blob: b1b3bd4fb856da120a1ac4f25b1be29bf0c59722 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
Chris Lattner53f5aee2007-10-15 17:47:20 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/StringExtras.h"
33#include <algorithm>
34#include <cmath>
35using namespace llvm;
36
37/// makeVTList - Return an instance of the SDVTList struct initialized with the
38/// specified members.
39static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
40 SDVTList Res = {VTs, NumVTs};
41 return Res;
42}
43
44//===----------------------------------------------------------------------===//
45// ConstantFPSDNode Class
46//===----------------------------------------------------------------------===//
47
48/// isExactlyValue - We don't rely on operator== working on double values, as
49/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
50/// As such, this method can be used to do an exact bit-for-bit comparison of
51/// two floating point values.
Dale Johannesenc53301c2007-08-26 01:18:27 +000052bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
Dale Johannesen7f2c1d12007-08-25 22:10:57 +000053 return Value.bitwiseIsEqual(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000054}
55
Dale Johannesenbbe2b702007-08-30 00:23:21 +000056bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
57 const APFloat& Val) {
58 // convert modifies in place, so make a copy.
59 APFloat Val2 = APFloat(Val);
60 switch (VT) {
61 default:
62 return false; // These can't be represented as floating point!
63
64 // FIXME rounding mode needs to be more flexible
65 case MVT::f32:
66 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
67 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
68 APFloat::opOK;
69 case MVT::f64:
70 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
71 &Val2.getSemantics() == &APFloat::IEEEdouble ||
72 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
73 APFloat::opOK;
74 // TODO: Figure out how to test if we can use a shorter type instead!
75 case MVT::f80:
76 case MVT::f128:
77 case MVT::ppcf128:
78 return true;
79 }
80}
81
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082//===----------------------------------------------------------------------===//
83// ISD Namespace
84//===----------------------------------------------------------------------===//
85
86/// isBuildVectorAllOnes - Return true if the specified node is a
87/// BUILD_VECTOR where all of the elements are ~0 or undef.
88bool ISD::isBuildVectorAllOnes(const SDNode *N) {
89 // Look through a bit convert.
90 if (N->getOpcode() == ISD::BIT_CONVERT)
91 N = N->getOperand(0).Val;
92
93 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
94
95 unsigned i = 0, e = N->getNumOperands();
96
97 // Skip over all of the undef values.
98 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
99 ++i;
100
101 // Do not accept an all-undef vector.
102 if (i == e) return false;
103
104 // Do not accept build_vectors that aren't all constants or which have non-~0
105 // elements.
106 SDOperand NotZero = N->getOperand(i);
107 if (isa<ConstantSDNode>(NotZero)) {
108 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
109 return false;
110 } else if (isa<ConstantFPSDNode>(NotZero)) {
111 MVT::ValueType VT = NotZero.getValueType();
112 if (VT== MVT::f64) {
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000113 if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
114 convertToAPInt().getZExtValue())) != (uint64_t)-1)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000115 return false;
116 } else {
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000117 if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
118 getValueAPF().convertToAPInt().getZExtValue() !=
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119 (uint32_t)-1)
120 return false;
121 }
122 } else
123 return false;
124
125 // Okay, we have at least one ~0 value, check to see if the rest match or are
126 // undefs.
127 for (++i; i != e; ++i)
128 if (N->getOperand(i) != NotZero &&
129 N->getOperand(i).getOpcode() != ISD::UNDEF)
130 return false;
131 return true;
132}
133
134
135/// isBuildVectorAllZeros - Return true if the specified node is a
136/// BUILD_VECTOR where all of the elements are 0 or undef.
137bool ISD::isBuildVectorAllZeros(const SDNode *N) {
138 // Look through a bit convert.
139 if (N->getOpcode() == ISD::BIT_CONVERT)
140 N = N->getOperand(0).Val;
141
142 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
143
144 unsigned i = 0, e = N->getNumOperands();
145
146 // Skip over all of the undef values.
147 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
148 ++i;
149
150 // Do not accept an all-undef vector.
151 if (i == e) return false;
152
153 // Do not accept build_vectors that aren't all constants or which have non-~0
154 // elements.
155 SDOperand Zero = N->getOperand(i);
156 if (isa<ConstantSDNode>(Zero)) {
157 if (!cast<ConstantSDNode>(Zero)->isNullValue())
158 return false;
159 } else if (isa<ConstantFPSDNode>(Zero)) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000160 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000161 return false;
162 } else
163 return false;
164
165 // Okay, we have at least one ~0 value, check to see if the rest match or are
166 // undefs.
167 for (++i; i != e; ++i)
168 if (N->getOperand(i) != Zero &&
169 N->getOperand(i).getOpcode() != ISD::UNDEF)
170 return false;
171 return true;
172}
173
174/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
175/// when given the operation for (X op Y).
176ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
177 // To perform this operation, we just need to swap the L and G bits of the
178 // operation.
179 unsigned OldL = (Operation >> 2) & 1;
180 unsigned OldG = (Operation >> 1) & 1;
181 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
182 (OldL << 1) | // New G bit
183 (OldG << 2)); // New L bit.
184}
185
186/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
187/// 'op' is a valid SetCC operation.
188ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
189 unsigned Operation = Op;
190 if (isInteger)
191 Operation ^= 7; // Flip L, G, E bits, but not U.
192 else
193 Operation ^= 15; // Flip all of the condition bits.
194 if (Operation > ISD::SETTRUE2)
195 Operation &= ~8; // Don't let N and U bits get set.
196 return ISD::CondCode(Operation);
197}
198
199
200/// isSignedOp - For an integer comparison, return 1 if the comparison is a
201/// signed operation and 2 if the result is an unsigned comparison. Return zero
202/// if the operation does not depend on the sign of the input (setne and seteq).
203static int isSignedOp(ISD::CondCode Opcode) {
204 switch (Opcode) {
205 default: assert(0 && "Illegal integer setcc operation!");
206 case ISD::SETEQ:
207 case ISD::SETNE: return 0;
208 case ISD::SETLT:
209 case ISD::SETLE:
210 case ISD::SETGT:
211 case ISD::SETGE: return 1;
212 case ISD::SETULT:
213 case ISD::SETULE:
214 case ISD::SETUGT:
215 case ISD::SETUGE: return 2;
216 }
217}
218
219/// getSetCCOrOperation - Return the result of a logical OR between different
220/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
221/// returns SETCC_INVALID if it is not possible to represent the resultant
222/// comparison.
223ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
224 bool isInteger) {
225 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
226 // Cannot fold a signed integer setcc with an unsigned integer setcc.
227 return ISD::SETCC_INVALID;
228
229 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
230
231 // If the N and U bits get set then the resultant comparison DOES suddenly
232 // care about orderedness, and is true when ordered.
233 if (Op > ISD::SETTRUE2)
234 Op &= ~16; // Clear the U bit if the N bit is set.
235
236 // Canonicalize illegal integer setcc's.
237 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
238 Op = ISD::SETNE;
239
240 return ISD::CondCode(Op);
241}
242
243/// getSetCCAndOperation - Return the result of a logical AND between different
244/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
245/// function returns zero if it is not possible to represent the resultant
246/// comparison.
247ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
248 bool isInteger) {
249 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
250 // Cannot fold a signed setcc with an unsigned setcc.
251 return ISD::SETCC_INVALID;
252
253 // Combine all of the condition bits.
254 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
255
256 // Canonicalize illegal integer setcc's.
257 if (isInteger) {
258 switch (Result) {
259 default: break;
260 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
261 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
262 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
263 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
264 }
265 }
266
267 return Result;
268}
269
270const TargetMachine &SelectionDAG::getTarget() const {
271 return TLI.getTargetMachine();
272}
273
274//===----------------------------------------------------------------------===//
275// SDNode Profile Support
276//===----------------------------------------------------------------------===//
277
278/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
279///
280static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
281 ID.AddInteger(OpC);
282}
283
284/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
285/// solely with their pointer.
286void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
287 ID.AddPointer(VTList.VTs);
288}
289
290/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
291///
292static void AddNodeIDOperands(FoldingSetNodeID &ID,
293 const SDOperand *Ops, unsigned NumOps) {
294 for (; NumOps; --NumOps, ++Ops) {
295 ID.AddPointer(Ops->Val);
296 ID.AddInteger(Ops->ResNo);
297 }
298}
299
300static void AddNodeIDNode(FoldingSetNodeID &ID,
301 unsigned short OpC, SDVTList VTList,
302 const SDOperand *OpList, unsigned N) {
303 AddNodeIDOpcode(ID, OpC);
304 AddNodeIDValueTypes(ID, VTList);
305 AddNodeIDOperands(ID, OpList, N);
306}
307
308/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
309/// data.
310static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
311 AddNodeIDOpcode(ID, N->getOpcode());
312 // Add the return value info.
313 AddNodeIDValueTypes(ID, N->getVTList());
314 // Add the operand info.
315 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
316
317 // Handle SDNode leafs with special info.
318 switch (N->getOpcode()) {
319 default: break; // Normal nodes don't need extra info.
320 case ISD::TargetConstant:
321 case ISD::Constant:
322 ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
323 break;
324 case ISD::TargetConstantFP:
Dale Johannesendf8a8312007-08-31 04:03:46 +0000325 case ISD::ConstantFP: {
Dale Johannesen2fc20782007-09-14 22:26:36 +0000326 ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000327 break;
Dale Johannesendf8a8312007-08-31 04:03:46 +0000328 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000329 case ISD::TargetGlobalAddress:
330 case ISD::GlobalAddress:
331 case ISD::TargetGlobalTLSAddress:
332 case ISD::GlobalTLSAddress: {
333 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
334 ID.AddPointer(GA->getGlobal());
335 ID.AddInteger(GA->getOffset());
336 break;
337 }
338 case ISD::BasicBlock:
339 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
340 break;
341 case ISD::Register:
342 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
343 break;
344 case ISD::SRCVALUE: {
345 SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
346 ID.AddPointer(SV->getValue());
347 ID.AddInteger(SV->getOffset());
348 break;
349 }
350 case ISD::FrameIndex:
351 case ISD::TargetFrameIndex:
352 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
353 break;
354 case ISD::JumpTable:
355 case ISD::TargetJumpTable:
356 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
357 break;
358 case ISD::ConstantPool:
359 case ISD::TargetConstantPool: {
360 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
361 ID.AddInteger(CP->getAlignment());
362 ID.AddInteger(CP->getOffset());
363 if (CP->isMachineConstantPoolEntry())
364 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
365 else
366 ID.AddPointer(CP->getConstVal());
367 break;
368 }
369 case ISD::LOAD: {
370 LoadSDNode *LD = cast<LoadSDNode>(N);
371 ID.AddInteger(LD->getAddressingMode());
372 ID.AddInteger(LD->getExtensionType());
Chris Lattner4a22a672007-09-13 06:09:48 +0000373 ID.AddInteger((unsigned int)(LD->getLoadedVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000374 ID.AddPointer(LD->getSrcValue());
375 ID.AddInteger(LD->getSrcValueOffset());
376 ID.AddInteger(LD->getAlignment());
377 ID.AddInteger(LD->isVolatile());
378 break;
379 }
380 case ISD::STORE: {
381 StoreSDNode *ST = cast<StoreSDNode>(N);
382 ID.AddInteger(ST->getAddressingMode());
383 ID.AddInteger(ST->isTruncatingStore());
Chris Lattner4a22a672007-09-13 06:09:48 +0000384 ID.AddInteger((unsigned int)(ST->getStoredVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000385 ID.AddPointer(ST->getSrcValue());
386 ID.AddInteger(ST->getSrcValueOffset());
387 ID.AddInteger(ST->getAlignment());
388 ID.AddInteger(ST->isVolatile());
389 break;
390 }
391 }
392}
393
394//===----------------------------------------------------------------------===//
395// SelectionDAG Class
396//===----------------------------------------------------------------------===//
397
398/// RemoveDeadNodes - This method deletes all unreachable nodes in the
399/// SelectionDAG.
400void SelectionDAG::RemoveDeadNodes() {
401 // Create a dummy node (which is not added to allnodes), that adds a reference
402 // to the root node, preventing it from being deleted.
403 HandleSDNode Dummy(getRoot());
404
405 SmallVector<SDNode*, 128> DeadNodes;
406
407 // Add all obviously-dead nodes to the DeadNodes worklist.
408 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
409 if (I->use_empty())
410 DeadNodes.push_back(I);
411
412 // Process the worklist, deleting the nodes and adding their uses to the
413 // worklist.
414 while (!DeadNodes.empty()) {
415 SDNode *N = DeadNodes.back();
416 DeadNodes.pop_back();
417
418 // Take the node out of the appropriate CSE map.
419 RemoveNodeFromCSEMaps(N);
420
421 // Next, brutally remove the operand list. This is safe to do, as there are
422 // no cycles in the graph.
423 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
424 SDNode *Operand = I->Val;
425 Operand->removeUser(N);
426
427 // Now that we removed this operand, see if there are no uses of it left.
428 if (Operand->use_empty())
429 DeadNodes.push_back(Operand);
430 }
431 if (N->OperandsNeedDelete)
432 delete[] N->OperandList;
433 N->OperandList = 0;
434 N->NumOperands = 0;
435
436 // Finally, remove N itself.
437 AllNodes.erase(N);
438 }
439
440 // If the root changed (e.g. it was a dead load, update the root).
441 setRoot(Dummy.getValue());
442}
443
444void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
445 SmallVector<SDNode*, 16> DeadNodes;
446 DeadNodes.push_back(N);
447
448 // Process the worklist, deleting the nodes and adding their uses to the
449 // worklist.
450 while (!DeadNodes.empty()) {
451 SDNode *N = DeadNodes.back();
452 DeadNodes.pop_back();
453
454 // Take the node out of the appropriate CSE map.
455 RemoveNodeFromCSEMaps(N);
456
457 // Next, brutally remove the operand list. This is safe to do, as there are
458 // no cycles in the graph.
459 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
460 SDNode *Operand = I->Val;
461 Operand->removeUser(N);
462
463 // Now that we removed this operand, see if there are no uses of it left.
464 if (Operand->use_empty())
465 DeadNodes.push_back(Operand);
466 }
467 if (N->OperandsNeedDelete)
468 delete[] N->OperandList;
469 N->OperandList = 0;
470 N->NumOperands = 0;
471
472 // Finally, remove N itself.
473 Deleted.push_back(N);
474 AllNodes.erase(N);
475 }
476}
477
478void SelectionDAG::DeleteNode(SDNode *N) {
479 assert(N->use_empty() && "Cannot delete a node that is not dead!");
480
481 // First take this out of the appropriate CSE map.
482 RemoveNodeFromCSEMaps(N);
483
484 // Finally, remove uses due to operands of this node, remove from the
485 // AllNodes list, and delete the node.
486 DeleteNodeNotInCSEMaps(N);
487}
488
489void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
490
491 // Remove it from the AllNodes list.
492 AllNodes.remove(N);
493
494 // Drop all of the operands and decrement used nodes use counts.
495 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
496 I->Val->removeUser(N);
497 if (N->OperandsNeedDelete)
498 delete[] N->OperandList;
499 N->OperandList = 0;
500 N->NumOperands = 0;
501
502 delete N;
503}
504
505/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
506/// correspond to it. This is useful when we're about to delete or repurpose
507/// the node. We don't want future request for structurally identical nodes
508/// to return N anymore.
509void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
510 bool Erased = false;
511 switch (N->getOpcode()) {
512 case ISD::HANDLENODE: return; // noop.
513 case ISD::STRING:
514 Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
515 break;
516 case ISD::CONDCODE:
517 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
518 "Cond code doesn't exist!");
519 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
520 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
521 break;
522 case ISD::ExternalSymbol:
523 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
524 break;
525 case ISD::TargetExternalSymbol:
526 Erased =
527 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
528 break;
529 case ISD::VALUETYPE:
530 Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
531 ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
532 break;
533 default:
534 // Remove it from the CSE Map.
