blob: 1d7f0692cbe6ee4b5b5bfa2fab09d4b1b284d1af [file] [log] [blame]
Chris Lattner173234a2008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Dan Gohman24371272010-12-15 20:10:26 +000016#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner173234a2008-06-02 01:18:21 +000017#include "llvm/Constants.h"
18#include "llvm/Instructions.h"
Evan Cheng0ff39b32008-06-30 07:31:25 +000019#include "llvm/GlobalVariable.h"
Dan Gohman307a7c42009-09-15 16:14:44 +000020#include "llvm/GlobalAlias.h"
Chris Lattner173234a2008-06-02 01:18:21 +000021#include "llvm/IntrinsicInst.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000022#include "llvm/LLVMContext.h"
Rafael Espindola7c7121e2012-03-30 15:52:11 +000023#include "llvm/Metadata.h"
Dan Gohmanca178902009-07-17 20:47:02 +000024#include "llvm/Operator.h"
Micah Villmow3574eca2012-10-08 16:38:25 +000025#include "llvm/DataLayout.h"
Rafael Espindola7c7121e2012-03-30 15:52:11 +000026#include "llvm/Support/ConstantRange.h"
Chris Lattner173234a2008-06-02 01:18:21 +000027#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/MathExtras.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000029#include "llvm/Support/PatternMatch.h"
Eric Christopher25ec4832010-03-05 06:58:57 +000030#include "llvm/ADT/SmallPtrSet.h"
Chris Lattner32a9e7a2008-06-04 04:46:14 +000031#include <cstring>
Chris Lattner173234a2008-06-02 01:18:21 +000032using namespace llvm;
Duncan Sandsd70d1a52011-01-25 09:38:29 +000033using namespace llvm::PatternMatch;
34
35const unsigned MaxDepth = 6;
36
37/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
38/// unknown returns 0). For vector types, returns the element type's bitwidth.
Micah Villmow3574eca2012-10-08 16:38:25 +000039static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd70d1a52011-01-25 09:38:29 +000040 if (unsigned BitWidth = Ty->getScalarSizeInBits())
41 return BitWidth;
42 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
Micah Villmow2c39b152012-10-15 16:24:29 +000043 return TD ?
44 TD->getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace()) : 0;
Duncan Sandsd70d1a52011-01-25 09:38:29 +000045}
Chris Lattner173234a2008-06-02 01:18:21 +000046
Nick Lewycky00cbccc2012-03-09 09:23:50 +000047static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
Nick Lewycky00cbccc2012-03-09 09:23:50 +000048 APInt &KnownZero, APInt &KnownOne,
49 APInt &KnownZero2, APInt &KnownOne2,
Micah Villmow3574eca2012-10-08 16:38:25 +000050 const DataLayout *TD, unsigned Depth) {
Nick Lewycky00cbccc2012-03-09 09:23:50 +000051 if (!Add) {
52 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
53 // We know that the top bits of C-X are clear if X contains less bits
54 // than C (i.e. no wrap-around can happen). For example, 20-X is
55 // positive if we can prove that X is >= 0 and < 16.
56 if (!CLHS->getValue().isNegative()) {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000057 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewycky00cbccc2012-03-09 09:23:50 +000058 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
59 // NLZ can't be BitWidth with no sign bit
60 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000061 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
Nick Lewycky00cbccc2012-03-09 09:23:50 +000062
63 // If all of the MaskV bits are known to be zero, then we know the
64 // output top bits are zero, because we now know that the output is
65 // from [0-C].
66 if ((KnownZero2 & MaskV) == MaskV) {
67 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
68 // Top bits known zero.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000069 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
Nick Lewycky00cbccc2012-03-09 09:23:50 +000070 }
71 }
72 }
73 }
74
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000075 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewycky00cbccc2012-03-09 09:23:50 +000076
77 // If one of the operands has trailing zeros, then the bits that the
78 // other operand has in those bit positions will be preserved in the
79 // result. For an add, this works with either operand. For a subtract,
80 // this only works if the known zeros are in the right operand.
81 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000082 llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
Nick Lewycky00cbccc2012-03-09 09:23:50 +000083 assert((LHSKnownZero & LHSKnownOne) == 0 &&
84 "Bits known to be one AND zero?");
85 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
86
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000087 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
Nick Lewycky00cbccc2012-03-09 09:23:50 +000088 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
89 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
90
91 // Determine which operand has more trailing zeros, and use that
92 // many bits from the other operand.
93 if (LHSKnownZeroOut > RHSKnownZeroOut) {
94 if (Add) {
95 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
96 KnownZero |= KnownZero2 & Mask;
97 KnownOne |= KnownOne2 & Mask;
98 } else {
99 // If the known zeros are in the left operand for a subtract,
100 // fall back to the minimum known zeros in both operands.
101 KnownZero |= APInt::getLowBitsSet(BitWidth,
102 std::min(LHSKnownZeroOut,
103 RHSKnownZeroOut));
104 }
105 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
106 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
107 KnownZero |= LHSKnownZero & Mask;
108 KnownOne |= LHSKnownOne & Mask;
109 }
110
111 // Are we still trying to solve for the sign bit?
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000112 if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000113 if (NSW) {
114 if (Add) {
115 // Adding two positive numbers can't wrap into negative
116 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
117 KnownZero |= APInt::getSignBit(BitWidth);
118 // and adding two negative numbers can't wrap into positive.
119 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
120 KnownOne |= APInt::getSignBit(BitWidth);
121 } else {
122 // Subtracting a negative number from a positive one can't wrap
123 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
124 KnownZero |= APInt::getSignBit(BitWidth);
125 // neither can subtracting a positive number from a negative one.
126 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
127 KnownOne |= APInt::getSignBit(BitWidth);
128 }
129 }
130 }
131}
132
Nick Lewyckyf201a062012-03-18 23:28:48 +0000133static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
Nick Lewyckyf201a062012-03-18 23:28:48 +0000134 APInt &KnownZero, APInt &KnownOne,
135 APInt &KnownZero2, APInt &KnownOne2,
Micah Villmow3574eca2012-10-08 16:38:25 +0000136 const DataLayout *TD, unsigned Depth) {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000137 unsigned BitWidth = KnownZero.getBitWidth();
138 ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
139 ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
Nick Lewyckyf201a062012-03-18 23:28:48 +0000140 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
141 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
142
143 bool isKnownNegative = false;
144 bool isKnownNonNegative = false;
145 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000146 if (NSW) {
Nick Lewyckyf201a062012-03-18 23:28:48 +0000147 if (Op0 == Op1) {
148 // The product of a number with itself is non-negative.
149 isKnownNonNegative = true;
150 } else {
151 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
152 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
153 bool isKnownNegativeOp1 = KnownOne.isNegative();
154 bool isKnownNegativeOp0 = KnownOne2.isNegative();
155 // The product of two numbers with the same sign is non-negative.
156 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
157 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
158 // The product of a negative number and a non-negative number is either
159 // negative or zero.
160 if (!isKnownNonNegative)
161 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
162 isKnownNonZero(Op0, TD, Depth)) ||
163 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
164 isKnownNonZero(Op1, TD, Depth));
165 }
166 }
167
168 // If low bits are zero in either operand, output low known-0 bits.
169 // Also compute a conserative estimate for high known-0 bits.
170 // More trickiness is possible, but this is sufficient for the
171 // interesting case of alignment computation.
172 KnownOne.clearAllBits();
173 unsigned TrailZ = KnownZero.countTrailingOnes() +
174 KnownZero2.countTrailingOnes();
175 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
176 KnownZero2.countLeadingOnes(),
177 BitWidth) - BitWidth;
178
179 TrailZ = std::min(TrailZ, BitWidth);
180 LeadZ = std::min(LeadZ, BitWidth);
181 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
182 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyf201a062012-03-18 23:28:48 +0000183
184 // Only make use of no-wrap flags if we failed to compute the sign bit
185 // directly. This matters if the multiplication always overflows, in
186 // which case we prefer to follow the result of the direct computation,
187 // though as the program is invoking undefined behaviour we can choose
188 // whatever we like here.
189 if (isKnownNonNegative && !KnownOne.isNegative())
190 KnownZero.setBit(BitWidth - 1);
191 else if (isKnownNegative && !KnownZero.isNegative())
192 KnownOne.setBit(BitWidth - 1);
193}
194
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000195void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
196 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000197 unsigned NumRanges = Ranges.getNumOperands() / 2;
198 assert(NumRanges >= 1);
199
200 // Use the high end of the ranges to find leading zeros.
201 unsigned MinLeadingZeros = BitWidth;
202 for (unsigned i = 0; i < NumRanges; ++i) {
203 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
204 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
205 ConstantRange Range(Lower->getValue(), Upper->getValue());
206 if (Range.isWrappedSet())
207 MinLeadingZeros = 0; // -1 has no zeros
208 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
209 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
210 }
211
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000212 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000213}
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000214/// ComputeMaskedBits - Determine which of the bits are known to be either zero
215/// or one and return them in the KnownZero/KnownOne bit sets.
216///
Chris Lattner173234a2008-06-02 01:18:21 +0000217/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
218/// we cannot optimize based on the assumption that it is zero without changing
219/// it to be an explicit zero. If we don't change it to zero, other code could
220/// optimized based on the contradictory assumption that it is non-zero.
