blob: 1504a807625b500eaf4eb307179f94a2afc7cd40 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000028 </ol>
29 </li>
Chris Lattner00950542001-06-06 20:29:01 +000030 <li><a href="#typesystem">Type System</a>
31 <ol>
Robert Bocchino7b81c752006-02-17 21:18:08 +000032 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000033 <ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000034 <li><a href="#t_classifications">Type Classifications</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000035 </ol>
36 </li>
Chris Lattner00950542001-06-06 20:29:01 +000037 <li><a href="#t_derived">Derived Types</a>
38 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000039 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000040 <li><a href="#t_function">Function Type</a></li>
41 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000042 <li><a href="#t_struct">Structure Type</a></li>
Chris Lattnera58561b2004-08-12 19:12:28 +000043 <li><a href="#t_packed">Packed Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000044 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 </ol>
46 </li>
47 </ol>
48 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000049 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000050 <ol>
51 <li><a href="#simpleconstants">Simple Constants</a>
52 <li><a href="#aggregateconstants">Aggregate Constants</a>
53 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
54 <li><a href="#undefvalues">Undefined Values</a>
55 <li><a href="#constantexprs">Constant Expressions</a>
56 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000057 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000058 <li><a href="#othervalues">Other Values</a>
59 <ol>
60 <li><a href="#inlineasm">Inline Assembler Expressions</a>
61 </ol>
62 </li>
Chris Lattner00950542001-06-06 20:29:01 +000063 <li><a href="#instref">Instruction Reference</a>
64 <ol>
65 <li><a href="#terminators">Terminator Instructions</a>
66 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000067 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
68 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000069 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
70 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000071 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000072 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000073 </ol>
74 </li>
Chris Lattner00950542001-06-06 20:29:01 +000075 <li><a href="#binaryops">Binary Operations</a>
76 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000077 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
78 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
79 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000080 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
81 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
82 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000083 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
84 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
85 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000086 <li><a href="#i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner00950542001-06-06 20:29:01 +000089 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
90 <ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000091 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000092 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000093 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
94 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_shr">'<tt>shr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +000098 <li><a href="#vectorops">Vector Operations</a>
99 <ol>
100 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
101 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
102 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Tanya Lattner09474292006-04-14 19:24:33 +0000103 <li><a href="#i_vsetint">'<tt>vsetint</tt>' Instruction</a></li>
104 <li><a href="#i_vsetfp">'<tt>vsetfp</tt>' Instruction</a></li>
105 <li><a href="#i_vselect">'<tt>vselect</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000106 </ol>
107 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000108 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000109 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000110 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
111 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
112 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000113 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
114 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
115 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000116 </ol>
117 </li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000118 <li><a href="#otherops">Cast Operations</a>
119 <ol>
120 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
121 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
122 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fp2uint">'<tt>fp2uint .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fp2sint">'<tt>fp2sint .. to</tt>' Instruction</a></li>
127 <li><a href="#i_uint2fp">'<tt>uint2fp .. to</tt>' Instruction</a></li>
128 <li><a href="#i_sint2fp">'<tt>sint2fp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_bitconvert">'<tt>bitconvert .. to</tt>' Instruction</a></li>
130 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000131 <li><a href="#otherops">Other Operations</a>
132 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000133 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000134 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000135 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000136 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000137 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000138 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000139 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000140 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000141 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000142 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000143 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
144 <ol>
145 <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
146 <li><a href="#i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
147 <li><a href="#i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
148 </ol>
149 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000150 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
151 <ol>
152 <li><a href="#i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
153 <li><a href="#i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
154 <li><a href="#i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
155 </ol>
156 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000157 <li><a href="#int_codegen">Code Generator Intrinsics</a>
158 <ol>
159 <li><a href="#i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
160 <li><a href="#i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
Chris Lattner57e1f392006-01-13 02:03:13 +0000161 <li><a href="#i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
162 <li><a href="#i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +0000163 <li><a href="#i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +0000164 <li><a href="#i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Andrew Lenharth51b8d542005-11-11 16:47:30 +0000165 <li><a href="#i_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000166 </ol>
167 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000168 <li><a href="#int_libc">Standard C Library Intrinsics</a>
169 <ol>
Chris Lattner5b310c32006-03-03 00:07:20 +0000170 <li><a href="#i_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
171 <li><a href="#i_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
172 <li><a href="#i_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
Chris Lattnerec6cb612006-01-16 22:38:59 +0000173 <li><a href="#i_isunordered">'<tt>llvm.isunordered.*</tt>' Intrinsic</a></li>
174 <li><a href="#i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
Chris Lattnerf4d252d2006-09-08 06:34:02 +0000175 <li><a href="#i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000176 </ol>
177 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000178 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000179 <ol>
Nate Begeman7e36c472006-01-13 23:26:38 +0000180 <li><a href="#i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000181 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
182 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
183 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000184 </ol>
185 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000186 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000187 </ol>
188 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000189</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000190
191<div class="doc_author">
192 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
193 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000194</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000195
Chris Lattner00950542001-06-06 20:29:01 +0000196<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000197<div class="doc_section"> <a name="abstract">Abstract </a></div>
198<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000199
Misha Brukman9d0919f2003-11-08 01:05:38 +0000200<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000201<p>This document is a reference manual for the LLVM assembly language.
202LLVM is an SSA based representation that provides type safety,
203low-level operations, flexibility, and the capability of representing
204'all' high-level languages cleanly. It is the common code
205representation used throughout all phases of the LLVM compilation
206strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000207</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000208
Chris Lattner00950542001-06-06 20:29:01 +0000209<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000210<div class="doc_section"> <a name="introduction">Introduction</a> </div>
211<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000212
Misha Brukman9d0919f2003-11-08 01:05:38 +0000213<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000214
Chris Lattner261efe92003-11-25 01:02:51 +0000215<p>The LLVM code representation is designed to be used in three
216different forms: as an in-memory compiler IR, as an on-disk bytecode
217representation (suitable for fast loading by a Just-In-Time compiler),
218and as a human readable assembly language representation. This allows
219LLVM to provide a powerful intermediate representation for efficient
220compiler transformations and analysis, while providing a natural means
221to debug and visualize the transformations. The three different forms
222of LLVM are all equivalent. This document describes the human readable
223representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000224
John Criswellc1f786c2005-05-13 22:25:59 +0000225<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000226while being expressive, typed, and extensible at the same time. It
227aims to be a "universal IR" of sorts, by being at a low enough level
228that high-level ideas may be cleanly mapped to it (similar to how
229microprocessors are "universal IR's", allowing many source languages to
230be mapped to them). By providing type information, LLVM can be used as
231the target of optimizations: for example, through pointer analysis, it
232can be proven that a C automatic variable is never accessed outside of
233the current function... allowing it to be promoted to a simple SSA
234value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000235
Misha Brukman9d0919f2003-11-08 01:05:38 +0000236</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000237
Chris Lattner00950542001-06-06 20:29:01 +0000238<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000239<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000240
Misha Brukman9d0919f2003-11-08 01:05:38 +0000241<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000242
Chris Lattner261efe92003-11-25 01:02:51 +0000243<p>It is important to note that this document describes 'well formed'
244LLVM assembly language. There is a difference between what the parser
245accepts and what is considered 'well formed'. For example, the
246following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000247
248<pre>
249 %x = <a href="#i_add">add</a> int 1, %x
250</pre>
251
Chris Lattner261efe92003-11-25 01:02:51 +0000252<p>...because the definition of <tt>%x</tt> does not dominate all of
253its uses. The LLVM infrastructure provides a verification pass that may
254be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000255automatically run by the parser after parsing input assembly and by
Chris Lattner261efe92003-11-25 01:02:51 +0000256the optimizer before it outputs bytecode. The violations pointed out
257by the verifier pass indicate bugs in transformation passes or input to
258the parser.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000259
Chris Lattner261efe92003-11-25 01:02:51 +0000260<!-- Describe the typesetting conventions here. --> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000261
Chris Lattner00950542001-06-06 20:29:01 +0000262<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000263<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000264<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000265
Misha Brukman9d0919f2003-11-08 01:05:38 +0000266<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000267
Chris Lattner261efe92003-11-25 01:02:51 +0000268<p>LLVM uses three different forms of identifiers, for different
269purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000270
Chris Lattner00950542001-06-06 20:29:01 +0000271<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000272 <li>Named values are represented as a string of characters with a '%' prefix.
273 For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual
274 regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
275 Identifiers which require other characters in their names can be surrounded
276 with quotes. In this way, anything except a <tt>"</tt> character can be used
277 in a name.</li>
278
279 <li>Unnamed values are represented as an unsigned numeric value with a '%'
280 prefix. For example, %12, %2, %44.</li>
281
Reid Spencercc16dc32004-12-09 18:02:53 +0000282 <li>Constants, which are described in a <a href="#constants">section about
283 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000284</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000285
286<p>LLVM requires that values start with a '%' sign for two reasons: Compilers
287don't need to worry about name clashes with reserved words, and the set of
288reserved words may be expanded in the future without penalty. Additionally,
289unnamed identifiers allow a compiler to quickly come up with a temporary
290variable without having to avoid symbol table conflicts.</p>
291
Chris Lattner261efe92003-11-25 01:02:51 +0000292<p>Reserved words in LLVM are very similar to reserved words in other
293languages. There are keywords for different opcodes ('<tt><a
Chris Lattnere5d947b2004-12-09 16:36:40 +0000294href="#i_add">add</a></tt>', '<tt><a href="#i_cast">cast</a></tt>', '<tt><a
295href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
296href="#t_void">void</a></tt>', '<tt><a href="#t_uint">uint</a></tt>', etc...),
297and others. These reserved words cannot conflict with variable names, because
298none of them start with a '%' character.</p>
299
300<p>Here is an example of LLVM code to multiply the integer variable
301'<tt>%X</tt>' by 8:</p>
302
Misha Brukman9d0919f2003-11-08 01:05:38 +0000303<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000304
305<pre>
306 %result = <a href="#i_mul">mul</a> uint %X, 8
307</pre>
308
Misha Brukman9d0919f2003-11-08 01:05:38 +0000309<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000310
311<pre>
312 %result = <a href="#i_shl">shl</a> uint %X, ubyte 3
313</pre>
314
Misha Brukman9d0919f2003-11-08 01:05:38 +0000315<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000316
317<pre>
318 <a href="#i_add">add</a> uint %X, %X <i>; yields {uint}:%0</i>
319 <a href="#i_add">add</a> uint %0, %0 <i>; yields {uint}:%1</i>
320 %result = <a href="#i_add">add</a> uint %1, %1
321</pre>
322
Chris Lattner261efe92003-11-25 01:02:51 +0000323<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
324important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000325
Chris Lattner00950542001-06-06 20:29:01 +0000326<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000327
328 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
329 line.</li>
330
331 <li>Unnamed temporaries are created when the result of a computation is not
332 assigned to a named value.</li>
333
Misha Brukman9d0919f2003-11-08 01:05:38 +0000334 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000335
Misha Brukman9d0919f2003-11-08 01:05:38 +0000336</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000337
John Criswelle4c57cc2005-05-12 16:52:32 +0000338<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339demonstrating instructions, we will follow an instruction with a comment that
340defines the type and name of value produced. Comments are shown in italic
341text.</p>
342
Misha Brukman9d0919f2003-11-08 01:05:38 +0000343</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000344
345<!-- *********************************************************************** -->
346<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
347<!-- *********************************************************************** -->
348
349<!-- ======================================================================= -->
350<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
351</div>
352
353<div class="doc_text">
354
355<p>LLVM programs are composed of "Module"s, each of which is a
356translation unit of the input programs. Each module consists of
357functions, global variables, and symbol table entries. Modules may be
358combined together with the LLVM linker, which merges function (and
359global variable) definitions, resolves forward declarations, and merges
360symbol table entries. Here is an example of the "hello world" module:</p>
361
362<pre><i>; Declare the string constant as a global constant...</i>
363<a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a
364 href="#globalvars">constant</a> <a href="#t_array">[13 x sbyte]</a> c"hello world\0A\00" <i>; [13 x sbyte]*</i>
365
366<i>; External declaration of the puts function</i>
367<a href="#functionstructure">declare</a> int %puts(sbyte*) <i>; int(sbyte*)* </i>
368
Chris Lattner81c01f02006-06-13 03:05:47 +0000369<i>; Global variable / Function body section separator</i>
370implementation
371
Chris Lattnerfa730212004-12-09 16:11:40 +0000372<i>; Definition of main function</i>
373int %main() { <i>; int()* </i>
374 <i>; Convert [13x sbyte]* to sbyte *...</i>
375 %cast210 = <a
376 href="#i_getelementptr">getelementptr</a> [13 x sbyte]* %.LC0, long 0, long 0 <i>; sbyte*</i>
377
378 <i>; Call puts function to write out the string to stdout...</i>
379 <a
380 href="#i_call">call</a> int %puts(sbyte* %cast210) <i>; int</i>
381 <a
382 href="#i_ret">ret</a> int 0<br>}<br></pre>
383
384<p>This example is made up of a <a href="#globalvars">global variable</a>
385named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
386function, and a <a href="#functionstructure">function definition</a>
387for "<tt>main</tt>".</p>
388
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389<p>In general, a module is made up of a list of global values,
390where both functions and global variables are global values. Global values are
391represented by a pointer to a memory location (in this case, a pointer to an
392array of char, and a pointer to a function), and have one of the following <a
393href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000394
Chris Lattner81c01f02006-06-13 03:05:47 +0000395<p>Due to a limitation in the current LLVM assembly parser (it is limited by
396one-token lookahead), modules are split into two pieces by the "implementation"
397keyword. Global variable prototypes and definitions must occur before the
398keyword, and function definitions must occur after it. Function prototypes may
399occur either before or after it. In the future, the implementation keyword may
400become a noop, if the parser gets smarter.</p>
401
Chris Lattnere5d947b2004-12-09 16:36:40 +0000402</div>
403
404<!-- ======================================================================= -->
405<div class="doc_subsection">
406 <a name="linkage">Linkage Types</a>
407</div>
408
409<div class="doc_text">
410
411<p>
412All Global Variables and Functions have one of the following types of linkage:
413</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000414
415<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000416
Chris Lattnerfa730212004-12-09 16:11:40 +0000417 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000418
419 <dd>Global values with internal linkage are only directly accessible by
420 objects in the current module. In particular, linking code into a module with
421 an internal global value may cause the internal to be renamed as necessary to
422 avoid collisions. Because the symbol is internal to the module, all
423 references can be updated. This corresponds to the notion of the
424 '<tt>static</tt>' keyword in C, or the idea of "anonymous namespaces" in C++.
Chris Lattnerfa730212004-12-09 16:11:40 +0000425 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000426
Chris Lattnerfa730212004-12-09 16:11:40 +0000427 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000428
429 <dd>"<tt>linkonce</tt>" linkage is similar to <tt>internal</tt> linkage, with
430 the twist that linking together two modules defining the same
431 <tt>linkonce</tt> globals will cause one of the globals to be discarded. This
432 is typically used to implement inline functions. Unreferenced
433 <tt>linkonce</tt> globals are allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000434 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000435
Chris Lattnerfa730212004-12-09 16:11:40 +0000436 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000437
438 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
439 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
440 used to implement constructs in C such as "<tt>int X;</tt>" at global scope.
Chris Lattnerfa730212004-12-09 16:11:40 +0000441 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000442
Chris Lattnerfa730212004-12-09 16:11:40 +0000443 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000444
445 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
446 pointer to array type. When two global variables with appending linkage are
447 linked together, the two global arrays are appended together. This is the
448 LLVM, typesafe, equivalent of having the system linker append together
449 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000450 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000451
Chris Lattnerfa730212004-12-09 16:11:40 +0000452 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000453
454 <dd>If none of the above identifiers are used, the global is externally
455 visible, meaning that it participates in linkage and can be used to resolve
456 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000457 </dd>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000458
459 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
460
461 <dd>"<tt>extern_weak</tt>" TBD
462 </dd>
463
464 <p>
465 The next two types of linkage are targeted for Microsoft Windows platform
466 only. They are designed to support importing (exporting) symbols from (to)
467 DLLs.
468 </p>
469
470 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
471
472 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
473 or variable via a global pointer to a pointer that is set up by the DLL
474 exporting the symbol. On Microsoft Windows targets, the pointer name is
475 formed by combining <code>_imp__</code> and the function or variable name.
476 </dd>
477
478 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
479
480 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
481 pointer to a pointer in a DLL, so that it can be referenced with the
482 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
483 name is formed by combining <code>_imp__</code> and the function or variable
484 name.
485 </dd>
486
Chris Lattnerfa730212004-12-09 16:11:40 +0000487</dl>
488
Chris Lattnerfa730212004-12-09 16:11:40 +0000489<p><a name="linkage_external">For example, since the "<tt>.LC0</tt>"
490variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
491variable and was linked with this one, one of the two would be renamed,
492preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
493external (i.e., lacking any linkage declarations), they are accessible
494outside of the current module. It is illegal for a function <i>declaration</i>
495to have any linkage type other than "externally visible".</a></p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000496
Chris Lattnerfa730212004-12-09 16:11:40 +0000497</div>
498
499<!-- ======================================================================= -->
500<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000501 <a name="callingconv">Calling Conventions</a>
502</div>
503
504<div class="doc_text">
505
506<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
507and <a href="#i_invoke">invokes</a> can all have an optional calling convention
508specified for the call. The calling convention of any pair of dynamic
509caller/callee must match, or the behavior of the program is undefined. The
510following calling conventions are supported by LLVM, and more may be added in
511the future:</p>
512
513<dl>
514 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
515
516 <dd>This calling convention (the default if no other calling convention is
517 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000518 supports varargs function calls and tolerates some mismatch in the declared
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000519 prototype and implemented declaration of the function (as does normal C).
520 </dd>
521
Chris Lattner5710ce92006-05-19 21:15:36 +0000522 <dt><b>"<tt>csretcc</tt>" - The C struct return calling convention</b>:</dt>
523
524 <dd>This calling convention matches the target C calling conventions, except
525 that functions with this convention are required to take a pointer as their
526 first argument, and the return type of the function must be void. This is
527 used for C functions that return aggregates by-value. In this case, the
528 function has been transformed to take a pointer to the struct as the first
529 argument to the function. For targets where the ABI specifies specific
530 behavior for structure-return calls, the calling convention can be used to
531 distinguish between struct return functions and other functions that take a
532 pointer to a struct as the first argument.
533 </dd>
534
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000535 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
536
537 <dd>This calling convention attempts to make calls as fast as possible
538 (e.g. by passing things in registers). This calling convention allows the
539 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner8cdc5bc2005-05-06 23:08:23 +0000540 without having to conform to an externally specified ABI. Implementations of
541 this convention should allow arbitrary tail call optimization to be supported.
542 This calling convention does not support varargs and requires the prototype of
543 all callees to exactly match the prototype of the function definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000544 </dd>
545
546 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
547
548 <dd>This calling convention attempts to make code in the caller as efficient
549 as possible under the assumption that the call is not commonly executed. As
550 such, these calls often preserve all registers so that the call does not break
551 any live ranges in the caller side. This calling convention does not support
552 varargs and requires the prototype of all callees to exactly match the
553 prototype of the function definition.
554 </dd>
555
Chris Lattnercfe6b372005-05-07 01:46:40 +0000556 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000557
558 <dd>Any calling convention may be specified by number, allowing
559 target-specific calling conventions to be used. Target specific calling
560 conventions start at 64.
