOVSSrm:
3454 case X86::MOVSDrm:
3455 case X86::MMX_MOVD64rm:
3456 case X86::MMX_MOVQ64rm:
3457 case X86::FsMOVAPSrm:
3458 case X86::FsMOVAPDrm:
3459 case X86::MOVAPSrm:
3460 case X86::MOVUPSrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00003461 case X86::MOVAPDrm:
3462 case X86::MOVDQArm:
3463 case X86::MOVDQUrm:
Bruno Cardoso Lopesb4e905d2011-09-15 22:15:52 +00003464 // AVX load instructions
3465 case X86::VMOVSSrm:
3466 case X86::VMOVSDrm:
3467 case X86::FsVMOVAPSrm:
3468 case X86::FsVMOVAPDrm:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00003469 case X86::VMOVAPSrm:
3470 case X86::VMOVUPSrm:
3471 case X86::VMOVAPDrm:
3472 case X86::VMOVDQArm:
3473 case X86::VMOVDQUrm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00003474 case X86::VMOVAPSYrm:
3475 case X86::VMOVUPSYrm:
3476 case X86::VMOVAPDYrm:
3477 case X86::VMOVDQAYrm:
3478 case X86::VMOVDQUYrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00003479 break;
3480 }
3481 switch (Opc2) {
3482 default: return false;
3483 case X86::MOV8rm:
3484 case X86::MOV16rm:
3485 case X86::MOV32rm:
3486 case X86::MOV64rm:
3487 case X86::LD_Fp32m:
3488 case X86::LD_Fp64m:
3489 case X86::LD_Fp80m:
3490 case X86::MOVSSrm:
3491 case X86::MOVSDrm:
3492 case X86::MMX_MOVD64rm:
3493 case X86::MMX_MOVQ64rm:
3494 case X86::FsMOVAPSrm:
3495 case X86::FsMOVAPDrm:
3496 case X86::MOVAPSrm:
3497 case X86::MOVUPSrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00003498 case X86::MOVAPDrm:
3499 case X86::MOVDQArm:
3500 case X86::MOVDQUrm:
Bruno Cardoso Lopesb4e905d2011-09-15 22:15:52 +00003501 // AVX load instructions
3502 case X86::VMOVSSrm:
3503 case X86::VMOVSDrm:
3504 case X86::FsVMOVAPSrm:
3505 case X86::FsVMOVAPDrm:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00003506 case X86::VMOVAPSrm:
3507 case X86::VMOVUPSrm:
3508 case X86::VMOVAPDrm:
3509 case X86::VMOVDQArm:
3510 case X86::VMOVDQUrm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00003511 case X86::VMOVAPSYrm:
3512 case X86::VMOVUPSYrm:
3513 case X86::VMOVAPDYrm:
3514 case X86::VMOVDQAYrm:
3515 case X86::VMOVDQUYrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00003516 break;
3517 }
3518
3519 // Check if chain operands and base addresses match.
3520 if (Load1->getOperand(0) != Load2->getOperand(0) ||
3521 Load1->getOperand(5) != Load2->getOperand(5))
3522 return false;
3523 // Segment operands should match as well.
3524 if (Load1->getOperand(4) != Load2->getOperand(4))
3525 return false;
3526 // Scale should be 1, Index should be Reg0.
3527 if (Load1->getOperand(1) == Load2->getOperand(1) &&
3528 Load1->getOperand(2) == Load2->getOperand(2)) {
3529 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
3530 return false;
Evan Cheng96dc1152010-01-22 03:34:51 +00003531
3532 // Now let's examine the displacements.
3533 if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
3534 isa<ConstantSDNode>(Load2->getOperand(3))) {
3535 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
3536 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
3537 return true;
3538 }
3539 }
3540 return false;
3541}
3542
3543bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
3544 int64_t Offset1, int64_t Offset2,
3545 unsigned NumLoads) const {
3546 assert(Offset2 > Offset1);
3547 if ((Offset2 - Offset1) / 8 > 64)
3548 return false;
3549
3550 unsigned Opc1 = Load1->getMachineOpcode();
3551 unsigned Opc2 = Load2->getMachineOpcode();
3552 if (Opc1 != Opc2)
3553 return false; // FIXME: overly conservative?