221/// Because instcombine aggressively folds operations with undef args anyway,
222/// this won't lose us code quality.
Chris Lattnercf5128e2009-09-08 00:06:16 +0000223///
224/// This function is defined on values with integer type, values with pointer
225/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000226/// where V is a vector, known zero, and known one values are the
Chris Lattnercf5128e2009-09-08 00:06:16 +0000227/// same width as the vector element, and the bit is set only if it is true
228/// for all of the elements in the vector.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000229void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Micah Villmow3574eca2012-10-08 16:38:25 +0000230 const DataLayout *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +0000231 assert(V && "No Value?");
Dan Gohman9004c8a2009-05-21 02:28:33 +0000232 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000233 unsigned BitWidth = KnownZero.getBitWidth();
234
Nadav Rotem16087692011-12-05 06:29:09 +0000235 assert((V->getType()->isIntOrIntVectorTy() ||
236 V->getType()->getScalarType()->isPointerTy()) &&
237 "Not integer or pointer type!");
Dan Gohman6de29f82009-06-15 22:12:54 +0000238 assert((!TD ||
239 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000240 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman6de29f82009-06-15 22:12:54 +0000241 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem16087692011-12-05 06:29:09 +0000242 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner173234a2008-06-02 01:18:21 +0000243 KnownOne.getBitWidth() == BitWidth &&
244 "V, Mask, KnownOne and KnownZero should have same BitWidth");
245
246 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
247 // We know all of the bits for a constant!
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000248 KnownOne = CI->getValue();
249 KnownZero = ~KnownOne;
Chris Lattner173234a2008-06-02 01:18:21 +0000250 return;
251 }
Dan Gohman6de29f82009-06-15 22:12:54 +0000252 // Null and aggregate-zero are all-zeros.
253 if (isa<ConstantPointerNull>(V) ||
254 isa<ConstantAggregateZero>(V)) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000255 KnownOne.clearAllBits();
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000256 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000257 return;
258 }
Dan Gohman6de29f82009-06-15 22:12:54 +0000259 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner7302d802012-02-06 21:56:39 +0000260 // each element. There is no real need to handle ConstantVector here, because
261 // we don't handle undef in any particularly useful way.
Chris Lattnerdf390282012-01-24 07:54:10 +0000262 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
263 // We know that CDS must be a vector of integers. Take the intersection of
264 // each element.
265 KnownZero.setAllBits(); KnownOne.setAllBits();
266 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner0f193b82012-01-25 01:27:20 +0000267 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerdf390282012-01-24 07:54:10 +0000268 Elt = CDS->getElementAsInteger(i);
269 KnownZero &= ~Elt;
270 KnownOne &= Elt;
271 }
272 return;
273 }
274
Chris Lattner173234a2008-06-02 01:18:21 +0000275 // The address of an aligned GlobalValue has trailing zeros.
276 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
277 unsigned Align = GV->getAlignment();
Nick Lewycky891495e2012-03-07 02:27:53 +0000278 if (Align == 0 && TD) {
Eli Friedmanc4c2a022011-11-28 22:48:22 +0000279 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
280 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky891495e2012-03-07 02:27:53 +0000281 if (ObjectType->isSized()) {
282 // If the object is defined in the current Module, we'll be giving
283 // it the preferred alignment. Otherwise, we have to assume that it
284 // may only have the minimum ABI alignment.
285 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
286 Align = TD->getPreferredAlignment(GVar);
287 else
288 Align = TD->getABITypeAlignment(ObjectType);
289 }
Eli Friedmanc4c2a022011-11-28 22:48:22 +0000290 }
Dan Gohman00407252009-08-11 15:50:03 +0000291 }
Chris Lattner173234a2008-06-02 01:18:21 +0000292 if (Align > 0)
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000293 KnownZero = APInt::getLowBitsSet(BitWidth,
294 CountTrailingZeros_32(Align));
Chris Lattner173234a2008-06-02 01:18:21 +0000295 else
Jay Foad7a874dd2010-12-01 08:53:58 +0000296 KnownZero.clearAllBits();
297 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000298 return;
299 }
Dan Gohman307a7c42009-09-15 16:14:44 +0000300 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
301 // the bits of its aliasee.
302 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
303 if (GA->mayBeOverridden()) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000304 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Dan Gohman307a7c42009-09-15 16:14:44 +0000305 } else {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000306 ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
Dan Gohman307a7c42009-09-15 16:14:44 +0000307 }
308 return;
309 }
Chris Lattnerb3f06732011-05-23 00:03:39 +0000310
311 if (Argument *A = dyn_cast<Argument>(V)) {
Duncan Sandsffcf6df2012-10-04 13:36:31 +0000312 unsigned Align = 0;
313
314 if (A->hasByValAttr()) {
315 // Get alignment information off byval arguments if specified in the IR.
316 Align = A->getParamAlignment();
317 } else if (TD && A->hasStructRetAttr()) {
318 // An sret parameter has at least the ABI alignment of the return type.
319 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
320 if (EltTy->isSized())
321 Align = TD->getABITypeAlignment(EltTy);
322 }
323
324 if (Align)
325 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
Chris Lattnerb3f06732011-05-23 00:03:39 +0000326 return;
327 }
Chris Lattner173234a2008-06-02 01:18:21 +0000328
Chris Lattnerb3f06732011-05-23 00:03:39 +0000329 // Start out not knowing anything.
330 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000331
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000332 if (Depth == MaxDepth)
Chris Lattner173234a2008-06-02 01:18:21 +0000333 return; // Limit search depth.
334
Dan Gohmanca178902009-07-17 20:47:02 +0000335 Operator *I = dyn_cast<Operator>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000336 if (!I) return;
337
338 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohmanca178902009-07-17 20:47:02 +0000339 switch (I->getOpcode()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000340 default: break;
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000341 case Instruction::Load:
342 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000343 computeMaskedBitsLoad(*MD, KnownZero);
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000344 return;
Chris Lattner173234a2008-06-02 01:18:21 +0000345 case Instruction::And: {
346 // If either the LHS or the RHS are Zero, the result is zero.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000347 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
348 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000349 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
350 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
351
352 // Output known-1 bits are only known if set in both the LHS & RHS.
353 KnownOne &= KnownOne2;
354 // Output known-0 are known to be clear if zero in either the LHS | RHS.
355 KnownZero |= KnownZero2;
356 return;
357 }
358 case Instruction::Or: {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000359 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
360 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000361 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
362 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
363
364 // Output known-0 bits are only known if clear in both the LHS & RHS.
365 KnownZero &= KnownZero2;
366 // Output known-1 are known to be set if set in either the LHS | RHS.
367 KnownOne |= KnownOne2;
368 return;
369 }
370 case Instruction::Xor: {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000371 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
372 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000373 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
374 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
375
376 // Output known-0 bits are known if clear or set in both the LHS & RHS.
377 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
378 // Output known-1 are known to be set if set in only one of the LHS, RHS.
379 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
380 KnownZero = KnownZeroOut;
381 return;
382 }
383 case Instruction::Mul: {
Nick Lewyckyf201a062012-03-18 23:28:48 +0000384 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
385 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000386 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewyckyf201a062012-03-18 23:28:48 +0000387 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000388 }
389 case Instruction::UDiv: {
390 // For the purposes of computing leading zeros we can conservatively
391 // treat a udiv as a logical right shift by the power of 2 known to
392 // be less than the denominator.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000393 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000394 unsigned LeadZ = KnownZero2.countLeadingOnes();
395
Jay Foad7a874dd2010-12-01 08:53:58 +0000396 KnownOne2.clearAllBits();
397 KnownZero2.clearAllBits();
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000398 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000399 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
400 if (RHSUnknownLeadingOnes != BitWidth)
401 LeadZ = std::min(BitWidth,
402 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
403
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000404 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Chris Lattner173234a2008-06-02 01:18:21 +0000405 return;
406 }
407 case Instruction::Select:
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000408 ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
409 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000410 Depth+1);
411 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
412 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
413
414 // Only known if known in both the LHS and RHS.
415 KnownOne &= KnownOne2;
416 KnownZero &= KnownZero2;
417 return;
418 case Instruction::FPTrunc:
419 case Instruction::FPExt:
420 case Instruction::FPToUI:
421 case Instruction::FPToSI:
422 case Instruction::SIToFP:
423 case Instruction::UIToFP:
424 return; // Can't work with floating point.
425 case Instruction::PtrToInt:
426 case Instruction::IntToPtr:
427 // We can't handle these if we don't know the pointer size.
428 if (!TD) return;
429 // FALL THROUGH and handle them the same as zext/trunc.
430 case Instruction::ZExt:
431 case Instruction::Trunc: {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000432 Type *SrcTy = I->getOperand(0)->getType();
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000433
434 unsigned SrcBitWidth;
Chris Lattner173234a2008-06-02 01:18:21 +0000435 // Note that we handle pointer operands here because of inttoptr/ptrtoint
436 // which fall through here.