561 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000562</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000563
564<p>More calling conventions can be added/defined on an as-needed basis, to
565support pascal conventions or any other well-known target-independent
566convention.</p>
567
568</div>
569
570<!-- ======================================================================= -->
571<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000572 <a name="globalvars">Global Variables</a>
573</div>
574
575<div class="doc_text">
576
Chris Lattner3689a342005-02-12 19:30:21 +0000577<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000578instead of run-time. Global variables may optionally be initialized, may have
579an explicit section to be placed in, and may
Chris Lattner2cbdc452005-11-06 08:02:57 +0000580have an optional explicit alignment specified. A
John Criswell0ec250c2005-10-24 16:17:18 +0000581variable may be defined as a global "constant," which indicates that the
Chris Lattner3689a342005-02-12 19:30:21 +0000582contents of the variable will <b>never</b> be modified (enabling better
583optimization, allowing the global data to be placed in the read-only section of
584an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000585cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000586
587<p>
588LLVM explicitly allows <em>declarations</em> of global variables to be marked
589constant, even if the final definition of the global is not. This capability
590can be used to enable slightly better optimization of the program, but requires
591the language definition to guarantee that optimizations based on the
592'constantness' are valid for the translation units that do not include the
593definition.
594</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000595
596<p>As SSA values, global variables define pointer values that are in
597scope (i.e. they dominate) all basic blocks in the program. Global
598variables always define a pointer to their "content" type because they
599describe a region of memory, and all memory objects in LLVM are
600accessed through pointers.</p>
601
Chris Lattner88f6c462005-11-12 00:45:07 +0000602<p>LLVM allows an explicit section to be specified for globals. If the target
603supports it, it will emit globals to the section specified.</p>
604
Chris Lattner2cbdc452005-11-06 08:02:57 +0000605<p>An explicit alignment may be specified for a global. If not present, or if
606the alignment is set to zero, the alignment of the global is set by the target
607to whatever it feels convenient. If an explicit alignment is specified, the
608global is forced to have at least that much alignment. All alignments must be
609a power of 2.</p>
610
Chris Lattnerfa730212004-12-09 16:11:40 +0000611</div>
612
613
614<!-- ======================================================================= -->
615<div class="doc_subsection">
616 <a name="functionstructure">Functions</a>
617</div>
618
619<div class="doc_text">
620
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000621<p>LLVM function definitions consist of an optional <a href="#linkage">linkage
622type</a>, an optional <a href="#callingconv">calling convention</a>, a return
Chris Lattner88f6c462005-11-12 00:45:07 +0000623type, a function name, a (possibly empty) argument list, an optional section,
624an optional alignment, an opening curly brace,
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000625a list of basic blocks, and a closing curly brace. LLVM function declarations
626are defined with the "<tt>declare</tt>" keyword, an optional <a
Chris Lattner2cbdc452005-11-06 08:02:57 +0000627href="#callingconv">calling convention</a>, a return type, a function name,
628a possibly empty list of arguments, and an optional alignment.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000629
630<p>A function definition contains a list of basic blocks, forming the CFG for
631the function. Each basic block may optionally start with a label (giving the
632basic block a symbol table entry), contains a list of instructions, and ends
633with a <a href="#terminators">terminator</a> instruction (such as a branch or
634function return).</p>
635
John Criswelle4c57cc2005-05-12 16:52:32 +0000636<p>The first basic block in a program is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000637executed on entrance to the function, and it is not allowed to have predecessor
638basic blocks (i.e. there can not be any branches to the entry block of a
639function). Because the block can have no predecessors, it also cannot have any
640<a href="#i_phi">PHI nodes</a>.</p>
641
642<p>LLVM functions are identified by their name and type signature. Hence, two
643functions with the same name but different parameter lists or return values are
Chris Lattnerd4f6b172005-03-07 22:13:59 +0000644considered different functions, and LLVM will resolve references to each
Chris Lattnerfa730212004-12-09 16:11:40 +0000645appropriately.</p>
646
Chris Lattner88f6c462005-11-12 00:45:07 +0000647<p>LLVM allows an explicit section to be specified for functions. If the target
648supports it, it will emit functions to the section specified.</p>
649
Chris Lattner2cbdc452005-11-06 08:02:57 +0000650<p>An explicit alignment may be specified for a function. If not present, or if
651the alignment is set to zero, the alignment of the function is set by the target
652to whatever it feels convenient. If an explicit alignment is specified, the
653function is forced to have at least that much alignment. All alignments must be
654a power of 2.</p>
655
Chris Lattnerfa730212004-12-09 16:11:40 +0000656</div>
657
Chris Lattner4e9aba72006-01-23 23:23:47 +0000658<!-- ======================================================================= -->
659<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000660 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000661</div>
662
663<div class="doc_text">
664<p>
665Modules may contain "module-level inline asm" blocks, which corresponds to the
666GCC "file scope inline asm" blocks. These blocks are internally concatenated by
667LLVM and treated as a single unit, but may be separated in the .ll file if
668desired. The syntax is very simple:
669</p>
670
671<div class="doc_code"><pre>
Chris Lattner52599e12006-01-24 00:37:20 +0000672 module asm "inline asm code goes here"
673 module asm "more can go here"
Chris Lattner4e9aba72006-01-23 23:23:47 +0000674</pre></div>
675
676<p>The strings can contain any character by escaping non-printable characters.
677 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
678 for the number.
679</p>
680
681<p>
682 The inline asm code is simply printed to the machine code .s file when
683 assembly code is generated.
684</p>
685</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000686
687
Chris Lattner00950542001-06-06 20:29:01 +0000688<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000689<div class="doc_section"> <a name="typesystem">Type System</a> </div>
690<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +0000691
Misha Brukman9d0919f2003-11-08 01:05:38 +0000692<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +0000693
Misha Brukman9d0919f2003-11-08 01:05:38 +0000694<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +0000695intermediate representation. Being typed enables a number of
696optimizations to be performed on the IR directly, without having to do
697extra analyses on the side before the transformation. A strong type
698system makes it easier to read the generated code and enables novel
699analyses and transformations that are not feasible to perform on normal
700three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000701
702</div>
703
Chris Lattner00950542001-06-06 20:29:01 +0000704<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +0000705<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000706<div class="doc_text">
John Criswell4457dc92004-04-09 16:48:45 +0000707<p>The primitive types are the fundamental building blocks of the LLVM
Chris Lattnerd4f6b172005-03-07 22:13:59 +0000708system. The current set of primitive types is as follows:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000709
Reid Spencerd3f876c2004-11-01 08:19:36 +0000710<table class="layout">
711 <tr class="layout">
712 <td class="left">
713 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000714 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000715 <tr><th>Type</th><th>Description</th></tr>
716 <tr><td><tt>void</tt></td><td>No value</td></tr>
Misha Brukmancfa87bc2005-04-22 18:02:52 +0000717 <tr><td><tt>ubyte</tt></td><td>Unsigned 8-bit value</td></tr>
718 <tr><td><tt>ushort</tt></td><td>Unsigned 16-bit value</td></tr>
719 <tr><td><tt>uint</tt></td><td>Unsigned 32-bit value</td></tr>
720 <tr><td><tt>ulong</tt></td><td>Unsigned 64-bit value</td></tr>
721 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000722 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000723 </tbody>
724 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000725 </td>
726 <td class="right">
727 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000728 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000729 <tr><th>Type</th><th>Description</th></tr>
730 <tr><td><tt>bool</tt></td><td>True or False value</td></tr>
Misha Brukmancfa87bc2005-04-22 18:02:52 +0000731 <tr><td><tt>sbyte</tt></td><td>Signed 8-bit value</td></tr>
732 <tr><td><tt>short</tt></td><td>Signed 16-bit value</td></tr>
733 <tr><td><tt>int</tt></td><td>Signed 32-bit value</td></tr>
734 <tr><td><tt>long</tt></td><td>Signed 64-bit value</td></tr>
735 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000736 </tbody>
737 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000738 </td>
739 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000740</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000741</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000742
Chris Lattner00950542001-06-06 20:29:01 +0000743<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000744<div class="doc_subsubsection"> <a name="t_classifications">Type
745Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000746<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000747<p>These different primitive types fall into a few useful
748classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000749
750<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +0000751 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000752 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000753 <tr>
754 <td><a name="t_signed">signed</a></td>
755 <td><tt>sbyte, short, int, long, float, double</tt></td>
756 </tr>
757 <tr>
758 <td><a name="t_unsigned">unsigned</a></td>
759 <td><tt>ubyte, ushort, uint, ulong</tt></td>
760 </tr>
761 <tr>
762 <td><a name="t_integer">integer</a></td>
763 <td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td>
764 </tr>
765 <tr>
766 <td><a name="t_integral">integral</a></td>
Misha Brukmanc24b7582004-08-12 20:16:08 +0000767 <td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long</tt>
768 </td>
Chris Lattner261efe92003-11-25 01:02:51 +0000769 </tr>
770 <tr>
771 <td><a name="t_floating">floating point</a></td>
772 <td><tt>float, double</tt></td>
773 </tr>
774 <tr>
775 <td><a name="t_firstclass">first class</a></td>
Misha Brukmanc24b7582004-08-12 20:16:08 +0000776 <td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long,<br>
777 float, double, <a href="#t_pointer">pointer</a>,
778 <a href="#t_packed">packed</a></tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +0000779 </tr>
780 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000781</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000782
Chris Lattner261efe92003-11-25 01:02:51 +0000783<p>The <a href="#t_firstclass">first class</a> types are perhaps the
784most important. Values of these types are the only ones which can be
785produced by instructions, passed as arguments, or used as operands to
786instructions. This means that all structures and arrays must be
787manipulated either by pointer or by component.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000788</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000789
Chris Lattner00950542001-06-06 20:29:01 +0000790<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +0000791<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000792
Misha Brukman9d0919f2003-11-08 01:05:38 +0000793<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +0000794
Chris Lattner261efe92003-11-25 01:02:51 +0000795<p>The real power in LLVM comes from the derived types in the system.
796This is what allows a programmer to represent arrays, functions,
797pointers, and other useful types. Note that these derived types may be
798recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000799
Misha Brukman9d0919f2003-11-08 01:05:38 +0000800</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000801
Chris Lattner00950542001-06-06 20:29:01 +0000802<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000803<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000804
Misha Brukman9d0919f2003-11-08 01:05:38 +0000805<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +0000806
Chris Lattner00950542001-06-06 20:29:01 +0000807<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000808
Misha Brukman9d0919f2003-11-08 01:05:38 +0000809<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +0000810sequentially in memory. The array type requires a size (number of
811elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000812
Chris Lattner7faa8832002-04-14 06:13:44 +0000813<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000814
815<pre>
816 [&lt;# elements&gt; x &lt;elementtype&gt;]
817</pre>
818
John Criswelle4c57cc2005-05-12 16:52:32 +0000819<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +0000820be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000821
Chris Lattner7faa8832002-04-14 06:13:44 +0000822<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000823<table class="layout">
824 <tr class="layout">
825 <td class="left">
826 <tt>[40 x int ]</tt><br/>
827 <tt>[41 x int ]</tt><br/>
828 <tt>[40 x uint]</tt><br/>
829 </td>
830 <td class="left">
831 Array of 40 integer values.<br/>
832 Array of 41 integer values.<br/>
833 Array of 40 unsigned integer values.<br/>
834 </td>
835 </tr>
Chris Lattner00950542001-06-06 20:29:01 +0000836</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000837<p>Here are some examples of multidimensional arrays:</p>
838<table class="layout">
839 <tr class="layout">
840 <td class="left">
841 <tt>[3 x [4 x int]]</tt><br/>
842 <tt>[12 x [10 x float]]</tt><br/>
843 <tt>[2 x [3 x [4 x uint]]]</tt><br/>
844 </td>
845 <td class="left">
John Criswellc1f786c2005-05-13 22:25:59 +0000846 3x4 array of integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000847 12x10 array of single precision floating point values.<br/>
848 2x3x4 array of unsigned integer values.<br/>
849 </td>
850 </tr>
851</table>
Chris Lattnere67a9512005-06-24 17:22:57 +0000852
John Criswell0ec250c2005-10-24 16:17:18 +0000853<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
854length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +0000855LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
856As a special case, however, zero length arrays are recognized to be variable
857length. This allows implementation of 'pascal style arrays' with the LLVM
858type "{ int, [0 x float]}", for example.</p>
859
Misha Brukman9d0919f2003-11-08 01:05:38 +0000860</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000861
Chris Lattner00950542001-06-06 20:29:01 +0000862<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000863<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000864<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +0000865<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000866<p>The function type can be thought of as a function signature. It
867consists of a return type and a list of formal parameter types.
John Criswell009900b2003-11-25 21:45:46 +0000868Function types are usually used to build virtual function tables
Chris Lattner261efe92003-11-25 01:02:51 +0000869(which are structures of pointers to functions), for indirect function
870calls, and when defining a function.</p>
John Criswell009900b2003-11-25 21:45:46 +0000871<p>
872The return type of a function type cannot be an aggregate type.
873</p>
Chris Lattner00950542001-06-06 20:29:01 +0000874<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000875<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
John Criswell0ec250c2005-10-24 16:17:18 +0000876<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +0000877specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +0000878which indicates that the function takes a variable number of arguments.
879Variable argument functions can access their arguments with the <a
Chris Lattner261efe92003-11-25 01:02:51 +0000880 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
Chris Lattner00950542001-06-06 20:29:01 +0000881<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000882<table class="layout">
883 <tr class="layout">
884 <td class="left">
885 <tt>int (int)</tt> <br/>
886 <tt>float (int, int *) *</tt><br/>
887 <tt>int (sbyte *, ...)</tt><br/>
888 </td>
889 <td class="left">
890 function taking an <tt>int</tt>, returning an <tt>int</tt><br/>
891 <a href="#t_pointer">Pointer</a> to a function that takes an
Misha Brukmanc24b7582004-08-12 20:16:08 +0000892 <tt>int</tt> and a <a href="#t_pointer">pointer</a> to <tt>int</tt>,
Reid Spencerd3f876c2004-11-01 08:19:36 +0000893 returning <tt>float</tt>.<br/>
894 A vararg function that takes at least one <a href="#t_pointer">pointer</a>
895 to <tt>sbyte</tt> (signed char in C), which returns an integer. This is
896 the signature for <tt>printf</tt> in LLVM.<br/>
897 </td>
898 </tr>
Chris Lattner00950542001-06-06 20:29:01 +0000899</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000900
Misha Brukman9d0919f2003-11-08 01:05:38 +0000901</div>
Chris Lattner00950542001-06-06 20:29:01 +0000902<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000903<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000904<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +0000905<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000906<p>The structure type is used to represent a collection of data members
907together in memory. The packing of the field types is defined to match
908the ABI of the underlying processor. The elements of a structure may
909be any type that has a size.</p>
910<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
911and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
912field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
913instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +0000914<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000915<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +0000916<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000917<table class="layout">
918 <tr class="layout">
919 <td class="left">
920 <tt>{ int, int, int }</tt><br/>
921 <tt>{ float, int (int) * }</tt><br/>
922 </td>
923 <td class="left">
924 a triple of three <tt>int</tt> values<br/>
925 A pair, where the first element is a <tt>float</tt> and the second element
926 is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a>
927 that takes an <tt>int</tt>, returning an <tt>int</tt>.<br/>
928 </td>
929 </tr>
Chris Lattner00950542001-06-06 20:29:01 +0000930</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000931</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000932
Chris Lattner00950542001-06-06 20:29:01 +0000933<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000934<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000935<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +0000936<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000937<p>As in many languages, the pointer type represents a pointer or
938reference to another object, which must live in memory.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +0000939<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000940<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +0000941<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000942<table class="layout">
943 <tr class="layout">
944 <td class="left">
945 <tt>[4x int]*</tt><br/>
946 <tt>int (int *) *</tt><br/>
947 </td>
948 <td class="left">
949 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
950 four <tt>int</tt> values<br/>
951 A <a href="#t_pointer">pointer</a> to a <a
Chris Lattnera977c482005-02-19 02:22:14 +0000952 href="#t_function">function</a> that takes an <tt>int*</tt>, returning an
Reid Spencerd3f876c2004-11-01 08:19:36 +0000953 <tt>int</tt>.<br/>
954 </td>
955 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000956</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000957</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000958
Chris Lattnera58561b2004-08-12 19:12:28 +0000959<!-- _______________________________________________________________________ -->
960<div class="doc_subsubsection"> <a name="t_packed">Packed Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000961<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +0000962
Chris Lattnera58561b2004-08-12 19:12:28 +0000963<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +0000964
Chris Lattnera58561b2004-08-12 19:12:28 +0000965<p>A packed type is a simple derived type that represents a vector
966of elements. Packed types are used when multiple primitive data
967are operated in parallel using a single instruction (SIMD).
968A packed type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +0000969elements) and an underlying primitive data type. Vectors must have a power
970of two length (1, 2, 4, 8, 16 ...). Packed types are
Chris Lattnera58561b2004-08-12 19:12:28 +0000971considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +0000972
Chris Lattnera58561b2004-08-12 19:12:28 +0000973<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +0000974
975<pre>
976 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
977</pre>
978
John Criswellc1f786c2005-05-13 22:25:59 +0000979<p>The number of elements is a constant integer value; elementtype may
Chris Lattnera58561b2004-08-12 19:12:28 +0000980be any integral or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +0000981
Chris Lattnera58561b2004-08-12 19:12:28 +0000982<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +0000983
Reid Spencerd3f876c2004-11-01 08:19:36 +0000984<table class="layout">
985 <tr class="layout">
986 <td class="left">
987 <tt>&lt;4 x int&gt;</tt><br/>
988 <tt>&lt;8 x float&gt;</tt><br/>
989 <tt>&lt;2 x uint&gt;</tt><br/>
990 </td>
991 <td class="left">
992 Packed vector of 4 integer values.<br/>
993 Packed vector of 8 floating-point values.<br/>
994 Packed vector of 2 unsigned integer values.<br/>
995 </td>
996 </tr>
997</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000998</div>
999
Chris Lattner69c11bb2005-04-25 17:34:15 +00001000<!-- _______________________________________________________________________ -->
1001<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1002<div class="doc_text">
1003
1004<h5>Overview:</h5>
1005
1006<p>Opaque types are used to represent unknown types in the system. This
1007corresponds (for example) to the C notion of a foward declared structure type.
1008In LLVM, opaque types can eventually be resolved to any type (not just a
1009structure type).</p>
1010
1011<h5>Syntax:</h5>
1012
1013<pre>
1014 opaque
1015</pre>
1016
1017<h5>Examples:</h5>
1018
1019<table class="layout">
1020 <tr class="layout">
1021 <td class="left">
1022 <tt>opaque</tt>
1023 </td>
1024 <td class="left">
1025 An opaque type.<br/>
1026 </td>
1027 </tr>
1028</table>
1029</div>
1030
1031
Chris Lattnerc3f59762004-12-09 17:30:23 +00001032<!-- *********************************************************************** -->
1033<div class="doc_section"> <a name="constants">Constants</a> </div>
1034<!-- *********************************************************************** -->
1035
1036<div class="doc_text">
1037
1038<p>LLVM has several different basic types of constants. This section describes
1039them all and their syntax.</p>
1040
1041</div>
1042
1043<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001044<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001045
1046<div class="doc_text">
1047
1048<dl>
1049 <dt><b>Boolean constants</b></dt>
1050
1051 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1052 constants of the <tt><a href="#t_primitive">bool</a></tt> type.