3554
3555 switch (Opc1) {
3556 default: break;
3557 case X86::LD_Fp32m:
3558 case X86::LD_Fp64m:
3559 case X86::LD_Fp80m:
3560 case X86::MMX_MOVD64rm:
3561 case X86::MMX_MOVQ64rm:
3562 return false;
3563 }
3564
3565 EVT VT = Load1->getValueType(0);
3566 switch (VT.getSimpleVT().SimpleTy) {
Bill Wendling19d85972010-06-22 22:16:17 +00003567 default:
Evan Cheng96dc1152010-01-22 03:34:51 +00003568 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
3569 // have 16 of them to play with.
3570 if (TM.getSubtargetImpl()->is64Bit()) {
3571 if (NumLoads >= 3)
3572 return false;
Bill Wendling19d85972010-06-22 22:16:17 +00003573 } else if (NumLoads) {
Evan Cheng96dc1152010-01-22 03:34:51 +00003574 return false;
Bill Wendling19d85972010-06-22 22:16:17 +00003575 }
Evan Cheng96dc1152010-01-22 03:34:51 +00003576 break;
Evan Cheng96dc1152010-01-22 03:34:51 +00003577 case MVT::i8:
3578 case MVT::i16:
3579 case MVT::i32:
3580 case MVT::i64:
Evan Chengafc36732010-01-22 23:49:11 +00003581 case MVT::f32:
3582 case MVT::f64:
Evan Cheng96dc1152010-01-22 03:34:51 +00003583 if (NumLoads)
3584 return false;
Bill Wendling19d85972010-06-22 22:16:17 +00003585 break;
Evan Cheng96dc1152010-01-22 03:34:51 +00003586 }
3587
3588 return true;
3589}
3590
3591
Chris Lattner7fbe9722006-10-20 17:42:20 +00003592bool X86InstrInfo::
Owen Anderson44eb65c2008-08-14 22:49:33 +00003593ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00003594 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Cheng97af60b2008-08-29 23:21:31 +00003595 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman279c22e2008-10-21 03:29:32 +00003596 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
3597 return true;
Evan Cheng97af60b2008-08-29 23:21:31 +00003598 Cond[0].setImm(GetOppositeBranchCondition(CC));
Chris Lattner9cd68752006-10-21 05:52:40 +00003599 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00003600}
3601
Evan Cheng23066282008-10-27 07:14:50 +00003602bool X86InstrInfo::
Evan Cheng4350eb82009-02-06 17:17:30 +00003603isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
3604 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Cheng23066282008-10-27 07:14:50 +00003605 // allow any loads of these registers before FpGet_ST0_80.
Evan Cheng4350eb82009-02-06 17:17:30 +00003606 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
3607 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Cheng23066282008-10-27 07:14:50 +00003608}
3609
Dan Gohman57c3dac2008-09-30 00:58:23 +00003610/// getGlobalBaseReg - Return a virtual register initialized with the
3611/// the global base register value. Output instructions required to
3612/// initialize the register in the function entry block, if necessary.
Dan Gohman8b746962008-09-23 18:22:58 +00003613///
Dan Gohman84023e02010-07-10 09:00:22 +00003614/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
3615///
Dan Gohman57c3dac2008-09-30 00:58:23 +00003616unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3617 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3618 "X86-64 PIC uses RIP relative addressing");
3619
3620 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3621 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3622 if (GlobalBaseReg != 0)
3623 return GlobalBaseReg;
3624
Dan Gohman84023e02010-07-10 09:00:22 +00003625 // Create the register. The code to initialize it is inserted
3626 // later, by the CGBR pass (below).
Dan Gohman8b746962008-09-23 18:22:58 +00003627 MachineRegisterInfo &RegInfo = MF->getRegInfo();
Dan Gohman84023e02010-07-10 09:00:22 +00003628 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
Dan Gohman57c3dac2008-09-30 00:58:23 +00003629 X86FI->setGlobalBaseReg(GlobalBaseReg);
3630 return GlobalBaseReg;
Dan Gohman8b746962008-09-23 18:22:58 +00003631}
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003632
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003633// These are the replaceable SSE instructions. Some of these have Int variants
3634// that we don't include here. We don't want to replace instructions selected
3635// by intrinsics.