Duncan Sands1df98592010-02-16 11:11:14 +0000437 if (SrcTy->isPointerTy())
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000438 SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
439 else
440 SrcBitWidth = SrcTy->getScalarSizeInBits();
441
Jay Foad40f8f622010-12-07 08:25:19 +0000442 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
443 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000444 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Jay Foad40f8f622010-12-07 08:25:19 +0000445 KnownZero = KnownZero.zextOrTrunc(BitWidth);
446 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000447 // Any top bits are known to be zero.
448 if (BitWidth > SrcBitWidth)
449 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
450 return;
451 }
452 case Instruction::BitCast: {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000453 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands1df98592010-02-16 11:11:14 +0000454 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattner0dabb0b2009-07-02 16:04:08 +0000455 // TODO: For now, not handling conversions like:
456 // (bitcast i64 %x to <2 x i32>)
Duncan Sands1df98592010-02-16 11:11:14 +0000457 !I->getType()->isVectorTy()) {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000458 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000459 return;
460 }
461 break;
462 }
463 case Instruction::SExt: {
464 // Compute the bits in the result that are not present in the input.
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000465 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000466
Jay Foad40f8f622010-12-07 08:25:19 +0000467 KnownZero = KnownZero.trunc(SrcBitWidth);
468 KnownOne = KnownOne.trunc(SrcBitWidth);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000469 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000470 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Jay Foad40f8f622010-12-07 08:25:19 +0000471 KnownZero = KnownZero.zext(BitWidth);
472 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000473
474 // If the sign bit of the input is known set or clear, then we know the
475 // top bits of the result.
476 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
477 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
478 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
479 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
480 return;
481 }
482 case Instruction::Shl:
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000483 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner173234a2008-06-02 01:18:21 +0000484 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
485 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000486 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000487 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
488 KnownZero <<= ShiftAmt;
489 KnownOne <<= ShiftAmt;
490 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
491 return;
492 }
493 break;
494 case Instruction::LShr:
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000495 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner173234a2008-06-02 01:18:21 +0000496 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
497 // Compute the new bits that are at the top now.
498 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
499
500 // Unsigned shift right.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000501 ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000502 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000503 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
504 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
505 // high bits known zero.
506 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
507 return;
508 }
509 break;
510 case Instruction::AShr:
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000511 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner173234a2008-06-02 01:18:21 +0000512 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
513 // Compute the new bits that are at the top now.
Chris Lattner43b40a42011-01-04 18:19:15 +0000514 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattner173234a2008-06-02 01:18:21 +0000515
516 // Signed shift right.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000517 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000518 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000519 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
520 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
521
522 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
523 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
524 KnownZero |= HighBits;
525 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
526 KnownOne |= HighBits;
527 return;
528 }
529 break;
530 case Instruction::Sub: {
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000531 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
532 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000533 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
534 Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000535 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000536 }
Chris Lattner173234a2008-06-02 01:18:21 +0000537 case Instruction::Add: {
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000538 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
539 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000540 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
541 Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000542 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000543 }
544 case Instruction::SRem:
545 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sandscfd54182010-01-29 06:18:37 +0000546 APInt RA = Rem->getValue().abs();
547 if (RA.isPowerOf2()) {
548 APInt LowBits = RA - 1;
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000549 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000550
Duncan Sandscfd54182010-01-29 06:18:37 +0000551 // The low bits of the first operand are unchanged by the srem.
552 KnownZero = KnownZero2 & LowBits;
553 KnownOne = KnownOne2 & LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000554
Duncan Sandscfd54182010-01-29 06:18:37 +0000555 // If the first operand is non-negative or has all low bits zero, then
556 // the upper bits are all zero.
557 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
558 KnownZero |= ~LowBits;
559
560 // If the first operand is negative and not all low bits are zero, then
561 // the upper bits are all one.
562 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
563 KnownOne |= ~LowBits;
564
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000565 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000566 }
567 }
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000568
569 // The sign bit is the LHS's sign bit, except when the result of the
570 // remainder is zero.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000571 if (KnownZero.isNonNegative()) {
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000572 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000573 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000574 Depth+1);
575 // If it's known zero, our sign bit is also zero.
576 if (LHSKnownZero.isNegative())
Duncan Sands5ff30e72012-04-30 11:56:58 +0000577 KnownZero.setBit(BitWidth - 1);
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000578 }
579
Chris Lattner173234a2008-06-02 01:18:21 +0000580 break;
581 case Instruction::URem: {
582 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
583 APInt RA = Rem->getValue();
584 if (RA.isPowerOf2()) {
585 APInt LowBits = (RA - 1);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000586 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000587 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000588 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000589 KnownZero |= ~LowBits;
590 KnownOne &= LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000591 break;
592 }
593 }
594
595 // Since the result is less than or equal to either operand, any leading
596 // zero bits in either operand must also exist in the result.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000597 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
598 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000599
Chris Lattner79abedb2009-01-20 18:22:57 +0000600 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner173234a2008-06-02 01:18:21 +0000601 KnownZero2.countLeadingOnes());
Jay Foad7a874dd2010-12-01 08:53:58 +0000602 KnownOne.clearAllBits();
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000603 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner173234a2008-06-02 01:18:21 +0000604 break;
605 }
606
Victor Hernandeza276c602009-10-17 01:18:07 +0000607 case Instruction::Alloca: {
Victor Hernandez7b929da2009-10-23 21:09:37 +0000608 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000609 unsigned Align = AI->getAlignment();
Victor Hernandeza276c602009-10-17 01:18:07 +0000610 if (Align == 0 && TD)
611 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Chris Lattner173234a2008-06-02 01:18:21 +0000612
613 if (Align > 0)
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000614 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
Chris Lattner173234a2008-06-02 01:18:21 +0000615 break;
616 }
617 case Instruction::GetElementPtr: {
618 // Analyze all of the subscripts of this getelementptr instruction
619 // to determine if we can prove known low zero bits.
Chris Lattner173234a2008-06-02 01:18:21 +0000620 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000621 ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
622 Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000623 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
624
625 gep_type_iterator GTI = gep_type_begin(I);
626 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
627 Value *Index = I->getOperand(i);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000628 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner173234a2008-06-02 01:18:21 +0000629 // Handle struct member offset arithmetic.
630 if (!TD) return;
631 const StructLayout *SL = TD->getStructLayout(STy);
632 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
633 uint64_t Offset = SL->getElementOffset(Idx);
634 TrailZ = std::min(TrailZ,
635 CountTrailingZeros_64(Offset));
636 } else {
637 // Handle array index arithmetic.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000638 Type *IndexedTy = GTI.getIndexedType();
Chris Lattner173234a2008-06-02 01:18:21 +0000639 if (!IndexedTy->isSized()) return;
Dan Gohman6de29f82009-06-15 22:12:54 +0000640 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sands777d2302009-05-09 07:06:46 +0000641 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000642 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000643 ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000644 TrailZ = std::min(TrailZ,
Chris Lattner79abedb2009-01-20 18:22:57 +0000645 unsigned(CountTrailingZeros_64(TypeSize) +
646 LocalKnownZero.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000647 }
648 }
649
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000650 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner173234a2008-06-02 01:18:21 +0000651 break;
652 }
653 case Instruction::PHI: {
654 PHINode *P = cast<PHINode>(I);
655 // Handle the case of a simple two-predecessor recurrence PHI.
656 // There's a lot more that could theoretically be done here, but
657 // this is sufficient to catch some interesting cases.
658 if (P->getNumIncomingValues() == 2) {
659 for (unsigned i = 0; i != 2; ++i) {
660 Value *L = P->getIncomingValue(i);
661 Value *R = P->getIncomingValue(!i);
Dan Gohmanca178902009-07-17 20:47:02 +0000662 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner173234a2008-06-02 01:18:21 +0000663 if (!LU)
664 continue;
Dan Gohmanca178902009-07-17 20:47:02 +0000665 unsigned Opcode = LU->getOpcode();
Chris Lattner173234a2008-06-02 01:18:21 +0000666 // Check for operations that have the property that if
667 // both their operands have low zero bits, the result
668 // will have low zero bits.
669 if (Opcode == Instruction::Add ||
670 Opcode == Instruction::Sub ||
671 Opcode == Instruction::And ||
672 Opcode == Instruction::Or ||
673 Opcode == Instruction::Mul) {
674 Value *LL = LU->getOperand(0);
675 Value *LR = LU->getOperand(1);
676 // Find a recurrence.
677 if (LL == I)
678 L = LR;
679 else if (LR == I)
680 L = LL;
681 else
682 break;
683 // Ok, we have a PHI of the form L op= R. Check for low
684 // zero bits.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000685 ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
David Greenec714f132008-10-27 23:24:03 +0000686
687 // We need to take the minimum number of known bits
688 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000689 ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
David Greenec714f132008-10-27 23:24:03 +0000690
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000691 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greenec714f132008-10-27 23:24:03 +0000692 std::min(KnownZero2.countTrailingOnes(),
693 KnownZero3.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000694 break;
695 }
696 }
697 }
Dan Gohman9004c8a2009-05-21 02:28:33 +0000698
Nick Lewycky3b739d22011-02-10 23:54:10 +0000699 // Unreachable blocks may have zero-operand PHI nodes.