1053 </dd>
1054
1055 <dt><b>Integer constants</b></dt>
1056
Reid Spencercc16dc32004-12-09 18:02:53 +00001057 <dd>Standard integers (such as '4') are constants of the <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001058 href="#t_integer">integer</a> type. Negative numbers may be used with signed
1059 integer types.
1060 </dd>
1061
1062 <dt><b>Floating point constants</b></dt>
1063
1064 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1065 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerc3f59762004-12-09 17:30:23 +00001066 notation (see below). Floating point constants must have a <a
1067 href="#t_floating">floating point</a> type. </dd>
1068
1069 <dt><b>Null pointer constants</b></dt>
1070
John Criswell9e2485c2004-12-10 15:51:16 +00001071 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001072 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1073
1074</dl>
1075
John Criswell9e2485c2004-12-10 15:51:16 +00001076<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001077of floating point constants. For example, the form '<tt>double
10780x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
10794.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001080(and the only time that they are generated by the disassembler) is when a
1081floating point constant must be emitted but it cannot be represented as a
1082decimal floating point number. For example, NaN's, infinities, and other
1083special values are represented in their IEEE hexadecimal format so that
1084assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001085
1086</div>
1087
1088<!-- ======================================================================= -->
1089<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1090</div>
1091
1092<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001093<p>Aggregate constants arise from aggregation of simple constants
1094and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001095
1096<dl>
1097 <dt><b>Structure constants</b></dt>
1098
1099 <dd>Structure constants are represented with notation similar to structure
1100 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001101 (<tt>{}</tt>)). For example: "<tt>{ int 4, float 17.0, int* %G }</tt>",
1102 where "<tt>%G</tt>" is declared as "<tt>%G = external global int</tt>". Structure constants
1103 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001104 types of elements must match those specified by the type.
1105 </dd>
1106
1107 <dt><b>Array constants</b></dt>
1108
1109 <dd>Array constants are represented with notation similar to array type
1110 definitions (a comma separated list of elements, surrounded by square brackets
John Criswell9e2485c2004-12-10 15:51:16 +00001111 (<tt>[]</tt>)). For example: "<tt>[ int 42, int 11, int 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001112 constants must have <a href="#t_array">array type</a>, and the number and
1113 types of elements must match those specified by the type.
1114 </dd>
1115
1116 <dt><b>Packed constants</b></dt>
1117
1118 <dd>Packed constants are represented with notation similar to packed type
1119 definitions (a comma separated list of elements, surrounded by
John Criswell9e2485c2004-12-10 15:51:16 +00001120 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; int 42,
Chris Lattnerc3f59762004-12-09 17:30:23 +00001121 int 11, int 74, int 100 &gt;</tt>". Packed constants must have <a
1122 href="#t_packed">packed type</a>, and the number and types of elements must
1123 match those specified by the type.
1124 </dd>
1125
1126 <dt><b>Zero initialization</b></dt>
1127
1128 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1129 value to zero of <em>any</em> type, including scalar and aggregate types.
1130 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001131 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001132 initializers.
1133 </dd>
1134</dl>
1135
1136</div>
1137
1138<!-- ======================================================================= -->
1139<div class="doc_subsection">
1140 <a name="globalconstants">Global Variable and Function Addresses</a>
1141</div>
1142
1143<div class="doc_text">
1144
1145<p>The addresses of <a href="#globalvars">global variables</a> and <a
1146href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001147constants. These constants are explicitly referenced when the <a
1148href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001149href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1150file:</p>
1151
1152<pre>
1153 %X = global int 17
1154 %Y = global int 42
1155 %Z = global [2 x int*] [ int* %X, int* %Y ]
1156</pre>
1157
1158</div>
1159
1160<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001161<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001162<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001163 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001164 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001165 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001166
Reid Spencer2dc45b82004-12-09 18:13:12 +00001167 <p>Undefined values indicate to the compiler that the program is well defined
1168 no matter what value is used, giving the compiler more freedom to optimize.
1169 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001170</div>
1171
1172<!-- ======================================================================= -->
1173<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1174</div>
1175
1176<div class="doc_text">
1177
1178<p>Constant expressions are used to allow expressions involving other constants
1179to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001180href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001181that does not have side effects (e.g. load and call are not supported). The
1182following is the syntax for constant expressions:</p>
1183
1184<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001185 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1186 <dd>Truncate a constant to another type. The bit size of CST must be larger
1187 than the bit size of TYPE. Both types must be integral.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001188
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001189 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1190 <dd>Zero extend a constant to another type. The bit size of CST must be
1191 smaller or equal to the bit size of TYPE. Both types must be integral.</dd>
1192
1193 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1194 <dd>Sign extend a constant to another type. The bit size of CST must be
1195 smaller or equal to the bit size of TYPE. Both types must be integral.</dd>
1196
1197 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1198 <dd>Truncate a floating point constant to another floating point type. The
1199 size of CST must be larger than the size of TYPE. Both types must be
1200 floating point.</dd>
1201
1202 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1203 <dd>Floating point extend a constant to another type. The size of CST must be
1204 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1205
1206 <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt>
1207 <dd>Convert a floating point constant to the corresponding unsigned integer
1208 constant. TYPE must be an integer type. CST must be floating point. If the
1209 value won't fit in the integer type, the results are undefined.</dd>
1210
1211 <dt><b><tt>fp2sint ( CST to TYPE )</tt></b></dt>
1212 <dd>Convert a floating point constant to the corresponding signed integer
1213 constant. TYPE must be an integer type. CST must be floating point. If the
1214 value won't fit in the integer type, the results are undefined.</dd>
1215
1216 <dt><b><tt>uint2fp ( CST to TYPE )</tt></b></dt>
1217 <dd>Convert an unsigned integer constant to the corresponding floating point
1218 constant. TYPE must be floating point. CST must be of integer type. If the
1219 value won't fit in the floating point type, the results are undefined.</dd>
1220
1221 <dt><b><tt>sint2fp ( CST to TYPE )</tt></b></dt>
1222 <dd>Convert a signed integer constant to the corresponding floating point
1223 constant. TYPE must be floating point. CST must be of integer type. If the
1224 value won't fit in the floating point type, the results are undefined.</dd>
1225
1226 <dt><b><tt>bitconvert ( CST to TYPE )</tt></b></dt>
1227 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1228 identical (same number of bits). The conversion is done as if the CST value
1229 was stored to memory and read back as TYPE. In other words, no bits change
1230 with this operator, just the type. This can be used for conversion of pointer
1231 and packed types to any other type, as long as they have the same bit width.
1232 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001233
1234 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1235
1236 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1237 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1238 instruction, the index list may have zero or more indexes, which are required
1239 to make sense for the type of "CSTPTR".</dd>
1240
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001241 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1242
1243 <dd>Perform the <a href="#i_select">select operation</a> on
1244 constants.
1245
1246 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1247
1248 <dd>Perform the <a href="#i_extractelement">extractelement
1249 operation</a> on constants.
1250
Robert Bocchino05ccd702006-01-15 20:48:27 +00001251 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1252
1253 <dd>Perform the <a href="#i_insertelement">insertelement
1254 operation</a> on constants.
1255
Chris Lattnerc1989542006-04-08 00:13:41 +00001256
1257 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1258
1259 <dd>Perform the <a href="#i_shufflevector">shufflevector
1260 operation</a> on constants.
1261
Chris Lattnerc3f59762004-12-09 17:30:23 +00001262 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1263
Reid Spencer2dc45b82004-12-09 18:13:12 +00001264 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1265 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001266 binary</a> operations. The constraints on operands are the same as those for
1267 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001268 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001269</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001270</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001271
Chris Lattner00950542001-06-06 20:29:01 +00001272<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001273<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1274<!-- *********************************************************************** -->
1275
1276<!-- ======================================================================= -->
1277<div class="doc_subsection">
1278<a name="inlineasm">Inline Assembler Expressions</a>
1279</div>
1280
1281<div class="doc_text">
1282
1283<p>
1284LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1285Module-Level Inline Assembly</a>) through the use of a special value. This
1286value represents the inline assembler as a string (containing the instructions
1287to emit), a list of operand constraints (stored as a string), and a flag that
1288indicates whether or not the inline asm expression has side effects. An example
1289inline assembler expression is:
1290</p>
1291
1292<pre>
1293 int(int) asm "bswap $0", "=r,r"
1294</pre>
1295
1296<p>
1297Inline assembler expressions may <b>only</b> be used as the callee operand of
1298a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1299</p>
1300
1301<pre>
1302 %X = call int asm "<a href="#i_bswap">bswap</a> $0", "=r,r"(int %Y)
1303</pre>
1304
1305<p>
1306Inline asms with side effects not visible in the constraint list must be marked
1307as having side effects. This is done through the use of the
1308'<tt>sideeffect</tt>' keyword, like so:
1309</p>
1310
1311<pre>
1312 call void asm sideeffect "eieio", ""()
1313</pre>
1314
1315<p>TODO: The format of the asm and constraints string still need to be
1316documented here. Constraints on what can be done (e.g. duplication, moving, etc
1317need to be documented).
1318</p>
1319
1320</div>
1321
1322<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001323<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1324<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001325
Misha Brukman9d0919f2003-11-08 01:05:38 +00001326<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001327
Chris Lattner261efe92003-11-25 01:02:51 +00001328<p>The LLVM instruction set consists of several different
1329classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001330instructions</a>, <a href="#binaryops">binary instructions</a>,
1331<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001332 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1333instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001334
Misha Brukman9d0919f2003-11-08 01:05:38 +00001335</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001336
Chris Lattner00950542001-06-06 20:29:01 +00001337<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001338<div class="doc_subsection"> <a name="terminators">Terminator
1339Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001340
Misha Brukman9d0919f2003-11-08 01:05:38 +00001341<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001342
Chris Lattner261efe92003-11-25 01:02:51 +00001343<p>As mentioned <a href="#functionstructure">previously</a>, every
1344basic block in a program ends with a "Terminator" instruction, which
1345indicates which block should be executed after the current block is
1346finished. These terminator instructions typically yield a '<tt>void</tt>'
1347value: they produce control flow, not values (the one exception being
1348the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001349<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001350 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1351instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001352the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1353 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1354 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001355
Misha Brukman9d0919f2003-11-08 01:05:38 +00001356</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001357
Chris Lattner00950542001-06-06 20:29:01 +00001358<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001359<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1360Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001361<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001362<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001363<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001364 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001365</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001366<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001367<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001368value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001369<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner261efe92003-11-25 01:02:51 +00001370returns a value and then causes control flow, and one that just causes
1371control flow to occur.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001372<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001373<p>The '<tt>ret</tt>' instruction may return any '<a
1374 href="#t_firstclass">first class</a>' type. Notice that a function is
1375not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1376instruction inside of the function that returns a value that does not
1377match the return type of the function.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001378<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001379<p>When the '<tt>ret</tt>' instruction is executed, control flow
1380returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001381 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001382the instruction after the call. If the caller was an "<a
1383 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001384at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001385returns a value, that value shall set the call or invoke instruction's
1386return value.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001387<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001388<pre> ret int 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001389 ret void <i>; Return from a void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001390</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001391</div>
Chris Lattner00950542001-06-06 20:29:01 +00001392<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001393<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001394<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001395<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001396<pre> br bool &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001397</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001398<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001399<p>The '<tt>br</tt>' instruction is used to cause control flow to
1400transfer to a different basic block in the current function. There are
1401two forms of this instruction, corresponding to a conditional branch
1402and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001403<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001404<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1405single '<tt>bool</tt>' value and two '<tt>label</tt>' values. The
1406unconditional form of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>'
1407value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001408<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001409<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>'
1410argument is evaluated. If the value is <tt>true</tt>, control flows
1411to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1412control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001413<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001414<pre>Test:<br> %cond = <a href="#i_setcc">seteq</a> int %a, %b<br> br bool %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1415 href="#i_ret">ret</a> int 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> int 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001416</div>
Chris Lattner00950542001-06-06 20:29:01 +00001417<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001418<div class="doc_subsubsection">
1419 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1420</div>
1421
Misha Brukman9d0919f2003-11-08 01:05:38 +00001422<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001423<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001424
1425<pre>
1426 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1427</pre>
1428
Chris Lattner00950542001-06-06 20:29:01 +00001429<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001430
1431<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1432several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001433instruction, allowing a branch to occur to one of many possible
1434destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001435
1436
Chris Lattner00950542001-06-06 20:29:01 +00001437<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001438
1439<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1440comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1441an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1442table is not allowed to contain duplicate constant entries.</p>
1443
Chris Lattner00950542001-06-06 20:29:01 +00001444<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001445
Chris Lattner261efe92003-11-25 01:02:51 +00001446<p>The <tt>switch</tt> instruction specifies a table of values and
1447destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001448table is searched for the given value. If the value is found, control flow is
1449transfered to the corresponding destination; otherwise, control flow is
1450transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001451
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001452<h5>Implementation:</h5>
1453
1454<p>Depending on properties of the target machine and the particular
1455<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001456ways. For example, it could be generated as a series of chained conditional
1457branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001458
1459<h5>Example:</h5>
1460
1461<pre>
1462 <i>; Emulate a conditional br instruction</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001463 %Val = <a href="#i_zext">zext</a> bool %value to int
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001464 switch int %Val, label %truedest [int 0, label %falsedest ]
1465
1466 <i>; Emulate an unconditional br instruction</i>
1467 switch uint 0, label %dest [ ]
1468
1469 <i>; Implement a jump table:</i>
1470 switch uint %val, label %otherwise [ uint 0, label %onzero
1471 uint 1, label %onone
1472 uint 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001473</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001474</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001475
Chris Lattner00950542001-06-06 20:29:01 +00001476<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001477<div class="doc_subsubsection">
1478 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1479</div>
1480
Misha Brukman9d0919f2003-11-08 01:05:38 +00001481<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001482
Chris Lattner00950542001-06-06 20:29:01 +00001483<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001484
1485<pre>
1486 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001487 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001488</pre>
1489
Chris Lattner6536cfe2002-05-06 22:08:29 +00001490<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001491
1492<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1493function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001494'<tt>normal</tt>' label or the
1495'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001496"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1497"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001498href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1499continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001500
Chris Lattner00950542001-06-06 20:29:01 +00001501<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001502
Misha Brukman9d0919f2003-11-08 01:05:38 +00001503<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001504
Chris Lattner00950542001-06-06 20:29:01 +00001505<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001506 <li>
John Criswellc1f786c2005-05-13 22:25:59 +00001507 The optional "cconv" marker indicates which <a href="callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001508 convention</a> the call should use. If none is specified, the call defaults
1509 to using C calling conventions.
1510 </li>
1511 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1512 function value being invoked. In most cases, this is a direct function
1513 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1514 an arbitrary pointer to function value.
1515 </li>
1516
1517 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1518 function to be invoked. </li>
1519
1520 <li>'<tt>function args</tt>': argument list whose types match the function
1521 signature argument types. If the function signature indicates the function
1522 accepts a variable number of arguments, the extra arguments can be
1523 specified. </li>
1524
1525 <li>'<tt>normal label</tt>': the label reached when the called function
1526 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1527
1528 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1529 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1530
Chris Lattner00950542001-06-06 20:29:01 +00001531</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001532
Chris Lattner00950542001-06-06 20:29:01 +00001533<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001534
Misha Brukman9d0919f2003-11-08 01:05:38 +00001535<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001536href="#i_call">call</a></tt>' instruction in most regards. The primary
1537difference is that it establishes an association with a label, which is used by
1538the runtime library to unwind the stack.</p>
1539
1540<p>This instruction is used in languages with destructors to ensure that proper
1541cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1542exception. Additionally, this is important for implementation of
1543'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1544
Chris Lattner00950542001-06-06 20:29:01 +00001545<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001546<pre>
1547 %retval = invoke int %Test(int 15) to label %Continue
Chris Lattner76b8a332006-05-14 18:23:06 +00001548 unwind label %TestCleanup <i>; {int}:retval set</i>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001549 %retval = invoke <a href="#callingconv">coldcc</a> int %Test(int 15) to label %Continue
Chris Lattner76b8a332006-05-14 18:23:06 +00001550 unwind label %TestCleanup <i>; {int}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00001551</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001552</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001553
1554
Chris Lattner27f71f22003-09-03 00:41:47 +00001555<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00001556
Chris Lattner261efe92003-11-25 01:02:51 +00001557<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1558Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00001559
Misha Brukman9d0919f2003-11-08 01:05:38 +00001560<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00001561
Chris Lattner27f71f22003-09-03 00:41:47 +00001562<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001563<pre>
1564 unwind
1565</pre>
1566
Chris Lattner27f71f22003-09-03 00:41:47 +00001567<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001568
1569<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1570at the first callee in the dynamic call stack which used an <a
1571href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1572primarily used to implement exception handling.</p>
1573
Chris Lattner27f71f22003-09-03 00:41:47 +00001574<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001575
1576<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1577immediately halt. The dynamic call stack is then searched for the first <a
1578href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1579execution continues at the "exceptional" destination block specified by the
1580<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1581dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001582</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001583
1584<!-- _______________________________________________________________________ -->
1585
1586<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1587Instruction</a> </div>
1588
1589<div class="doc_text">
1590
1591<h5>Syntax:</h5>
1592<pre>
1593 unreachable
1594</pre>
1595
1596<h5>Overview:</h5>
1597
1598<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1599instruction is used to inform the optimizer that a particular portion of the
1600code is not reachable. This can be used to indicate that the code after a
1601no-return function cannot be reached, and other facts.</p>
1602
1603<h5>Semantics:</h5>
1604
1605<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1606</div>
1607
1608
1609
Chris Lattner00950542001-06-06 20:29:01 +00001610<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001611<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001612<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00001613<p>Binary operators are used to do most of the computation in a
1614program. They require two operands, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00001615produce a single value. The operands might represent
Chris Lattnera58561b2004-08-12 19:12:28 +00001616multiple data, as is the case with the <a href="#t_packed">packed</a> data type.
1617The result value of a binary operator is not
Chris Lattner261efe92003-11-25 01:02:51 +00001618necessarily the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001619<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001620</div>
Chris Lattner00950542001-06-06 20:29:01 +00001621<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001622<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1623Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001624<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001625<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001626<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001627</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001628<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001629<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001630<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001631<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
Chris Lattnera58561b2004-08-12 19:12:28 +00001632 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1633 This instruction can also take <a href="#t_packed">packed</a> versions of the values.
1634Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001635<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001636<p>The value produced is the integer or floating point sum of the two
1637operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001638<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001639<pre> &lt;result&gt; = add int 4, %var <i>; yields {int}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001640</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001641</div>
Chris Lattner00950542001-06-06 20:29:01 +00001642<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001643<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1644Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001645<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001646<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001647<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001648</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001649<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001650<p>The '<tt>sub</tt>' instruction returns the difference of its two
1651operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001652<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1653instruction present in most other intermediate representations.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001654<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001655<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00001656 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00001657values.
1658This instruction can also take <a href="#t_packed">packed</a> versions of the values.
1659Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001660<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001661<p>The value produced is the integer or floating point difference of
1662the two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001663<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001664<pre> &lt;result&gt; = sub int 4, %var <i>; yields {int}:result = 4 - %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001665 &lt;result&gt; = sub int 0, %val <i>; yields {int}:result = -%var</i>
1666</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001667</div>
Chris Lattner00950542001-06-06 20:29:01 +00001668<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001669<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1670Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001671<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001672<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001673<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001674</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001675<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001676<p>The '<tt>mul</tt>' instruction returns the product of its two
1677operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001678<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001679<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00001680 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00001681values.