535 Erased = CSEMap.RemoveNode(N);
536 break;
537 }
538#ifndef NDEBUG
539 // Verify that the node was actually in one of the CSE maps, unless it has a
540 // flag result (which cannot be CSE'd) or is one of the special cases that are
541 // not subject to CSE.
542 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
543 !N->isTargetOpcode()) {
544 N->dump(this);
545 cerr << "\n";
546 assert(0 && "Node is not in map!");
547 }
548#endif
549}
550
551/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
552/// has been taken out and modified in some way. If the specified node already
553/// exists in the CSE maps, do not modify the maps, but return the existing node
554/// instead. If it doesn't exist, add it and return null.
555///
556SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
557 assert(N->getNumOperands() && "This is a leaf node!");
558 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
559 return 0; // Never add these nodes.
560
561 // Check that remaining values produced are not flags.
562 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
563 if (N->getValueType(i) == MVT::Flag)
564 return 0; // Never CSE anything that produces a flag.
565
566 SDNode *New = CSEMap.GetOrInsertNode(N);
567 if (New != N) return New; // Node already existed.
568 return 0;
569}
570
571/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
572/// were replaced with those specified. If this node is never memoized,
573/// return null, otherwise return a pointer to the slot it would take. If a
574/// node already exists with these operands, the slot will be non-null.
575SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
576 void *&InsertPos) {
577 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
578 return 0; // Never add these nodes.
579
580 // Check that remaining values produced are not flags.
581 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
582 if (N->getValueType(i) == MVT::Flag)
583 return 0; // Never CSE anything that produces a flag.
584
585 SDOperand Ops[] = { Op };
586 FoldingSetNodeID ID;
587 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
588 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
589}
590
591/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
592/// were replaced with those specified. If this node is never memoized,
593/// return null, otherwise return a pointer to the slot it would take. If a
594/// node already exists with these operands, the slot will be non-null.
595SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
596 SDOperand Op1, SDOperand Op2,
597 void *&InsertPos) {
598 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
599 return 0; // Never add these nodes.
600
601 // Check that remaining values produced are not flags.
602 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
603 if (N->getValueType(i) == MVT::Flag)
604 return 0; // Never CSE anything that produces a flag.
605
606 SDOperand Ops[] = { Op1, Op2 };
607 FoldingSetNodeID ID;
608 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
609 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
610}
611
612
613/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
614/// were replaced with those specified. If this node is never memoized,
615/// return null, otherwise return a pointer to the slot it would take. If a
616/// node already exists with these operands, the slot will be non-null.
617SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
618 const SDOperand *Ops,unsigned NumOps,
619 void *&InsertPos) {
620 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
621 return 0; // Never add these nodes.
622
623 // Check that remaining values produced are not flags.
624 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
625 if (N->getValueType(i) == MVT::Flag)
626 return 0; // Never CSE anything that produces a flag.
627
628 FoldingSetNodeID ID;
629 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
630
631 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
632 ID.AddInteger(LD->getAddressingMode());
633 ID.AddInteger(LD->getExtensionType());
Chris Lattner4a22a672007-09-13 06:09:48 +0000634 ID.AddInteger((unsigned int)(LD->getLoadedVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000635 ID.AddPointer(LD->getSrcValue());
636 ID.AddInteger(LD->getSrcValueOffset());
637 ID.AddInteger(LD->getAlignment());
638 ID.AddInteger(LD->isVolatile());
639 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
640 ID.AddInteger(ST->getAddressingMode());
641 ID.AddInteger(ST->isTruncatingStore());
Chris Lattner4a22a672007-09-13 06:09:48 +0000642 ID.AddInteger((unsigned int)(ST->getStoredVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000643 ID.AddPointer(ST->getSrcValue());
644 ID.AddInteger(ST->getSrcValueOffset());
645 ID.AddInteger(ST->getAlignment());
646 ID.AddInteger(ST->isVolatile());
647 }
648
649 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
650}
651
652
653SelectionDAG::~SelectionDAG() {
654 while (!AllNodes.empty()) {
655 SDNode *N = AllNodes.begin();
656 N->SetNextInBucket(0);
657 if (N->OperandsNeedDelete)
658 delete [] N->OperandList;
659 N->OperandList = 0;
660 N->NumOperands = 0;
661 AllNodes.pop_front();
662 }
663}
664
665SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
666 if (Op.getValueType() == VT) return Op;
667 int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
668 return getNode(ISD::AND, Op.getValueType(), Op,
669 getConstant(Imm, Op.getValueType()));
670}
671
672SDOperand SelectionDAG::getString(const std::string &Val) {
673 StringSDNode *&N = StringNodes[Val];
674 if (!N) {
675 N = new StringSDNode(Val);
676 AllNodes.push_back(N);
677 }
678 return SDOperand(N, 0);
679}
680
681SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
682 assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
683 assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
684
685 // Mask out any bits that are not valid for this constant.
686 Val &= MVT::getIntVTBitMask(VT);
687
688 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
689 FoldingSetNodeID ID;
690 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
691 ID.AddInteger(Val);
692 void *IP = 0;
693 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
694 return SDOperand(E, 0);
695 SDNode *N = new ConstantSDNode(isT, Val, VT);
696 CSEMap.InsertNode(N, IP);
697 AllNodes.push_back(N);
698 return SDOperand(N, 0);
699}
700
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000701SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000702 bool isTarget) {
703 assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000704
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000705 MVT::ValueType EltVT =
706 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707
708 // Do the map lookup using the actual bit pattern for the floating point
709 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
710 // we don't have issues with SNANs.
711 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
712 FoldingSetNodeID ID;
713 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000714 ID.AddAPFloat(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715 void *IP = 0;
716 SDNode *N = NULL;
717 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
718 if (!MVT::isVector(VT))
719 return SDOperand(N, 0);
720 if (!N) {
Dale Johannesen2fc20782007-09-14 22:26:36 +0000721 N = new ConstantFPSDNode(isTarget, V, EltVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000722 CSEMap.InsertNode(N, IP);
723 AllNodes.push_back(N);
724 }
725
726 SDOperand Result(N, 0);
727 if (MVT::isVector(VT)) {
728 SmallVector<SDOperand, 8> Ops;
729 Ops.assign(MVT::getVectorNumElements(VT), Result);
730 Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
731 }
732 return Result;
733}
734
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000735SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
736 bool isTarget) {
737 MVT::ValueType EltVT =
738 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
739 if (EltVT==MVT::f32)
740 return getConstantFP(APFloat((float)Val), VT, isTarget);
741 else
742 return getConstantFP(APFloat(Val), VT, isTarget);
743}
744
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
746 MVT::ValueType VT, int Offset,
747 bool isTargetGA) {
748 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
749 unsigned Opc;
750 if (GVar && GVar->isThreadLocal())
751 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
752 else
753 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
754 FoldingSetNodeID ID;
755 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
756 ID.AddPointer(GV);
757 ID.AddInteger(Offset);
758 void *IP = 0;
759 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
760 return SDOperand(E, 0);
761 SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
762 CSEMap.InsertNode(N, IP);
763 AllNodes.push_back(N);
764 return SDOperand(N, 0);
765}
766
767SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
768 bool isTarget) {
769 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
770 FoldingSetNodeID ID;
771 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
772 ID.AddInteger(FI);
773 void *IP = 0;
774 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
775 return SDOperand(E, 0);
776 SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
777 CSEMap.InsertNode(N, IP);
778 AllNodes.push_back(N);
779 return SDOperand(N, 0);
780}
781
782SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
783 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
784 FoldingSetNodeID ID;
785 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
786 ID.AddInteger(JTI);
787 void *IP = 0;
788 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
789 return SDOperand(E, 0);
790 SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
791 CSEMap.InsertNode(N, IP);
792 AllNodes.push_back(N);
793 return SDOperand(N, 0);
794}
795
796SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
797 unsigned Alignment, int Offset,
798 bool isTarget) {
799 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
800 FoldingSetNodeID ID;
801 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
802 ID.AddInteger(Alignment);
803 ID.AddInteger(Offset);
804 ID.AddPointer(C);
805 void *IP = 0;
806 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
807 return SDOperand(E, 0);
808 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
809 CSEMap.InsertNode(N, IP);
810 AllNodes.push_back(N);
811 return SDOperand(N, 0);
812}
813
814
815SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
816 MVT::ValueType VT,
817 unsigned Alignment, int Offset,
818 bool isTarget) {
819 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
820 FoldingSetNodeID ID;
821 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
822 ID.AddInteger(Alignment);
823 ID.AddInteger(Offset);
824 C->AddSelectionDAGCSEId(ID);
825 void *IP = 0;
826 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
827 return SDOperand(E, 0);
828 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
829 CSEMap.InsertNode(N, IP);
830 AllNodes.push_back(N);
831 return SDOperand(N, 0);
832}
833
834
835SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
836 FoldingSetNodeID ID;
837 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
838 ID.AddPointer(MBB);
839 void *IP = 0;
840 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
841 return SDOperand(E, 0);
842 SDNode *N = new BasicBlockSDNode(MBB);
843 CSEMap.InsertNode(N, IP);
844 AllNodes.push_back(N);
845 return SDOperand(N, 0);
846}
847
848SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
849 if ((unsigned)VT >= ValueTypeNodes.size())
850 ValueTypeNodes.resize(VT+1);
851 if (ValueTypeNodes[VT] == 0) {
852 ValueTypeNodes[VT] = new VTSDNode(VT);
853 AllNodes.push_back(ValueTypeNodes[VT]);
854 }
855
856 return SDOperand(ValueTypeNodes[VT], 0);
857}
858
859SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
860 SDNode *&N = ExternalSymbols[Sym];
861 if (N) return SDOperand(N, 0);
862 N = new ExternalSymbolSDNode(false, Sym, VT);
863 AllNodes.push_back(N);
864 return SDOperand(N, 0);
865}
866
867SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
868 MVT::ValueType VT) {
869 SDNode *&N = TargetExternalSymbols[Sym];
870 if (N) return SDOperand(N, 0);
871 N = new ExternalSymbolSDNode(true, Sym, VT);
872 AllNodes.push_back(N);
873 return SDOperand(N, 0);
874}
875
876SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
877 if ((unsigned)Cond >= CondCodeNodes.size())
878 CondCodeNodes.resize(Cond+1);
879
880 if (CondCodeNodes[Cond] == 0) {
881 CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
882 AllNodes.push_back(CondCodeNodes[Cond]);
883 }
884 return SDOperand(CondCodeNodes[Cond], 0);
885}
886
887SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
888 FoldingSetNodeID ID;
889 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
890 ID.AddInteger(RegNo);
891 void *IP = 0;
892 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
893 return SDOperand(E, 0);
894 SDNode *N = new RegisterSDNode(RegNo, VT);
895 CSEMap.InsertNode(N, IP);
896 AllNodes.push_back(N);
897 return SDOperand(N, 0);
898}
899
900SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
901 assert((!V || isa<PointerType>(V->getType())) &&
902 "SrcValue is not a pointer?");
903
904 FoldingSetNodeID ID;
905 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
906 ID.AddPointer(V);
907 ID.AddInteger(Offset);
908 void *IP = 0;
909 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
910 return SDOperand(E, 0);
911 SDNode *N = new SrcValueSDNode(V, Offset);
912 CSEMap.InsertNode(N, IP);
913 AllNodes.push_back(N);
914 return SDOperand(N, 0);
915}
916
Chris Lattner53f5aee2007-10-15 17:47:20 +0000917/// CreateStackTemporary - Create a stack temporary, suitable for holding the
918/// specified value type.
919SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
920 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
921 unsigned ByteSize = MVT::getSizeInBits(VT)/8;
922 const Type *Ty = MVT::getTypeForValueType(VT);
923 unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
924 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
925 return getFrameIndex(FrameIdx, TLI.getPointerTy());
926}
927
928
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000929SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
930 SDOperand N2, ISD::CondCode Cond) {
931 // These setcc operations always fold.
932 switch (Cond) {
933 default: break;
934 case ISD::SETFALSE:
935 case ISD::SETFALSE2: return getConstant(0, VT);
936 case ISD::SETTRUE:
937 case ISD::SETTRUE2: return getConstant(1, VT);
938
939 case ISD::SETOEQ:
940 case ISD::SETOGT:
941 case ISD::SETOGE:
942 case ISD::SETOLT:
943 case ISD::SETOLE:
944 case ISD::SETONE:
945 case ISD::SETO:
946 case ISD::SETUO:
947 case ISD::SETUEQ:
948 case ISD::SETUNE:
949 assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
950 break;
951 }
952
953 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
954 uint64_t C2 = N2C->getValue();
955 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
956 uint64_t C1 = N1C->getValue();
957
958 // Sign extend the operands if required
959 if (ISD::isSignedIntSetCC(Cond)) {
960 C1 = N1C->getSignExtended();
961 C2 = N2C->getSignExtended();
962 }
963
964 switch (Cond) {
965 default: assert(0 && "Unknown integer setcc!");
966 case ISD::SETEQ: return getConstant(C1 == C2, VT);
967 case ISD::SETNE: return getConstant(C1 != C2, VT);
968 case ISD::SETULT: return getConstant(C1 < C2, VT);
969 case ISD::SETUGT: return getConstant(C1 > C2, VT);
970 case ISD::SETULE: return getConstant(C1 <= C2, VT);
971 case ISD::SETUGE: return getConstant(C1 >= C2, VT);
972 case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
973 case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
974 case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
975 case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
976 }
977 }
978 }
979 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
980 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
Dale Johannesen80ca14c2007-10-14 01:56:47 +0000981 // No compile time operations on this type yet.
982 if (N1C->getValueType(0) == MVT::ppcf128)
983 return SDOperand();
Dale Johannesendf8a8312007-08-31 04:03:46 +0000984
985 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000986 switch (Cond) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000987 default: break;
Dale Johannesen76844472007-08-31 17:03:33 +0000988 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
989 return getNode(ISD::UNDEF, VT);
990 // fall through
991 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
992 case ISD::SETNE: if (R==APFloat::cmpUnordered)
993 return getNode(ISD::UNDEF, VT);
994 // fall through
995 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +0000996 R==APFloat::cmpLessThan, VT);
Dale Johannesen76844472007-08-31 17:03:33 +0000997 case ISD::SETLT: if (R==APFloat::cmpUnordered)
998 return getNode(ISD::UNDEF, VT);
999 // fall through
1000 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1001 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1002 return getNode(ISD::UNDEF, VT);
1003 // fall through
1004 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1005 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1006 return getNode(ISD::UNDEF, VT);
1007 // fall through
1008 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001009 R==APFloat::cmpEqual, VT);
Dale Johannesen76844472007-08-31 17:03:33 +00001010 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1011 return getNode(ISD::UNDEF, VT);
1012 // fall through
1013 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001014 R==APFloat::cmpEqual, VT);
1015 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1016 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1017 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1018 R==APFloat::cmpEqual, VT);
1019 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1020 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1021 R==APFloat::cmpLessThan, VT);
1022 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1023 R==APFloat::cmpUnordered, VT);
1024 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1025 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001026 }
1027 } else {
1028 // Ensure that the constant occurs on the RHS.
1029 return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1030 }
1031
1032 // Could not fold it.
1033 return SDOperand();
1034}
1035
1036/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1037/// this predicate to simplify operations downstream. Mask is known to be zero
1038/// for bits that V cannot have.
1039bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1040 unsigned Depth) const {
1041 // The masks are not wide enough to represent this type! Should use APInt.
1042 if (Op.getValueType() == MVT::i128)
1043 return false;
1044
1045 uint64_t KnownZero, KnownOne;
1046 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1047 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1048 return (KnownZero & Mask) == Mask;
1049}
1050
1051/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1052/// known to be either zero or one and return them in the KnownZero/KnownOne
1053/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1054/// processing.
1055void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1056 uint64_t &KnownZero, uint64_t &KnownOne,
1057 unsigned Depth) const {
1058 KnownZero = KnownOne = 0; // Don't know anything.
1059 if (Depth == 6 || Mask == 0)
1060 return; // Limit search depth.
1061
1062 // The masks are not wide enough to represent this type! Should use APInt.