700 if (P->getNumIncomingValues() == 0)
701 return;
702
Dan Gohman9004c8a2009-05-21 02:28:33 +0000703 // Otherwise take the unions of the known bit sets of the operands,
704 // taking conservative care to avoid excessive recursion.
705 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands606199f2011-03-08 12:39:03 +0000706 // Skip if every incoming value references to ourself.
Nuno Lopes0fd518b2012-07-03 21:15:40 +0000707 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands606199f2011-03-08 12:39:03 +0000708 break;
709
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000710 KnownZero = APInt::getAllOnesValue(BitWidth);
711 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohman9004c8a2009-05-21 02:28:33 +0000712 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
713 // Skip direct self references.
714 if (P->getIncomingValue(i) == P) continue;
715
716 KnownZero2 = APInt(BitWidth, 0);
717 KnownOne2 = APInt(BitWidth, 0);
718 // Recurse, but cap the recursion to one level, because we don't
719 // want to waste time spinning around in loops.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000720 ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
721 MaxDepth-1);
Dan Gohman9004c8a2009-05-21 02:28:33 +0000722 KnownZero &= KnownZero2;
723 KnownOne &= KnownOne2;
724 // If all bits have been ruled out, there's no need to check
725 // more operands.
726 if (!KnownZero && !KnownOne)
727 break;
728 }
729 }
Chris Lattner173234a2008-06-02 01:18:21 +0000730 break;
731 }
732 case Instruction::Call:
733 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
734 switch (II->getIntrinsicID()) {
735 default: break;
Chris Lattner173234a2008-06-02 01:18:21 +0000736 case Intrinsic::ctlz:
737 case Intrinsic::cttz: {
738 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer009da052011-12-24 17:31:46 +0000739 // If this call is undefined for 0, the result will be less than 2^n.
740 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
741 LowBits -= 1;
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000742 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer009da052011-12-24 17:31:46 +0000743 break;
744 }
745 case Intrinsic::ctpop: {
746 unsigned LowBits = Log2_32(BitWidth)+1;
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000747 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner173234a2008-06-02 01:18:21 +0000748 break;
749 }
Chad Rosier62660312011-05-26 23:13:19 +0000750 case Intrinsic::x86_sse42_crc32_64_8:
751 case Intrinsic::x86_sse42_crc32_64_64:
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000752 KnownZero = APInt::getHighBitsSet(64, 32);
Evan Chengcb559c12011-05-22 18:25:30 +0000753 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000754 }
755 }
756 break;
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000757 case Instruction::ExtractValue:
758 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
759 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
760 if (EVI->getNumIndices() != 1) break;
761 if (EVI->getIndices()[0] == 0) {
762 switch (II->getIntrinsicID()) {
763 default: break;
764 case Intrinsic::uadd_with_overflow:
765 case Intrinsic::sadd_with_overflow:
766 ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000767 II->getArgOperand(1), false, KnownZero,
768 KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000769 break;
770 case Intrinsic::usub_with_overflow:
771 case Intrinsic::ssub_with_overflow:
772 ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000773 II->getArgOperand(1), false, KnownZero,
774 KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000775 break;
Nick Lewyckyf201a062012-03-18 23:28:48 +0000776 case Intrinsic::umul_with_overflow:
777 case Intrinsic::smul_with_overflow:
778 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000779 false, KnownZero, KnownOne,
Nick Lewyckyf201a062012-03-18 23:28:48 +0000780 KnownZero2, KnownOne2, TD, Depth);
781 break;
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000782 }
783 }
784 }
Chris Lattner173234a2008-06-02 01:18:21 +0000785 }
786}
787
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000788/// ComputeSignBit - Determine whether the sign bit is known to be zero or
789/// one. Convenience wrapper around ComputeMaskedBits.
790void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Micah Villmow3574eca2012-10-08 16:38:25 +0000791 const DataLayout *TD, unsigned Depth) {
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000792 unsigned BitWidth = getBitWidth(V->getType(), TD);
793 if (!BitWidth) {
794 KnownZero = false;
795 KnownOne = false;
796 return;
797 }
798 APInt ZeroBits(BitWidth, 0);
799 APInt OneBits(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000800 ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000801 KnownOne = OneBits[BitWidth - 1];
802 KnownZero = ZeroBits[BitWidth - 1];
803}
804
805/// isPowerOfTwo - Return true if the given value is known to have exactly one
806/// bit set when defined. For vectors return true if every element is known to
807/// be a power of two when defined. Supports values with integer or pointer
808/// types and vectors of integers.
Micah Villmow3574eca2012-10-08 16:38:25 +0000809bool llvm::isPowerOfTwo(Value *V, const DataLayout *TD, bool OrZero,
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000810 unsigned Depth) {
811 if (Constant *C = dyn_cast<Constant>(V)) {
812 if (C->isNullValue())
813 return OrZero;
814 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
815 return CI->getValue().isPowerOf2();
816 // TODO: Handle vector constants.
817 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000818
819 // 1 << X is clearly a power of two if the one is not shifted off the end. If
820 // it is shifted off the end then the result is undefined.
821 if (match(V, m_Shl(m_One(), m_Value())))
822 return true;
823
824 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
825 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands93c78022011-02-01 08:50:33 +0000826 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000827 return true;
828
829 // The remaining tests are all recursive, so bail out if we hit the limit.
830 if (Depth++ == MaxDepth)
831 return false;
832
Duncan Sands4604fc72011-10-28 18:30:05 +0000833 Value *X = 0, *Y = 0;
834 // A shift of a power of two is a power of two or zero.
835 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
836 match(V, m_Shr(m_Value(X), m_Value()))))
837 return isPowerOfTwo(X, TD, /*OrZero*/true, Depth);
838
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000839 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000840 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000841
842 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000843 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
844 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
845
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000846 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
847 // A power of two and'd with anything is a power of two or zero.
848 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
849 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
850 return true;
851 // X & (-X) is always a power of two or zero.
852 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
853 return true;
854 return false;
855 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000856
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000857 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewycky1f7bc702011-03-21 21:40:32 +0000858 // is a power of two only if the first operand is a power of two and not
859 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer55c6d572012-01-01 17:55:30 +0000860 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
861 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
862 return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000863 }
864
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000865 return false;
866}
867
868/// isKnownNonZero - Return true if the given value is known to be non-zero
869/// when defined. For vectors return true if every element is known to be
870/// non-zero when defined. Supports values with integer or pointer type and
871/// vectors of integers.
Micah Villmow3574eca2012-10-08 16:38:25 +0000872bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000873 if (Constant *C = dyn_cast<Constant>(V)) {
874 if (C->isNullValue())
875 return false;
876 if (isa<ConstantInt>(C))
877 // Must be non-zero due to null test above.
878 return true;
879 // TODO: Handle vectors
880 return false;
881 }
882
883 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000884 if (Depth++ >= MaxDepth)
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000885 return false;
886
887 unsigned BitWidth = getBitWidth(V->getType(), TD);
888
889 // X | Y != 0 if X != 0 or Y != 0.
890 Value *X = 0, *Y = 0;
891 if (match(V, m_Or(m_Value(X), m_Value(Y))))
892 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
893
894 // ext X != 0 if X != 0.
895 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
896 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
897
Duncan Sands91367822011-01-29 13:27:00 +0000898 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000899 // if the lowest bit is shifted off the end.
900 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000901 // shl nuw can't remove any non-zero bits.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000902 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000903 if (BO->hasNoUnsignedWrap())
904 return isKnownNonZero(X, TD, Depth);
905
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000906 APInt KnownZero(BitWidth, 0);
907 APInt KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000908 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000909 if (KnownOne[0])
910 return true;
911 }
Duncan Sands91367822011-01-29 13:27:00 +0000912 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000913 // defined if the sign bit is shifted off the end.
914 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000915 // shr exact can only shift out zero bits.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000916 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000917 if (BO->isExact())
918 return isKnownNonZero(X, TD, Depth);
919
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000920 bool XKnownNonNegative, XKnownNegative;
921 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
922 if (XKnownNegative)
923 return true;
924 }
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000925 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer55c6d572012-01-01 17:55:30 +0000926 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
927 return isKnownNonZero(X, TD, Depth);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000928 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000929 // X + Y.
930 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
931 bool XKnownNonNegative, XKnownNegative;
932 bool YKnownNonNegative, YKnownNegative;
933 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
934 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
935
936 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands227fba12011-01-25 15:14:15 +0000937 // zero unless both X and Y are zero.
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000938 if (XKnownNonNegative && YKnownNonNegative)
Duncan Sands227fba12011-01-25 15:14:15 +0000939 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
940 return true;
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000941
942 // If X and Y are both negative (as signed values) then their sum is not
943 // zero unless both X and Y equal INT_MIN.
944 if (BitWidth && XKnownNegative && YKnownNegative) {
945 APInt KnownZero(BitWidth, 0);
946 APInt KnownOne(BitWidth, 0);
947 APInt Mask = APInt::getSignedMaxValue(BitWidth);
948 // The sign bit of X is set. If some other bit is set then X is not equal
949 // to INT_MIN.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000950 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000951 if ((KnownOne & Mask) != 0)
952 return true;
953 // The sign bit of Y is set. If some other bit is set then Y is not equal
954 // to INT_MIN.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000955 ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000956 if ((KnownOne & Mask) != 0)
957 return true;
958 }
959
960 // The sum of a non-negative number and a power of two is not zero.