Craig Topper72051bf2012-03-09 07:45:21 +00003636static const uint16_t ReplaceableInstrs[][3] = {
Bruno Cardoso Lopes4d043622010-08-12 02:08:52 +00003637 //PackedSingle PackedDouble PackedInt
Jakob Stoklund Olesen357be7f2010-03-30 22:46:53 +00003638 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
3639 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
3640 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
3641 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
3642 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
3643 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
3644 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
3645 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
3646 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
3647 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
3648 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
3649 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
3650 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
3651 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003652 // AVX 128-bit support
3653 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
3654 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
3655 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
3656 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
3657 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
3658 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
3659 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
3660 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
3661 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
3662 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
3663 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
3664 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003665 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
3666 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00003667 // AVX 256-bit support
3668 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
3669 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
3670 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
3671 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
3672 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
Craig Topper4c077a12011-11-15 05:55:35 +00003673 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }
3674};
3675
Craig Topper72051bf2012-03-09 07:45:21 +00003676static const uint16_t ReplaceableInstrsAVX2[][3] = {
Craig Topper4c077a12011-11-15 05:55:35 +00003677 //PackedSingle PackedDouble PackedInt
Craig Topperb80ada92011-11-09 09:37:21 +00003678 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
3679 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
3680 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
3681 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
3682 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
3683 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
3684 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
Craig Topperfe2a6c52011-11-29 05:37:58 +00003685 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
3686 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
3687 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
3688 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
3689 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
3690 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
3691 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003692};
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003693
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003694// FIXME: Some shuffle and unpack instructions have equivalents in different
3695// domains, but they require a bit more work than just switching opcodes.
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003696
Craig Topper72051bf2012-03-09 07:45:21 +00003697static const uint16_t *lookup(unsigned opcode, unsigned domain) {
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003698 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003699 if (ReplaceableInstrs[i][domain-1] == opcode)
3700 return ReplaceableInstrs[i];
Craig Topper44ec9fd2011-11-15 06:39:01 +00003701 return 0;
3702}
3703
Craig Topper72051bf2012-03-09 07:45:21 +00003704static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
Craig Topper44ec9fd2011-11-15 06:39:01 +00003705 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
3706 if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
3707 return ReplaceableInstrsAVX2[i];
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003708 return 0;
3709}
3710
3711std::pair<uint16_t, uint16_t>
Jakob Stoklund Olesen98e933f2011-09-27 22:57:18 +00003712X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003713 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
Craig Topper4c077a12011-11-15 05:55:35 +00003714 bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
Craig Topper44ec9fd2011-11-15 06:39:01 +00003715 uint16_t validDomains = 0;
3716 if (domain && lookup(MI->getOpcode(), domain))
3717 validDomains = 0xe;
3718 else if (domain && lookupAVX2(MI->getOpcode(), domain))
3719 validDomains = hasAVX2 ? 0xe : 0x6;
3720 return std::make_pair(domain, validDomains);
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003721}
3722
Jakob Stoklund Olesen98e933f2011-09-27 22:57:18 +00003723void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003724 assert(Domain>0 && Domain<4 && "Invalid execution domain");
3725 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3726 assert(dom && "Not an SSE instruction");