1063 if (Op.getValueType() == MVT::i128)
1064 return;
1065
1066 uint64_t KnownZero2, KnownOne2;
1067
1068 switch (Op.getOpcode()) {
1069 case ISD::Constant:
1070 // We know all of the bits for a constant!
1071 KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1072 KnownZero = ~KnownOne & Mask;
1073 return;
1074 case ISD::AND:
1075 // If either the LHS or the RHS are Zero, the result is zero.
1076 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1077 Mask &= ~KnownZero;
1078 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1079 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1080 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1081
1082 // Output known-1 bits are only known if set in both the LHS & RHS.
1083 KnownOne &= KnownOne2;
1084 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1085 KnownZero |= KnownZero2;
1086 return;
1087 case ISD::OR:
1088 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1089 Mask &= ~KnownOne;
1090 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1091 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1092 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1093
1094 // Output known-0 bits are only known if clear in both the LHS & RHS.
1095 KnownZero &= KnownZero2;
1096 // Output known-1 are known to be set if set in either the LHS | RHS.
1097 KnownOne |= KnownOne2;
1098 return;
1099 case ISD::XOR: {
1100 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1101 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1102 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1103 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1104
1105 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1106 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1107 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1108 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1109 KnownZero = KnownZeroOut;
1110 return;
1111 }
1112 case ISD::SELECT:
1113 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1114 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1115 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1116 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1117
1118 // Only known if known in both the LHS and RHS.
1119 KnownOne &= KnownOne2;
1120 KnownZero &= KnownZero2;
1121 return;
1122 case ISD::SELECT_CC:
1123 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1124 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1125 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1126 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1127
1128 // Only known if known in both the LHS and RHS.
1129 KnownOne &= KnownOne2;
1130 KnownZero &= KnownZero2;
1131 return;
1132 case ISD::SETCC:
1133 // If we know the result of a setcc has the top bits zero, use this info.
1134 if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1135 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1136 return;
1137 case ISD::SHL:
1138 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1139 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1140 ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1141 KnownZero, KnownOne, Depth+1);
1142 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1143 KnownZero <<= SA->getValue();
1144 KnownOne <<= SA->getValue();
1145 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
1146 }
1147 return;
1148 case ISD::SRL:
1149 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1150 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1151 MVT::ValueType VT = Op.getValueType();
1152 unsigned ShAmt = SA->getValue();
1153
1154 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1155 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1156 KnownZero, KnownOne, Depth+1);
1157 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1158 KnownZero &= TypeMask;
1159 KnownOne &= TypeMask;
1160 KnownZero >>= ShAmt;
1161 KnownOne >>= ShAmt;
1162
1163 uint64_t HighBits = (1ULL << ShAmt)-1;
1164 HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1165 KnownZero |= HighBits; // High bits known zero.
1166 }
1167 return;
1168 case ISD::SRA:
1169 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1170 MVT::ValueType VT = Op.getValueType();
1171 unsigned ShAmt = SA->getValue();
1172
1173 // Compute the new bits that are at the top now.
1174 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1175
1176 uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1177 // If any of the demanded bits are produced by the sign extension, we also
1178 // demand the input sign bit.
1179 uint64_t HighBits = (1ULL << ShAmt)-1;
1180 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1181 if (HighBits & Mask)
1182 InDemandedMask |= MVT::getIntVTSignBit(VT);
1183
1184 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1185 Depth+1);
1186 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1187 KnownZero &= TypeMask;
1188 KnownOne &= TypeMask;
1189 KnownZero >>= ShAmt;
1190 KnownOne >>= ShAmt;
1191
1192 // Handle the sign bits.
1193 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1194 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
1195
1196 if (KnownZero & SignBit) {
1197 KnownZero |= HighBits; // New bits are known zero.
1198 } else if (KnownOne & SignBit) {
1199 KnownOne |= HighBits; // New bits are known one.
1200 }
1201 }
1202 return;
1203 case ISD::SIGN_EXTEND_INREG: {
1204 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1205
1206 // Sign extension. Compute the demanded bits in the result that are not
1207 // present in the input.
1208 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1209
1210 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1211 int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1212
1213 // If the sign extended bits are demanded, we know that the sign
1214 // bit is demanded.
1215 if (NewBits)
1216 InputDemandedBits |= InSignBit;
1217
1218 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1219 KnownZero, KnownOne, Depth+1);
1220 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1221
1222 // If the sign bit of the input is known set or clear, then we know the
1223 // top bits of the result.
1224 if (KnownZero & InSignBit) { // Input sign bit known clear
1225 KnownZero |= NewBits;
1226 KnownOne &= ~NewBits;
1227 } else if (KnownOne & InSignBit) { // Input sign bit known set
1228 KnownOne |= NewBits;
1229 KnownZero &= ~NewBits;
1230 } else { // Input sign bit unknown
1231 KnownZero &= ~NewBits;
1232 KnownOne &= ~NewBits;
1233 }
1234 return;
1235 }
1236 case ISD::CTTZ:
1237 case ISD::CTLZ:
1238 case ISD::CTPOP: {
1239 MVT::ValueType VT = Op.getValueType();
1240 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1241 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1242 KnownOne = 0;
1243 return;
1244 }
1245 case ISD::LOAD: {
1246 if (ISD::isZEXTLoad(Op.Val)) {
1247 LoadSDNode *LD = cast<LoadSDNode>(Op);
1248 MVT::ValueType VT = LD->getLoadedVT();
1249 KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1250 }
1251 return;
1252 }
1253 case ISD::ZERO_EXTEND: {
1254 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1255 uint64_t NewBits = (~InMask) & Mask;
1256 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1257 KnownOne, Depth+1);
1258 KnownZero |= NewBits & Mask;
1259 KnownOne &= ~NewBits;
1260 return;
1261 }
1262 case ISD::SIGN_EXTEND: {
1263 MVT::ValueType InVT = Op.getOperand(0).getValueType();
1264 unsigned InBits = MVT::getSizeInBits(InVT);
1265 uint64_t InMask = MVT::getIntVTBitMask(InVT);
1266 uint64_t InSignBit = 1ULL << (InBits-1);
1267 uint64_t NewBits = (~InMask) & Mask;
1268 uint64_t InDemandedBits = Mask & InMask;
1269
1270 // If any of the sign extended bits are demanded, we know that the sign
1271 // bit is demanded.
1272 if (NewBits & Mask)
1273 InDemandedBits |= InSignBit;
1274
1275 ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1276 KnownOne, Depth+1);
1277 // If the sign bit is known zero or one, the top bits match.
1278 if (KnownZero & InSignBit) {
1279 KnownZero |= NewBits;
1280 KnownOne &= ~NewBits;
1281 } else if (KnownOne & InSignBit) {
1282 KnownOne |= NewBits;
1283 KnownZero &= ~NewBits;
1284 } else { // Otherwise, top bits aren't known.
1285 KnownOne &= ~NewBits;
1286 KnownZero &= ~NewBits;
1287 }
1288 return;
1289 }
1290 case ISD::ANY_EXTEND: {
1291 MVT::ValueType VT = Op.getOperand(0).getValueType();
1292 ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1293 KnownZero, KnownOne, Depth+1);
1294 return;
1295 }
1296 case ISD::TRUNCATE: {
1297 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1298 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1299 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1300 KnownZero &= OutMask;
1301 KnownOne &= OutMask;
1302 break;
1303 }
1304 case ISD::AssertZext: {
1305 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1306 uint64_t InMask = MVT::getIntVTBitMask(VT);
1307 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1308 KnownOne, Depth+1);
1309 KnownZero |= (~InMask) & Mask;
1310 return;
1311 }
1312 case ISD::ADD: {
1313 // If either the LHS or the RHS are Zero, the result is zero.
1314 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1315 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1316 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1317 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1318
1319 // Output known-0 bits are known if clear or set in both the low clear bits
1320 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1321 // low 3 bits clear.
1322 uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1323 CountTrailingZeros_64(~KnownZero2));
1324
1325 KnownZero = (1ULL << KnownZeroOut) - 1;
1326 KnownOne = 0;
1327 return;
1328 }
1329 case ISD::SUB: {
1330 ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1331 if (!CLHS) return;
1332
1333 // We know that the top bits of C-X are clear if X contains less bits
1334 // than C (i.e. no wrap-around can happen). For example, 20-X is
1335 // positive if we can prove that X is >= 0 and < 16.
1336 MVT::ValueType VT = CLHS->getValueType(0);
1337 if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
1338 unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1339 uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1340 MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1341 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1342
1343 // If all of the MaskV bits are known to be zero, then we know the output
1344 // top bits are zero, because we now know that the output is from [0-C].
1345 if ((KnownZero & MaskV) == MaskV) {
1346 unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1347 KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
1348 KnownOne = 0; // No one bits known.
1349 } else {
1350 KnownZero = KnownOne = 0; // Otherwise, nothing known.
1351 }
1352 }
1353 return;
1354 }
1355 default:
1356 // Allow the target to implement this method for its nodes.
1357 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1358 case ISD::INTRINSIC_WO_CHAIN:
1359 case ISD::INTRINSIC_W_CHAIN:
1360 case ISD::INTRINSIC_VOID:
1361 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1362 }
1363 return;
1364 }
1365}
1366
1367/// ComputeNumSignBits - Return the number of times the sign bit of the
1368/// register is replicated into the other bits. We know that at least 1 bit
1369/// is always equal to the sign bit (itself), but other cases can give us
1370/// information. For example, immediately after an "SRA X, 2", we know that
1371/// the top 3 bits are all equal to each other, so we return 3.
1372unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1373 MVT::ValueType VT = Op.getValueType();
1374 assert(MVT::isInteger(VT) && "Invalid VT!");
1375 unsigned VTBits = MVT::getSizeInBits(VT);
1376 unsigned Tmp, Tmp2;
1377
1378 if (Depth == 6)
1379 return 1; // Limit search depth.
1380
1381 switch (Op.getOpcode()) {
1382 default: break;
1383 case ISD::AssertSext:
1384 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1385 return VTBits-Tmp+1;
1386 case ISD::AssertZext:
1387 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1388 return VTBits-Tmp;
1389
1390 case ISD::Constant: {
1391 uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1392 // If negative, invert the bits, then look at it.
1393 if (Val & MVT::getIntVTSignBit(VT))
1394 Val = ~Val;
1395
1396 // Shift the bits so they are the leading bits in the int64_t.
1397 Val <<= 64-VTBits;
1398
1399 // Return # leading zeros. We use 'min' here in case Val was zero before
1400 // shifting. We don't want to return '64' as for an i32 "0".
1401 return std::min(VTBits, CountLeadingZeros_64(Val));
1402 }
1403
1404 case ISD::SIGN_EXTEND:
1405 Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1406 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1407
1408 case ISD::SIGN_EXTEND_INREG:
1409 // Max of the input and what this extends.
1410 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1411 Tmp = VTBits-Tmp+1;
1412
1413 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1414 return std::max(Tmp, Tmp2);
1415
1416 case ISD::SRA:
1417 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1418 // SRA X, C -> adds C sign bits.
1419 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1420 Tmp += C->getValue();
1421 if (Tmp > VTBits) Tmp = VTBits;
1422 }
1423 return Tmp;
1424 case ISD::SHL:
1425 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1426 // shl destroys sign bits.
1427 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1428 if (C->getValue() >= VTBits || // Bad shift.
1429 C->getValue() >= Tmp) break; // Shifted all sign bits out.
1430 return Tmp - C->getValue();
1431 }
1432 break;
1433 case ISD::AND:
1434 case ISD::OR:
1435 case ISD::XOR: // NOT is handled here.
1436 // Logical binary ops preserve the number of sign bits.
1437 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1438 if (Tmp == 1) return 1; // Early out.
1439 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1440 return std::min(Tmp, Tmp2);
1441
1442 case ISD::SELECT:
1443 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1444 if (Tmp == 1) return 1; // Early out.
1445 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1446 return std::min(Tmp, Tmp2);
1447
1448 case ISD::SETCC:
1449 // If setcc returns 0/-1, all bits are sign bits.
1450 if (TLI.getSetCCResultContents() ==
1451 TargetLowering::ZeroOrNegativeOneSetCCResult)
1452 return VTBits;
1453 break;
1454 case ISD::ROTL:
1455 case ISD::ROTR:
1456 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1457 unsigned RotAmt = C->getValue() & (VTBits-1);
1458
1459 // Handle rotate right by N like a rotate left by 32-N.
1460 if (Op.getOpcode() == ISD::ROTR)
1461 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1462
1463 // If we aren't rotating out all of the known-in sign bits, return the
1464 // number that are left. This handles rotl(sext(x), 1) for example.
1465 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1466 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1467 }
1468 break;
1469 case ISD::ADD:
1470 // Add can have at most one carry bit. Thus we know that the output
1471 // is, at worst, one more bit than the inputs.
1472 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1473 if (Tmp == 1) return 1; // Early out.
1474
1475 // Special case decrementing a value (ADD X, -1):
1476 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1477 if (CRHS->isAllOnesValue()) {
1478 uint64_t KnownZero, KnownOne;
1479 uint64_t Mask = MVT::getIntVTBitMask(VT);
1480 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1481
1482 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1483 // sign bits set.
1484 if ((KnownZero|1) == Mask)
1485 return VTBits;
1486
1487 // If we are subtracting one from a positive number, there is no carry
1488 // out of the result.
1489 if (KnownZero & MVT::getIntVTSignBit(VT))
1490 return Tmp;
1491 }
1492
1493 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1494 if (Tmp2 == 1) return 1;
1495 return std::min(Tmp, Tmp2)-1;
1496 break;
1497
1498 case ISD::SUB:
1499 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1500 if (Tmp2 == 1) return 1;
1501
1502 // Handle NEG.
1503 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1504 if (CLHS->getValue() == 0) {
1505 uint64_t KnownZero, KnownOne;
1506 uint64_t Mask = MVT::getIntVTBitMask(VT);
1507 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1508 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1509 // sign bits set.
1510 if ((KnownZero|1) == Mask)
1511 return VTBits;
1512
1513 // If the input is known to be positive (the sign bit is known clear),
1514 // the output of the NEG has the same number of sign bits as the input.
1515 if (KnownZero & MVT::getIntVTSignBit(VT))
1516 return Tmp2;
1517
1518 // Otherwise, we treat this like a SUB.
1519 }
1520
1521 // Sub can have at most one carry bit. Thus we know that the output
1522 // is, at worst, one more bit than the inputs.
1523 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1524 if (Tmp == 1) return 1; // Early out.
1525 return std::min(Tmp, Tmp2)-1;
1526 break;
1527 case ISD::TRUNCATE:
1528 // FIXME: it's tricky to do anything useful for this, but it is an important
1529 // case for targets like X86.
1530 break;
1531 }
1532
1533 // Handle LOADX separately here. EXTLOAD case will fallthrough.
1534 if (Op.getOpcode() == ISD::LOAD) {
1535 LoadSDNode *LD = cast<LoadSDNode>(Op);
1536 unsigned ExtType = LD->getExtensionType();
1537 switch (ExtType) {
1538 default: break;
1539 case ISD::SEXTLOAD: // '17' bits known
1540 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1541 return VTBits-Tmp+1;
1542 case ISD::ZEXTLOAD: // '16' bits known
1543 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1544 return VTBits-Tmp;
1545 }
1546 }
1547
1548 // Allow the target to implement this method for its nodes.
1549 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1550 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1551 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1552 Op.getOpcode() == ISD::INTRINSIC_VOID) {
1553 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1554 if (NumBits > 1) return NumBits;
1555 }
1556
1557 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1558 // use this information.
1559 uint64_t KnownZero, KnownOne;
1560 uint64_t Mask = MVT::getIntVTBitMask(VT);
1561 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1562
1563 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1564 if (KnownZero & SignBit) { // SignBit is 0
1565 Mask = KnownZero;
1566 } else if (KnownOne & SignBit) { // SignBit is 1;
1567 Mask = KnownOne;
1568 } else {
1569 // Nothing known.