1682This instruction can also take <a href="#t_packed">packed</a> versions of the values.
1683Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001684<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001685<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00001686two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001687<p>There is no signed vs unsigned multiplication. The appropriate
1688action is taken based on the type of the operand.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001689<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001690<pre> &lt;result&gt; = mul int 4, %var <i>; yields {int}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001691</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001692</div>
Chris Lattner00950542001-06-06 20:29:01 +00001693<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00001694<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
1695</a></div>
1696<div class="doc_text">
1697<h5>Syntax:</h5>
1698<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1699</pre>
1700<h5>Overview:</h5>
1701<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
1702operands.</p>
1703<h5>Arguments:</h5>
1704<p>The two arguments to the '<tt>udiv</tt>' instruction must be
1705<a href="#t_integer">integer</a> values. Both arguments must have identical
1706types. This instruction can also take <a href="#t_packed">packed</a> versions
1707of the values in which case the elements must be integers.</p>
1708<h5>Semantics:</h5>
1709<p>The value produced is the unsigned integer quotient of the two operands. This
1710instruction always performs an unsigned division operation, regardless of
1711whether the arguments are unsigned or not.</p>
1712<h5>Example:</h5>
1713<pre> &lt;result&gt; = udiv uint 4, %var <i>; yields {uint}:result = 4 / %var</i>
1714</pre>
1715</div>
1716<!-- _______________________________________________________________________ -->
1717<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
1718</a> </div>
1719<div class="doc_text">
1720<h5>Syntax:</h5>
1721<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1722</pre>
1723<h5>Overview:</h5>
1724<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
1725operands.</p>
1726<h5>Arguments:</h5>
1727<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
1728<a href="#t_integer">integer</a> values. Both arguments must have identical
1729types. This instruction can also take <a href="#t_packed">packed</a> versions
1730of the values in which case the elements must be integers.</p>
1731<h5>Semantics:</h5>
1732<p>The value produced is the signed integer quotient of the two operands. This
1733instruction always performs a signed division operation, regardless of whether
1734the arguments are signed or not.</p>
1735<h5>Example:</h5>
1736<pre> &lt;result&gt; = sdiv int 4, %var <i>; yields {int}:result = 4 / %var</i>
1737</pre>
1738</div>
1739<!-- _______________________________________________________________________ -->
1740<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001741Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001742<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001743<h5>Syntax:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001744<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001745</pre>
1746<h5>Overview:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001747<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00001748operands.</p>
1749<h5>Arguments:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001750<p>The two arguments to the '<tt>div</tt>' instruction must be
1751<a href="#t_floating">floating point</a> values. Both arguments must have
1752identical types. This instruction can also take <a href="#t_packed">packed</a>
1753versions of the values in which case the elements must be floating point.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001754<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001755<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001756<h5>Example:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001757<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001758</pre>
1759</div>
1760<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00001761<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
1762</div>
1763<div class="doc_text">
1764<h5>Syntax:</h5>
1765<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1766</pre>
1767<h5>Overview:</h5>
1768<p>The '<tt>urem</tt>' instruction returns the remainder from the
1769unsigned division of its two arguments.</p>
1770<h5>Arguments:</h5>
1771<p>The two arguments to the '<tt>urem</tt>' instruction must be
1772<a href="#t_integer">integer</a> values. Both arguments must have identical
1773types.</p>
1774<h5>Semantics:</h5>
1775<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
1776This instruction always performs an unsigned division to get the remainder,
1777regardless of whether the arguments are unsigned or not.</p>
1778<h5>Example:</h5>
1779<pre> &lt;result&gt; = urem uint 4, %var <i>; yields {uint}:result = 4 % %var</i>
1780</pre>
1781
1782</div>
1783<!-- _______________________________________________________________________ -->
1784<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001785Instruction</a> </div>
1786<div class="doc_text">
1787<h5>Syntax:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001788<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001789</pre>
1790<h5>Overview:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001791<p>The '<tt>srem</tt>' instruction returns the remainder from the
1792signed division of its two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001793<h5>Arguments:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001794<p>The two arguments to the '<tt>srem</tt>' instruction must be
1795<a href="#t_integer">integer</a> values. Both arguments must have identical
1796types.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001797<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001798<p>This instruction returns the <i>remainder</i> of a division (where the result
Chris Lattner261efe92003-11-25 01:02:51 +00001799has the same sign as the divisor), not the <i>modulus</i> (where the
1800result has the same sign as the dividend) of a value. For more
John Criswell0ec250c2005-10-24 16:17:18 +00001801information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00001802 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
1803Math Forum</a>.</p>
1804<h5>Example:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001805<pre> &lt;result&gt; = srem int 4, %var <i>; yields {int}:result = 4 % %var</i>
1806</pre>
1807
1808</div>
1809<!-- _______________________________________________________________________ -->
1810<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
1811Instruction</a> </div>
1812<div class="doc_text">
1813<h5>Syntax:</h5>
1814<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1815</pre>
1816<h5>Overview:</h5>
1817<p>The '<tt>frem</tt>' instruction returns the remainder from the
1818division of its two operands.</p>
1819<h5>Arguments:</h5>
1820<p>The two arguments to the '<tt>frem</tt>' instruction must be
1821<a href="#t_floating">floating point</a> values. Both arguments must have
1822identical types.</p>
1823<h5>Semantics:</h5>
1824<p>This instruction returns the <i>remainder</i> of a division.</p>
1825<h5>Example:</h5>
1826<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001827</pre>
Robert Bocchino7b81c752006-02-17 21:18:08 +00001828
Chris Lattner261efe92003-11-25 01:02:51 +00001829</div>
1830<!-- _______________________________________________________________________ -->
1831<div class="doc_subsubsection"> <a name="i_setcc">'<tt>set<i>cc</i></tt>'
1832Instructions</a> </div>
1833<div class="doc_text">
1834<h5>Syntax:</h5>
1835<pre> &lt;result&gt; = seteq &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001836 &lt;result&gt; = setne &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
1837 &lt;result&gt; = setlt &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
1838 &lt;result&gt; = setgt &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
1839 &lt;result&gt; = setle &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
1840 &lt;result&gt; = setge &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
1841</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00001842<h5>Overview:</h5>
1843<p>The '<tt>set<i>cc</i></tt>' family of instructions returns a boolean
1844value based on a comparison of their two operands.</p>
1845<h5>Arguments:</h5>
1846<p>The two arguments to the '<tt>set<i>cc</i></tt>' instructions must
1847be of <a href="#t_firstclass">first class</a> type (it is not possible
1848to compare '<tt>label</tt>'s, '<tt>array</tt>'s, '<tt>structure</tt>'
1849or '<tt>void</tt>' values, etc...). Both arguments must have identical
1850types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001851<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001852<p>The '<tt>seteq</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>'
1853value if both operands are equal.<br>
1854The '<tt>setne</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>'
1855value if both operands are unequal.<br>
1856The '<tt>setlt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>'
1857value if the first operand is less than the second operand.<br>
1858The '<tt>setgt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>'
1859value if the first operand is greater than the second operand.<br>
1860The '<tt>setle</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>'
1861value if the first operand is less than or equal to the second operand.<br>
1862The '<tt>setge</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>'
1863value if the first operand is greater than or equal to the second
1864operand.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001865<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001866<pre> &lt;result&gt; = seteq int 4, 5 <i>; yields {bool}:result = false</i>
Chris Lattner00950542001-06-06 20:29:01 +00001867 &lt;result&gt; = setne float 4, 5 <i>; yields {bool}:result = true</i>
1868 &lt;result&gt; = setlt uint 4, 5 <i>; yields {bool}:result = true</i>
1869 &lt;result&gt; = setgt sbyte 4, 5 <i>; yields {bool}:result = false</i>
1870 &lt;result&gt; = setle sbyte 4, 5 <i>; yields {bool}:result = true</i>
1871 &lt;result&gt; = setge sbyte 4, 5 <i>; yields {bool}:result = false</i>
1872</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001873</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00001874
Chris Lattner00950542001-06-06 20:29:01 +00001875<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001876<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
1877Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001878<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00001879<p>Bitwise binary operators are used to do various forms of
1880bit-twiddling in a program. They are generally very efficient
John Criswell9e2485c2004-12-10 15:51:16 +00001881instructions and can commonly be strength reduced from other
Chris Lattner261efe92003-11-25 01:02:51 +00001882instructions. They require two operands, execute an operation on them,
1883and produce a single value. The resulting value of the bitwise binary
1884operators is always the same type as its first operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001885</div>
Chris Lattner00950542001-06-06 20:29:01 +00001886<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001887<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
1888Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001889<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001890<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001891<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001892</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001893<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001894<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
1895its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001896<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001897<p>The two arguments to the '<tt>and</tt>' instruction must be <a
Chris Lattner261efe92003-11-25 01:02:51 +00001898 href="#t_integral">integral</a> values. Both arguments must have
1899identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001900<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001901<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001902<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001903<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00001904<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001905 <tbody>
1906 <tr>
1907 <td>In0</td>
1908 <td>In1</td>
1909 <td>Out</td>
1910 </tr>
1911 <tr>
1912 <td>0</td>
1913 <td>0</td>
1914 <td>0</td>
1915 </tr>
1916 <tr>
1917 <td>0</td>
1918 <td>1</td>
1919 <td>0</td>
1920 </tr>
1921 <tr>
1922 <td>1</td>
1923 <td>0</td>
1924 <td>0</td>
1925 </tr>
1926 <tr>
1927 <td>1</td>
1928 <td>1</td>
1929 <td>1</td>
1930 </tr>
1931 </tbody>
1932</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001933</div>
Chris Lattner00950542001-06-06 20:29:01 +00001934<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001935<pre> &lt;result&gt; = and int 4, %var <i>; yields {int}:result = 4 &amp; %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001936 &lt;result&gt; = and int 15, 40 <i>; yields {int}:result = 8</i>
1937 &lt;result&gt; = and int 4, 8 <i>; yields {int}:result = 0</i>
1938</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001939</div>
Chris Lattner00950542001-06-06 20:29:01 +00001940<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001941<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001942<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001943<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001944<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001945</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00001946<h5>Overview:</h5>
1947<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
1948or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001949<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001950<p>The two arguments to the '<tt>or</tt>' instruction must be <a
Chris Lattner261efe92003-11-25 01:02:51 +00001951 href="#t_integral">integral</a> values. Both arguments must have
1952identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001953<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001954<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001955<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001956<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00001957<table border="1" cellspacing="0" cellpadding="4">
1958 <tbody>
1959 <tr>
1960 <td>In0</td>
1961 <td>In1</td>
1962 <td>Out</td>
1963 </tr>
1964 <tr>
1965 <td>0</td>
1966 <td>0</td>
1967 <td>0</td>
1968 </tr>
1969 <tr>
1970 <td>0</td>
1971 <td>1</td>
1972 <td>1</td>
1973 </tr>
1974 <tr>
1975 <td>1</td>
1976 <td>0</td>
1977 <td>1</td>
1978 </tr>
1979 <tr>
1980 <td>1</td>
1981 <td>1</td>
1982 <td>1</td>
1983 </tr>
1984 </tbody>
1985</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001986</div>
Chris Lattner00950542001-06-06 20:29:01 +00001987<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001988<pre> &lt;result&gt; = or int 4, %var <i>; yields {int}:result = 4 | %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001989 &lt;result&gt; = or int 15, 40 <i>; yields {int}:result = 47</i>
1990 &lt;result&gt; = or int 4, 8 <i>; yields {int}:result = 12</i>
1991</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001992</div>
Chris Lattner00950542001-06-06 20:29:01 +00001993<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001994<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
1995Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001996<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001997<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001998<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001999</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002000<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002001<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2002or of its two operands. The <tt>xor</tt> is used to implement the
2003"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002004<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002005<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
Chris Lattner261efe92003-11-25 01:02:51 +00002006 href="#t_integral">integral</a> values. Both arguments must have
2007identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002008<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002009<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002010<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002011<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002012<table border="1" cellspacing="0" cellpadding="4">
2013 <tbody>
2014 <tr>
2015 <td>In0</td>
2016 <td>In1</td>
2017 <td>Out</td>
2018 </tr>
2019 <tr>
2020 <td>0</td>
2021 <td>0</td>
2022 <td>0</td>
2023 </tr>
2024 <tr>
2025 <td>0</td>
2026 <td>1</td>
2027 <td>1</td>
2028 </tr>
2029 <tr>
2030 <td>1</td>
2031 <td>0</td>
2032 <td>1</td>
2033 </tr>
2034 <tr>
2035 <td>1</td>
2036 <td>1</td>
2037 <td>0</td>
2038 </tr>
2039 </tbody>
2040</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002041</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002042<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002043<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002044<pre> &lt;result&gt; = xor int 4, %var <i>; yields {int}:result = 4 ^ %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002045 &lt;result&gt; = xor int 15, 40 <i>; yields {int}:result = 39</i>
2046 &lt;result&gt; = xor int 4, 8 <i>; yields {int}:result = 12</i>
Chris Lattner27f71f22003-09-03 00:41:47 +00002047 &lt;result&gt; = xor int %V, -1 <i>; yields {int}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002048</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002049</div>
Chris Lattner00950542001-06-06 20:29:01 +00002050<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002051<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2052Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002053<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002054<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002055<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002056</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002057<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002058<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2059the left a specified number of bits.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002060<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002061<p>The first argument to the '<tt>shl</tt>' instruction must be an <a
Chris Lattner261efe92003-11-25 01:02:51 +00002062 href="#t_integer">integer</a> type. The second argument must be an '<tt>ubyte</tt>'
2063type.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002064<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002065<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002066<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002067<pre> &lt;result&gt; = shl int 4, ubyte %var <i>; yields {int}:result = 4 &lt;&lt; %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002068 &lt;result&gt; = shl int 4, ubyte 2 <i>; yields {int}:result = 16</i>
2069 &lt;result&gt; = shl int 1, ubyte 10 <i>; yields {int}:result = 1024</i>
2070</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002071</div>
Chris Lattner00950542001-06-06 20:29:01 +00002072<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002073<div class="doc_subsubsection"> <a name="i_shr">'<tt>shr</tt>'
2074Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002075<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002076<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002077<pre> &lt;result&gt; = shr &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002078</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002079<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002080<p>The '<tt>shr</tt>' instruction returns the first operand shifted to
2081the right a specified number of bits.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002082<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002083<p>The first argument to the '<tt>shr</tt>' instruction must be an <a
Chris Lattner261efe92003-11-25 01:02:51 +00002084 href="#t_integer">integer</a> type. The second argument must be an '<tt>ubyte</tt>'
2085type.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002086<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002087<p>If the first argument is a <a href="#t_signed">signed</a> type, the
2088most significant bit is duplicated in the newly free'd bit positions.
2089If the first argument is unsigned, zero bits shall fill the empty
2090positions.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002091<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002092<pre> &lt;result&gt; = shr int 4, ubyte %var <i>; yields {int}:result = 4 &gt;&gt; %var</i>
Chris Lattner8c6bb902003-06-18 21:30:51 +00002093 &lt;result&gt; = shr uint 4, ubyte 1 <i>; yields {uint}:result = 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002094 &lt;result&gt; = shr int 4, ubyte 2 <i>; yields {int}:result = 1</i>
Chris Lattner8c6bb902003-06-18 21:30:51 +00002095 &lt;result&gt; = shr sbyte 4, ubyte 3 <i>; yields {sbyte}:result = 0</i>
2096 &lt;result&gt; = shr sbyte -2, ubyte 1 <i>; yields {sbyte}:result = -1</i>
Chris Lattner00950542001-06-06 20:29:01 +00002097</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002098</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002099
Chris Lattner00950542001-06-06 20:29:01 +00002100<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002101<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002102 <a name="vectorops">Vector Operations</a>
2103</div>
2104
2105<div class="doc_text">
2106
2107<p>LLVM supports several instructions to represent vector operations in a
2108target-independent manner. This instructions cover the element-access and
2109vector-specific operations needed to process vectors effectively. While LLVM
2110does directly support these vector operations, many sophisticated algorithms
2111will want to use target-specific intrinsics to take full advantage of a specific
2112target.</p>
2113
2114</div>
2115
2116<!-- _______________________________________________________________________ -->
2117<div class="doc_subsubsection">
2118 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2119</div>
2120
2121<div class="doc_text">
2122
2123<h5>Syntax:</h5>
2124
2125<pre>
2126 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, uint &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2127</pre>
2128
2129<h5>Overview:</h5>
2130
2131<p>
2132The '<tt>extractelement</tt>' instruction extracts a single scalar
2133element from a packed vector at a specified index.
2134</p>
2135
2136
2137<h5>Arguments:</h5>
2138
2139<p>
2140The first operand of an '<tt>extractelement</tt>' instruction is a
2141value of <a href="#t_packed">packed</a> type. The second operand is
2142an index indicating the position from which to extract the element.
2143The index may be a variable.</p>
2144
2145<h5>Semantics:</h5>
2146
2147<p>
2148The result is a scalar of the same type as the element type of
2149<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2150<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2151results are undefined.
2152</p>
2153
2154<h5>Example:</h5>
2155
2156<pre>
2157 %result = extractelement &lt;4 x int&gt; %vec, uint 0 <i>; yields int</i>
2158</pre>
2159</div>
2160
2161
2162<!-- _______________________________________________________________________ -->
2163<div class="doc_subsubsection">
2164 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2165</div>
2166
2167<div class="doc_text">
2168
2169<h5>Syntax:</h5>
2170
2171<pre>
2172 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, uint &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2173</pre>
2174
2175<h5>Overview:</h5>
2176
2177<p>
2178The '<tt>insertelement</tt>' instruction inserts a scalar
2179element into a packed vector at a specified index.
2180</p>
2181
2182
2183<h5>Arguments:</h5>
2184
2185<p>
2186The first operand of an '<tt>insertelement</tt>' instruction is a
2187value of <a href="#t_packed">packed</a> type. The second operand is a
2188scalar value whose type must equal the element type of the first
2189operand. The third operand is an index indicating the position at
2190which to insert the value. The index may be a variable.</p>
2191
2192<h5>Semantics:</h5>
2193
2194<p>
2195The result is a packed vector of the same type as <tt>val</tt>. Its
2196element values are those of <tt>val</tt> except at position
2197<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2198exceeds the length of <tt>val</tt>, the results are undefined.
2199</p>
2200
2201<h5>Example:</h5>
2202
2203<pre>
2204 %result = insertelement &lt;4 x int&gt; %vec, int 1, uint 0 <i>; yields &lt;4 x int&gt;</i>
2205</pre>
2206</div>
2207
2208<!-- _______________________________________________________________________ -->
2209<div class="doc_subsubsection">
2210 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2211</div>
2212
2213<div class="doc_text">
2214
2215<h5>Syntax:</h5>
2216
2217<pre>
2218 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x uint&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2219</pre>
2220
2221<h5>Overview:</h5>
2222
2223<p>
2224The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2225from two input vectors, returning a vector of the same type.
2226</p>
2227
2228<h5>Arguments:</h5>
2229
2230<p>
2231The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2232with types that match each other and types that match the result of the
2233instruction. The third argument is a shuffle mask, which has the same number
2234of elements as the other vector type, but whose element type is always 'uint'.
2235</p>
2236
2237<p>
2238The shuffle mask operand is required to be a constant vector with either
2239constant integer or undef values.