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000961 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000962 return true;
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000963 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000964 return true;
965 }
Duncan Sands32a43cc2011-10-27 19:16:21 +0000966 // X * Y.
967 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
968 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
969 // If X and Y are non-zero then so is X * Y as long as the multiplication
970 // does not overflow.
971 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
972 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
973 return true;
974 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000975 // (C ? X : Y) != 0 if X != 0 and Y != 0.
976 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
977 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
978 isKnownNonZero(SI->getFalseValue(), TD, Depth))
979 return true;
980 }
981
982 if (!BitWidth) return false;
983 APInt KnownZero(BitWidth, 0);
984 APInt KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000985 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000986 return KnownOne != 0;
987}
988
Chris Lattner173234a2008-06-02 01:18:21 +0000989/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
990/// this predicate to simplify operations downstream. Mask is known to be zero
991/// for bits that V cannot have.
Chris Lattnercf5128e2009-09-08 00:06:16 +0000992///
993/// This function is defined on values with integer type, values with pointer
994/// type (but only if TD is non-null), and vectors of integers. In the case
995/// where V is a vector, the mask, known zero, and known one values are the
996/// same width as the vector element, and the bit is set only if it is true
997/// for all of the elements in the vector.
Chris Lattner173234a2008-06-02 01:18:21 +0000998bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
Micah Villmow3574eca2012-10-08 16:38:25 +0000999 const DataLayout *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +00001000 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001001 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
Chris Lattner173234a2008-06-02 01:18:21 +00001002 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1003 return (KnownZero & Mask) == Mask;
1004}
1005
1006
1007
1008/// ComputeNumSignBits - Return the number of times the sign bit of the
1009/// register is replicated into the other bits. We know that at least 1 bit
1010/// is always equal to the sign bit (itself), but other cases can give us
1011/// information. For example, immediately after an "ashr X, 2", we know that
1012/// the top 3 bits are all equal to each other, so we return 3.
1013///
1014/// 'Op' must have a scalar integer type.
1015///
Micah Villmow3574eca2012-10-08 16:38:25 +00001016unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
Dan Gohman846a2f22009-08-27 17:51:25 +00001017 unsigned Depth) {
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001018 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmow3574eca2012-10-08 16:38:25 +00001019 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohmanbd5ce522009-06-22 22:02:32 +00001020 "on non-integer values!");
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001021 Type *Ty = V->getType();
Dan Gohmanbd5ce522009-06-22 22:02:32 +00001022 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1023 Ty->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +00001024 unsigned Tmp, Tmp2;
1025 unsigned FirstAnswer = 1;
1026
Chris Lattnerd82e5112008-06-02 18:39:07 +00001027 // Note that ConstantInt is handled by the general ComputeMaskedBits case
1028 // below.
1029
Chris Lattner173234a2008-06-02 01:18:21 +00001030 if (Depth == 6)
1031 return 1; // Limit search depth.
1032
Dan Gohmanca178902009-07-17 20:47:02 +00001033 Operator *U = dyn_cast<Operator>(V);
1034 switch (Operator::getOpcode(V)) {
Chris Lattner173234a2008-06-02 01:18:21 +00001035 default: break;
1036 case Instruction::SExt:
Mon P Wang69a00802009-12-02 04:59:58 +00001037 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +00001038 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1039
Chris Lattner6b0dc922012-01-26 21:37:55 +00001040 case Instruction::AShr: {
Chris Lattner173234a2008-06-02 01:18:21 +00001041 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Chris Lattner6b0dc922012-01-26 21:37:55 +00001042 // ashr X, C -> adds C sign bits. Vectors too.
1043 const APInt *ShAmt;
1044 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1045 Tmp += ShAmt->getZExtValue();
Chris Lattner173234a2008-06-02 01:18:21 +00001046 if (Tmp > TyBits) Tmp = TyBits;
1047 }
1048 return Tmp;
Chris Lattner6b0dc922012-01-26 21:37:55 +00001049 }
1050 case Instruction::Shl: {
1051 const APInt *ShAmt;
1052 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner173234a2008-06-02 01:18:21 +00001053 // shl destroys sign bits.
1054 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Chris Lattner6b0dc922012-01-26 21:37:55 +00001055 Tmp2 = ShAmt->getZExtValue();
1056 if (Tmp2 >= TyBits || // Bad shift.
1057 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1058 return Tmp - Tmp2;
Chris Lattner173234a2008-06-02 01:18:21 +00001059 }
1060 break;
Chris Lattner6b0dc922012-01-26 21:37:55 +00001061 }
Chris Lattner173234a2008-06-02 01:18:21 +00001062 case Instruction::And:
1063 case Instruction::Or:
1064 case Instruction::Xor: // NOT is handled here.
1065 // Logical binary ops preserve the number of sign bits at the worst.
1066 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1067 if (Tmp != 1) {
1068 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1069 FirstAnswer = std::min(Tmp, Tmp2);
1070 // We computed what we know about the sign bits as our first
1071 // answer. Now proceed to the generic code that uses
1072 // ComputeMaskedBits, and pick whichever answer is better.
1073 }
1074 break;
1075
1076 case Instruction::Select:
1077 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1078 if (Tmp == 1) return 1; // Early out.
1079 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1080 return std::min(Tmp, Tmp2);
1081
1082 case Instruction::Add:
1083 // Add can have at most one carry bit. Thus we know that the output
1084 // is, at worst, one more bit than the inputs.
1085 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1086 if (Tmp == 1) return 1; // Early out.
1087
1088 // Special case decrementing a value (ADD X, -1):
Dan Gohman0001e562009-02-24 02:00:40 +00001089 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner173234a2008-06-02 01:18:21 +00001090 if (CRHS->isAllOnesValue()) {
1091 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001092 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +00001093
1094 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1095 // sign bits set.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001096 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner173234a2008-06-02 01:18:21 +00001097 return TyBits;
1098
1099 // If we are subtracting one from a positive number, there is no carry
1100 // out of the result.
1101 if (KnownZero.isNegative())
1102 return Tmp;
1103 }
1104
1105 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1106 if (Tmp2 == 1) return 1;
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001107 return std::min(Tmp, Tmp2)-1;
Chris Lattner173234a2008-06-02 01:18:21 +00001108
1109 case Instruction::Sub:
1110 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1111 if (Tmp2 == 1) return 1;
1112
1113 // Handle NEG.
1114 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1115 if (CLHS->isNullValue()) {
1116 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001117 ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +00001118 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1119 // sign bits set.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001120 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner173234a2008-06-02 01:18:21 +00001121 return TyBits;
1122
1123 // If the input is known to be positive (the sign bit is known clear),
1124 // the output of the NEG has the same number of sign bits as the input.
1125 if (KnownZero.isNegative())
1126 return Tmp2;
1127
1128 // Otherwise, we treat this like a SUB.
1129 }
1130
1131 // Sub can have at most one carry bit. Thus we know that the output
1132 // is, at worst, one more bit than the inputs.
1133 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1134 if (Tmp == 1) return 1; // Early out.
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001135 return std::min(Tmp, Tmp2)-1;
1136
1137 case Instruction::PHI: {
1138 PHINode *PN = cast<PHINode>(U);
1139 // Don't analyze large in-degree PHIs.
1140 if (PN->getNumIncomingValues() > 4) break;
1141
1142 // Take the minimum of all incoming values. This can't infinitely loop
1143 // because of our depth threshold.
1144 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1145 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1146 if (Tmp == 1) return Tmp;
1147 Tmp = std::min(Tmp,
Evan Cheng0af20d82010-03-13 02:20:29 +00001148 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001149 }
1150 return Tmp;
1151 }
1152
Chris Lattner173234a2008-06-02 01:18:21 +00001153 case Instruction::Trunc:
1154 // FIXME: it's tricky to do anything useful for this, but it is an important
1155 // case for targets like X86.
1156 break;
1157 }
1158
1159 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1160 // use this information.
1161 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001162 APInt Mask;
1163 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
Chris Lattner173234a2008-06-02 01:18:21 +00001164
1165 if (KnownZero.isNegative()) { // sign bit is 0
1166 Mask = KnownZero;
1167 } else if (KnownOne.isNegative()) { // sign bit is 1;
1168 Mask = KnownOne;
1169 } else {
1170 // Nothing known.
1171 return FirstAnswer;
1172 }
1173
1174 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1175 // the number of identical bits in the top of the input value.
1176 Mask = ~Mask;
1177 Mask <<= Mask.getBitWidth()-TyBits;
1178 // Return # leading zeros. We use 'min' here in case Val was zero before
1179 // shifting. We don't want to return '64' as for an i32 "0".
1180 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1181}
Chris Lattner833f25d2008-06-02 01:29:46 +00001182
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001183/// ComputeMultiple - This function computes the integer multiple of Base that
1184/// equals V. If successful, it returns true and returns the multiple in
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001185/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001186/// through SExt instructions only if LookThroughSExt is true.