1570 return 1;
1571 }
1572
1573 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1574 // the number of identical bits in the top of the input value.
1575 Mask ^= ~0ULL;
1576 Mask <<= 64-VTBits;
1577 // Return # leading zeros. We use 'min' here in case Val was zero before
1578 // shifting. We don't want to return '64' as for an i32 "0".
1579 return std::min(VTBits, CountLeadingZeros_64(Mask));
1580}
1581
1582
1583/// getNode - Gets or creates the specified node.
1584///
1585SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1586 FoldingSetNodeID ID;
1587 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1588 void *IP = 0;
1589 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1590 return SDOperand(E, 0);
1591 SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1592 CSEMap.InsertNode(N, IP);
1593
1594 AllNodes.push_back(N);
1595 return SDOperand(N, 0);
1596}
1597
1598SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1599 SDOperand Operand) {
1600 unsigned Tmp1;
1601 // Constant fold unary operations with an integer constant operand.
1602 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1603 uint64_t Val = C->getValue();
1604 switch (Opcode) {
1605 default: break;
1606 case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1607 case ISD::ANY_EXTEND:
1608 case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1609 case ISD::TRUNCATE: return getConstant(Val, VT);
Dale Johannesen958b08b2007-09-19 23:55:34 +00001610 case ISD::UINT_TO_FP:
1611 case ISD::SINT_TO_FP: {
1612 const uint64_t zero[] = {0, 0};
1613 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
Neil Booth4bdd45a2007-10-07 11:45:55 +00001614 (void)apf.convertFromZeroExtendedInteger(&Val,
Dale Johannesena6f79742007-09-21 22:09:37 +00001615 MVT::getSizeInBits(Operand.getValueType()),
1616 Opcode==ISD::SINT_TO_FP,
Dale Johannesen87fa68f2007-09-30 18:19:03 +00001617 APFloat::rmNearestTiesToEven);
Dale Johannesen958b08b2007-09-19 23:55:34 +00001618 return getConstantFP(apf, VT);
1619 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001620 case ISD::BIT_CONVERT:
1621 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1622 return getConstantFP(BitsToFloat(Val), VT);
1623 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1624 return getConstantFP(BitsToDouble(Val), VT);
1625 break;
1626 case ISD::BSWAP:
1627 switch(VT) {
1628 default: assert(0 && "Invalid bswap!"); break;
1629 case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1630 case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1631 case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1632 }
1633 break;
1634 case ISD::CTPOP:
1635 switch(VT) {
1636 default: assert(0 && "Invalid ctpop!"); break;
1637 case MVT::i1: return getConstant(Val != 0, VT);
1638 case MVT::i8:
1639 Tmp1 = (unsigned)Val & 0xFF;
1640 return getConstant(CountPopulation_32(Tmp1), VT);
1641 case MVT::i16:
1642 Tmp1 = (unsigned)Val & 0xFFFF;
1643 return getConstant(CountPopulation_32(Tmp1), VT);
1644 case MVT::i32:
1645 return getConstant(CountPopulation_32((unsigned)Val), VT);
1646 case MVT::i64:
1647 return getConstant(CountPopulation_64(Val), VT);
1648 }
1649 case ISD::CTLZ:
1650 switch(VT) {
1651 default: assert(0 && "Invalid ctlz!"); break;
1652 case MVT::i1: return getConstant(Val == 0, VT);
1653 case MVT::i8:
1654 Tmp1 = (unsigned)Val & 0xFF;
1655 return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1656 case MVT::i16:
1657 Tmp1 = (unsigned)Val & 0xFFFF;
1658 return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1659 case MVT::i32:
1660 return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1661 case MVT::i64:
1662 return getConstant(CountLeadingZeros_64(Val), VT);
1663 }
1664 case ISD::CTTZ:
1665 switch(VT) {
1666 default: assert(0 && "Invalid cttz!"); break;
1667 case MVT::i1: return getConstant(Val == 0, VT);
1668 case MVT::i8:
1669 Tmp1 = (unsigned)Val | 0x100;
1670 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1671 case MVT::i16:
1672 Tmp1 = (unsigned)Val | 0x10000;
1673 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1674 case MVT::i32:
1675 return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1676 case MVT::i64:
1677 return getConstant(CountTrailingZeros_64(Val), VT);
1678 }
1679 }
1680 }
1681
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001682 // Constant fold unary operations with a floating point constant operand.
1683 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1684 APFloat V = C->getValueAPF(); // make copy
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001685 switch (Opcode) {
1686 case ISD::FNEG:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001687 V.changeSign();
1688 return getConstantFP(V, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001689 case ISD::FABS:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001690 V.clearSign();
1691 return getConstantFP(V, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001692 case ISD::FP_ROUND:
1693 case ISD::FP_EXTEND:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001694 // This can return overflow, underflow, or inexact; we don't care.
1695 // FIXME need to be more flexible about rounding mode.
1696 (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
Dale Johannesen958b08b2007-09-19 23:55:34 +00001697 VT==MVT::f64 ? APFloat::IEEEdouble :
1698 VT==MVT::f80 ? APFloat::x87DoubleExtended :
1699 VT==MVT::f128 ? APFloat::IEEEquad :
1700 APFloat::Bogus,
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001701 APFloat::rmNearestTiesToEven);
1702 return getConstantFP(V, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001703 case ISD::FP_TO_SINT:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001704 case ISD::FP_TO_UINT: {
1705 integerPart x;
1706 assert(integerPartWidth >= 64);
1707 // FIXME need to be more flexible about rounding mode.
1708 APFloat::opStatus s = V.convertToInteger(&x, 64U,
1709 Opcode==ISD::FP_TO_SINT,
1710 APFloat::rmTowardZero);
1711 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
1712 break;
1713 return getConstant(x, VT);
1714 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001715 case ISD::BIT_CONVERT:
1716 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001717 return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001718 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001719 return getConstant(V.convertToAPInt().getZExtValue(), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001720 break;
1721 }
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001722 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001723
1724 unsigned OpOpcode = Operand.Val->getOpcode();
1725 switch (Opcode) {
1726 case ISD::TokenFactor:
1727 return Operand; // Factor of one node? No factor.
1728 case ISD::FP_ROUND:
1729 case ISD::FP_EXTEND:
1730 assert(MVT::isFloatingPoint(VT) &&
1731 MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1732 break;
1733 case ISD::SIGN_EXTEND:
1734 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1735 "Invalid SIGN_EXTEND!");
1736 if (Operand.getValueType() == VT) return Operand; // noop extension
1737 assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1738 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1739 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1740 break;
1741 case ISD::ZERO_EXTEND:
1742 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1743 "Invalid ZERO_EXTEND!");
1744 if (Operand.getValueType() == VT) return Operand; // noop extension
1745 assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1746 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
1747 return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1748 break;
1749 case ISD::ANY_EXTEND:
1750 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1751 "Invalid ANY_EXTEND!");
1752 if (Operand.getValueType() == VT) return Operand; // noop extension
1753 assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1754 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1755 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
1756 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1757 break;
1758 case ISD::TRUNCATE:
1759 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1760 "Invalid TRUNCATE!");
1761 if (Operand.getValueType() == VT) return Operand; // noop truncate
1762 assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1763 if (OpOpcode == ISD::TRUNCATE)
1764 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1765 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1766 OpOpcode == ISD::ANY_EXTEND) {
1767 // If the source is smaller than the dest, we still need an extend.
1768 if (Operand.Val->getOperand(0).getValueType() < VT)
1769 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1770 else if (Operand.Val->getOperand(0).getValueType() > VT)
1771 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1772 else
1773 return Operand.Val->getOperand(0);
1774 }
1775 break;
1776 case ISD::BIT_CONVERT:
1777 // Basic sanity checking.
1778 assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1779 && "Cannot BIT_CONVERT between types of different sizes!");
1780 if (VT == Operand.getValueType()) return Operand; // noop conversion.
1781 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
1782 return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1783 if (OpOpcode == ISD::UNDEF)
1784 return getNode(ISD::UNDEF, VT);
1785 break;
1786 case ISD::SCALAR_TO_VECTOR:
1787 assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1788 MVT::getVectorElementType(VT) == Operand.getValueType() &&
1789 "Illegal SCALAR_TO_VECTOR node!");
1790 break;
1791 case ISD::FNEG:
1792 if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
1793 return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1794 Operand.Val->getOperand(0));
1795 if (OpOpcode == ISD::FNEG) // --X -> X
1796 return Operand.Val->getOperand(0);
1797 break;
1798 case ISD::FABS:
1799 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
1800 return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1801 break;
1802 }
1803
1804 SDNode *N;
1805 SDVTList VTs = getVTList(VT);
1806 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1807 FoldingSetNodeID ID;
1808 SDOperand Ops[1] = { Operand };
1809 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1810 void *IP = 0;
1811 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1812 return SDOperand(E, 0);
1813 N = new UnarySDNode(Opcode, VTs, Operand);
1814 CSEMap.InsertNode(N, IP);
1815 } else {
1816 N = new UnarySDNode(Opcode, VTs, Operand);
1817 }
1818 AllNodes.push_back(N);
1819 return SDOperand(N, 0);
1820}
1821
1822
1823
1824SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1825 SDOperand N1, SDOperand N2) {
1826#ifndef NDEBUG
1827 switch (Opcode) {
1828 case ISD::TokenFactor:
1829 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1830 N2.getValueType() == MVT::Other && "Invalid token factor!");
1831 break;
1832 case ISD::AND:
1833 case ISD::OR:
1834 case ISD::XOR:
1835 case ISD::UDIV:
1836 case ISD::UREM:
1837 case ISD::MULHU:
1838 case ISD::MULHS:
1839 assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1840 // fall through
1841 case ISD::ADD:
1842 case ISD::SUB:
1843 case ISD::MUL:
1844 case ISD::SDIV:
1845 case ISD::SREM:
1846 assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1847 // fall through.
1848 case ISD::FADD:
1849 case ISD::FSUB:
1850 case ISD::FMUL:
1851 case ISD::FDIV:
1852 case ISD::FREM:
1853 assert(N1.getValueType() == N2.getValueType() &&
1854 N1.getValueType() == VT && "Binary operator types must match!");
1855 break;
1856 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
1857 assert(N1.getValueType() == VT &&
1858 MVT::isFloatingPoint(N1.getValueType()) &&
1859 MVT::isFloatingPoint(N2.getValueType()) &&
1860 "Invalid FCOPYSIGN!");
1861 break;
1862 case ISD::SHL:
1863 case ISD::SRA:
1864 case ISD::SRL:
1865 case ISD::ROTL:
1866 case ISD::ROTR:
1867 assert(VT == N1.getValueType() &&
1868 "Shift operators return type must be the same as their first arg");
1869 assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1870 VT != MVT::i1 && "Shifts only work on integers");
1871 break;
1872 case ISD::FP_ROUND_INREG: {
1873 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1874 assert(VT == N1.getValueType() && "Not an inreg round!");
1875 assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1876 "Cannot FP_ROUND_INREG integer types");
1877 assert(EVT <= VT && "Not rounding down!");
1878 break;
1879 }
1880 case ISD::AssertSext:
1881 case ISD::AssertZext:
1882 case ISD::SIGN_EXTEND_INREG: {
1883 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1884 assert(VT == N1.getValueType() && "Not an inreg extend!");
1885 assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1886 "Cannot *_EXTEND_INREG FP types");
1887 assert(EVT <= VT && "Not extending!");
1888 }
1889
1890 default: break;
1891 }
1892#endif
1893
1894 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1895 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1896 if (N1C) {
1897 if (Opcode == ISD::SIGN_EXTEND_INREG) {
1898 int64_t Val = N1C->getValue();
1899 unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1900 Val <<= 64-FromBits;
1901 Val >>= 64-FromBits;
1902 return getConstant(Val, VT);
1903 }
1904
1905 if (N2C) {
1906 uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1907 switch (Opcode) {
1908 case ISD::ADD: return getConstant(C1 + C2, VT);
1909 case ISD::SUB: return getConstant(C1 - C2, VT);
1910 case ISD::MUL: return getConstant(C1 * C2, VT);
1911 case ISD::UDIV:
1912 if (C2) return getConstant(C1 / C2, VT);
1913 break;
1914 case ISD::UREM :
1915 if (C2) return getConstant(C1 % C2, VT);
1916 break;
1917 case ISD::SDIV :
1918 if (C2) return getConstant(N1C->getSignExtended() /
1919 N2C->getSignExtended(), VT);
1920 break;
1921 case ISD::SREM :
1922 if (C2) return getConstant(N1C->getSignExtended() %
1923 N2C->getSignExtended(), VT);
1924 break;
1925 case ISD::AND : return getConstant(C1 & C2, VT);
1926 case ISD::OR : return getConstant(C1 | C2, VT);
1927 case ISD::XOR : return getConstant(C1 ^ C2, VT);
1928 case ISD::SHL : return getConstant(C1 << C2, VT);
1929 case ISD::SRL : return getConstant(C1 >> C2, VT);
1930 case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1931 case ISD::ROTL :
1932 return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1933 VT);
1934 case ISD::ROTR :
1935 return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1936 VT);
1937 default: break;
1938 }
1939 } else { // Cannonicalize constant to RHS if commutative
1940 if (isCommutativeBinOp(Opcode)) {
1941 std::swap(N1C, N2C);
1942 std::swap(N1, N2);
1943 }
1944 }
1945 }
1946
1947 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1948 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1949 if (N1CFP) {
1950 if (N2CFP) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001951 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1952 APFloat::opStatus s;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001953 switch (Opcode) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001954 case ISD::FADD:
1955 s = V1.add(V2, APFloat::rmNearestTiesToEven);
1956 if (s!=APFloat::opInvalidOp)
1957 return getConstantFP(V1, VT);
1958 break;
1959 case ISD::FSUB:
1960 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1961 if (s!=APFloat::opInvalidOp)
1962 return getConstantFP(V1, VT);
1963 break;
1964 case ISD::FMUL:
1965 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
1966 if (s!=APFloat::opInvalidOp)
1967 return getConstantFP(V1, VT);
1968 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001969 case ISD::FDIV:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001970 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
1971 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1972 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001973 break;
1974 case ISD::FREM :
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001975 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
1976 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1977 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001978 break;
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001979 case ISD::FCOPYSIGN:
1980 V1.copySign(V2);
1981 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001982 default: break;
1983 }
1984 } else { // Cannonicalize constant to RHS if commutative
1985 if (isCommutativeBinOp(Opcode)) {
1986 std::swap(N1CFP, N2CFP);
1987 std::swap(N1, N2);
1988 }
1989 }
1990 }
1991
1992 // Canonicalize an UNDEF to the RHS, even over a constant.
1993 if (N1.getOpcode() == ISD::UNDEF) {
1994 if (isCommutativeBinOp(Opcode)) {
1995 std::swap(N1, N2);
1996 } else {
1997 switch (Opcode) {
1998 case ISD::FP_ROUND_INREG:
1999 case ISD::SIGN_EXTEND_INREG:
2000 case ISD::SUB:
2001 case ISD::FSUB:
2002 case ISD::FDIV:
2003 case ISD::FREM:
2004 case ISD::SRA:
2005 return N1; // fold op(undef, arg2) -> undef
2006 case ISD::UDIV:
2007 case ISD::SDIV:
2008 case ISD::UREM:
2009 case ISD::SREM:
2010 case ISD::SRL:
2011 case ISD::SHL:
2012 if (!MVT::isVector(VT))
2013 return getConstant(0, VT); // fold op(undef, arg2) -> 0
2014 // For vectors, we can't easily build an all zero vector, just return
2015 // the LHS.
2016 return N2;
2017 }
2018 }
2019 }
2020
2021 // Fold a bunch of operators when the RHS is undef.