2240</p>
2241
2242<h5>Semantics:</h5>
2243
2244<p>
2245The elements of the two input vectors are numbered from left to right across
2246both of the vectors. The shuffle mask operand specifies, for each element of
2247the result vector, which element of the two input registers the result element
2248gets. The element selector may be undef (meaning "don't care") and the second
2249operand may be undef if performing a shuffle from only one vector.
2250</p>
2251
2252<h5>Example:</h5>
2253
2254<pre>
2255 %result = shufflevector &lt;4 x int&gt; %v1, &lt;4 x int&gt; %v2,
2256 &lt;4 x uint&gt; &lt;uint 0, uint 4, uint 1, uint 5&gt; <i>; yields &lt;4 x int&gt;</i>
2257 %result = shufflevector &lt;4 x int&gt; %v1, &lt;4 x int&gt; undef,
2258 &lt;4 x uint&gt; &lt;uint 0, uint 1, uint 2, uint 3&gt; <i>; yields &lt;4 x int&gt;</i> - Identity shuffle.
2259</pre>
2260</div>
2261
Tanya Lattner09474292006-04-14 19:24:33 +00002262
2263<!-- _______________________________________________________________________ -->
2264<div class="doc_subsubsection"> <a name="i_vsetint">'<tt>vsetint</tt>'
2265Instruction</a> </div>
2266<div class="doc_text">
2267<h5>Syntax:</h5>
2268<pre>&lt;result&gt; = vsetint &lt;op&gt;, &lt;n x &lt;ty&gt;&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields &lt;n x bool&gt;</i>
2269</pre>
2270
2271<h5>Overview:</h5>
2272
2273<p>The '<tt>vsetint</tt>' instruction takes two integer vectors and
2274returns a vector of boolean values representing, at each position, the
2275result of the comparison between the values at that position in the
2276two operands.</p>
2277
2278<h5>Arguments:</h5>
2279
2280<p>The arguments to a '<tt>vsetint</tt>' instruction are a comparison
2281operation and two value arguments. The value arguments must be of <a
2282href="#t_integral">integral</a> <a href="#t_packed">packed</a> type,
2283and they must have identical types. The operation argument must be
2284one of <tt>eq</tt>, <tt>ne</tt>, <tt>slt</tt>, <tt>sgt</tt>,
2285<tt>sle</tt>, <tt>sge</tt>, <tt>ult</tt>, <tt>ugt</tt>, <tt>ule</tt>,
2286<tt>uge</tt>, <tt>true</tt>, and <tt>false</tt>. The result is a
2287packed <tt>bool</tt> value with the same length as each operand.</p>
2288
2289<h5>Semantics:</h5>
2290
2291<p>The following table shows the semantics of '<tt>vsetint</tt>'. For
2292each position of the result, the comparison is done on the
2293corresponding positions of the two value arguments. Note that the
2294signedness of the comparison depends on the comparison opcode and
2295<i>not</i> on the signedness of the value operands. E.g., <tt>vsetint
2296slt <4 x unsigned> %x, %y</tt> does an elementwise <i>signed</i>
2297comparison of <tt>%x</tt> and <tt>%y</tt>.</p>
2298
2299<table border="1" cellspacing="0" cellpadding="4">
2300 <tbody>
2301 <tr><th>Operation</th><th>Result is true iff</th><th>Comparison is</th></tr>
2302 <tr><td><tt>eq</tt></td><td>var1 == var2</td><td>--</td></tr>
2303 <tr><td><tt>ne</tt></td><td>var1 != var2</td><td>--</td></tr>
2304 <tr><td><tt>slt</tt></td><td>var1 &lt; var2</td><td>signed</td></tr>
2305 <tr><td><tt>sgt</tt></td><td>var1 &gt; var2</td><td>signed</td></tr>
2306 <tr><td><tt>sle</tt></td><td>var1 &lt;= var2</td><td>signed</td></tr>
2307 <tr><td><tt>sge</tt></td><td>var1 &gt;= var2</td><td>signed</td></tr>
2308 <tr><td><tt>ult</tt></td><td>var1 &lt; var2</td><td>unsigned</td></tr>
2309 <tr><td><tt>ugt</tt></td><td>var1 &gt; var2</td><td>unsigned</td></tr>
2310 <tr><td><tt>ule</tt></td><td>var1 &lt;= var2</td><td>unsigned</td></tr>
2311 <tr><td><tt>uge</tt></td><td>var1 &gt;= var2</td><td>unsigned</td></tr>
2312 <tr><td><tt>true</tt></td><td>always</td><td>--</td></tr>
2313 <tr><td><tt>false</tt></td><td>never</td><td>--</td></tr>
2314 </tbody>
2315</table>
2316
2317<h5>Example:</h5>
2318<pre> &lt;result&gt; = vsetint eq &lt;2 x int&gt; &lt;int 0, int 1&gt;, &lt;int 1, int 0&gt; <i>; yields {&lt;2 x bool&gt;}:result = false, false</i>
2319 &lt;result&gt; = vsetint ne &lt;2 x int&gt; &lt;int 0, int 1&gt;, &lt;int 1, int 0&gt; <i>; yields {&lt;2 x bool&gt;}:result = true, true</i>
2320 &lt;result&gt; = vsetint slt &lt;2 x int&gt; &lt;int 0, int 1&gt;, &lt;int 1, int 0&gt; <i>; yields {&lt;2 x bool&gt;}:result = true, false</i>
2321 &lt;result&gt; = vsetint sgt &lt;2 x int&gt; &lt;int 0, int 1&gt;, &lt;int 1, int 0&gt; <i>; yields {&lt;2 x bool&gt;}:result = false, true</i>
2322 &lt;result&gt; = vsetint sle &lt;2 x int&gt; &lt;int 0, int 1&gt;, &lt;int 1, int 0&gt; <i>; yields {&lt;2 x bool&gt;}:result = true, false</i>
2323 &lt;result&gt; = vsetint sge &lt;2 x int&gt; &lt;int 0, int 1&gt;, &lt;int 1, int 0&gt; <i>; yields {&lt;2 x bool&gt;}:result = false, true</i>
2324</pre>
2325</div>
2326
2327<!-- _______________________________________________________________________ -->
2328<div class="doc_subsubsection"> <a name="i_vsetfp">'<tt>vsetfp</tt>'
2329Instruction</a> </div>
2330<div class="doc_text">
2331<h5>Syntax:</h5>
2332<pre>&lt;result&gt; = vsetfp &lt;op&gt;, &lt;n x &lt;ty&gt;&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields &lt;n x bool&gt;</i>
2333</pre>
2334
2335<h5>Overview:</h5>
2336
2337<p>The '<tt>vsetfp</tt>' instruction takes two floating point vector
2338arguments and returns a vector of boolean values representing, at each
2339position, the result of the comparison between the values at that
2340position in the two operands.</p>
2341
2342<h5>Arguments:</h5>
2343
2344<p>The arguments to a '<tt>vsetfp</tt>' instruction are a comparison
2345operation and two value arguments. The value arguments must be of <a
2346href="t_floating">floating point</a> <a href="#t_packed">packed</a>
2347type, and they must have identical types. The operation argument must
2348be one of <tt>eq</tt>, <tt>ne</tt>, <tt>lt</tt>, <tt>gt</tt>,
2349<tt>le</tt>, <tt>ge</tt>, <tt>oeq</tt>, <tt>one</tt>, <tt>olt</tt>,
2350<tt>ogt</tt>, <tt>ole</tt>, <tt>oge</tt>, <tt>ueq</tt>, <tt>une</tt>,
2351<tt>ult</tt>, <tt>ugt</tt>, <tt>ule</tt>, <tt>uge</tt>, <tt>o</tt>,
2352<tt>u</tt>, <tt>true</tt>, and <tt>false</tt>. The result is a packed
2353<tt>bool</tt> value with the same length as each operand.</p>
2354
2355<h5>Semantics:</h5>
2356
2357<p>The following table shows the semantics of '<tt>vsetfp</tt>' for
2358floating point types. If either operand is a floating point Not a
2359Number (NaN) value, the operation is unordered, and the value in the
2360first column below is produced at that position. Otherwise, the
2361operation is ordered, and the value in the second column is
2362produced.</p>
2363
2364<table border="1" cellspacing="0" cellpadding="4">
2365 <tbody>
2366 <tr><th>Operation</th><th>If unordered<th>Otherwise true iff</th></tr>
2367 <tr><td><tt>eq</tt></td><td>undefined</td><td>var1 == var2</td></tr>
2368 <tr><td><tt>ne</tt></td><td>undefined</td><td>var1 != var2</td></tr>
2369 <tr><td><tt>lt</tt></td><td>undefined</td><td>var1 &lt; var2</td></tr>
2370 <tr><td><tt>gt</tt></td><td>undefined</td><td>var1 &gt; var2</td></tr>
2371 <tr><td><tt>le</tt></td><td>undefined</td><td>var1 &lt;= var2</td></tr>
2372 <tr><td><tt>ge</tt></td><td>undefined</td><td>var1 &gt;= var2</td></tr>
2373 <tr><td><tt>oeq</tt></td><td>false</td><td>var1 == var2</td></tr>
2374 <tr><td><tt>one</tt></td><td>false</td><td>var1 != var2</td></tr>
2375 <tr><td><tt>olt</tt></td><td>false</td><td>var1 &lt; var2</td></tr>
2376 <tr><td><tt>ogt</tt></td><td>false</td><td>var1 &gt; var2</td></tr>
2377 <tr><td><tt>ole</tt></td><td>false</td><td>var1 &lt;= var2</td></tr>
2378 <tr><td><tt>oge</tt></td><td>false</td><td>var1 &gt;= var2</td></tr>
2379 <tr><td><tt>ueq</tt></td><td>true</td><td>var1 == var2</td></tr>
2380 <tr><td><tt>une</tt></td><td>true</td><td>var1 != var2</td></tr>
2381 <tr><td><tt>ult</tt></td><td>true</td><td>var1 &lt; var2</td></tr>
2382 <tr><td><tt>ugt</tt></td><td>true</td><td>var1 &gt; var2</td></tr>
2383 <tr><td><tt>ule</tt></td><td>true</td><td>var1 &lt;= var2</td></tr>
2384 <tr><td><tt>uge</tt></td><td>true</td><td>var1 &gt;= var2</td></tr>
2385 <tr><td><tt>o</tt></td><td>false</td><td>always</td></tr>
2386 <tr><td><tt>u</tt></td><td>true</td><td>never</td></tr>
2387 <tr><td><tt>true</tt></td><td>true</td><td>always</td></tr>
2388 <tr><td><tt>false</tt></td><td>false</td><td>never</td></tr>
2389 </tbody>
2390</table>
2391
2392<h5>Example:</h5>
2393<pre> &lt;result&gt; = vsetfp eq &lt;2 x float&gt; &lt;float 0.0, float 1.0&gt;, &lt;float 1.0, float 0.0&gt; <i>; yields {&lt;2 x bool&gt;}:result = false, false</i>
2394 &lt;result&gt; = vsetfp ne &lt;2 x float&gt; &lt;float 0.0, float 1.0&gt;, &lt;float 1.0, float 0.0&gt; <i>; yields {&lt;2 x bool&gt;}:result = true, true</i>
2395 &lt;result&gt; = vsetfp lt &lt;2 x float&gt; &lt;float 0.0, float 1.0&gt;, &lt;float 1.0, float 0.0&gt; <i>; yields {&lt;2 x bool&gt;}:result = true, false</i>
2396 &lt;result&gt; = vsetfp gt &lt;2 x float&gt; &lt;float 0.0, float 1.0&gt;, &lt;float 1.0, float 0.0&gt; <i>; yields {&lt;2 x bool&gt;}:result = false, true</i>
2397 &lt;result&gt; = vsetfp le &lt;2 x float&gt; &lt;float 0.0, float 1.0&gt;, &lt;float 1.0, float 0.0&gt; <i>; yields {&lt;2 x bool&gt;}:result = true, false</i>
2398 &lt;result&gt; = vsetfp ge &lt;2 x float&gt; &lt;float 0.0, float 1.0&gt;, &lt;float 1.0, float 0.0&gt; <i>; yields {&lt;2 x bool&gt;}:result = false, true</i>
2399</pre>
2400</div>
2401
2402<!-- _______________________________________________________________________ -->
2403<div class="doc_subsubsection">
2404 <a name="i_vselect">'<tt>vselect</tt>' Instruction</a>
2405</div>
2406
2407<div class="doc_text">
2408
2409<h5>Syntax:</h5>
2410
2411<pre>
2412 &lt;result&gt; = vselect &lt;n x bool&gt; &lt;cond&gt;, &lt;n x &lt;ty&gt;&gt; &lt;val1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;val2&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2413</pre>
2414
2415<h5>Overview:</h5>
2416
2417<p>
2418The '<tt>vselect</tt>' instruction chooses one value at each position
2419of a vector based on a condition.
2420</p>
2421
2422
2423<h5>Arguments:</h5>
2424
2425<p>
2426The '<tt>vselect</tt>' instruction requires a <a
2427href="#t_packed">packed</a> <tt>bool</tt> value indicating the
2428condition at each vector position, and two values of the same packed
2429type. All three operands must have the same length. The type of the
2430result is the same as the type of the two value operands.</p>
2431
2432<h5>Semantics:</h5>
2433
2434<p>
2435At each position where the <tt>bool</tt> vector is true, that position
2436of the result gets its value from the first value argument; otherwise,
2437it gets its value from the second value argument.
2438</p>
2439
2440<h5>Example:</h5>
2441
2442<pre>
2443 %X = vselect bool &lt;2 x bool&gt; &lt;bool true, bool false&gt;, &lt;2 x ubyte&gt; &lt;ubyte 17, ubyte 17&gt;,
2444 &lt;2 x ubyte&gt; &lt;ubyte 42, ubyte 42&gt; <i>; yields &lt;2 x ubyte&gt;:17, 42</i>
2445</pre>
2446</div>
2447
2448
2449
Chris Lattner3df241e2006-04-08 23:07:04 +00002450<!-- ======================================================================= -->
2451<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00002452 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002453</div>
2454
Misha Brukman9d0919f2003-11-08 01:05:38 +00002455<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002456
Chris Lattner261efe92003-11-25 01:02:51 +00002457<p>A key design point of an SSA-based representation is how it
2458represents memory. In LLVM, no memory locations are in SSA form, which
2459makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00002460allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002461
Misha Brukman9d0919f2003-11-08 01:05:38 +00002462</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002463
Chris Lattner00950542001-06-06 20:29:01 +00002464<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002465<div class="doc_subsubsection">
2466 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2467</div>
2468
Misha Brukman9d0919f2003-11-08 01:05:38 +00002469<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002470
Chris Lattner00950542001-06-06 20:29:01 +00002471<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002472
2473<pre>
2474 &lt;result&gt; = malloc &lt;type&gt;[, uint &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002475</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002476
Chris Lattner00950542001-06-06 20:29:01 +00002477<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002478
Chris Lattner261efe92003-11-25 01:02:51 +00002479<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2480heap and returns a pointer to it.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002481
Chris Lattner00950542001-06-06 20:29:01 +00002482<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002483
2484<p>The '<tt>malloc</tt>' instruction allocates
2485<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00002486bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002487appropriate type to the program. If "NumElements" is specified, it is the
2488number of elements allocated. If an alignment is specified, the value result
2489of the allocation is guaranteed to be aligned to at least that boundary. If
2490not specified, or if zero, the target can choose to align the allocation on any
2491convenient boundary.</p>
2492
Misha Brukman9d0919f2003-11-08 01:05:38 +00002493<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002494
Chris Lattner00950542001-06-06 20:29:01 +00002495<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002496
Chris Lattner261efe92003-11-25 01:02:51 +00002497<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2498a pointer is returned.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002499
Chris Lattner2cbdc452005-11-06 08:02:57 +00002500<h5>Example:</h5>
2501
2502<pre>
2503 %array = malloc [4 x ubyte ] <i>; yields {[%4 x ubyte]*}:array</i>
2504
2505 %size = <a href="#i_add">add</a> uint 2, 2 <i>; yields {uint}:size = uint 4</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002506 %array1 = malloc ubyte, uint 4 <i>; yields {ubyte*}:array1</i>
2507 %array2 = malloc [12 x ubyte], uint %size <i>; yields {[12 x ubyte]*}:array2</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002508 %array3 = malloc int, uint 4, align 1024 <i>; yields {int*}:array3</i>
2509 %array4 = malloc int, align 1024 <i>; yields {int*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00002510</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002511</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002512
Chris Lattner00950542001-06-06 20:29:01 +00002513<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002514<div class="doc_subsubsection">
2515 <a name="i_free">'<tt>free</tt>' Instruction</a>
2516</div>
2517
Misha Brukman9d0919f2003-11-08 01:05:38 +00002518<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002519
Chris Lattner00950542001-06-06 20:29:01 +00002520<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002521
2522<pre>
2523 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00002524</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002525
Chris Lattner00950542001-06-06 20:29:01 +00002526<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002527
Chris Lattner261efe92003-11-25 01:02:51 +00002528<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00002529memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002530
Chris Lattner00950542001-06-06 20:29:01 +00002531<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002532
Chris Lattner261efe92003-11-25 01:02:51 +00002533<p>'<tt>value</tt>' shall be a pointer value that points to a value
2534that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2535instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002536
Chris Lattner00950542001-06-06 20:29:01 +00002537<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002538
John Criswell9e2485c2004-12-10 15:51:16 +00002539<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner261efe92003-11-25 01:02:51 +00002540after this instruction executes.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002541
Chris Lattner00950542001-06-06 20:29:01 +00002542<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002543
2544<pre>
2545 %array = <a href="#i_malloc">malloc</a> [4 x ubyte] <i>; yields {[4 x ubyte]*}:array</i>
Chris Lattner00950542001-06-06 20:29:01 +00002546 free [4 x ubyte]* %array
2547</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002548</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002549
Chris Lattner00950542001-06-06 20:29:01 +00002550<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002551<div class="doc_subsubsection">
2552 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2553</div>
2554
Misha Brukman9d0919f2003-11-08 01:05:38 +00002555<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002556
Chris Lattner00950542001-06-06 20:29:01 +00002557<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002558
2559<pre>
2560 &lt;result&gt; = alloca &lt;type&gt;[, uint &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002561</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002562
Chris Lattner00950542001-06-06 20:29:01 +00002563<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002564
Chris Lattner261efe92003-11-25 01:02:51 +00002565<p>The '<tt>alloca</tt>' instruction allocates memory on the current
2566stack frame of the procedure that is live until the current function
2567returns to its caller.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002568
Chris Lattner00950542001-06-06 20:29:01 +00002569<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002570
John Criswell9e2485c2004-12-10 15:51:16 +00002571<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00002572bytes of memory on the runtime stack, returning a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002573appropriate type to the program. If "NumElements" is specified, it is the
2574number of elements allocated. If an alignment is specified, the value result
2575of the allocation is guaranteed to be aligned to at least that boundary. If
2576not specified, or if zero, the target can choose to align the allocation on any
2577convenient boundary.</p>
2578
Misha Brukman9d0919f2003-11-08 01:05:38 +00002579<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002580
Chris Lattner00950542001-06-06 20:29:01 +00002581<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002582
John Criswellc1f786c2005-05-13 22:25:59 +00002583<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00002584memory is automatically released when the function returns. The '<tt>alloca</tt>'
2585instruction is commonly used to represent automatic variables that must
2586have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00002587 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002588instructions), the memory is reclaimed.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002589
Chris Lattner00950542001-06-06 20:29:01 +00002590<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002591
2592<pre>
2593 %ptr = alloca int <i>; yields {int*}:ptr</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002594 %ptr = alloca int, uint 4 <i>; yields {int*}:ptr</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002595 %ptr = alloca int, uint 4, align 1024 <i>; yields {int*}:ptr</i>
2596 %ptr = alloca int, align 1024 <i>; yields {int*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00002597</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002598</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002599
Chris Lattner00950542001-06-06 20:29:01 +00002600<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002601<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2602Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002603<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002604<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002605<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002606<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002607<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002608<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002609<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00002610address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00002611 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00002612marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00002613the number or order of execution of this <tt>load</tt> with other