1187bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001188 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001189 const unsigned MaxDepth = 6;
1190
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001191 assert(V && "No Value?");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001192 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001193 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001194
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001195 Type *T = V->getType();
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001196
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001197 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001198
1199 if (Base == 0)
1200 return false;
1201
1202 if (Base == 1) {
1203 Multiple = V;
1204 return true;
1205 }
1206
1207 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1208 Constant *BaseVal = ConstantInt::get(T, Base);
1209 if (CO && CO == BaseVal) {
1210 // Multiple is 1.
1211 Multiple = ConstantInt::get(T, 1);
1212 return true;
1213 }
1214
1215 if (CI && CI->getZExtValue() % Base == 0) {
1216 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1217 return true;
1218 }
1219
1220 if (Depth == MaxDepth) return false; // Limit search depth.
1221
1222 Operator *I = dyn_cast<Operator>(V);
1223 if (!I) return false;
1224
1225 switch (I->getOpcode()) {
1226 default: break;
Chris Lattner11fe7262009-11-26 01:50:12 +00001227 case Instruction::SExt:
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001228 if (!LookThroughSExt) return false;
1229 // otherwise fall through to ZExt
Chris Lattner11fe7262009-11-26 01:50:12 +00001230 case Instruction::ZExt:
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001231 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1232 LookThroughSExt, Depth+1);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001233 case Instruction::Shl:
1234 case Instruction::Mul: {
1235 Value *Op0 = I->getOperand(0);
1236 Value *Op1 = I->getOperand(1);
1237
1238 if (I->getOpcode() == Instruction::Shl) {
1239 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1240 if (!Op1CI) return false;
1241 // Turn Op0 << Op1 into Op0 * 2^Op1
1242 APInt Op1Int = Op1CI->getValue();
1243 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foada99793c2010-11-30 09:02:01 +00001244 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00001245 API.setBit(BitToSet);
Jay Foada99793c2010-11-30 09:02:01 +00001246 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001247 }
1248
1249 Value *Mul0 = NULL;
Chris Lattnere9711312010-09-05 17:20:46 +00001250 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1251 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1252 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1253 if (Op1C->getType()->getPrimitiveSizeInBits() <
1254 MulC->getType()->getPrimitiveSizeInBits())
1255 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1256 if (Op1C->getType()->getPrimitiveSizeInBits() >
1257 MulC->getType()->getPrimitiveSizeInBits())
1258 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1259
1260 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1261 Multiple = ConstantExpr::getMul(MulC, Op1C);
1262 return true;
1263 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001264
1265 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1266 if (Mul0CI->getValue() == 1) {
1267 // V == Base * Op1, so return Op1
1268 Multiple = Op1;
1269 return true;
1270 }
1271 }
1272
Chris Lattnere9711312010-09-05 17:20:46 +00001273 Value *Mul1 = NULL;
1274 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1275 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1276 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1277 if (Op0C->getType()->getPrimitiveSizeInBits() <
1278 MulC->getType()->getPrimitiveSizeInBits())
1279 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1280 if (Op0C->getType()->getPrimitiveSizeInBits() >
1281 MulC->getType()->getPrimitiveSizeInBits())
1282 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1283
1284 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1285 Multiple = ConstantExpr::getMul(MulC, Op0C);
1286 return true;
1287 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001288
1289 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1290 if (Mul1CI->getValue() == 1) {
1291 // V == Base * Op0, so return Op0
1292 Multiple = Op0;
1293 return true;
1294 }
1295 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001296 }
1297 }
1298
1299 // We could not determine if V is a multiple of Base.
1300 return false;
1301}
1302
Chris Lattner833f25d2008-06-02 01:29:46 +00001303/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1304/// value is never equal to -0.0.
1305///
1306/// NOTE: this function will need to be revisited when we support non-default
1307/// rounding modes!
1308///
1309bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1310 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1311 return !CFP->getValueAPF().isNegZero();
1312
1313 if (Depth == 6)
1314 return 1; // Limit search depth.
1315
Dan Gohmanca178902009-07-17 20:47:02 +00001316 const Operator *I = dyn_cast<Operator>(V);
Chris Lattner833f25d2008-06-02 01:29:46 +00001317 if (I == 0) return false;
1318
1319 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Dan Gohmanae3a0be2009-06-04 22:49:04 +00001320 if (I->getOpcode() == Instruction::FAdd &&
Chris Lattner833f25d2008-06-02 01:29:46 +00001321 isa<ConstantFP>(I->getOperand(1)) &&
1322 cast<ConstantFP>(I->getOperand(1))->isNullValue())
1323 return true;
1324
1325 // sitofp and uitofp turn into +0.0 for zero.
1326 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1327 return true;
1328
1329 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1330 // sqrt(-0.0) = -0.0, no other negative results are possible.
1331 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif71339c92010-06-23 23:38:07 +00001332 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001333
1334 if (const CallInst *CI = dyn_cast<CallInst>(I))
1335 if (const Function *F = CI->getCalledFunction()) {
1336 if (F->isDeclaration()) {
Daniel Dunbarf0443c12009-07-26 08:34:35 +00001337 // abs(x) != -0.0
1338 if (F->getName() == "abs") return true;
Dale Johannesen9d061752009-09-25 20:54:50 +00001339 // fabs[lf](x) != -0.0
1340 if (F->getName() == "fabs") return true;
1341 if (F->getName() == "fabsf") return true;
1342 if (F->getName() == "fabsl") return true;
1343 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1344 F->getName() == "sqrtl")
Gabor Greif71339c92010-06-23 23:38:07 +00001345 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001346 }
1347 }
1348
1349 return false;
1350}
1351
Chris Lattnerbb897102010-12-26 20:15:01 +00001352/// isBytewiseValue - If the specified value can be set by repeating the same
1353/// byte in memory, return the i8 value that it is represented with. This is
1354/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1355/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1356/// byte store (e.g. i16 0x1234), return null.
1357Value *llvm::isBytewiseValue(Value *V) {
1358 // All byte-wide stores are splatable, even of arbitrary variables.
1359 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattner41bfbb02011-02-19 19:35:49 +00001360
1361 // Handle 'null' ConstantArrayZero etc.
1362 if (Constant *C = dyn_cast<Constant>(V))
1363 if (C->isNullValue())
1364 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Chris Lattnerbb897102010-12-26 20:15:01 +00001365
1366 // Constant float and double values can be handled as integer values if the
1367 // corresponding integer value is "byteable". An important case is 0.0.
1368 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1369 if (CFP->getType()->isFloatTy())
1370 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1371 if (CFP->getType()->isDoubleTy())
1372 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1373 // Don't handle long double formats, which have strange constraints.
1374 }
1375
1376 // We can handle constant integers that are power of two in size and a
1377 // multiple of 8 bits.
1378 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1379 unsigned Width = CI->getBitWidth();
1380 if (isPowerOf2_32(Width) && Width > 8) {
1381 // We can handle this value if the recursive binary decomposition is the
1382 // same at all levels.
1383 APInt Val = CI->getValue();
1384 APInt Val2;
1385 while (Val.getBitWidth() != 8) {
1386 unsigned NextWidth = Val.getBitWidth()/2;
1387 Val2 = Val.lshr(NextWidth);
1388 Val2 = Val2.trunc(Val.getBitWidth()/2);
1389 Val = Val.trunc(Val.getBitWidth()/2);
1390
1391 // If the top/bottom halves aren't the same, reject it.
1392 if (Val != Val2)
1393 return 0;
1394 }
1395 return ConstantInt::get(V->getContext(), Val);
1396 }
1397 }
1398
Chris Lattner18c7f802012-02-05 02:29:43 +00001399 // A ConstantDataArray/Vector is splatable if all its members are equal and
1400 // also splatable.
1401 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1402 Value *Elt = CA->getElementAsConstant(0);
1403 Value *Val = isBytewiseValue(Elt);
Chris Lattnerbb897102010-12-26 20:15:01 +00001404 if (!Val)
1405 return 0;
1406
Chris Lattner18c7f802012-02-05 02:29:43 +00001407 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1408 if (CA->getElementAsConstant(I) != Elt)
Chris Lattnerbb897102010-12-26 20:15:01 +00001409 return 0;
1410
1411 return Val;
1412 }
Chad Rosierdce42b72011-12-06 00:19:08 +00001413
Chris Lattnerbb897102010-12-26 20:15:01 +00001414 // Conceptually, we could handle things like:
1415 // %a = zext i8 %X to i16
1416 // %b = shl i16 %a, 8
1417 // %c = or i16 %a, %b
1418 // but until there is an example that actually needs this, it doesn't seem
1419 // worth worrying about.