2022 if (N2.getOpcode() == ISD::UNDEF) {
2023 switch (Opcode) {
2024 case ISD::ADD:
2025 case ISD::ADDC:
2026 case ISD::ADDE:
2027 case ISD::SUB:
2028 case ISD::FADD:
2029 case ISD::FSUB:
2030 case ISD::FMUL:
2031 case ISD::FDIV:
2032 case ISD::FREM:
2033 case ISD::UDIV:
2034 case ISD::SDIV:
2035 case ISD::UREM:
2036 case ISD::SREM:
2037 case ISD::XOR:
2038 return N2; // fold op(arg1, undef) -> undef
2039 case ISD::MUL:
2040 case ISD::AND:
2041 case ISD::SRL:
2042 case ISD::SHL:
2043 if (!MVT::isVector(VT))
2044 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2045 // For vectors, we can't easily build an all zero vector, just return
2046 // the LHS.
2047 return N1;
2048 case ISD::OR:
2049 if (!MVT::isVector(VT))
2050 return getConstant(MVT::getIntVTBitMask(VT), VT);
2051 // For vectors, we can't easily build an all one vector, just return
2052 // the LHS.
2053 return N1;
2054 case ISD::SRA:
2055 return N1;
2056 }
2057 }
2058
2059 // Fold operations.
2060 switch (Opcode) {
2061 case ISD::TokenFactor:
2062 // Fold trivial token factors.
2063 if (N1.getOpcode() == ISD::EntryToken) return N2;
2064 if (N2.getOpcode() == ISD::EntryToken) return N1;
2065 break;
2066
2067 case ISD::AND:
2068 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2069 // worth handling here.
2070 if (N2C && N2C->getValue() == 0)
2071 return N2;
2072 break;
2073 case ISD::OR:
2074 case ISD::XOR:
2075 // (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's
2076 // worth handling here.
2077 if (N2C && N2C->getValue() == 0)
2078 return N1;
2079 break;
2080 case ISD::FP_ROUND_INREG:
2081 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2082 break;
2083 case ISD::SIGN_EXTEND_INREG: {
2084 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2085 if (EVT == VT) return N1; // Not actually extending
2086 break;
2087 }
2088 case ISD::EXTRACT_VECTOR_ELT:
2089 assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2090
2091 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2092 // expanding copies of large vectors from registers.
2093 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2094 N1.getNumOperands() > 0) {
2095 unsigned Factor =
2096 MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2097 return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2098 N1.getOperand(N2C->getValue() / Factor),
2099 getConstant(N2C->getValue() % Factor, N2.getValueType()));
2100 }
2101
2102 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2103 // expanding large vector constants.
2104 if (N1.getOpcode() == ISD::BUILD_VECTOR)
2105 return N1.getOperand(N2C->getValue());
2106
2107 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2108 // operations are lowered to scalars.
2109 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2110 if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2111 if (IEC == N2C)
2112 return N1.getOperand(1);
2113 else
2114 return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2115 }
2116 break;
2117 case ISD::EXTRACT_ELEMENT:
2118 assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2119
2120 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2121 // 64-bit integers into 32-bit parts. Instead of building the extract of
2122 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2123 if (N1.getOpcode() == ISD::BUILD_PAIR)
2124 return N1.getOperand(N2C->getValue());
2125
2126 // EXTRACT_ELEMENT of a constant int is also very common.
2127 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2128 unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2129 return getConstant(C->getValue() >> Shift, VT);
2130 }
2131 break;
2132
2133 // FIXME: figure out how to safely handle things like
2134 // int foo(int x) { return 1 << (x & 255); }
2135 // int bar() { return foo(256); }
2136#if 0
2137 case ISD::SHL:
2138 case ISD::SRL:
2139 case ISD::SRA:
2140 if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2141 cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2142 return getNode(Opcode, VT, N1, N2.getOperand(0));
2143 else if (N2.getOpcode() == ISD::AND)
2144 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2145 // If the and is only masking out bits that cannot effect the shift,
2146 // eliminate the and.
2147 unsigned NumBits = MVT::getSizeInBits(VT);
2148 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2149 return getNode(Opcode, VT, N1, N2.getOperand(0));
2150 }
2151 break;
2152#endif
2153 }
2154
2155 // Memoize this node if possible.
2156 SDNode *N;
2157 SDVTList VTs = getVTList(VT);
2158 if (VT != MVT::Flag) {
2159 SDOperand Ops[] = { N1, N2 };
2160 FoldingSetNodeID ID;
2161 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2162 void *IP = 0;
2163 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2164 return SDOperand(E, 0);
2165 N = new BinarySDNode(Opcode, VTs, N1, N2);
2166 CSEMap.InsertNode(N, IP);
2167 } else {
2168 N = new BinarySDNode(Opcode, VTs, N1, N2);
2169 }
2170
2171 AllNodes.push_back(N);
2172 return SDOperand(N, 0);
2173}
2174
2175SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2176 SDOperand N1, SDOperand N2, SDOperand N3) {
2177 // Perform various simplifications.
2178 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2179 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2180 switch (Opcode) {
2181 case ISD::SETCC: {
2182 // Use FoldSetCC to simplify SETCC's.
2183 SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2184 if (Simp.Val) return Simp;
2185 break;
2186 }
2187 case ISD::SELECT:
2188 if (N1C)
2189 if (N1C->getValue())
2190 return N2; // select true, X, Y -> X
2191 else
2192 return N3; // select false, X, Y -> Y
2193
2194 if (N2 == N3) return N2; // select C, X, X -> X
2195 break;
2196 case ISD::BRCOND:
2197 if (N2C)
2198 if (N2C->getValue()) // Unconditional branch
2199 return getNode(ISD::BR, MVT::Other, N1, N3);
2200 else
2201 return N1; // Never-taken branch
2202 break;
2203 case ISD::VECTOR_SHUFFLE:
2204 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2205 MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2206 N3.getOpcode() == ISD::BUILD_VECTOR &&
2207 MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2208 "Illegal VECTOR_SHUFFLE node!");
2209 break;
2210 case ISD::BIT_CONVERT:
2211 // Fold bit_convert nodes from a type to themselves.
2212 if (N1.getValueType() == VT)
2213 return N1;
2214 break;
2215 }
2216
2217 // Memoize node if it doesn't produce a flag.
2218 SDNode *N;
2219 SDVTList VTs = getVTList(VT);
2220 if (VT != MVT::Flag) {
2221 SDOperand Ops[] = { N1, N2, N3 };
2222 FoldingSetNodeID ID;
2223 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2224 void *IP = 0;
2225 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2226 return SDOperand(E, 0);
2227 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2228 CSEMap.InsertNode(N, IP);
2229 } else {
2230 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2231 }
2232 AllNodes.push_back(N);
2233 return SDOperand(N, 0);
2234}
2235
2236SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2237 SDOperand N1, SDOperand N2, SDOperand N3,
2238 SDOperand N4) {
2239 SDOperand Ops[] = { N1, N2, N3, N4 };
2240 return getNode(Opcode, VT, Ops, 4);
2241}
2242
2243SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2244 SDOperand N1, SDOperand N2, SDOperand N3,
2245 SDOperand N4, SDOperand N5) {
2246 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2247 return getNode(Opcode, VT, Ops, 5);
2248}
2249
2250SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2251 SDOperand Chain, SDOperand Ptr,
2252 const Value *SV, int SVOffset,
2253 bool isVolatile, unsigned Alignment) {
2254 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2255 const Type *Ty = 0;
2256 if (VT != MVT::iPTR) {
2257 Ty = MVT::getTypeForValueType(VT);
2258 } else if (SV) {
2259 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2260 assert(PT && "Value for load must be a pointer");
2261 Ty = PT->getElementType();
2262 }
2263 assert(Ty && "Could not get type information for load");
2264 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2265 }
2266 SDVTList VTs = getVTList(VT, MVT::Other);
2267 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2268 SDOperand Ops[] = { Chain, Ptr, Undef };
2269 FoldingSetNodeID ID;
2270 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2271 ID.AddInteger(ISD::UNINDEXED);
2272 ID.AddInteger(ISD::NON_EXTLOAD);
Chris Lattner4a22a672007-09-13 06:09:48 +00002273 ID.AddInteger((unsigned int)VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002274 ID.AddPointer(SV);
2275 ID.AddInteger(SVOffset);
2276 ID.AddInteger(Alignment);
2277 ID.AddInteger(isVolatile);
2278 void *IP = 0;
2279 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2280 return SDOperand(E, 0);
2281 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2282 ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2283 isVolatile);
2284 CSEMap.InsertNode(N, IP);
2285 AllNodes.push_back(N);
2286 return SDOperand(N, 0);
2287}
2288
2289SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2290 SDOperand Chain, SDOperand Ptr,
2291 const Value *SV,
2292 int SVOffset, MVT::ValueType EVT,
2293 bool isVolatile, unsigned Alignment) {
2294 // If they are asking for an extending load from/to the same thing, return a
2295 // normal load.
2296 if (VT == EVT)
2297 ExtType = ISD::NON_EXTLOAD;
2298
2299 if (MVT::isVector(VT))
2300 assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2301 else
2302 assert(EVT < VT && "Should only be an extending load, not truncating!");
2303 assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2304 "Cannot sign/zero extend a FP/Vector load!");
2305 assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2306 "Cannot convert from FP to Int or Int -> FP!");
2307
2308 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2309 const Type *Ty = 0;
2310 if (VT != MVT::iPTR) {
2311 Ty = MVT::getTypeForValueType(VT);
2312 } else if (SV) {
2313 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2314 assert(PT && "Value for load must be a pointer");
2315 Ty = PT->getElementType();
2316 }
2317 assert(Ty && "Could not get type information for load");
2318 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2319 }
2320 SDVTList VTs = getVTList(VT, MVT::Other);
2321 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2322 SDOperand Ops[] = { Chain, Ptr, Undef };
2323 FoldingSetNodeID ID;
2324 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2325 ID.AddInteger(ISD::UNINDEXED);
2326 ID.AddInteger(ExtType);
Chris Lattner4a22a672007-09-13 06:09:48 +00002327 ID.AddInteger((unsigned int)EVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002328 ID.AddPointer(SV);
2329 ID.AddInteger(SVOffset);
2330 ID.AddInteger(Alignment);
2331 ID.AddInteger(isVolatile);
2332 void *IP = 0;
2333 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2334 return SDOperand(E, 0);
2335 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2336 SV, SVOffset, Alignment, isVolatile);
2337 CSEMap.InsertNode(N, IP);
2338 AllNodes.push_back(N);
2339 return SDOperand(N, 0);
2340}
2341
2342SDOperand
2343SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2344 SDOperand Offset, ISD::MemIndexedMode AM) {
2345 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2346 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2347 "Load is already a indexed load!");
2348 MVT::ValueType VT = OrigLoad.getValueType();
2349 SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2350 SDOperand Ops[] = { LD->getChain(), Base, Offset };
2351 FoldingSetNodeID ID;
2352 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2353 ID.AddInteger(AM);
2354 ID.AddInteger(LD->getExtensionType());
Chris Lattner4a22a672007-09-13 06:09:48 +00002355 ID.AddInteger((unsigned int)(LD->getLoadedVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002356 ID.AddPointer(LD->getSrcValue());
2357 ID.AddInteger(LD->getSrcValueOffset());
2358 ID.AddInteger(LD->getAlignment());
2359 ID.AddInteger(LD->isVolatile());
2360 void *IP = 0;
2361 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2362 return SDOperand(E, 0);
2363 SDNode *N = new LoadSDNode(Ops, VTs, AM,
2364 LD->getExtensionType(), LD->getLoadedVT(),
2365 LD->getSrcValue(), LD->getSrcValueOffset(),
2366 LD->getAlignment(), LD->isVolatile());
2367 CSEMap.InsertNode(N, IP);
2368 AllNodes.push_back(N);
2369 return SDOperand(N, 0);
2370}
2371
2372SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2373 SDOperand Ptr, const Value *SV, int SVOffset,
2374 bool isVolatile, unsigned Alignment) {
2375 MVT::ValueType VT = Val.getValueType();
2376
2377 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2378 const Type *Ty = 0;
2379 if (VT != MVT::iPTR) {
2380 Ty = MVT::getTypeForValueType(VT);
2381 } else if (SV) {
2382 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2383 assert(PT && "Value for store must be a pointer");
2384 Ty = PT->getElementType();
2385 }
2386 assert(Ty && "Could not get type information for store");
2387 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2388 }
2389 SDVTList VTs = getVTList(MVT::Other);
2390 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2391 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2392 FoldingSetNodeID ID;
2393 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2394 ID.AddInteger(ISD::UNINDEXED);
2395 ID.AddInteger(false);
Chris Lattner4a22a672007-09-13 06:09:48 +00002396 ID.AddInteger((unsigned int)VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002397 ID.AddPointer(SV);
2398 ID.AddInteger(SVOffset);
2399 ID.AddInteger(Alignment);
2400 ID.AddInteger(isVolatile);
2401 void *IP = 0;
2402 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2403 return SDOperand(E, 0);
2404 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2405 VT, SV, SVOffset, Alignment, isVolatile);
2406 CSEMap.InsertNode(N, IP);
2407 AllNodes.push_back(N);
2408 return SDOperand(N, 0);
2409}
2410
2411SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2412 SDOperand Ptr, const Value *SV,
2413 int SVOffset, MVT::ValueType SVT,
2414 bool isVolatile, unsigned Alignment) {
2415 MVT::ValueType VT = Val.getValueType();
2416 bool isTrunc = VT != SVT;
2417
2418 assert(VT > SVT && "Not a truncation?");
2419 assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2420 "Can't do FP-INT conversion!");
2421
2422 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2423 const Type *Ty = 0;
2424 if (VT != MVT::iPTR) {
2425 Ty = MVT::getTypeForValueType(VT);
2426 } else if (SV) {
2427 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2428 assert(PT && "Value for store must be a pointer");
2429 Ty = PT->getElementType();
2430 }
2431 assert(Ty && "Could not get type information for store");
2432 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2433 }
2434 SDVTList VTs = getVTList(MVT::Other);
2435 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2436 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2437 FoldingSetNodeID ID;
2438 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2439 ID.AddInteger(ISD::UNINDEXED);
2440 ID.AddInteger(isTrunc);
Chris Lattner4a22a672007-09-13 06:09:48 +00002441 ID.AddInteger((unsigned int)SVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002442 ID.AddPointer(SV);
2443 ID.AddInteger(SVOffset);
2444 ID.AddInteger(Alignment);
2445 ID.AddInteger(isVolatile);
2446 void *IP = 0;
2447 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2448 return SDOperand(E, 0);
2449 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2450 SVT, SV, SVOffset, Alignment, isVolatile);
2451 CSEMap.InsertNode(N, IP);
2452 AllNodes.push_back(N);
2453 return SDOperand(N, 0);
2454}
2455
2456SDOperand
2457SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2458 SDOperand Offset, ISD::MemIndexedMode AM) {
2459 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2460 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2461 "Store is already a indexed store!");
2462 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2463 SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2464 FoldingSetNodeID ID;
2465 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2466 ID.AddInteger(AM);
2467 ID.AddInteger(ST->isTruncatingStore());
Chris Lattner4a22a672007-09-13 06:09:48 +00002468 ID.AddInteger((unsigned int)(ST->getStoredVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002469 ID.AddPointer(ST->getSrcValue());
2470 ID.AddInteger(ST->getSrcValueOffset());
2471 ID.AddInteger(ST->getAlignment());
2472 ID.AddInteger(ST->isVolatile());
2473 void *IP = 0;
2474 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2475 return SDOperand(E, 0);
2476 SDNode *N = new StoreSDNode(Ops, VTs, AM,
2477 ST->isTruncatingStore(), ST->getStoredVT(),
2478 ST->getSrcValue(), ST->getSrcValueOffset(),
2479 ST->getAlignment(), ST->isVolatile());
2480 CSEMap.InsertNode(N, IP);
2481 AllNodes.push_back(N);
2482 return SDOperand(N, 0);
2483}
2484
2485SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2486 SDOperand Chain, SDOperand Ptr,
2487 SDOperand SV) {
2488 SDOperand Ops[] = { Chain, Ptr, SV };
2489 return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2490}
2491
2492SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2493 const SDOperand *Ops, unsigned NumOps) {
2494 switch (NumOps) {
2495 case 0: return getNode(Opcode, VT);
2496 case 1: return getNode(Opcode, VT, Ops[0]);
2497 case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2498 case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2499 default: break;
2500 }
2501
2502 switch (Opcode) {
2503 default: break;
2504 case ISD::SELECT_CC: {
2505 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2506 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2507 "LHS and RHS of condition must have same type!");
2508 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2509 "True and False arms of SelectCC must have same type!");
2510 assert(Ops[2].getValueType() == VT &&
2511 "select_cc node must be of same type as true and false value!");
2512 break;
2513 }
2514 case ISD::BR_CC: {
2515 assert(NumOps == 5 && "BR_CC takes 5 operands!");
2516 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2517 "LHS/RHS of comparison should match types!");
2518 break;
2519 }
2520 }
2521
2522 // Memoize nodes.