Craig Topper72051bf2012-03-09 07:45:21 +00003727 const uint16_t *table = lookup(MI->getOpcode(), dom);
Jakob Stoklund Olesen7f5e43f2011-11-23 04:03:08 +00003728 if (!table) { // try the other table
3729 assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
3730 "256-bit vector operations only available in AVX2");
Craig Topper44ec9fd2011-11-15 06:39:01 +00003731 table = lookupAVX2(MI->getOpcode(), dom);
Jakob Stoklund Olesen7f5e43f2011-11-23 04:03:08 +00003732 }
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003733 assert(table && "Cannot change domain");
3734 MI->setDesc(get(table[Domain-1]));
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003735}
Chris Lattneree9eb412010-04-26 23:37:21 +00003736
3737/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3738void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3739 NopInst.setOpcode(X86::NOOP);
3740}
Dan Gohman84023e02010-07-10 09:00:22 +00003741
Andrew Tricke0ef5092011-03-05 08:00:22 +00003742bool X86InstrInfo::isHighLatencyDef(int opc) const {
3743 switch (opc) {
Evan Cheng23128422010-10-19 18:58:51 +00003744 default: return false;
3745 case X86::DIVSDrm:
3746 case X86::DIVSDrm_Int:
3747 case X86::DIVSDrr:
3748 case X86::DIVSDrr_Int:
3749 case X86::DIVSSrm:
3750 case X86::DIVSSrm_Int:
3751 case X86::DIVSSrr:
3752 case X86::DIVSSrr_Int:
3753 case X86::SQRTPDm:
3754 case X86::SQRTPDm_Int:
3755 case X86::SQRTPDr:
3756 case X86::SQRTPDr_Int:
3757 case X86::SQRTPSm:
3758 case X86::SQRTPSm_Int:
3759 case X86::SQRTPSr:
3760 case X86::SQRTPSr_Int:
3761 case X86::SQRTSDm:
3762 case X86::SQRTSDm_Int:
3763 case X86::SQRTSDr:
3764 case X86::SQRTSDr_Int:
3765 case X86::SQRTSSm:
3766 case X86::SQRTSSm_Int:
3767 case X86::SQRTSSr:
3768 case X86::SQRTSSr_Int:
Bruno Cardoso Lopesb4e905d2011-09-15 22:15:52 +00003769 // AVX instructions with high latency
3770 case X86::VDIVSDrm:
3771 case X86::VDIVSDrm_Int:
3772 case X86::VDIVSDrr:
3773 case X86::VDIVSDrr_Int:
3774 case X86::VDIVSSrm:
3775 case X86::VDIVSSrm_Int:
3776 case X86::VDIVSSrr:
3777 case X86::VDIVSSrr_Int:
3778 case X86::VSQRTPDm:
3779 case X86::VSQRTPDm_Int:
3780 case X86::VSQRTPDr:
3781 case X86::VSQRTPDr_Int:
3782 case X86::VSQRTPSm:
3783 case X86::VSQRTPSm_Int:
3784 case X86::VSQRTPSr:
3785 case X86::VSQRTPSr_Int:
3786 case X86::VSQRTSDm:
3787 case X86::VSQRTSDm_Int:
3788 case X86::VSQRTSDr:
3789 case X86::VSQRTSSm:
3790 case X86::VSQRTSSm_Int:
3791 case X86::VSQRTSSr:
Evan Cheng23128422010-10-19 18:58:51 +00003792 return true;
3793 }
3794}
3795
Andrew Tricke0ef5092011-03-05 08:00:22 +00003796bool X86InstrInfo::
3797hasHighOperandLatency(const InstrItineraryData *ItinData,
3798 const MachineRegisterInfo *MRI,
3799 const MachineInstr *DefMI, unsigned DefIdx,
3800 const MachineInstr *UseMI, unsigned UseIdx) const {
3801 return isHighLatencyDef(DefMI->getOpcode());
3802}
3803
Dan Gohman84023e02010-07-10 09:00:22 +00003804namespace {
3805 /// CGBR - Create Global Base Reg pass. This initializes the PIC
3806 /// global base register for x86-32.
3807 struct CGBR : public MachineFunctionPass {
3808 static char ID;
Owen Anderson90c579d2010-08-06 18:33:48 +00003809 CGBR() : MachineFunctionPass(ID) {}
Dan Gohman84023e02010-07-10 09:00:22 +00003810
3811 virtual bool runOnMachineFunction(MachineFunction &MF) {
3812 const X86TargetMachine *TM =
3813 static_cast<const X86TargetMachine *>(&MF.getTarget());
3814
3815 assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
3816 "X86-64 PIC uses RIP relative addressing");
3817
3818 // Only emit a global base reg in PIC mode.
3819 if (TM->getRelocationModel() != Reloc::PIC_)
3820 return false;
3821
Dan Gohmand8c0a512010-09-17 20:24:24 +00003822 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3823 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3824
3825 // If we didn't need a GlobalBaseReg, don't insert code.
3826 if (GlobalBaseReg == 0)
3827 return false;
3828
Dan Gohman84023e02010-07-10 09:00:22 +00003829 // Insert the set of GlobalBaseReg into the first MBB of the function
3830 MachineBasicBlock &FirstMBB = MF.front();
3831 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3832 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3833 MachineRegisterInfo &RegInfo = MF.getRegInfo();
3834 const X86InstrInfo *TII = TM->getInstrInfo();
3835
3836 unsigned PC;
3837 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
3838 PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3839 else
Dan Gohmand8c0a512010-09-17 20:24:24 +00003840 PC = GlobalBaseReg;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003841
Dan Gohman84023e02010-07-10 09:00:22 +00003842 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3843 // only used in JIT code emission as displacement to pc.
3844 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003845
Dan Gohman84023e02010-07-10 09:00:22 +00003846 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3847 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3848 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman84023e02010-07-10 09:00:22 +00003849 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3850 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3851 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3852 X86II::MO_GOT_ABSOLUTE_ADDRESS);
3853 }
3854
3855 return true;
3856 }
3857
3858 virtual const char *getPassName() const {
3859 return "X86 PIC Global Base Reg Initialization";
3860 }
3861
3862 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
3863 AU.setPreservesCFG();
3864 MachineFunctionPass::getAnalysisUsage(AU);
3865 }
3866 };
3867}
3868
3869char CGBR::ID = 0;
3870FunctionPass*
3871llvm::createGlobalBaseRegPass() { return new CGBR(); }