1420 return 0;
1421}
1422
1423
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001424// This is the recursive version of BuildSubAggregate. It takes a few different
1425// arguments. Idxs is the index within the nested struct From that we are
1426// looking at now (which is of type IndexedType). IdxSkip is the number of
1427// indices from Idxs that should be left out when inserting into the resulting
1428// struct. To is the result struct built so far, new insertvalue instructions
1429// build on that.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001430static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Dan Gohman7db949d2009-08-07 01:32:21 +00001431 SmallVector<unsigned, 10> &Idxs,
1432 unsigned IdxSkip,
Dan Gohman7db949d2009-08-07 01:32:21 +00001433 Instruction *InsertBefore) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001434 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001435 if (STy) {
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001436 // Save the original To argument so we can modify it
1437 Value *OrigTo = To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001438 // General case, the type indexed by Idxs is a struct
1439 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1440 // Process each struct element recursively
1441 Idxs.push_back(i);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001442 Value *PrevTo = To;
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001443 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001444 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001445 Idxs.pop_back();
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001446 if (!To) {
1447 // Couldn't find any inserted value for this index? Cleanup
1448 while (PrevTo != OrigTo) {
1449 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1450 PrevTo = Del->getAggregateOperand();
1451 Del->eraseFromParent();
1452 }
1453 // Stop processing elements
1454 break;
1455 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001456 }
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001457 // If we successfully found a value for each of our subaggregates
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001458 if (To)
1459 return To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001460 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001461 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1462 // the struct's elements had a value that was inserted directly. In the latter
1463 // case, perhaps we can't determine each of the subelements individually, but
1464 // we might be able to find the complete struct somewhere.
1465
1466 // Find the value that is at that particular spot
Jay Foadfc6d3a42011-07-13 10:26:04 +00001467 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001468
1469 if (!V)
1470 return NULL;
1471
1472 // Insert the value in the new (sub) aggregrate
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001473 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001474 "tmp", InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001475}
1476
1477// This helper takes a nested struct and extracts a part of it (which is again a
1478// struct) into a new value. For example, given the struct:
1479// { a, { b, { c, d }, e } }
1480// and the indices "1, 1" this returns
1481// { c, d }.
1482//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001483// It does this by inserting an insertvalue for each element in the resulting
1484// struct, as opposed to just inserting a single struct. This will only work if
1485// each of the elements of the substruct are known (ie, inserted into From by an
1486// insertvalue instruction somewhere).
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001487//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001488// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foadfc6d3a42011-07-13 10:26:04 +00001489static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohman7db949d2009-08-07 01:32:21 +00001490 Instruction *InsertBefore) {
Matthijs Kooijman97728912008-06-16 13:28:31 +00001491 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001492 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001493 idx_range);
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001494 Value *To = UndefValue::get(IndexedType);
Jay Foadfc6d3a42011-07-13 10:26:04 +00001495 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001496 unsigned IdxSkip = Idxs.size();
1497
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001498 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001499}
1500
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001501/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1502/// the scalar value indexed is already around as a register, for example if it
1503/// were inserted directly into the aggregrate.
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001504///
1505/// If InsertBefore is not null, this function will duplicate (modified)
1506/// insertvalues when a part of a nested struct is extracted.
Jay Foadfc6d3a42011-07-13 10:26:04 +00001507Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1508 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001509 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerdf390282012-01-24 07:54:10 +00001510 // recursion).
Jay Foadfc6d3a42011-07-13 10:26:04 +00001511 if (idx_range.empty())
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001512 return V;
Chris Lattnerdf390282012-01-24 07:54:10 +00001513 // We have indices, so V should have an indexable type.
1514 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1515 "Not looking at a struct or array?");
1516 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1517 "Invalid indices for type?");
Owen Anderson76f600b2009-07-06 22:37:39 +00001518
Chris Lattnera1f00f42012-01-25 06:48:06 +00001519 if (Constant *C = dyn_cast<Constant>(V)) {
1520 C = C->getAggregateElement(idx_range[0]);
1521 if (C == 0) return 0;
1522 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1523 }
Chris Lattnerdf390282012-01-24 07:54:10 +00001524
1525 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001526 // Loop the indices for the insertvalue instruction in parallel with the
1527 // requested indices
Jay Foadfc6d3a42011-07-13 10:26:04 +00001528 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001529 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1530 i != e; ++i, ++req_idx) {
Jay Foadfc6d3a42011-07-13 10:26:04 +00001531 if (req_idx == idx_range.end()) {
Chris Lattnerdf390282012-01-24 07:54:10 +00001532 // We can't handle this without inserting insertvalues
1533 if (!InsertBefore)
Matthijs Kooijman97728912008-06-16 13:28:31 +00001534 return 0;
Chris Lattnerdf390282012-01-24 07:54:10 +00001535
1536 // The requested index identifies a part of a nested aggregate. Handle
1537 // this specially. For example,
1538 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1539 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1540 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1541 // This can be changed into
1542 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1543 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1544 // which allows the unused 0,0 element from the nested struct to be
1545 // removed.
1546 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1547 InsertBefore);
Duncan Sands9954c762008-06-19 08:47:31 +00001548 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001549
1550 // This insert value inserts something else than what we are looking for.
1551 // See if the (aggregrate) value inserted into has the value we are
1552 // looking for, then.
1553 if (*req_idx != *i)
Jay Foadfc6d3a42011-07-13 10:26:04 +00001554 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001555 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001556 }
1557 // If we end up here, the indices of the insertvalue match with those
1558 // requested (though possibly only partially). Now we recursively look at
1559 // the inserted value, passing any remaining indices.
Jay Foadfc6d3a42011-07-13 10:26:04 +00001560 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001561 makeArrayRef(req_idx, idx_range.end()),
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001562 InsertBefore);
Chris Lattnerdf390282012-01-24 07:54:10 +00001563 }
1564
1565 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001566 // If we're extracting a value from an aggregrate that was extracted from
1567 // something else, we can extract from that something else directly instead.
1568 // However, we will need to chain I's indices with the requested indices.
1569
1570 // Calculate the number of indices required
Jay Foadfc6d3a42011-07-13 10:26:04 +00001571 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001572 // Allocate some space to put the new indices in
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001573 SmallVector<unsigned, 5> Idxs;
1574 Idxs.reserve(size);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001575 // Add indices from the extract value instruction
Jay Foadfc6d3a42011-07-13 10:26:04 +00001576 Idxs.append(I->idx_begin(), I->idx_end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001577
1578 // Add requested indices
Jay Foadfc6d3a42011-07-13 10:26:04 +00001579 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001580
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001581 assert(Idxs.size() == size
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001582 && "Number of indices added not correct?");
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001583
Jay Foadfc6d3a42011-07-13 10:26:04 +00001584 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001585 }
1586 // Otherwise, we don't know (such as, extracting from a function return value
1587 // or load instruction)
1588 return 0;
1589}
Evan Cheng0ff39b32008-06-30 07:31:25 +00001590
Chris Lattnered58a6f2010-11-30 22:25:26 +00001591/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1592/// it can be expressed as a base pointer plus a constant offset. Return the
1593/// base and offset to the caller.
1594Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Micah Villmow3574eca2012-10-08 16:38:25 +00001595 const DataLayout &TD) {
Chris Lattnered58a6f2010-11-30 22:25:26 +00001596 Operator *PtrOp = dyn_cast<Operator>(Ptr);
Nadav Rotem16087692011-12-05 06:29:09 +00001597 if (PtrOp == 0 || Ptr->getType()->isVectorTy())
1598 return Ptr;
Chris Lattnered58a6f2010-11-30 22:25:26 +00001599
1600 // Just look through bitcasts.
1601 if (PtrOp->getOpcode() == Instruction::BitCast)
1602 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1603
1604 // If this is a GEP with constant indices, we can look through it.
1605 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1606 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1607
1608 gep_type_iterator GTI = gep_type_begin(GEP);
1609 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1610 ++I, ++GTI) {
1611 ConstantInt *OpC = cast<ConstantInt>(*I);
1612 if (OpC->isZero()) continue;
1613
1614 // Handle a struct and array indices which add their offset to the pointer.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001615 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattnered58a6f2010-11-30 22:25:26 +00001616 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1617 } else {
1618 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1619 Offset += OpC->getSExtValue()*Size;
1620 }
1621 }
1622
1623 // Re-sign extend from the pointer size if needed to get overflow edge cases
1624 // right.
Micah Villmow2c39b152012-10-15 16:24:29 +00001625 unsigned AS = GEP->getPointerAddressSpace();
1626 unsigned PtrSize = TD.getPointerSizeInBits(AS);
Chris Lattnered58a6f2010-11-30 22:25:26 +00001627 if (PtrSize < 64)
Richard Smith1144af32012-08-24 23:29:28 +00001628 Offset = SignExtend64(Offset, PtrSize);
Chris Lattnered58a6f2010-11-30 22:25:26 +00001629
1630 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1631}
1632
1633
Chris Lattner18c7f802012-02-05 02:29:43 +00001634/// getConstantStringInfo - This function computes the length of a
Evan Cheng0ff39b32008-06-30 07:31:25 +00001635/// null-terminated C string pointed to by V. If successful, it returns true
1636/// and returns the string in Str. If unsuccessful, it returns false.
Chris Lattner18c7f802012-02-05 02:29:43 +00001637bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1638 uint64_t Offset, bool TrimAtNul) {
1639 assert(V);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001640
Chris Lattner18c7f802012-02-05 02:29:43 +00001641 // Look through bitcast instructions and geps.
1642 V = V->stripPointerCasts();
Bill Wendling0582ae92009-03-13 04:39:26 +00001643
Chris Lattner18c7f802012-02-05 02:29:43 +00001644 // If the value is a GEP instructionor constant expression, treat it as an
1645 // offset.
1646 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001647 // Make sure the GEP has exactly three arguments.