2523 SDNode *N;
2524 SDVTList VTs = getVTList(VT);
2525 if (VT != MVT::Flag) {
2526 FoldingSetNodeID ID;
2527 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2528 void *IP = 0;
2529 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2530 return SDOperand(E, 0);
2531 N = new SDNode(Opcode, VTs, Ops, NumOps);
2532 CSEMap.InsertNode(N, IP);
2533 } else {
2534 N = new SDNode(Opcode, VTs, Ops, NumOps);
2535 }
2536 AllNodes.push_back(N);
2537 return SDOperand(N, 0);
2538}
2539
2540SDOperand SelectionDAG::getNode(unsigned Opcode,
2541 std::vector<MVT::ValueType> &ResultTys,
2542 const SDOperand *Ops, unsigned NumOps) {
2543 return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2544 Ops, NumOps);
2545}
2546
2547SDOperand SelectionDAG::getNode(unsigned Opcode,
2548 const MVT::ValueType *VTs, unsigned NumVTs,
2549 const SDOperand *Ops, unsigned NumOps) {
2550 if (NumVTs == 1)
2551 return getNode(Opcode, VTs[0], Ops, NumOps);
2552 return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2553}
2554
2555SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2556 const SDOperand *Ops, unsigned NumOps) {
2557 if (VTList.NumVTs == 1)
2558 return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2559
2560 switch (Opcode) {
2561 // FIXME: figure out how to safely handle things like
2562 // int foo(int x) { return 1 << (x & 255); }
2563 // int bar() { return foo(256); }
2564#if 0
2565 case ISD::SRA_PARTS:
2566 case ISD::SRL_PARTS:
2567 case ISD::SHL_PARTS:
2568 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2569 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2570 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2571 else if (N3.getOpcode() == ISD::AND)
2572 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2573 // If the and is only masking out bits that cannot effect the shift,
2574 // eliminate the and.
2575 unsigned NumBits = MVT::getSizeInBits(VT)*2;
2576 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2577 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2578 }
2579 break;
2580#endif
2581 }
2582
2583 // Memoize the node unless it returns a flag.
2584 SDNode *N;
2585 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2586 FoldingSetNodeID ID;
2587 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2588 void *IP = 0;
2589 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2590 return SDOperand(E, 0);
2591 if (NumOps == 1)
2592 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2593 else if (NumOps == 2)
2594 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2595 else if (NumOps == 3)
2596 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2597 else
2598 N = new SDNode(Opcode, VTList, Ops, NumOps);
2599 CSEMap.InsertNode(N, IP);
2600 } else {
2601 if (NumOps == 1)
2602 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2603 else if (NumOps == 2)
2604 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2605 else if (NumOps == 3)
2606 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2607 else
2608 N = new SDNode(Opcode, VTList, Ops, NumOps);
2609 }
2610 AllNodes.push_back(N);
2611 return SDOperand(N, 0);
2612}
2613
Dan Gohman798d1272007-10-08 15:49:58 +00002614SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2615 return getNode(Opcode, VTList, 0, 0);
2616}
2617
2618SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2619 SDOperand N1) {
2620 SDOperand Ops[] = { N1 };
2621 return getNode(Opcode, VTList, Ops, 1);
2622}
2623
2624SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2625 SDOperand N1, SDOperand N2) {
2626 SDOperand Ops[] = { N1, N2 };
2627 return getNode(Opcode, VTList, Ops, 2);
2628}
2629
2630SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2631 SDOperand N1, SDOperand N2, SDOperand N3) {
2632 SDOperand Ops[] = { N1, N2, N3 };
2633 return getNode(Opcode, VTList, Ops, 3);
2634}
2635
2636SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2637 SDOperand N1, SDOperand N2, SDOperand N3,
2638 SDOperand N4) {
2639 SDOperand Ops[] = { N1, N2, N3, N4 };
2640 return getNode(Opcode, VTList, Ops, 4);
2641}
2642
2643SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2644 SDOperand N1, SDOperand N2, SDOperand N3,
2645 SDOperand N4, SDOperand N5) {
2646 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2647 return getNode(Opcode, VTList, Ops, 5);
2648}
2649
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002650SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2651 if (!MVT::isExtendedVT(VT))
2652 return makeVTList(SDNode::getValueTypeList(VT), 1);
2653
2654 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2655 E = VTList.end(); I != E; ++I) {
2656 if (I->size() == 1 && (*I)[0] == VT)
2657 return makeVTList(&(*I)[0], 1);
2658 }
2659 std::vector<MVT::ValueType> V;
2660 V.push_back(VT);
2661 VTList.push_front(V);
2662 return makeVTList(&(*VTList.begin())[0], 1);
2663}
2664
2665SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2666 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2667 E = VTList.end(); I != E; ++I) {
2668 if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2669 return makeVTList(&(*I)[0], 2);
2670 }
2671 std::vector<MVT::ValueType> V;
2672 V.push_back(VT1);
2673 V.push_back(VT2);
2674 VTList.push_front(V);
2675 return makeVTList(&(*VTList.begin())[0], 2);
2676}
2677SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2678 MVT::ValueType VT3) {
2679 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2680 E = VTList.end(); I != E; ++I) {
2681 if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2682 (*I)[2] == VT3)
2683 return makeVTList(&(*I)[0], 3);
2684 }
2685 std::vector<MVT::ValueType> V;
2686 V.push_back(VT1);
2687 V.push_back(VT2);
2688 V.push_back(VT3);
2689 VTList.push_front(V);
2690 return makeVTList(&(*VTList.begin())[0], 3);
2691}
2692
2693SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2694 switch (NumVTs) {
2695 case 0: assert(0 && "Cannot have nodes without results!");
2696 case 1: return getVTList(VTs[0]);
2697 case 2: return getVTList(VTs[0], VTs[1]);
2698 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2699 default: break;
2700 }
2701
2702 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2703 E = VTList.end(); I != E; ++I) {
2704 if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2705
2706 bool NoMatch = false;
2707 for (unsigned i = 2; i != NumVTs; ++i)
2708 if (VTs[i] != (*I)[i]) {
2709 NoMatch = true;
2710 break;
2711 }
2712 if (!NoMatch)
2713 return makeVTList(&*I->begin(), NumVTs);
2714 }
2715
2716 VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2717 return makeVTList(&*VTList.begin()->begin(), NumVTs);
2718}
2719
2720
2721/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2722/// specified operands. If the resultant node already exists in the DAG,
2723/// this does not modify the specified node, instead it returns the node that
2724/// already exists. If the resultant node does not exist in the DAG, the
2725/// input node is returned. As a degenerate case, if you specify the same
2726/// input operands as the node already has, the input node is returned.
2727SDOperand SelectionDAG::
2728UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2729 SDNode *N = InN.Val;
2730 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2731
2732 // Check to see if there is no change.
2733 if (Op == N->getOperand(0)) return InN;
2734
2735 // See if the modified node already exists.
2736 void *InsertPos = 0;
2737 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2738 return SDOperand(Existing, InN.ResNo);
2739
2740 // Nope it doesn't. Remove the node from it's current place in the maps.
2741 if (InsertPos)
2742 RemoveNodeFromCSEMaps(N);
2743
2744 // Now we update the operands.
2745 N->OperandList[0].Val->removeUser(N);
2746 Op.Val->addUser(N);
2747 N->OperandList[0] = Op;
2748
2749 // If this gets put into a CSE map, add it.
2750 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2751 return InN;
2752}
2753
2754SDOperand SelectionDAG::
2755UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2756 SDNode *N = InN.Val;
2757 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2758
2759 // Check to see if there is no change.
2760 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2761 return InN; // No operands changed, just return the input node.
2762
2763 // See if the modified node already exists.
2764 void *InsertPos = 0;
2765 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2766 return SDOperand(Existing, InN.ResNo);
2767
2768 // Nope it doesn't. Remove the node from it's current place in the maps.
2769 if (InsertPos)
2770 RemoveNodeFromCSEMaps(N);
2771
2772 // Now we update the operands.
2773 if (N->OperandList[0] != Op1) {
2774 N->OperandList[0].Val->removeUser(N);
2775 Op1.Val->addUser(N);
2776 N->OperandList[0] = Op1;
2777 }
2778 if (N->OperandList[1] != Op2) {
2779 N->OperandList[1].Val->removeUser(N);
2780 Op2.Val->addUser(N);
2781 N->OperandList[1] = Op2;
2782 }
2783
2784 // If this gets put into a CSE map, add it.
2785 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2786 return InN;
2787}
2788
2789SDOperand SelectionDAG::
2790UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2791 SDOperand Ops[] = { Op1, Op2, Op3 };
2792 return UpdateNodeOperands(N, Ops, 3);
2793}
2794
2795SDOperand SelectionDAG::
2796UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2797 SDOperand Op3, SDOperand Op4) {
2798 SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2799 return UpdateNodeOperands(N, Ops, 4);
2800}
2801
2802SDOperand SelectionDAG::
2803UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2804 SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2805 SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2806 return UpdateNodeOperands(N, Ops, 5);
2807}
2808
2809
2810SDOperand SelectionDAG::
2811UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2812 SDNode *N = InN.Val;
2813 assert(N->getNumOperands() == NumOps &&
2814 "Update with wrong number of operands");
2815
2816 // Check to see if there is no change.
2817 bool AnyChange = false;
2818 for (unsigned i = 0; i != NumOps; ++i) {
2819 if (Ops[i] != N->getOperand(i)) {
2820 AnyChange = true;
2821 break;
2822 }
2823 }
2824
2825 // No operands changed, just return the input node.
2826 if (!AnyChange) return InN;
2827
2828 // See if the modified node already exists.
2829 void *InsertPos = 0;
2830 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2831 return SDOperand(Existing, InN.ResNo);
2832
2833 // Nope it doesn't. Remove the node from it's current place in the maps.
2834 if (InsertPos)
2835 RemoveNodeFromCSEMaps(N);
2836
2837 // Now we update the operands.
2838 for (unsigned i = 0; i != NumOps; ++i) {
2839 if (N->OperandList[i] != Ops[i]) {
2840 N->OperandList[i].Val->removeUser(N);
2841 Ops[i].Val->addUser(N);
2842 N->OperandList[i] = Ops[i];
2843 }
2844 }
2845
2846 // If this gets put into a CSE map, add it.
2847 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2848 return InN;
2849}
2850
2851
2852/// MorphNodeTo - This frees the operands of the current node, resets the
2853/// opcode, types, and operands to the specified value. This should only be
2854/// used by the SelectionDAG class.
2855void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2856 const SDOperand *Ops, unsigned NumOps) {
2857 NodeType = Opc;
2858 ValueList = L.VTs;
2859 NumValues = L.NumVTs;
2860
2861 // Clear the operands list, updating used nodes to remove this from their
2862 // use list.
2863 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2864 I->Val->removeUser(this);
2865
2866 // If NumOps is larger than the # of operands we currently have, reallocate
2867 // the operand list.
2868 if (NumOps > NumOperands) {
2869 if (OperandsNeedDelete)
2870 delete [] OperandList;
2871 OperandList = new SDOperand[NumOps];
2872 OperandsNeedDelete = true;
2873 }
2874
2875 // Assign the new operands.
2876 NumOperands = NumOps;
2877
2878 for (unsigned i = 0, e = NumOps; i != e; ++i) {
2879 OperandList[i] = Ops[i];
2880 SDNode *N = OperandList[i].Val;
2881 N->Uses.push_back(this);
2882 }
2883}
2884
2885/// SelectNodeTo - These are used for target selectors to *mutate* the
2886/// specified node to have the specified return type, Target opcode, and
2887/// operands. Note that target opcodes are stored as
2888/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2889///
2890/// Note that SelectNodeTo returns the resultant node. If there is already a
2891/// node of the specified opcode and operands, it returns that node instead of
2892/// the current one.
2893SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2894 MVT::ValueType VT) {
2895 SDVTList VTs = getVTList(VT);
2896 FoldingSetNodeID ID;
2897 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2898 void *IP = 0;
2899 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2900 return ON;
2901
2902 RemoveNodeFromCSEMaps(N);
2903
2904 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2905
2906 CSEMap.InsertNode(N, IP);
2907 return N;
2908}
2909
2910SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2911 MVT::ValueType VT, SDOperand Op1) {
2912 // If an identical node already exists, use it.
2913 SDVTList VTs = getVTList(VT);
2914 SDOperand Ops[] = { Op1 };
2915
2916 FoldingSetNodeID ID;
2917 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2918 void *IP = 0;
2919 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2920 return ON;
2921
2922 RemoveNodeFromCSEMaps(N);
2923 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2924 CSEMap.InsertNode(N, IP);
2925 return N;
2926}
2927
2928SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2929 MVT::ValueType VT, SDOperand Op1,
2930 SDOperand Op2) {
2931 // If an identical node already exists, use it.
2932 SDVTList VTs = getVTList(VT);
2933 SDOperand Ops[] = { Op1, Op2 };
2934
2935 FoldingSetNodeID ID;
2936 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2937 void *IP = 0;
2938 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2939 return ON;
2940
2941 RemoveNodeFromCSEMaps(N);
2942
2943 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2944
2945 CSEMap.InsertNode(N, IP); // Memoize the new node.
2946 return N;
2947}
2948
2949SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2950 MVT::ValueType VT, SDOperand Op1,
2951 SDOperand Op2, SDOperand Op3) {
2952 // If an identical node already exists, use it.
2953 SDVTList VTs = getVTList(VT);
2954 SDOperand Ops[] = { Op1, Op2, Op3 };
2955 FoldingSetNodeID ID;
2956 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2957 void *IP = 0;
2958 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2959 return ON;
2960
2961 RemoveNodeFromCSEMaps(N);
2962
2963 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2964
2965 CSEMap.InsertNode(N, IP); // Memoize the new node.
2966 return N;
2967}
2968
2969SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2970 MVT::ValueType VT, const SDOperand *Ops,
2971 unsigned NumOps) {
2972 // If an identical node already exists, use it.
2973 SDVTList VTs = getVTList(VT);
2974 FoldingSetNodeID ID;
2975 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2976 void *IP = 0;
2977 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2978 return ON;
2979
2980 RemoveNodeFromCSEMaps(N);
2981 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2982
2983 CSEMap.InsertNode(N, IP); // Memoize the new node.
2984 return N;
2985}
2986
2987SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2988 MVT::ValueType VT1, MVT::ValueType VT2,
2989 SDOperand Op1, SDOperand Op2) {
2990 SDVTList VTs = getVTList(VT1, VT2);
2991 FoldingSetNodeID ID;
2992 SDOperand Ops[] = { Op1, Op2 };
2993 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2994 void *IP = 0;
2995 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2996 return ON;
2997
2998 RemoveNodeFromCSEMaps(N);
2999 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3000 CSEMap.InsertNode(N, IP); // Memoize the new node.
3001 return N;
3002}
3003
3004SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3005 MVT::ValueType VT1, MVT::ValueType VT2,
3006 SDOperand Op1, SDOperand Op2,
3007 SDOperand Op3) {
3008 // If an identical node already exists, use it.