2614volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2615instructions. </p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002616<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002617<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002618<h5>Examples:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002619<pre> %ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i>
2620 <a
2621 href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002622 %val = load int* %ptr <i>; yields {int}:val = int 3</i>
2623</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002624</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002625<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002626<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2627Instruction</a> </div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002628<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002629<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
Chris Lattnerf0651072003-09-08 18:27:49 +00002630 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002631</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002632<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002633<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002634<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002635<p>There are two arguments to the '<tt>store</tt>' instruction: a value
John Criswell0ec250c2005-10-24 16:17:18 +00002636to store and an address in which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002637operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00002638operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00002639optimizer is not allowed to modify the number or order of execution of
2640this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2641 href="#i_store">store</a></tt> instructions.</p>
2642<h5>Semantics:</h5>
2643<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2644at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002645<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002646<pre> %ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i>
2647 <a
2648 href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002649 %val = load int* %ptr <i>; yields {int}:val = int 3</i>
2650</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002651<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002652<div class="doc_subsubsection">
2653 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2654</div>
2655
Misha Brukman9d0919f2003-11-08 01:05:38 +00002656<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00002657<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002658<pre>
2659 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2660</pre>
2661
Chris Lattner7faa8832002-04-14 06:13:44 +00002662<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002663
2664<p>
2665The '<tt>getelementptr</tt>' instruction is used to get the address of a
2666subelement of an aggregate data structure.</p>
2667
Chris Lattner7faa8832002-04-14 06:13:44 +00002668<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002669
2670<p>This instruction takes a list of integer constants that indicate what
2671elements of the aggregate object to index to. The actual types of the arguments
2672provided depend on the type of the first pointer argument. The
2673'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00002674levels of a structure or to a specific index in an array. When indexing into a
2675structure, only <tt>uint</tt>
John Criswellc1f786c2005-05-13 22:25:59 +00002676integer constants are allowed. When indexing into an array or pointer,
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002677<tt>int</tt> and <tt>long</tt> indexes are allowed of any sign.</p>
2678
Chris Lattner261efe92003-11-25 01:02:51 +00002679<p>For example, let's consider a C code fragment and how it gets
2680compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002681
2682<pre>
2683 struct RT {
2684 char A;
2685 int B[10][20];
2686 char C;
2687 };
2688 struct ST {
2689 int X;
2690 double Y;
2691 struct RT Z;
2692 };
2693
2694 int *foo(struct ST *s) {
2695 return &amp;s[1].Z.B[5][13];
2696 }
2697</pre>
2698
Misha Brukman9d0919f2003-11-08 01:05:38 +00002699<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002700
2701<pre>
2702 %RT = type { sbyte, [10 x [20 x int]], sbyte }
2703 %ST = type { int, double, %RT }
2704
Brian Gaeke7283e7c2004-07-02 21:08:14 +00002705 implementation
2706
2707 int* %foo(%ST* %s) {
2708 entry:
2709 %reg = getelementptr %ST* %s, int 1, uint 2, uint 1, int 5, int 13
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002710 ret int* %reg
2711 }
2712</pre>
2713
Chris Lattner7faa8832002-04-14 06:13:44 +00002714<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002715
2716<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00002717on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Chris Lattnere53e5082004-06-03 22:57:15 +00002718and <a href="#t_array">array</a> types require <tt>uint</tt>, <tt>int</tt>,
2719<tt>ulong</tt>, or <tt>long</tt> values, and <a href="#t_struct">structure</a>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002720types require <tt>uint</tt> <b>constants</b>.</p>
2721
Misha Brukman9d0919f2003-11-08 01:05:38 +00002722<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002723type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ int, double, %RT
2724}</tt>' type, a structure. The second index indexes into the third element of
2725the structure, yielding a '<tt>%RT</tt>' = '<tt>{ sbyte, [10 x [20 x int]],
2726sbyte }</tt>' type, another structure. The third index indexes into the second
2727element of the structure, yielding a '<tt>[10 x [20 x int]]</tt>' type, an
2728array. The two dimensions of the array are subscripted into, yielding an
John Criswellfc6b8952005-05-16 16:17:45 +00002729'<tt>int</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002730to this element, thus computing a value of '<tt>int*</tt>' type.</p>
2731
Chris Lattner261efe92003-11-25 01:02:51 +00002732<p>Note that it is perfectly legal to index partially through a
2733structure, returning a pointer to an inner element. Because of this,
2734the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002735
2736<pre>
Chris Lattnerd4f6b172005-03-07 22:13:59 +00002737 int* %foo(%ST* %s) {
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002738 %t1 = getelementptr %ST* %s, int 1 <i>; yields %ST*:%t1</i>
2739 %t2 = getelementptr %ST* %t1, int 0, uint 2 <i>; yields %RT*:%t2</i>
2740 %t3 = getelementptr %RT* %t2, int 0, uint 1 <i>; yields [10 x [20 x int]]*:%t3</i>
2741 %t4 = getelementptr [10 x [20 x int]]* %t3, int 0, int 5 <i>; yields [20 x int]*:%t4</i>
2742 %t5 = getelementptr [20 x int]* %t4, int 0, int 13 <i>; yields int*:%t5</i>
2743 ret int* %t5
2744 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00002745</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00002746
2747<p>Note that it is undefined to access an array out of bounds: array and
2748pointer indexes must always be within the defined bounds of the array type.
2749The one exception for this rules is zero length arrays. These arrays are
2750defined to be accessible as variable length arrays, which requires access
2751beyond the zero'th element.</p>
2752
Chris Lattner884a9702006-08-15 00:45:58 +00002753<p>The getelementptr instruction is often confusing. For some more insight
2754into how it works, see <a href="GetElementPtr.html">the getelementptr
2755FAQ</a>.</p>
2756
Chris Lattner7faa8832002-04-14 06:13:44 +00002757<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00002758
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002759<pre>
2760 <i>; yields [12 x ubyte]*:aptr</i>
2761 %aptr = getelementptr {int, [12 x ubyte]}* %sptr, long 0, uint 1
2762</pre>
2763
2764</div>
Chris Lattner00950542001-06-06 20:29:01 +00002765<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002766<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002767<div class="doc_text">
John Criswell4457dc92004-04-09 16:48:45 +00002768<p>The instructions in this category are the "miscellaneous"
Chris Lattner261efe92003-11-25 01:02:51 +00002769instructions, which defy better classification.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002770</div>
Chris Lattner00950542001-06-06 20:29:01 +00002771<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002772<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
2773Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002774<div class="doc_text">
Chris Lattner33ba0d92001-07-09 00:26:23 +00002775<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002776<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
Chris Lattner33ba0d92001-07-09 00:26:23 +00002777<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002778<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
2779the SSA graph representing the function.</p>
Chris Lattner33ba0d92001-07-09 00:26:23 +00002780<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002781<p>The type of the incoming values are specified with the first type
2782field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
2783as arguments, with one pair for each predecessor basic block of the
2784current block. Only values of <a href="#t_firstclass">first class</a>
2785type may be used as the value arguments to the PHI node. Only labels
2786may be used as the label arguments.</p>
2787<p>There must be no non-phi instructions between the start of a basic
2788block and the PHI instructions: i.e. PHI instructions must be first in
2789a basic block.</p>
Chris Lattner33ba0d92001-07-09 00:26:23 +00002790<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002791<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the
2792value specified by the parameter, depending on which basic block we
2793came from in the last <a href="#terminators">terminator</a> instruction.</p>
Chris Lattner6536cfe2002-05-06 22:08:29 +00002794<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002795<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi uint [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add uint %indvar, 1<br> br label %Loop<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002796</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002797
Chris Lattner6536cfe2002-05-06 22:08:29 +00002798<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00002799<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002800 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2801</div>
2802<div class="doc_text">
2803
2804<h5>Syntax:</h5>
2805<pre>
2806 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2807</pre>
2808
2809<h5>Overview:</h5>
2810<p>
2811The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2812</p>
2813
2814<h5>Arguments:</h5>
2815<p>
2816The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2817be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2818and type of the result, which must be an <a href="#t_integral">integral</a>
2819type.</p>
2820
2821<h5>Semantics:</h5>
2822<p>
2823The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2824and converts the reamining bits to <tt>ty2</tt>. The bit size of <tt>value</tt>
2825must be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
2826allowed. This implies that a <tt>trunc</tt> cannot be a <i>no-op cast</i>. It
2827will always truncate bits.</p>
2828
2829<p>When truncating to bool, the truncation is done as a comparison against
2830zero. If the <tt>value</tt> was zero, the bool result will be <tt>false</tt>.
2831If the <tt>value</tt> was non-zero, the bool result will be <tt>true</tt>.</p>
2832
2833<h5>Example:</h5>
2834<pre>
2835 %X = trunc int 257 to ubyte <i>; yields ubyte:1</i>
2836 %Y = trunc int 123 to bool <i>; yields bool:true</i>
2837</pre>
2838</div>
2839
2840<!-- _______________________________________________________________________ -->
2841<div class="doc_subsubsection">
2842 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2843</div>
2844<div class="doc_text">
2845
2846<h5>Syntax:</h5>
2847<pre>
2848 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2849</pre>
2850
2851<h5>Overview:</h5>
2852<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2853<tt>ty2</tt>.</p>
2854
2855
2856<h5>Arguments:</h5>
2857<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2858<a href="#t_integral">integral</a> type, and a type to cast it to, which must
2859also be of <a href="#t_integral">integral</a> type. The bit size of the
2860<tt>value</tt> must be smaller than or equal to the bit size of the
2861destination type, <tt>ty2</tt>.</p>
2862
2863<h5>Semantics:</h5>
2864<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2865bits until it reaches the size of the destination type, <tt>ty2</tt>. When the
2866the operand and the type are the same size, no bit filling is done and the
2867cast is considered a <i>no-op cast</i> because no bits change (only the type
2868changes).</p>
2869
2870<p>When zero extending to bool, the extension is done as a comparison against
2871zero. If the <tt>value</tt> was zero, the bool result will be <tt>false</tt>.
2872If the <tt>value</tt> was non-zero, the bool result will be <tt>true</tt>.</p>
2873
2874<h5>Example:</h5>
2875<pre>
2876 %X = zext int 257 to ulong <i>; yields ulong:257</i>
2877 %Y = zext bool true to int <i>; yields int:1</i>
2878</pre>
2879</div>
2880
2881<!-- _______________________________________________________________________ -->
2882<div class="doc_subsubsection">
2883 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2884</div>
2885<div class="doc_text">
2886
2887<h5>Syntax:</h5>
2888<pre>
2889 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2890</pre>
2891
2892<h5>Overview:</h5>
2893<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2894
2895<h5>Arguments:</h5>
2896<p>
2897The '<tt>sext</tt>' instruction takes a value to cast, which must be of
2898<a href="#t_integral">integral</a> type, and a type to cast it to, which must
2899also be of <a href="#t_integral">integral</a> type.</p>
2900
2901<h5>Semantics:</h5>
2902<p>
2903The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
2904bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
2905the type <tt>ty2</tt>. When the the operand and the type are the same size,
2906no bit filling is done and the cast is considered a <i>no-op cast</i> because
2907no bits change (only the type changes).</p>
2908
2909<p>When sign extending to bool, the extension is done as a comparison against
2910zero. If the <tt>value</tt> was zero, the bool result will be <tt>false</tt>.
2911If the <tt>value</tt> was non-zero, the bool result will be <tt>true</tt>.</p>
2912
2913<h5>Example:</h5>
2914
2915<pre>
2916 %X = sext sbyte -1 to ushort <i>; yields ushort:65535</i>
2917 %Y = sext bool true to int <i>; yields int:-1</i>
2918</pre>
2919</div>
2920
2921<!-- _______________________________________________________________________ -->
2922<div class="doc_subsubsection">
2923 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
2924</div>
2925<div class="doc_text">
2926
2927<h5>Syntax:</h5>
2928<pre>
2929 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2930</pre>
2931
2932<h5>Overview:</h5>
2933<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
2934floating point value.</p>
2935
2936<h5>Arguments:</h5>
2937<p>The '<tt>fpext</tt>' instruction takes a
2938<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
2939and a <a href="#t_floating">floating point</a> type to cast it to.</p>
2940
2941<h5>Semantics:</h5>
2942<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from one floating
2943point type to another. If the type of the <tt>value</tt> and <tt>ty2</tt> are
2944the same, the instruction is considered a <i>no-op cast</i> because no bits
2945change.</p>
2946
2947<h5>Example:</h5>
2948<pre>
2949 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
2950 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
2951</pre>
2952</div>
2953
2954<!-- _______________________________________________________________________ -->
2955<div class="doc_subsubsection">
2956 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002957</div>
2958
Misha Brukman9d0919f2003-11-08 01:05:38 +00002959<div class="doc_text">
Chris Lattnercc37aae2004-03-12 05:50:16 +00002960
Chris Lattner6536cfe2002-05-06 22:08:29 +00002961<h5>Syntax:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002962
2963<pre>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002964 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Chris Lattner6536cfe2002-05-06 22:08:29 +00002965</pre>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002966
Chris Lattner6536cfe2002-05-06 22:08:29 +00002967<h5>Overview:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002968<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
2969<tt>ty2</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002970
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002971
2972<h5>Arguments:</h5>
2973<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
2974 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
2975cast it to. The size of <tt>value</tt> must be larger than the size of
2976<tt>ty2</a>. This implies that <tt>fptrunc</tt> cannot be used to make a
2977<i>no-op cast</i>.</p>
2978
2979<h5>Semantics:</h5>
2980<p> The '<tt>fptrunc</tt>' instruction converts a
2981<a href="#t_floating">floating point</a> value from a larger type to a smaller
2982type. If the value cannot fit within the destination type, <tt>ty2</tt>, then
2983the results are undefined.</p>
2984
2985<h5>Example:</h5>
2986<pre>
2987 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
2988 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
2989</pre>
2990</div>
2991
2992<!-- _______________________________________________________________________ -->
2993<div class="doc_subsubsection">
2994 <a name="i_fp2uint">'<tt>fp2uint .. to</tt>' Instruction</a>
2995</div>
2996<div class="doc_text">
2997
2998<h5>Syntax:</h5>
2999<pre>
3000 &lt;result&gt; = fp2uint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3001</pre>
3002
3003<h5>Overview:</h5>
3004<p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its
3005unsigned integer equivalent of type <tt>ty2</tt>.
3006</p>
3007
3008<h5>Arguments:</h5>
3009<p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a
3010<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3011must be an <a href="#t_integral">integral</a> type.</p>
3012
3013<h5>Semantics:</h5>
3014<p> The '<tt>fp2uint</tt>' instruction converts its
3015<a href="#t_floating">floating point</a> operand into the nearest (rounding
3016towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3017the results are undefined.</p>
3018
3019<p>When converting to bool, the conversion is done as a comparison against
3020zero. If the <tt>value</tt> was zero, the bool result will be <tt>false</tt>.
3021If the <tt>value</tt> was non-zero, the bool result will be <tt>true</tt>.</p>
3022
3023<h5>Example:</h5>
3024<pre>
3025 %X = fp2uint double 123.0 to int <i>; yields int:123</i>
3026 %Y = fp2uint float 1.0E+300 to bool <i>; yields bool:true</i>
3027 %X = fp2uint float 1.04E+17 to ubyte <i>; yields undefined:1</i>
3028</pre>
3029</div>
3030
3031<!-- _______________________________________________________________________ -->
3032<div class="doc_subsubsection">
3033 <a name="i_fp2sint">'<tt>fp2sint .. to</tt>' Instruction</a>
3034</div>
3035<div class="doc_text">
3036
3037<h5>Syntax:</h5>
3038<pre>
3039 &lt;result&gt; = fp2sint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3040</pre>
3041
3042<h5>Overview:</h5>
3043<p>The '<tt>fp2sint</tt>' instruction converts
3044<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003045</p>
3046
3047
Chris Lattner6536cfe2002-05-06 22:08:29 +00003048<h5>Arguments:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003049<p> The '<tt>fp2sint</tt>' instruction takes a value to cast, which must be a
3050<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3051must also be an <a href="#t_integral">integral</a> type.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003052
Chris Lattner6536cfe2002-05-06 22:08:29 +00003053<h5>Semantics:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003054<p>The '<tt>fp2sint</tt>' instruction converts its
3055<a href="#t_floating">floating point</a> operand into the nearest (rounding
3056towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3057the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003058
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003059<p>When converting to bool, the conversion is done as a comparison against
3060zero. If the <tt>value</tt> was zero, the bool result will be <tt>false</tt>.