3009 SDVTList VTs = getVTList(VT1, VT2);
3010 SDOperand Ops[] = { Op1, Op2, Op3 };
3011 FoldingSetNodeID ID;
3012 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3013 void *IP = 0;
3014 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3015 return ON;
3016
3017 RemoveNodeFromCSEMaps(N);
3018
3019 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3020 CSEMap.InsertNode(N, IP); // Memoize the new node.
3021 return N;
3022}
3023
3024
3025/// getTargetNode - These are used for target selectors to create a new node
3026/// with specified return type(s), target opcode, and operands.
3027///
3028/// Note that getTargetNode returns the resultant node. If there is already a
3029/// node of the specified opcode and operands, it returns that node instead of
3030/// the current one.
3031SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3032 return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3033}
3034SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3035 SDOperand Op1) {
3036 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3037}
3038SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3039 SDOperand Op1, SDOperand Op2) {
3040 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3041}
3042SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3043 SDOperand Op1, SDOperand Op2,
3044 SDOperand Op3) {
3045 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3046}
3047SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3048 const SDOperand *Ops, unsigned NumOps) {
3049 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3050}
3051SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
Dale Johannesen3d8578b2007-10-10 01:01:31 +00003052 MVT::ValueType VT2) {
3053 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3054 SDOperand Op;
3055 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3056}
3057SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003058 MVT::ValueType VT2, SDOperand Op1) {
3059 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3060 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3061}
3062SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3063 MVT::ValueType VT2, SDOperand Op1,
3064 SDOperand Op2) {
3065 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3066 SDOperand Ops[] = { Op1, Op2 };
3067 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3068}
3069SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3070 MVT::ValueType VT2, SDOperand Op1,
3071 SDOperand Op2, SDOperand Op3) {
3072 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3073 SDOperand Ops[] = { Op1, Op2, Op3 };
3074 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3075}
3076SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3077 MVT::ValueType VT2,
3078 const SDOperand *Ops, unsigned NumOps) {
3079 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3080 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3081}
3082SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3083 MVT::ValueType VT2, MVT::ValueType VT3,
3084 SDOperand Op1, SDOperand Op2) {
3085 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3086 SDOperand Ops[] = { Op1, Op2 };
3087 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3088}
3089SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3090 MVT::ValueType VT2, MVT::ValueType VT3,
3091 SDOperand Op1, SDOperand Op2,
3092 SDOperand Op3) {
3093 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3094 SDOperand Ops[] = { Op1, Op2, Op3 };
3095 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3096}
3097SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3098 MVT::ValueType VT2, MVT::ValueType VT3,
3099 const SDOperand *Ops, unsigned NumOps) {
3100 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3101 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3102}
Evan Chenge1d067e2007-09-12 23:39:49 +00003103SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3104 MVT::ValueType VT2, MVT::ValueType VT3,
3105 MVT::ValueType VT4,
3106 const SDOperand *Ops, unsigned NumOps) {
3107 std::vector<MVT::ValueType> VTList;
3108 VTList.push_back(VT1);
3109 VTList.push_back(VT2);
3110 VTList.push_back(VT3);
3111 VTList.push_back(VT4);
3112 const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3113 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3114}
Evan Chenge3940912007-10-05 01:10:49 +00003115SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3116 std::vector<MVT::ValueType> &ResultTys,
3117 const SDOperand *Ops, unsigned NumOps) {
3118 const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3119 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3120 Ops, NumOps).Val;
3121}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003122
3123/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3124/// This can cause recursive merging of nodes in the DAG.
3125///
3126/// This version assumes From/To have a single result value.
3127///
3128void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3129 std::vector<SDNode*> *Deleted) {
3130 SDNode *From = FromN.Val, *To = ToN.Val;
3131 assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3132 "Cannot replace with this method!");
3133 assert(From != To && "Cannot replace uses of with self");
3134
3135 while (!From->use_empty()) {
3136 // Process users until they are all gone.
3137 SDNode *U = *From->use_begin();
3138
3139 // This node is about to morph, remove its old self from the CSE maps.
3140 RemoveNodeFromCSEMaps(U);
3141
3142 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3143 I != E; ++I)
3144 if (I->Val == From) {
3145 From->removeUser(U);
3146 I->Val = To;
3147 To->addUser(U);
3148 }
3149
3150 // Now that we have modified U, add it back to the CSE maps. If it already
3151 // exists there, recursively merge the results together.
3152 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3153 ReplaceAllUsesWith(U, Existing, Deleted);
3154 // U is now dead.
3155 if (Deleted) Deleted->push_back(U);
3156 DeleteNodeNotInCSEMaps(U);
3157 }
3158 }
3159}
3160
3161/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3162/// This can cause recursive merging of nodes in the DAG.
3163///
3164/// This version assumes From/To have matching types and numbers of result
3165/// values.
3166///
3167void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3168 std::vector<SDNode*> *Deleted) {
3169 assert(From != To && "Cannot replace uses of with self");
3170 assert(From->getNumValues() == To->getNumValues() &&
3171 "Cannot use this version of ReplaceAllUsesWith!");
3172 if (From->getNumValues() == 1) { // If possible, use the faster version.
3173 ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3174 return;
3175 }
3176
3177 while (!From->use_empty()) {
3178 // Process users until they are all gone.
3179 SDNode *U = *From->use_begin();
3180
3181 // This node is about to morph, remove its old self from the CSE maps.
3182 RemoveNodeFromCSEMaps(U);
3183
3184 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3185 I != E; ++I)
3186 if (I->Val == From) {
3187 From->removeUser(U);
3188 I->Val = To;
3189 To->addUser(U);
3190 }
3191
3192 // Now that we have modified U, add it back to the CSE maps. If it already
3193 // exists there, recursively merge the results together.
3194 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3195 ReplaceAllUsesWith(U, Existing, Deleted);
3196 // U is now dead.
3197 if (Deleted) Deleted->push_back(U);
3198 DeleteNodeNotInCSEMaps(U);
3199 }
3200 }
3201}
3202
3203/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3204/// This can cause recursive merging of nodes in the DAG.
3205///
3206/// This version can replace From with any result values. To must match the
3207/// number and types of values returned by From.
3208void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3209 const SDOperand *To,
3210 std::vector<SDNode*> *Deleted) {
3211 if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3212 // Degenerate case handled above.
3213 ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3214 return;
3215 }
3216
3217 while (!From->use_empty()) {
3218 // Process users until they are all gone.
3219 SDNode *U = *From->use_begin();
3220
3221 // This node is about to morph, remove its old self from the CSE maps.
3222 RemoveNodeFromCSEMaps(U);
3223
3224 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3225 I != E; ++I)
3226 if (I->Val == From) {
3227 const SDOperand &ToOp = To[I->ResNo];
3228 From->removeUser(U);
3229 *I = ToOp;
3230 ToOp.Val->addUser(U);
3231 }
3232
3233 // Now that we have modified U, add it back to the CSE maps. If it already
3234 // exists there, recursively merge the results together.
3235 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3236 ReplaceAllUsesWith(U, Existing, Deleted);
3237 // U is now dead.
3238 if (Deleted) Deleted->push_back(U);
3239 DeleteNodeNotInCSEMaps(U);
3240 }
3241 }
3242}
3243
3244/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3245/// uses of other values produced by From.Val alone. The Deleted vector is
3246/// handled the same was as for ReplaceAllUsesWith.
3247void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
Chris Lattner8a258202007-10-15 06:10:22 +00003248 std::vector<SDNode*> *Deleted) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003249 assert(From != To && "Cannot replace a value with itself");
3250 // Handle the simple, trivial, case efficiently.
3251 if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
Chris Lattner8a258202007-10-15 06:10:22 +00003252 ReplaceAllUsesWith(From, To, Deleted);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003253 return;
3254 }
3255
3256 // Get all of the users of From.Val. We want these in a nice,
3257 // deterministically ordered and uniqued set, so we use a SmallSetVector.
3258 SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3259
Chris Lattner8a258202007-10-15 06:10:22 +00003260 std::vector<SDNode*> LocalDeletionVector;
3261
3262 // Pick a deletion vector to use. If the user specified one, use theirs,
3263 // otherwise use a local one.
3264 std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003265 while (!Users.empty()) {
3266 // We know that this user uses some value of From. If it is the right
3267 // value, update it.
3268 SDNode *User = Users.back();
3269 Users.pop_back();
3270
Chris Lattner8a258202007-10-15 06:10:22 +00003271 // Scan for an operand that matches From.
3272 SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3273 for (; Op != E; ++Op)
3274 if (*Op == From) break;
3275
3276 // If there are no matches, the user must use some other result of From.
3277 if (Op == E) continue;
3278
3279 // Okay, we know this user needs to be updated. Remove its old self
3280 // from the CSE maps.
3281 RemoveNodeFromCSEMaps(User);
3282
3283 // Update all operands that match "From".
3284 for (; Op != E; ++Op) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003285 if (*Op == From) {
Chris Lattner8a258202007-10-15 06:10:22 +00003286 From.Val->removeUser(User);
3287 *Op = To;
3288 To.Val->addUser(User);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003289 }
3290 }
Chris Lattner8a258202007-10-15 06:10:22 +00003291
3292 // Now that we have modified User, add it back to the CSE maps. If it
3293 // already exists there, recursively merge the results together.
3294 SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3295 if (!Existing) continue; // Continue on to next user.
3296
3297 // If there was already an existing matching node, use ReplaceAllUsesWith
3298 // to replace the dead one with the existing one. However, this can cause
3299 // recursive merging of other unrelated nodes down the line. The merging
3300 // can cause deletion of nodes that used the old value. In this case,
3301 // we have to be certain to remove them from the Users set.
3302 unsigned NumDeleted = DeleteVector->size();
3303 ReplaceAllUsesWith(User, Existing, DeleteVector);
3304
3305 // User is now dead.
3306 DeleteVector->push_back(User);
3307 DeleteNodeNotInCSEMaps(User);
3308
3309 // We have to be careful here, because ReplaceAllUsesWith could have
3310 // deleted a user of From, which means there may be dangling pointers
3311 // in the "Users" setvector. Scan over the deleted node pointers and
3312 // remove them from the setvector.
3313 for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3314 Users.remove((*DeleteVector)[i]);
3315
3316 // If the user doesn't need the set of deleted elements, don't retain them
3317 // to the next loop iteration.
3318 if (Deleted == 0)
3319 LocalDeletionVector.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003320 }
3321}
3322
3323
3324/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3325/// their allnodes order. It returns the maximum id.
3326unsigned SelectionDAG::AssignNodeIds() {
3327 unsigned Id = 0;
3328 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3329 SDNode *N = I;
3330 N->setNodeId(Id++);
3331 }
3332 return Id;
3333}
3334
3335/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3336/// based on their topological order. It returns the maximum id and a vector
3337/// of the SDNodes* in assigned order by reference.
3338unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3339 unsigned DAGSize = AllNodes.size();
3340 std::vector<unsigned> InDegree(DAGSize);
3341 std::vector<SDNode*> Sources;
3342
3343 // Use a two pass approach to avoid using a std::map which is slow.
3344 unsigned Id = 0;
3345 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3346 SDNode *N = I;
3347 N->setNodeId(Id++);
3348 unsigned Degree = N->use_size();
3349 InDegree[N->getNodeId()] = Degree;
3350 if (Degree == 0)
3351 Sources.push_back(N);
3352 }
3353
3354 TopOrder.clear();
3355 while (!Sources.empty()) {
3356 SDNode *N = Sources.back();
3357 Sources.pop_back();
3358 TopOrder.push_back(N);
3359 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3360 SDNode *P = I->Val;
3361 unsigned Degree = --InDegree[P->getNodeId()];
3362 if (Degree == 0)
3363 Sources.push_back(P);
3364 }
3365 }
3366
3367 // Second pass, assign the actual topological order as node ids.
3368 Id = 0;
3369 for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3370 TI != TE; ++TI)
3371 (*TI)->setNodeId(Id++);
3372
3373 return Id;
3374}
3375
3376
3377
3378//===----------------------------------------------------------------------===//
3379// SDNode Class
3380//===----------------------------------------------------------------------===//
3381
3382// Out-of-line virtual method to give class a home.
3383void SDNode::ANCHOR() {}
3384void UnarySDNode::ANCHOR() {}
3385void BinarySDNode::ANCHOR() {}
3386void TernarySDNode::ANCHOR() {}
3387void HandleSDNode::ANCHOR() {}
3388void StringSDNode::ANCHOR() {}
3389void ConstantSDNode::ANCHOR() {}
3390void ConstantFPSDNode::ANCHOR() {}
3391void GlobalAddressSDNode::ANCHOR() {}
3392void FrameIndexSDNode::ANCHOR() {}
3393void JumpTableSDNode::ANCHOR() {}
3394void ConstantPoolSDNode::ANCHOR() {}
3395void BasicBlockSDNode::ANCHOR() {}
3396void SrcValueSDNode::ANCHOR() {}
3397void RegisterSDNode::ANCHOR() {}
3398void ExternalSymbolSDNode::ANCHOR() {}
3399void CondCodeSDNode::ANCHOR() {}
3400void VTSDNode::ANCHOR() {}
3401void LoadSDNode::ANCHOR() {}
3402void StoreSDNode::ANCHOR() {}
3403
3404HandleSDNode::~HandleSDNode() {
3405 SDVTList VTs = { 0, 0 };
3406 MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses.
3407}
3408
3409GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3410 MVT::ValueType VT, int o)
3411 : SDNode(isa<GlobalVariable>(GA) &&
Dan Gohman53491e92007-07-23 20:24:29 +00003412 cast<GlobalVariable>(GA)->isThreadLocal() ?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003413 // Thread Local
3414 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3415 // Non Thread Local
3416 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3417 getSDVTList(VT)), Offset(o) {
3418 TheGlobal = const_cast<GlobalValue*>(GA);
3419}
3420
3421/// Profile - Gather unique data for the node.
3422///
3423void SDNode::Profile(FoldingSetNodeID &ID) {
3424 AddNodeIDNode(ID, this);
3425}
3426
3427/// getValueTypeList - Return a pointer to the specified value type.
3428///
3429MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3430 static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3431 VTs[VT] = VT;
3432 return &VTs[VT];
3433}
3434
3435/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3436/// indicated value. This method ignores uses of other values defined by this
3437/// operation.
3438bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3439 assert(Value < getNumValues() && "Bad value!");
3440
3441 // If there is only one value, this is easy.
3442 if (getNumValues() == 1)
3443 return use_size() == NUses;
Evan Cheng0af04f72007-08-02 05:29:38 +00003444 if (use_size() < NUses) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003445
3446 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3447
3448 SmallPtrSet<SDNode*, 32> UsersHandled;
3449
3450 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3451 SDNode *User = *UI;
3452 if (User->getNumOperands() == 1 ||
3453 UsersHandled.insert(User)) // First time we've seen this?
3454 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3455 if (User->getOperand(i) == TheValue) {
3456 if (NUses == 0)
3457 return false; // too many uses
3458 --NUses;
3459 }
3460 }
3461
3462 // Found exactly the right number of uses?
3463 return NUses == 0;
3464}
3465
3466
Evan Cheng0af04f72007-08-02 05:29:38 +00003467/// hasAnyUseOfValue - Return true if there are any use of the indicated
3468/// value. This method ignores uses of other values defined by this operation.
3469bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3470 assert(Value < getNumValues() && "Bad value!");
3471
3472 if (use_size() == 0) return false;
3473
3474 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3475
3476 SmallPtrSet<SDNode*, 32> UsersHandled;
3477
3478 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3479 SDNode *User = *UI;
3480 if (User->getNumOperands() == 1 ||
3481 UsersHandled.insert(User)) // First time we've seen this?
3482 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3483 if (User->getOperand(i) == TheValue) {
3484 return true;
3485 }
3486 }
3487
3488 return false;
3489}
3490
3491
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003492/// isOnlyUse - Return true if this node is the only use of N.
3493///
3494bool SDNode::isOnlyUse(SDNode *N) const {
3495 bool Seen = false;
3496 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3497 SDNode *User = *I;
3498 if (User == this)
3499 Seen = true;
3500 else
3501 return false;
3502 }
3503
3504 return Seen;
3505}
3506
3507/// isOperand - Return true if this node is an operand of N.