3061If the <tt>value</tt> was non-zero, the bool result will be <tt>true</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003062
Chris Lattner33ba0d92001-07-09 00:26:23 +00003063<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003064<pre>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003065 %X = fp2sint double -123.0 to int <i>; yields int:-123</i>
3066 %Y = fp2sint float 1.0E-247 to bool <i>; yields bool:true</i>
3067 %X = fp2sint float 1.04E+17 to sbyte <i>; yields undefined:1</i>
3068</pre>
3069</div>
3070
3071<!-- _______________________________________________________________________ -->
3072<div class="doc_subsubsection">
3073 <a name="i_uint2fp">'<tt>uint2fp .. to</tt>' Instruction</a>
3074</div>
3075<div class="doc_text">
3076
3077<h5>Syntax:</h5>
3078<pre>
3079 &lt;result&gt; = uint2fp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3080</pre>
3081
3082<h5>Overview:</h5>
3083<p>The '<tt>uint2fp</tt>' instruction regards <tt>value</tt> as an unsigned
3084integer and converts that value to the <tt>ty2</tt> type.</p>
3085
3086
3087<h5>Arguments:</h5>
3088<p>The '<tt>uint2fp</tt>' instruction takes a value to cast, which must be an
3089<a href="#t_integral">integral</a> value, and a type to cast it to, which must
3090be a <a href="#t_floating">floating point</a> type.</p>
3091
3092<h5>Semantics:</h5>
3093<p>The '<tt>uint2fp</tt>' instruction interprets its operand as an unsigned
3094integer quantity and converts it to the corresponding floating point value. If
3095the value cannot fit in the floating point value, the results are undefined.</p>
3096
3097
3098<h5>Example:</h5>
3099<pre>
3100 %X = uint2fp int 257 to float <i>; yields float:257.0</i>
3101 %Y = uint2fp sbyte -1 to double <i>; yields double:255.0</i>
3102</pre>
3103</div>
3104
3105<!-- _______________________________________________________________________ -->
3106<div class="doc_subsubsection">
3107 <a name="i_sint2fp">'<tt>sint2fp .. to</tt>' Instruction</a>
3108</div>
3109<div class="doc_text">
3110
3111<h5>Syntax:</h5>
3112<pre>
3113 &lt;result&gt; = sint2fp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3114</pre>
3115
3116<h5>Overview:</h5>
3117<p>The '<tt>sint2fp</tt>' instruction regards <tt>value</tt> as a signed
3118integer and converts that value to the <tt>ty2</tt> type.</p>
3119
3120<h5>Arguments:</h5>
3121<p>The '<tt>sint2fp</tt>' instruction takes a value to cast, which must be an
3122<a href="#t_integral">integral</a> value, and a type to cast it to, which must be
3123a <a href="#t_floating">floating point</a> type.</p>
3124
3125<h5>Semantics:</h5>
3126<p>The '<tt>sint2fp</tt>' instruction interprets its operand as a signed
3127integer quantity and converts it to the corresponding floating point value. If
3128the value cannot fit in the floating point value, the results are undefined.</p>
3129
3130<h5>Example:</h5>
3131<pre>
3132 %X = sint2fp int 257 to float <i>; yields float:257.0</i>
3133 %Y = sint2fp sbyte -1 to double <i>; yields double:-1.0</i>
3134</pre>
3135</div>
3136
3137<!-- _______________________________________________________________________ -->
3138<div class="doc_subsubsection">
3139 <a name="i_bitconvert">'<tt>bitconvert .. to</tt>' Instruction</a>
3140</div>
3141<div class="doc_text">
3142
3143<h5>Syntax:</h5>
3144<pre>
3145 &lt;result&gt; = bitconvert &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3146</pre>
3147
3148<h5>Overview:</h5>
3149<p>The '<tt>bitconvert</tt>' instruction converts <tt>value</tt> to type
3150<tt>ty2</tt> without changing any bits.</p>
3151
3152<h5>Arguments:</h5>
3153<p>The '<tt>bitconvert</tt>' instruction takes a value to cast, which must be
3154a first class value, and a type to cast it to, which must also be a <a
3155 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3156and the destination type, <tt>ty2</tt>, must be identical.</p>
3157
3158<h5>Semantics:</h5>
3159<p>The '<tt>bitconvert</tt>' instruction converts <tt>value</tt> to type
3160<tt>ty2</tt> as if the value had been stored to memory and read back as type
3161<tt>ty2</tt>. That is, no bits are changed during the conversion. The
3162<tt>bitconvert</tt> instruction may be used to construct <i>no-op casts</i> that
3163the <tt>zext, sext, and fpext</tt> instructions do not permit.</p>
3164
3165<h5>Example:</h5>
3166<pre>
3167 %X = bitconvert ubyte 255 to sbyte <i>; yields sbyte:-1</i>
3168 %Y = bitconvert uint* %x to uint <i>; yields uint:%x</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003169</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003170</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003171
3172<!-- _______________________________________________________________________ -->
3173<div class="doc_subsubsection">
3174 <a name="i_select">'<tt>select</tt>' Instruction</a>
3175</div>
3176
3177<div class="doc_text">
3178
3179<h5>Syntax:</h5>
3180
3181<pre>
3182 &lt;result&gt; = select bool &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3183</pre>
3184
3185<h5>Overview:</h5>
3186
3187<p>
3188The '<tt>select</tt>' instruction is used to choose one value based on a
3189condition, without branching.
3190</p>
3191
3192
3193<h5>Arguments:</h5>
3194
3195<p>
3196The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3197</p>
3198
3199<h5>Semantics:</h5>
3200
3201<p>
3202If the boolean condition evaluates to true, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00003203value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003204</p>
3205
3206<h5>Example:</h5>
3207
3208<pre>
3209 %X = select bool true, ubyte 17, ubyte 42 <i>; yields ubyte:17</i>
3210</pre>
3211</div>
3212
Robert Bocchino05ccd702006-01-15 20:48:27 +00003213
3214<!-- _______________________________________________________________________ -->
3215<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00003216 <a name="i_call">'<tt>call</tt>' Instruction</a>
3217</div>
3218
Misha Brukman9d0919f2003-11-08 01:05:38 +00003219<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00003220
Chris Lattner00950542001-06-06 20:29:01 +00003221<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003222<pre>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003223 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00003224</pre>
3225
Chris Lattner00950542001-06-06 20:29:01 +00003226<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003227
Misha Brukman9d0919f2003-11-08 01:05:38 +00003228<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003229
Chris Lattner00950542001-06-06 20:29:01 +00003230<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003231
Misha Brukman9d0919f2003-11-08 01:05:38 +00003232<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003233
Chris Lattner6536cfe2002-05-06 22:08:29 +00003234<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00003235 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003236 <p>The optional "tail" marker indicates whether the callee function accesses
3237 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00003238 function call is eligible for tail call optimization. Note that calls may
3239 be marked "tail" even if they do not occur before a <a
3240 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00003241 </li>
3242 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003243 <p>The optional "cconv" marker indicates which <a href="callingconv">calling
3244 convention</a> the call should use. If none is specified, the call defaults
3245 to using C calling conventions.
3246 </li>
3247 <li>
Chris Lattner2bff5242005-05-06 05:47:36 +00003248 <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
3249 being invoked. The argument types must match the types implied by this
John Criswellfc6b8952005-05-16 16:17:45 +00003250 signature. This type can be omitted if the function is not varargs and
3251 if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003252 </li>
3253 <li>
3254 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3255 be invoked. In most cases, this is a direct function invocation, but
3256 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00003257 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003258 </li>
3259 <li>
3260 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00003261 function signature argument types. All arguments must be of
3262 <a href="#t_firstclass">first class</a> type. If the function signature
3263 indicates the function accepts a variable number of arguments, the extra
3264 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003265 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00003266</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00003267
Chris Lattner00950542001-06-06 20:29:01 +00003268<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003269
Chris Lattner261efe92003-11-25 01:02:51 +00003270<p>The '<tt>call</tt>' instruction is used to cause control flow to
3271transfer to a specified function, with its incoming arguments bound to
3272the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3273instruction in the called function, control flow continues with the
3274instruction after the function call, and the return value of the
3275function is bound to the result argument. This is a simpler case of
3276the <a href="#i_invoke">invoke</a> instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003277
Chris Lattner00950542001-06-06 20:29:01 +00003278<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003279
3280<pre>
3281 %retval = call int %test(int %argc)
3282 call int(sbyte*, ...) *%printf(sbyte* %msg, int 12, sbyte 42);
3283 %X = tail call int %foo()
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003284 %Y = tail call <a href="#callingconv">fastcc</a> int %foo()
Chris Lattner2bff5242005-05-06 05:47:36 +00003285</pre>
3286
Misha Brukman9d0919f2003-11-08 01:05:38 +00003287</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003288
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003289<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00003290<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003291 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003292</div>
3293
Misha Brukman9d0919f2003-11-08 01:05:38 +00003294<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00003295
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003296<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003297
3298<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003299 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00003300</pre>
3301
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003302<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003303
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003304<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00003305the "variable argument" area of a function call. It is used to implement the
3306<tt>va_arg</tt> macro in C.</p>
3307
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003308<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003309
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003310<p>This instruction takes a <tt>va_list*</tt> value and the type of
3311the argument. It returns a value of the specified argument type and
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00003312increments the <tt>va_list</tt> to point to the next argument. Again, the
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003313actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003314
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003315<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003316
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003317<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3318type from the specified <tt>va_list</tt> and causes the
3319<tt>va_list</tt> to point to the next argument. For more information,
3320see the variable argument handling <a href="#int_varargs">Intrinsic
3321Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003322
3323<p>It is legal for this instruction to be called in a function which does not
3324take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003325function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003326
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003327<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00003328href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00003329argument.</p>
3330
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003331<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003332
3333<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3334
Misha Brukman9d0919f2003-11-08 01:05:38 +00003335</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003336
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003337<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00003338<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3339<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003340
Misha Brukman9d0919f2003-11-08 01:05:38 +00003341<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003342
3343<p>LLVM supports the notion of an "intrinsic function". These functions have
John Criswellfc6b8952005-05-16 16:17:45 +00003344well known names and semantics and are required to follow certain
Chris Lattner33aec9e2004-02-12 17:01:32 +00003345restrictions. Overall, these instructions represent an extension mechanism for
3346the LLVM language that does not require changing all of the transformations in
3347LLVM to add to the language (or the bytecode reader/writer, the parser,
3348etc...).</p>
3349
John Criswellfc6b8952005-05-16 16:17:45 +00003350<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3351prefix is reserved in LLVM for intrinsic names; thus, functions may not be named
Chris Lattner33aec9e2004-02-12 17:01:32 +00003352this. Intrinsic functions must always be external functions: you cannot define
3353the body of intrinsic functions. Intrinsic functions may only be used in call
3354or invoke instructions: it is illegal to take the address of an intrinsic
3355function. Additionally, because intrinsic functions are part of the LLVM
3356language, it is required that they all be documented here if any are added.</p>
3357
3358
John Criswellfc6b8952005-05-16 16:17:45 +00003359<p>To learn how to add an intrinsic function, please see the <a
Chris Lattner590cff32005-05-11 03:35:57 +00003360href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00003361</p>
3362
Misha Brukman9d0919f2003-11-08 01:05:38 +00003363</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003364
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003365<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003366<div class="doc_subsection">
3367 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3368</div>
3369
Misha Brukman9d0919f2003-11-08 01:05:38 +00003370<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003371
Misha Brukman9d0919f2003-11-08 01:05:38 +00003372<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003373 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00003374intrinsic functions. These functions are related to the similarly
3375named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003376
Chris Lattner261efe92003-11-25 01:02:51 +00003377<p>All of these functions operate on arguments that use a
3378target-specific value type "<tt>va_list</tt>". The LLVM assembly
3379language reference manual does not define what this type is, so all
3380transformations should be prepared to handle intrinsics with any type
3381used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003382
Chris Lattner374ab302006-05-15 17:26:46 +00003383<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00003384instruction and the variable argument handling intrinsic functions are
3385used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003386
Chris Lattner33aec9e2004-02-12 17:01:32 +00003387<pre>
3388int %test(int %X, ...) {
3389 ; Initialize variable argument processing
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003390 %ap = alloca sbyte*
3391 call void %<a href="#i_va_start">llvm.va_start</a>(sbyte** %ap)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003392
3393 ; Read a single integer argument
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003394 %tmp = va_arg sbyte** %ap, int
Chris Lattner33aec9e2004-02-12 17:01:32 +00003395
3396 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003397 %aq = alloca sbyte*
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00003398 call void %<a href="#i_va_copy">llvm.va_copy</a>(sbyte** %aq, sbyte** %ap)
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003399 call void %<a href="#i_va_end">llvm.va_end</a>(sbyte** %aq)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003400
3401 ; Stop processing of arguments.
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003402 call void %<a href="#i_va_end">llvm.va_end</a>(sbyte** %ap)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003403 ret int %tmp
3404}
3405</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003406</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003407
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003408<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003409<div class="doc_subsubsection">
3410 <a name="i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3411</div>
3412
3413
Misha Brukman9d0919f2003-11-08 01:05:38 +00003414<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003415<h5>Syntax:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003416<pre> declare void %llvm.va_start(&lt;va_list&gt;* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003417<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003418<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3419<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3420href="#i_va_arg">va_arg</a></tt>.</p>
3421
3422<h5>Arguments:</h5>
3423
3424<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3425
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003426<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003427
3428<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3429macro available in C. In a target-dependent way, it initializes the
3430<tt>va_list</tt> element the argument points to, so that the next call to
3431<tt>va_arg</tt> will produce the first variable argument passed to the function.
3432Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3433last argument of the function, the compiler can figure that out.</p>
3434
Misha Brukman9d0919f2003-11-08 01:05:38 +00003435</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003436
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003437<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003438<div class="doc_subsubsection">
3439 <a name="i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3440</div>
3441
Misha Brukman9d0919f2003-11-08 01:05:38 +00003442<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003443<h5>Syntax:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003444<pre> declare void %llvm.va_end(&lt;va_list*&gt; &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003445<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003446<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>&lt;arglist&gt;</tt>
3447which has been initialized previously with <tt><a href="#i_va_start">llvm.va_start</a></tt>
3448or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003449<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003450<p>The argument is a <tt>va_list</tt> to destroy.</p>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003451<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003452<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003453macro available in C. In a target-dependent way, it destroys the <tt>va_list</tt>.
3454Calls to <a href="#i_va_start"><tt>llvm.va_start</tt></a> and <a
3455 href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly
3456with calls to <tt>llvm.va_end</tt>.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003457</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003458
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003459<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003460<div class="doc_subsubsection">
3461 <a name="i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3462</div>
3463
Misha Brukman9d0919f2003-11-08 01:05:38 +00003464<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003465
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003466<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003467
3468<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003469 declare void %llvm.va_copy(&lt;va_list&gt;* &lt;destarglist&gt;,
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00003470 &lt;va_list&gt;* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00003471</pre>
3472
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003473<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003474
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003475<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position from
3476the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003477
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003478<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003479
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003480<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00003481The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003482
Chris Lattnerd7923912004-05-23 21:06:01 +00003483
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003484<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003485
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003486<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> macro
3487available in C. In a target-dependent way, it copies the source
3488<tt>va_list</tt> element into the destination list. This intrinsic is necessary
3489because the <tt><a href="i_va_begin">llvm.va_begin</a></tt> intrinsic may be
Chris Lattnerd7923912004-05-23 21:06:01 +00003490arbitrarily complex and require memory allocation, for example.</p>
3491
Misha Brukman9d0919f2003-11-08 01:05:38 +00003492</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003493
Chris Lattner33aec9e2004-02-12 17:01:32 +00003494<!-- ======================================================================= -->
3495<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00003496 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3497</div>
3498
3499<div class="doc_text">
3500
3501<p>
3502LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3503Collection</a> requires the implementation and generation of these intrinsics.
3504These intrinsics allow identification of <a href="#i_gcroot">GC roots on the
3505stack</a>, as well as garbage collector implementations that require <a
3506href="#i_gcread">read</a> and <a href="#i_gcwrite">write</a> barriers.
3507Front-ends for type-safe garbage collected languages should generate these
3508intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3509href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3510</p>
3511</div>
3512
3513<!-- _______________________________________________________________________ -->
3514<div class="doc_subsubsection">
3515 <a name="i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3516</div>
3517
3518<div class="doc_text">
3519
3520<h5>Syntax:</h5>
3521
3522<pre>
Reid Spencera8d451e2005-04-26 20:50:44 +00003523 declare void %llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00003524</pre>
3525
3526<h5>Overview:</h5>
3527
John Criswell9e2485c2004-12-10 15:51:16 +00003528<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00003529the code generator, and allows some metadata to be associated with it.</p>
3530
3531<h5>Arguments:</h5>
3532
3533<p>The first argument specifies the address of a stack object that contains the
3534root pointer. The second pointer (which must be either a constant or a global
3535value address) contains the meta-data to be associated with the root.</p>
3536
3537<h5>Semantics:</h5>
3538
3539<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3540location. At compile-time, the code generator generates information to allow
3541the runtime to find the pointer at GC safe points.
3542</p>
3543
3544</div>
3545
3546
3547<!-- _______________________________________________________________________ -->
3548<div class="doc_subsubsection">
3549 <a name="i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3550</div>
3551
3552<div class="doc_text">
3553
3554<h5>Syntax:</h5>
3555
3556<pre>
Chris Lattner80626e92006-03-14 20:02:51 +00003557 declare sbyte* %llvm.gcread(sbyte* %ObjPtr, sbyte** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00003558</pre>
3559
3560<h5>Overview:</h5>
3561
3562<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3563locations, allowing garbage collector implementations that require read
3564barriers.</p>
3565
3566<h5>Arguments:</h5>
3567
Chris Lattner80626e92006-03-14 20:02:51 +00003568<p>The second argument is the address to read from, which should be an address
3569allocated from the garbage collector. The first object is a pointer to the
3570start of the referenced object, if needed by the language runtime (otherwise
3571null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003572
3573<h5>Semantics:</h5>
3574
3575<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3576instruction, but may be replaced with substantially more complex code by the
3577garbage collector runtime, as needed.</p>
3578
3579</div>
3580
3581
3582<!-- _______________________________________________________________________ -->
3583<div class="doc_subsubsection">
3584 <a name="i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3585</div>
3586
3587<div class="doc_text">
3588
3589<h5>Syntax:</h5>
3590
3591<pre>
Chris Lattner80626e92006-03-14 20:02:51 +00003592 declare void %llvm.gcwrite(sbyte* %P1, sbyte* %Obj, sbyte** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00003593</pre>
3594
3595<h5>Overview:</h5>
3596
3597<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3598locations, allowing garbage collector implementations that require write
3599barriers (such as generational or reference counting collectors).</p>
3600
3601<h5>Arguments:</h5>
3602
Chris Lattner80626e92006-03-14 20:02:51 +00003603<p>The first argument is the reference to store, the second is the start of the
3604object to store it to, and the third is the address of the field of Obj to
3605store to. If the runtime does not require a pointer to the object, Obj may be
3606null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003607
3608<h5>Semantics:</h5>
3609
3610<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
3611instruction, but may be replaced with substantially more complex code by the
3612garbage collector runtime, as needed.</p>
3613
3614</div>
3615
3616
3617
3618<!-- ======================================================================= -->
3619<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00003620 <a name="int_codegen">Code Generator Intrinsics</a>
3621</div>
3622
3623<div class="doc_text">
3624<p>
3625These intrinsics are provided by LLVM to expose special features that may only
3626be implemented with code generator support.
3627</p>
3628
3629</div>
3630
3631<!-- _______________________________________________________________________ -->
3632<div class="doc_subsubsection">
3633 <a name="i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
3634</div>
3635
3636<div class="doc_text">
3637
3638<h5>Syntax:</h5>
3639<pre>
Chris Lattnerfcf39d42006-01-13 01:20:27 +00003640 declare sbyte *%llvm.returnaddress(uint &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00003641</pre>
3642
3643<h5>Overview:</h5>
3644
3645<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00003646The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
3647target-specific value indicating the return address of the current function
3648or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00003649</p>
3650
3651<h5>Arguments:</h5>
3652
3653<p>
3654The argument to this intrinsic indicates which function to return the address
3655for. Zero indicates the calling function, one indicates its caller, etc. The
3656argument is <b>required</b> to be a constant integer value.
3657</p>
3658
3659<h5>Semantics:</h5>
3660
3661<p>
3662The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
3663the return address of the specified call frame, or zero if it cannot be
3664identified. The value returned by this intrinsic is likely to be incorrect or 0
3665for arguments other than zero, so it should only be used for debugging purposes.
3666</p>
3667
3668<p>
3669Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00003670aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00003671source-language caller.
3672</p>
3673</div>
3674
3675
3676<!-- _______________________________________________________________________ -->
3677<div class="doc_subsubsection">
3678 <a name="i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
3679</div>
3680
3681<div class="doc_text">
3682
3683<h5>Syntax:</h5>
3684<pre>
Chris Lattnerfcf39d42006-01-13 01:20:27 +00003685 declare sbyte *%llvm.frameaddress(uint &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00003686</pre>
3687
3688<h5>Overview:</h5>
3689
3690<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00003691The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
3692target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00003693</p>
3694
3695<h5>Arguments:</h5>
3696
3697<p>
3698The argument to this intrinsic indicates which function to return the frame
3699pointer for. Zero indicates the calling function, one indicates its caller,
3700etc. The argument is <b>required</b> to be a constant integer value.