3508///
3509bool SDOperand::isOperand(SDNode *N) const {
3510 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3511 if (*this == N->getOperand(i))
3512 return true;
3513 return false;
3514}
3515
3516bool SDNode::isOperand(SDNode *N) const {
3517 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3518 if (this == N->OperandList[i].Val)
3519 return true;
3520 return false;
3521}
3522
3523static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3524 SmallPtrSet<SDNode *, 32> &Visited) {
3525 if (found || !Visited.insert(N))
3526 return;
3527
3528 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3529 SDNode *Op = N->getOperand(i).Val;
3530 if (Op == P) {
3531 found = true;
3532 return;
3533 }
3534 findPredecessor(Op, P, found, Visited);
3535 }
3536}
3537
3538/// isPredecessor - Return true if this node is a predecessor of N. This node
3539/// is either an operand of N or it can be reached by recursively traversing
3540/// up the operands.
3541/// NOTE: this is an expensive method. Use it carefully.
3542bool SDNode::isPredecessor(SDNode *N) const {
3543 SmallPtrSet<SDNode *, 32> Visited;
3544 bool found = false;
3545 findPredecessor(N, this, found, Visited);
3546 return found;
3547}
3548
3549uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3550 assert(Num < NumOperands && "Invalid child # of SDNode!");
3551 return cast<ConstantSDNode>(OperandList[Num])->getValue();
3552}
3553
3554std::string SDNode::getOperationName(const SelectionDAG *G) const {
3555 switch (getOpcode()) {
3556 default:
3557 if (getOpcode() < ISD::BUILTIN_OP_END)
3558 return "<<Unknown DAG Node>>";
3559 else {
3560 if (G) {
3561 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3562 if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3563 return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3564
3565 TargetLowering &TLI = G->getTargetLoweringInfo();
3566 const char *Name =
3567 TLI.getTargetNodeName(getOpcode());
3568 if (Name) return Name;
3569 }
3570
3571 return "<<Unknown Target Node>>";
3572 }
3573
3574 case ISD::PCMARKER: return "PCMarker";
3575 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3576 case ISD::SRCVALUE: return "SrcValue";
3577 case ISD::EntryToken: return "EntryToken";
3578 case ISD::TokenFactor: return "TokenFactor";
3579 case ISD::AssertSext: return "AssertSext";
3580 case ISD::AssertZext: return "AssertZext";
3581
3582 case ISD::STRING: return "String";
3583 case ISD::BasicBlock: return "BasicBlock";
3584 case ISD::VALUETYPE: return "ValueType";
3585 case ISD::Register: return "Register";
3586
3587 case ISD::Constant: return "Constant";
3588 case ISD::ConstantFP: return "ConstantFP";
3589 case ISD::GlobalAddress: return "GlobalAddress";
3590 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3591 case ISD::FrameIndex: return "FrameIndex";
3592 case ISD::JumpTable: return "JumpTable";
3593 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3594 case ISD::RETURNADDR: return "RETURNADDR";
3595 case ISD::FRAMEADDR: return "FRAMEADDR";
3596 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3597 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3598 case ISD::EHSELECTION: return "EHSELECTION";
3599 case ISD::EH_RETURN: return "EH_RETURN";
3600 case ISD::ConstantPool: return "ConstantPool";
3601 case ISD::ExternalSymbol: return "ExternalSymbol";
3602 case ISD::INTRINSIC_WO_CHAIN: {
3603 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3604 return Intrinsic::getName((Intrinsic::ID)IID);
3605 }
3606 case ISD::INTRINSIC_VOID:
3607 case ISD::INTRINSIC_W_CHAIN: {
3608 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3609 return Intrinsic::getName((Intrinsic::ID)IID);
3610 }
3611
3612 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
3613 case ISD::TargetConstant: return "TargetConstant";
3614 case ISD::TargetConstantFP:return "TargetConstantFP";
3615 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3616 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3617 case ISD::TargetFrameIndex: return "TargetFrameIndex";
3618 case ISD::TargetJumpTable: return "TargetJumpTable";
3619 case ISD::TargetConstantPool: return "TargetConstantPool";
3620 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3621
3622 case ISD::CopyToReg: return "CopyToReg";
3623 case ISD::CopyFromReg: return "CopyFromReg";
3624 case ISD::UNDEF: return "undef";
3625 case ISD::MERGE_VALUES: return "merge_values";
3626 case ISD::INLINEASM: return "inlineasm";
3627 case ISD::LABEL: return "label";
3628 case ISD::HANDLENODE: return "handlenode";
3629 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3630 case ISD::CALL: return "call";
3631
3632 // Unary operators
3633 case ISD::FABS: return "fabs";
3634 case ISD::FNEG: return "fneg";
3635 case ISD::FSQRT: return "fsqrt";
3636 case ISD::FSIN: return "fsin";
3637 case ISD::FCOS: return "fcos";
3638 case ISD::FPOWI: return "fpowi";
Dan Gohman1d744bb2007-10-11 23:06:37 +00003639 case ISD::FPOW: return "fpow";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003640
3641 // Binary operators
3642 case ISD::ADD: return "add";
3643 case ISD::SUB: return "sub";
3644 case ISD::MUL: return "mul";
3645 case ISD::MULHU: return "mulhu";
3646 case ISD::MULHS: return "mulhs";
3647 case ISD::SDIV: return "sdiv";
3648 case ISD::UDIV: return "udiv";
3649 case ISD::SREM: return "srem";
3650 case ISD::UREM: return "urem";
Dan Gohmanb945cee2007-10-05 14:11:04 +00003651 case ISD::SMUL_LOHI: return "smul_lohi";
3652 case ISD::UMUL_LOHI: return "umul_lohi";
3653 case ISD::SDIVREM: return "sdivrem";
3654 case ISD::UDIVREM: return "divrem";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003655 case ISD::AND: return "and";
3656 case ISD::OR: return "or";
3657 case ISD::XOR: return "xor";
3658 case ISD::SHL: return "shl";
3659 case ISD::SRA: return "sra";
3660 case ISD::SRL: return "srl";
3661 case ISD::ROTL: return "rotl";
3662 case ISD::ROTR: return "rotr";
3663 case ISD::FADD: return "fadd";
3664 case ISD::FSUB: return "fsub";
3665 case ISD::FMUL: return "fmul";
3666 case ISD::FDIV: return "fdiv";
3667 case ISD::FREM: return "frem";
3668 case ISD::FCOPYSIGN: return "fcopysign";
3669
3670 case ISD::SETCC: return "setcc";
3671 case ISD::SELECT: return "select";
3672 case ISD::SELECT_CC: return "select_cc";
3673 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
3674 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
3675 case ISD::CONCAT_VECTORS: return "concat_vectors";
3676 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
3677 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
3678 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
3679 case ISD::CARRY_FALSE: return "carry_false";
3680 case ISD::ADDC: return "addc";
3681 case ISD::ADDE: return "adde";
3682 case ISD::SUBC: return "subc";
3683 case ISD::SUBE: return "sube";
3684 case ISD::SHL_PARTS: return "shl_parts";
3685 case ISD::SRA_PARTS: return "sra_parts";
3686 case ISD::SRL_PARTS: return "srl_parts";
Christopher Lambb768c2e2007-07-26 07:34:40 +00003687
3688 case ISD::EXTRACT_SUBREG: return "extract_subreg";
3689 case ISD::INSERT_SUBREG: return "insert_subreg";
3690
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003691 // Conversion operators.
3692 case ISD::SIGN_EXTEND: return "sign_extend";
3693 case ISD::ZERO_EXTEND: return "zero_extend";
3694 case ISD::ANY_EXTEND: return "any_extend";
3695 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3696 case ISD::TRUNCATE: return "truncate";
3697 case ISD::FP_ROUND: return "fp_round";
3698 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3699 case ISD::FP_EXTEND: return "fp_extend";
3700
3701 case ISD::SINT_TO_FP: return "sint_to_fp";
3702 case ISD::UINT_TO_FP: return "uint_to_fp";
3703 case ISD::FP_TO_SINT: return "fp_to_sint";
3704 case ISD::FP_TO_UINT: return "fp_to_uint";
3705 case ISD::BIT_CONVERT: return "bit_convert";
3706
3707 // Control flow instructions
3708 case ISD::BR: return "br";
3709 case ISD::BRIND: return "brind";
3710 case ISD::BR_JT: return "br_jt";
3711 case ISD::BRCOND: return "brcond";
3712 case ISD::BR_CC: return "br_cc";
3713 case ISD::RET: return "ret";
3714 case ISD::CALLSEQ_START: return "callseq_start";
3715 case ISD::CALLSEQ_END: return "callseq_end";
3716
3717 // Other operators
3718 case ISD::LOAD: return "load";
3719 case ISD::STORE: return "store";
3720 case ISD::VAARG: return "vaarg";
3721 case ISD::VACOPY: return "vacopy";
3722 case ISD::VAEND: return "vaend";
3723 case ISD::VASTART: return "vastart";
3724 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3725 case ISD::EXTRACT_ELEMENT: return "extract_element";
3726 case ISD::BUILD_PAIR: return "build_pair";
3727 case ISD::STACKSAVE: return "stacksave";
3728 case ISD::STACKRESTORE: return "stackrestore";
3729
3730 // Block memory operations.
3731 case ISD::MEMSET: return "memset";
3732 case ISD::MEMCPY: return "memcpy";
3733 case ISD::MEMMOVE: return "memmove";
3734
3735 // Bit manipulation
3736 case ISD::BSWAP: return "bswap";
3737 case ISD::CTPOP: return "ctpop";
3738 case ISD::CTTZ: return "cttz";
3739 case ISD::CTLZ: return "ctlz";
3740
3741 // Debug info
3742 case ISD::LOCATION: return "location";
3743 case ISD::DEBUG_LOC: return "debug_loc";
3744
Duncan Sands38947cd2007-07-27 12:58:54 +00003745 // Trampolines
Duncan Sands7407a9f2007-09-11 14:10:23 +00003746 case ISD::TRAMPOLINE: return "trampoline";
Duncan Sands38947cd2007-07-27 12:58:54 +00003747
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003748 case ISD::CONDCODE:
3749 switch (cast<CondCodeSDNode>(this)->get()) {
3750 default: assert(0 && "Unknown setcc condition!");
3751 case ISD::SETOEQ: return "setoeq";
3752 case ISD::SETOGT: return "setogt";
3753 case ISD::SETOGE: return "setoge";
3754 case ISD::SETOLT: return "setolt";
3755 case ISD::SETOLE: return "setole";
3756 case ISD::SETONE: return "setone";
3757
3758 case ISD::SETO: return "seto";
3759 case ISD::SETUO: return "setuo";
3760 case ISD::SETUEQ: return "setue";
3761 case ISD::SETUGT: return "setugt";
3762 case ISD::SETUGE: return "setuge";
3763 case ISD::SETULT: return "setult";
3764 case ISD::SETULE: return "setule";
3765 case ISD::SETUNE: return "setune";
3766
3767 case ISD::SETEQ: return "seteq";
3768 case ISD::SETGT: return "setgt";
3769 case ISD::SETGE: return "setge";
3770 case ISD::SETLT: return "setlt";
3771 case ISD::SETLE: return "setle";
3772 case ISD::SETNE: return "setne";
3773 }
3774 }
3775}
3776
3777const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3778 switch (AM) {
3779 default:
3780 return "";
3781 case ISD::PRE_INC:
3782 return "<pre-inc>";
3783 case ISD::PRE_DEC:
3784 return "<pre-dec>";
3785 case ISD::POST_INC:
3786 return "<post-inc>";
3787 case ISD::POST_DEC:
3788 return "<post-dec>";
3789 }
3790}
3791
3792void SDNode::dump() const { dump(0); }
3793void SDNode::dump(const SelectionDAG *G) const {
3794 cerr << (void*)this << ": ";
3795
3796 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3797 if (i) cerr << ",";
3798 if (getValueType(i) == MVT::Other)
3799 cerr << "ch";
3800 else
3801 cerr << MVT::getValueTypeString(getValueType(i));
3802 }
3803 cerr << " = " << getOperationName(G);
3804
3805 cerr << " ";
3806 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3807 if (i) cerr << ", ";
3808 cerr << (void*)getOperand(i).Val;
3809 if (unsigned RN = getOperand(i).ResNo)
3810 cerr << ":" << RN;
3811 }
3812
3813 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3814 cerr << "<" << CSDN->getValue() << ">";
3815 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00003816 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3817 cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3818 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3819 cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3820 else {
3821 cerr << "<APFloat(";
3822 CSDN->getValueAPF().convertToAPInt().dump();
3823 cerr << ")>";
3824 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003825 } else if (const GlobalAddressSDNode *GADN =
3826 dyn_cast<GlobalAddressSDNode>(this)) {
3827 int offset = GADN->getOffset();
3828 cerr << "<";
3829 WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3830 if (offset > 0)
3831 cerr << " + " << offset;
3832 else
3833 cerr << " " << offset;
3834 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3835 cerr << "<" << FIDN->getIndex() << ">";
3836 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3837 cerr << "<" << JTDN->getIndex() << ">";
3838 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3839 int offset = CP->getOffset();
3840 if (CP->isMachineConstantPoolEntry())
3841 cerr << "<" << *CP->getMachineCPVal() << ">";
3842 else
3843 cerr << "<" << *CP->getConstVal() << ">";
3844 if (offset > 0)
3845 cerr << " + " << offset;
3846 else
3847 cerr << " " << offset;
3848 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3849 cerr << "<";
3850 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3851 if (LBB)
3852 cerr << LBB->getName() << " ";
3853 cerr << (const void*)BBDN->getBasicBlock() << ">";
3854 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3855 if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3856 cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3857 } else {
3858 cerr << " #" << R->getReg();
3859 }
3860 } else if (const ExternalSymbolSDNode *ES =
3861 dyn_cast<ExternalSymbolSDNode>(this)) {
3862 cerr << "'" << ES->getSymbol() << "'";
3863 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3864 if (M->getValue())
3865 cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3866 else
3867 cerr << "<null:" << M->getOffset() << ">";
3868 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3869 cerr << ":" << MVT::getValueTypeString(N->getVT());
3870 } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3871 bool doExt = true;
3872 switch (LD->getExtensionType()) {
3873 default: doExt = false; break;
3874 case ISD::EXTLOAD:
3875 cerr << " <anyext ";
3876 break;
3877 case ISD::SEXTLOAD:
3878 cerr << " <sext ";
3879 break;
3880 case ISD::ZEXTLOAD:
3881 cerr << " <zext ";
3882 break;
3883 }
3884 if (doExt)
3885 cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3886
3887 const char *AM = getIndexedModeName(LD->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003888 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003889 cerr << " " << AM;
3890 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3891 if (ST->isTruncatingStore())
3892 cerr << " <trunc "
3893 << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3894
3895 const char *AM = getIndexedModeName(ST->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003896 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003897 cerr << " " << AM;
3898 }
3899}
3900
3901static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3902 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3903 if (N->getOperand(i).Val->hasOneUse())
3904 DumpNodes(N->getOperand(i).Val, indent+2, G);
3905 else
3906 cerr << "\n" << std::string(indent+2, ' ')
3907 << (void*)N->getOperand(i).Val << ": <multiple use>";
3908
3909
3910 cerr << "\n" << std::string(indent, ' ');
3911 N->dump(G);
3912}
3913
3914void SelectionDAG::dump() const {
3915 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3916 std::vector<const SDNode*> Nodes;
3917 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3918 I != E; ++I)
3919 Nodes.push_back(I);
3920
3921 std::sort(Nodes.begin(), Nodes.end());
3922
3923 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3924 if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3925 DumpNodes(Nodes[i], 2, this);
3926 }
3927
3928 if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3929
3930 cerr << "\n\n";
3931}
3932
3933const Type *ConstantPoolSDNode::getType() const {
3934 if (isMachineConstantPoolEntry())
3935 return Val.MachineCPVal->getType();
3936 return Val.ConstVal->getType();
3937}