3701</p>
3702
3703<h5>Semantics:</h5>
3704
3705<p>
3706The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
3707the frame address of the specified call frame, or zero if it cannot be
3708identified. The value returned by this intrinsic is likely to be incorrect or 0
3709for arguments other than zero, so it should only be used for debugging purposes.
3710</p>
3711
3712<p>
3713Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00003714aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00003715source-language caller.
3716</p>
3717</div>
3718
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003719<!-- _______________________________________________________________________ -->
3720<div class="doc_subsubsection">
Chris Lattner57e1f392006-01-13 02:03:13 +00003721 <a name="i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
3722</div>
3723
3724<div class="doc_text">
3725
3726<h5>Syntax:</h5>
3727<pre>
3728 declare sbyte *%llvm.stacksave()
3729</pre>
3730
3731<h5>Overview:</h5>
3732
3733<p>
3734The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
3735the function stack, for use with <a href="#i_stackrestore">
3736<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
3737features like scoped automatic variable sized arrays in C99.
3738</p>
3739
3740<h5>Semantics:</h5>
3741
3742<p>
3743This intrinsic returns a opaque pointer value that can be passed to <a
3744href="#i_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
3745<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
3746<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
3747state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
3748practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
3749that were allocated after the <tt>llvm.stacksave</tt> was executed.
3750</p>
3751
3752</div>
3753
3754<!-- _______________________________________________________________________ -->
3755<div class="doc_subsubsection">
3756 <a name="i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
3757</div>
3758
3759<div class="doc_text">
3760
3761<h5>Syntax:</h5>
3762<pre>
3763 declare void %llvm.stackrestore(sbyte* %ptr)
3764</pre>
3765
3766<h5>Overview:</h5>
3767
3768<p>
3769The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
3770the function stack to the state it was in when the corresponding <a
3771href="#llvm.stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
3772useful for implementing language features like scoped automatic variable sized
3773arrays in C99.
3774</p>
3775
3776<h5>Semantics:</h5>
3777
3778<p>
3779See the description for <a href="#i_stacksave"><tt>llvm.stacksave</tt></a>.
3780</p>
3781
3782</div>
3783
3784
3785<!-- _______________________________________________________________________ -->
3786<div class="doc_subsubsection">
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003787 <a name="i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
3788</div>
3789
3790<div class="doc_text">
3791
3792<h5>Syntax:</h5>
3793<pre>
Reid Spencera8d451e2005-04-26 20:50:44 +00003794 declare void %llvm.prefetch(sbyte * &lt;address&gt;,
3795 uint &lt;rw&gt;, uint &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003796</pre>
3797
3798<h5>Overview:</h5>
3799
3800
3801<p>
3802The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00003803a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
3804no
3805effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00003806characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003807</p>
3808
3809<h5>Arguments:</h5>
3810
3811<p>
3812<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
3813determining if the fetch should be for a read (0) or write (1), and
3814<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00003815locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003816<tt>locality</tt> arguments must be constant integers.
3817</p>
3818
3819<h5>Semantics:</h5>
3820
3821<p>
3822This intrinsic does not modify the behavior of the program. In particular,
3823prefetches cannot trap and do not produce a value. On targets that support this
3824intrinsic, the prefetch can provide hints to the processor cache for better
3825performance.
3826</p>
3827
3828</div>
3829
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00003830<!-- _______________________________________________________________________ -->
3831<div class="doc_subsubsection">
3832 <a name="i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
3833</div>
3834
3835<div class="doc_text">
3836
3837<h5>Syntax:</h5>
3838<pre>
Reid Spencera8d451e2005-04-26 20:50:44 +00003839 declare void %llvm.pcmarker( uint &lt;id&gt; )
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00003840</pre>
3841
3842<h5>Overview:</h5>
3843
3844
3845<p>
John Criswellfc6b8952005-05-16 16:17:45 +00003846The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
3847(PC) in a region of
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00003848code to simulators and other tools. The method is target specific, but it is
3849expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00003850The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnerd07c3f42005-11-15 06:07:55 +00003851after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00003852optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00003853correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00003854</p>
3855
3856<h5>Arguments:</h5>
3857
3858<p>
3859<tt>id</tt> is a numerical id identifying the marker.
3860</p>
3861
3862<h5>Semantics:</h5>
3863
3864<p>
3865This intrinsic does not modify the behavior of the program. Backends that do not
3866support this intrinisic may ignore it.
3867</p>
3868
3869</div>
3870
Andrew Lenharth51b8d542005-11-11 16:47:30 +00003871<!-- _______________________________________________________________________ -->
3872<div class="doc_subsubsection">
3873 <a name="i_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
3874</div>
3875
3876<div class="doc_text">
3877
3878<h5>Syntax:</h5>
3879<pre>
3880 declare ulong %llvm.readcyclecounter( )
3881</pre>
3882
3883<h5>Overview:</h5>
3884
3885
3886<p>
3887The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
3888counter register (or similar low latency, high accuracy clocks) on those targets
3889that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
3890As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
3891should only be used for small timings.
3892</p>
3893
3894<h5>Semantics:</h5>
3895
3896<p>
3897When directly supported, reading the cycle counter should not modify any memory.
3898Implementations are allowed to either return a application specific value or a
3899system wide value. On backends without support, this is lowered to a constant 0.
3900</p>
3901
3902</div>
3903
Chris Lattner10610642004-02-14 04:08:35 +00003904<!-- ======================================================================= -->
3905<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003906 <a name="int_libc">Standard C Library Intrinsics</a>
3907</div>
3908
3909<div class="doc_text">
3910<p>
Chris Lattner10610642004-02-14 04:08:35 +00003911LLVM provides intrinsics for a few important standard C library functions.
3912These intrinsics allow source-language front-ends to pass information about the
3913alignment of the pointer arguments to the code generator, providing opportunity
3914for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00003915</p>
3916
3917</div>
3918
3919<!-- _______________________________________________________________________ -->
3920<div class="doc_subsubsection">
3921 <a name="i_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
3922</div>
3923
3924<div class="doc_text">
3925
3926<h5>Syntax:</h5>
3927<pre>
Chris Lattner5b310c32006-03-03 00:07:20 +00003928 declare void %llvm.memcpy.i32(sbyte* &lt;dest&gt;, sbyte* &lt;src&gt;,
3929 uint &lt;len&gt;, uint &lt;align&gt;)
3930 declare void %llvm.memcpy.i64(sbyte* &lt;dest&gt;, sbyte* &lt;src&gt;,
3931 ulong &lt;len&gt;, uint &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003932</pre>
3933
3934<h5>Overview:</h5>
3935
3936<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00003937The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00003938location to the destination location.
3939</p>
3940
3941<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00003942Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
3943intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00003944</p>
3945
3946<h5>Arguments:</h5>
3947
3948<p>
3949The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00003950the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00003951specifying the number of bytes to copy, and the fourth argument is the alignment
3952of the source and destination locations.
3953</p>
3954
Chris Lattner3301ced2004-02-12 21:18:15 +00003955<p>
3956If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00003957the caller guarantees that both the source and destination pointers are aligned
3958to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00003959</p>
3960
Chris Lattner33aec9e2004-02-12 17:01:32 +00003961<h5>Semantics:</h5>
3962
3963<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00003964The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00003965location to the destination location, which are not allowed to overlap. It
3966copies "len" bytes of memory over. If the argument is known to be aligned to
3967some boundary, this can be specified as the fourth argument, otherwise it should
3968be set to 0 or 1.
3969</p>
3970</div>
3971
3972
Chris Lattner0eb51b42004-02-12 18:10:10 +00003973<!-- _______________________________________________________________________ -->
3974<div class="doc_subsubsection">
3975 <a name="i_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
3976</div>
3977
3978<div class="doc_text">
3979
3980<h5>Syntax:</h5>
3981<pre>
Chris Lattner5b310c32006-03-03 00:07:20 +00003982 declare void %llvm.memmove.i32(sbyte* &lt;dest&gt;, sbyte* &lt;src&gt;,
3983 uint &lt;len&gt;, uint &lt;align&gt;)
3984 declare void %llvm.memmove.i64(sbyte* &lt;dest&gt;, sbyte* &lt;src&gt;,
3985 ulong &lt;len&gt;, uint &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00003986</pre>
3987
3988<h5>Overview:</h5>
3989
3990<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00003991The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
3992location to the destination location. It is similar to the
3993'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00003994</p>
3995
3996<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00003997Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
3998intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00003999</p>
4000
4001<h5>Arguments:</h5>
4002
4003<p>
4004The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004005the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00004006specifying the number of bytes to copy, and the fourth argument is the alignment
4007of the source and destination locations.
4008</p>
4009
Chris Lattner3301ced2004-02-12 21:18:15 +00004010<p>
4011If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004012the caller guarantees that the source and destination pointers are aligned to
4013that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004014</p>
4015
Chris Lattner0eb51b42004-02-12 18:10:10 +00004016<h5>Semantics:</h5>
4017
4018<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004019The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00004020location to the destination location, which may overlap. It
4021copies "len" bytes of memory over. If the argument is known to be aligned to
4022some boundary, this can be specified as the fourth argument, otherwise it should
4023be set to 0 or 1.
4024</p>
4025</div>
4026
Chris Lattner8ff75902004-01-06 05:31:32 +00004027
Chris Lattner10610642004-02-14 04:08:35 +00004028<!-- _______________________________________________________________________ -->
4029<div class="doc_subsubsection">
Chris Lattner5b310c32006-03-03 00:07:20 +00004030 <a name="i_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00004031</div>
4032
4033<div class="doc_text">
4034
4035<h5>Syntax:</h5>
4036<pre>
Chris Lattner5b310c32006-03-03 00:07:20 +00004037 declare void %llvm.memset.i32(sbyte* &lt;dest&gt;, ubyte &lt;val&gt;,
4038 uint &lt;len&gt;, uint &lt;align&gt;)
4039 declare void %llvm.memset.i64(sbyte* &lt;dest&gt;, ubyte &lt;val&gt;,
4040 ulong &lt;len&gt;, uint &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004041</pre>
4042
4043<h5>Overview:</h5>
4044
4045<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004046The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00004047byte value.
4048</p>
4049
4050<p>
4051Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4052does not return a value, and takes an extra alignment argument.
4053</p>
4054
4055<h5>Arguments:</h5>
4056
4057<p>
4058The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00004059byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00004060argument specifying the number of bytes to fill, and the fourth argument is the
4061known alignment of destination location.
4062</p>
4063
4064<p>
4065If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004066the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00004067</p>
4068
4069<h5>Semantics:</h5>
4070
4071<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004072The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4073the
Chris Lattner10610642004-02-14 04:08:35 +00004074destination location. If the argument is known to be aligned to some boundary,
4075this can be specified as the fourth argument, otherwise it should be set to 0 or
40761.
4077</p>
4078</div>
4079
4080
Chris Lattner32006282004-06-11 02:28:03 +00004081<!-- _______________________________________________________________________ -->
4082<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00004083 <a name="i_isunordered">'<tt>llvm.isunordered.*</tt>' Intrinsic</a>
Alkis Evlogimenos26bbe932004-06-13 01:16:15 +00004084</div>
4085
4086<div class="doc_text">
4087
4088<h5>Syntax:</h5>
4089<pre>
Reid Spencer0b118202006-01-16 21:12:35 +00004090 declare bool %llvm.isunordered.f32(float Val1, float Val2)
4091 declare bool %llvm.isunordered.f64(double Val1, double Val2)
Alkis Evlogimenos26bbe932004-06-13 01:16:15 +00004092</pre>
4093
4094<h5>Overview:</h5>
4095
4096<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004097The '<tt>llvm.isunordered</tt>' intrinsics return true if either or both of the
Alkis Evlogimenos26bbe932004-06-13 01:16:15 +00004098specified floating point values is a NAN.
4099</p>
4100
4101<h5>Arguments:</h5>
4102
4103<p>
4104The arguments are floating point numbers of the same type.
4105</p>
4106
4107<h5>Semantics:</h5>
4108
4109<p>
4110If either or both of the arguments is a SNAN or QNAN, it returns true, otherwise
4111false.
4112</p>
4113</div>
4114
4115
Chris Lattnera4d74142005-07-21 01:29:16 +00004116<!-- _______________________________________________________________________ -->
4117<div class="doc_subsubsection">
Chris Lattnerec6cb612006-01-16 22:38:59 +00004118 <a name="i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00004119</div>
4120
4121<div class="doc_text">
4122
4123<h5>Syntax:</h5>
4124<pre>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004125 declare float %llvm.sqrt.f32(float %Val)
4126 declare double %llvm.sqrt.f64(double %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00004127</pre>
4128
4129<h5>Overview:</h5>
4130
4131<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004132The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Chris Lattnera4d74142005-07-21 01:29:16 +00004133returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4134<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4135negative numbers (which allows for better optimization).
4136</p>
4137
4138<h5>Arguments:</h5>
4139
4140<p>
4141The argument and return value are floating point numbers of the same type.
4142</p>
4143
4144<h5>Semantics:</h5>
4145
4146<p>
4147This function returns the sqrt of the specified operand if it is a positive
4148floating point number.
4149</p>
4150</div>
4151
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004152<!-- _______________________________________________________________________ -->
4153<div class="doc_subsubsection">
4154 <a name="i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4155</div>
4156
4157<div class="doc_text">
4158
4159<h5>Syntax:</h5>
4160<pre>
4161 declare float %llvm.powi.f32(float %Val, int %power)
4162 declare double %llvm.powi.f64(double %Val, int %power)
4163</pre>
4164
4165<h5>Overview:</h5>
4166
4167<p>
4168The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4169specified (positive or negative) power. The order of evaluation of
4170multiplications is not defined.
4171</p>
4172
4173<h5>Arguments:</h5>
4174
4175<p>
4176The second argument is an integer power, and the first is a value to raise to
4177that power.
4178</p>
4179
4180<h5>Semantics:</h5>
4181
4182<p>
4183This function returns the first value raised to the second power with an
4184unspecified sequence of rounding operations.</p>
4185</div>
4186
4187
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004188<!-- ======================================================================= -->
4189<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004190 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004191</div>
4192
4193<div class="doc_text">
4194<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00004195LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004196These allow efficient code generation for some algorithms.
4197</p>
4198
4199</div>
4200
4201<!-- _______________________________________________________________________ -->
4202<div class="doc_subsubsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004203 <a name="i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4204</div>
4205
4206<div class="doc_text">
4207
4208<h5>Syntax:</h5>
4209<pre>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004210 declare ushort %llvm.bswap.i16(ushort &lt;id&gt;)
4211 declare uint %llvm.bswap.i32(uint &lt;id&gt;)
4212 declare ulong %llvm.bswap.i64(ulong &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00004213</pre>
4214
4215<h5>Overview:</h5>
4216
4217<p>
4218The '<tt>llvm.bwsap</tt>' family of intrinsics is used to byteswap a 16, 32 or
421964 bit quantity. These are useful for performing operations on data that is not
4220in the target's native byte order.
4221</p>
4222
4223<h5>Semantics:</h5>
4224
4225<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004226The <tt>llvm.bswap.16</tt> intrinsic returns a ushort value that has the high and low
4227byte of the input ushort swapped. Similarly, the <tt>llvm.bswap.i32</tt> intrinsic
Nate Begeman7e36c472006-01-13 23:26:38 +00004228returns a uint value that has the four bytes of the input uint swapped, so that
4229if the input bytes are numbered 0, 1, 2, 3 then the returned uint will have its
Chris Lattnerec6cb612006-01-16 22:38:59 +00004230bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i64</tt> intrinsic extends this concept
Nate Begeman7e36c472006-01-13 23:26:38 +00004231to 64 bits.
4232</p>
4233
4234</div>
4235
4236<!-- _______________________________________________________________________ -->
4237<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00004238 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004239</div>
4240
4241<div class="doc_text">
4242
4243<h5>Syntax:</h5>
4244<pre>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004245 declare ubyte %llvm.ctpop.i8 (ubyte &lt;src&gt;)
4246 declare ushort %llvm.ctpop.i16(ushort &lt;src&gt;)
4247 declare uint %llvm.ctpop.i32(uint &lt;src&gt;)
4248 declare ulong %llvm.ctpop.i64(ulong &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004249</pre>
4250
4251<h5>Overview:</h5>
4252
4253<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004254The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4255value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004256</p>
4257
4258<h5>Arguments:</h5>
4259
4260<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004261The only argument is the value to be counted. The argument may be of any
Chris Lattnerec6cb612006-01-16 22:38:59 +00004262unsigned integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004263</p>
4264
4265<h5>Semantics:</h5>
4266
4267<p>
4268The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4269</p>
4270</div>
4271
4272<!-- _______________________________________________________________________ -->
4273<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004274 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004275</div>
4276
4277<div class="doc_text">
4278
4279<h5>Syntax:</h5>
4280<pre>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004281 declare ubyte %llvm.ctlz.i8 (ubyte &lt;src&gt;)
4282 declare ushort %llvm.ctlz.i16(ushort &lt;src&gt;)
4283 declare uint %llvm.ctlz.i32(uint &lt;src&gt;)
4284 declare ulong %llvm.ctlz.i64(ulong &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004285</pre>
4286
4287<h5>Overview:</h5>
4288
4289<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004290The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4291leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004292</p>
4293
4294<h5>Arguments:</h5>
4295
4296<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004297The only argument is the value to be counted. The argument may be of any
Chris Lattnerec6cb612006-01-16 22:38:59 +00004298unsigned integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004299</p>
4300
4301<h5>Semantics:</h5>
4302
4303<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004304The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4305in a variable. If the src == 0 then the result is the size in bits of the type
Chris Lattner99d3c272006-04-21 21:37:40 +00004306of src. For example, <tt>llvm.ctlz(int 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004307</p>
4308</div>
Chris Lattner32006282004-06-11 02:28:03 +00004309
4310
Chris Lattnereff29ab2005-05-15 19:39:26 +00004311
4312<!-- _______________________________________________________________________ -->
4313<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004314 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004315</div>
4316
4317<div class="doc_text">
4318
4319<h5>Syntax:</h5>
4320<pre>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004321 declare ubyte %llvm.cttz.i8 (ubyte &lt;src&gt;)
4322 declare ushort %llvm.cttz.i16(ushort &lt;src&gt;)
4323 declare uint %llvm.cttz.i32(uint &lt;src&gt;)
4324 declare ulong %llvm.cttz.i64(ulong &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00004325</pre>
4326
4327<h5>Overview:</h5>
4328
4329<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004330The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4331trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004332</p>
4333
4334<h5>Arguments:</h5>
4335
4336<p>
4337The only argument is the value to be counted. The argument may be of any
Chris Lattnerec6cb612006-01-16 22:38:59 +00004338unsigned integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004339</p>
4340
4341<h5>Semantics:</h5>
4342
4343<p>
4344The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4345in a variable. If the src == 0 then the result is the size in bits of the type
4346of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4347</p>
4348</div>
4349
Chris Lattner8ff75902004-01-06 05:31:32 +00004350<!-- ======================================================================= -->
4351<div class="doc_subsection">
4352 <a name="int_debugger">Debugger Intrinsics</a>
4353</div>
4354
4355<div class="doc_text">
4356<p>
4357The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4358are described in the <a
4359href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4360Debugging</a> document.
4361</p>
4362</div>
4363
4364
Chris Lattner00950542001-06-06 20:29:01 +00004365<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00004366<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00004367<address>
4368 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
4369 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
4370 <a href="http://validator.w3.org/check/referer"><img
4371 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
4372
4373 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00004374 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00004375 Last modified: $Date$
4376</address>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004377</body>
4378</html>