Bill Wendling0582ae92009-03-13 04:39:26 +00001648 if (GEP->getNumOperands() != 3)
1649 return false;
1650
Evan Cheng0ff39b32008-06-30 07:31:25 +00001651 // Make sure the index-ee is a pointer to array of i8.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001652 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1653 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001654 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
Bill Wendling0582ae92009-03-13 04:39:26 +00001655 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001656
1657 // Check to make sure that the first operand of the GEP is an integer and
1658 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001659 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Bill Wendling0582ae92009-03-13 04:39:26 +00001660 if (FirstIdx == 0 || !FirstIdx->isZero())
1661 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001662
1663 // If the second index isn't a ConstantInt, then this is a variable index
1664 // into the array. If this occurs, we can't say anything meaningful about
1665 // the string.
1666 uint64_t StartIdx = 0;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001667 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Cheng0ff39b32008-06-30 07:31:25 +00001668 StartIdx = CI->getZExtValue();
Bill Wendling0582ae92009-03-13 04:39:26 +00001669 else
1670 return false;
Chris Lattner18c7f802012-02-05 02:29:43 +00001671 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001672 }
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001673
Evan Cheng0ff39b32008-06-30 07:31:25 +00001674 // The GEP instruction, constant or instruction, must reference a global
1675 // variable that is a constant and is initialized. The referenced constant
1676 // initializer is the array that we'll use for optimization.
Chris Lattner18c7f802012-02-05 02:29:43 +00001677 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman82555732009-08-19 18:20:44 +00001678 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendling0582ae92009-03-13 04:39:26 +00001679 return false;
Chris Lattner18c7f802012-02-05 02:29:43 +00001680
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001681 // Handle the all-zeros case
Chris Lattner18c7f802012-02-05 02:29:43 +00001682 if (GV->getInitializer()->isNullValue()) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001683 // This is a degenerate case. The initializer is constant zero so the
1684 // length of the string must be zero.
Chris Lattner18c7f802012-02-05 02:29:43 +00001685 Str = "";
Bill Wendling0582ae92009-03-13 04:39:26 +00001686 return true;
1687 }
Evan Cheng0ff39b32008-06-30 07:31:25 +00001688
1689 // Must be a Constant Array
Chris Lattner18c7f802012-02-05 02:29:43 +00001690 const ConstantDataArray *Array =
1691 dyn_cast<ConstantDataArray>(GV->getInitializer());
1692 if (Array == 0 || !Array->isString())
Bill Wendling0582ae92009-03-13 04:39:26 +00001693 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001694
1695 // Get the number of elements in the array
Chris Lattner18c7f802012-02-05 02:29:43 +00001696 uint64_t NumElts = Array->getType()->getArrayNumElements();
1697
1698 // Start out with the entire array in the StringRef.
1699 Str = Array->getAsString();
1700
Bill Wendling0582ae92009-03-13 04:39:26 +00001701 if (Offset > NumElts)
1702 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001703
Chris Lattner18c7f802012-02-05 02:29:43 +00001704 // Skip over 'offset' bytes.
1705 Str = Str.substr(Offset);
Argyrios Kyrtzidis91766fe2012-02-01 04:51:17 +00001706
Chris Lattner18c7f802012-02-05 02:29:43 +00001707 if (TrimAtNul) {
1708 // Trim off the \0 and anything after it. If the array is not nul
1709 // terminated, we just return the whole end of string. The client may know
1710 // some other way that the string is length-bound.
1711 Str = Str.substr(0, Str.find('\0'));
1712 }
Bill Wendling0582ae92009-03-13 04:39:26 +00001713 return true;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001714}
Eric Christopher25ec4832010-03-05 06:58:57 +00001715
1716// These next two are very similar to the above, but also look through PHI
1717// nodes.
1718// TODO: See if we can integrate these two together.
1719
1720/// GetStringLengthH - If we can compute the length of the string pointed to by
1721/// the specified pointer, return 'len+1'. If we can't, return 0.
1722static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1723 // Look through noop bitcast instructions.
Chris Lattner18c7f802012-02-05 02:29:43 +00001724 V = V->stripPointerCasts();
Eric Christopher25ec4832010-03-05 06:58:57 +00001725
1726 // If this is a PHI node, there are two cases: either we have already seen it
1727 // or we haven't.
1728 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1729 if (!PHIs.insert(PN))
1730 return ~0ULL; // already in the set.
1731
1732 // If it was new, see if all the input strings are the same length.
1733 uint64_t LenSoFar = ~0ULL;
1734 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1735 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1736 if (Len == 0) return 0; // Unknown length -> unknown.
1737
1738 if (Len == ~0ULL) continue;
1739
1740 if (Len != LenSoFar && LenSoFar != ~0ULL)
1741 return 0; // Disagree -> unknown.
1742 LenSoFar = Len;
1743 }
1744
1745 // Success, all agree.
1746 return LenSoFar;
1747 }
1748
1749 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1750 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1751 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1752 if (Len1 == 0) return 0;
1753 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1754 if (Len2 == 0) return 0;
1755 if (Len1 == ~0ULL) return Len2;
1756 if (Len2 == ~0ULL) return Len1;
1757 if (Len1 != Len2) return 0;
1758 return Len1;
1759 }
Chris Lattner18c7f802012-02-05 02:29:43 +00001760
1761 // Otherwise, see if we can read the string.
1762 StringRef StrData;
1763 if (!getConstantStringInfo(V, StrData))
Eric Christopher25ec4832010-03-05 06:58:57 +00001764 return 0;
1765
Chris Lattner18c7f802012-02-05 02:29:43 +00001766 return StrData.size()+1;
Eric Christopher25ec4832010-03-05 06:58:57 +00001767}
1768
1769/// GetStringLength - If we can compute the length of the string pointed to by
1770/// the specified pointer, return 'len+1'. If we can't, return 0.
1771uint64_t llvm::GetStringLength(Value *V) {
1772 if (!V->getType()->isPointerTy()) return 0;
1773
1774 SmallPtrSet<PHINode*, 32> PHIs;
1775 uint64_t Len = GetStringLengthH(V, PHIs);
1776 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1777 // an empty string as a length.
1778 return Len == ~0ULL ? 1 : Len;
1779}
Dan Gohman5034dd32010-12-15 20:02:24 +00001780
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001781Value *
Micah Villmow3574eca2012-10-08 16:38:25 +00001782llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohman5034dd32010-12-15 20:02:24 +00001783 if (!V->getType()->isPointerTy())
1784 return V;
1785 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1786 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1787 V = GEP->getPointerOperand();
1788 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1789 V = cast<Operator>(V)->getOperand(0);
1790 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1791 if (GA->mayBeOverridden())
1792 return V;
1793 V = GA->getAliasee();
1794 } else {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001795 // See if InstructionSimplify knows any relevant tricks.
1796 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001797 // TODO: Acquire a DominatorTree and use it.
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001798 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001799 V = Simplified;
1800 continue;
1801 }
1802
Dan Gohman5034dd32010-12-15 20:02:24 +00001803 return V;
1804 }
1805 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1806 }
1807 return V;
1808}
Nick Lewycky99e0b2a2011-06-27 04:20:45 +00001809
Dan Gohmanb401e3b2012-05-10 18:57:38 +00001810void
1811llvm::GetUnderlyingObjects(Value *V,
1812 SmallVectorImpl<Value *> &Objects,
Micah Villmow3574eca2012-10-08 16:38:25 +00001813 const DataLayout *TD,
Dan Gohmanb401e3b2012-05-10 18:57:38 +00001814 unsigned MaxLookup) {
1815 SmallPtrSet<Value *, 4> Visited;
1816 SmallVector<Value *, 4> Worklist;
1817 Worklist.push_back(V);
1818 do {
1819 Value *P = Worklist.pop_back_val();
1820 P = GetUnderlyingObject(P, TD, MaxLookup);
1821
1822 if (!Visited.insert(P))
1823 continue;
1824
1825 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1826 Worklist.push_back(SI->getTrueValue());
1827 Worklist.push_back(SI->getFalseValue());
1828 continue;
1829 }
1830
1831 if (PHINode *PN = dyn_cast<PHINode>(P)) {
1832 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1833 Worklist.push_back(PN->getIncomingValue(i));
1834 continue;
1835 }
1836
1837 Objects.push_back(P);
1838 } while (!Worklist.empty());
1839}
1840
Nick Lewycky99e0b2a2011-06-27 04:20:45 +00001841/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1842/// are lifetime markers.
1843///
1844bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1845 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1846 UI != UE; ++UI) {
1847 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1848 if (!II) return false;
1849
1850 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1851 II->getIntrinsicID() != Intrinsic::lifetime_end)
1852 return false;
1853 }
1854 return true;
1855}
Dan Gohmanf0426602011-12-14 23:49:11 +00001856
Dan Gohmanfebaf842012-01-04 23:01:09 +00001857bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmow3574eca2012-10-08 16:38:25 +00001858 const DataLayout *TD) {
Dan Gohmanfebaf842012-01-04 23:01:09 +00001859 const Operator *Inst = dyn_cast<Operator>(V);
1860 if (!Inst)
1861 return false;
1862
Dan Gohmanf0426602011-12-14 23:49:11 +00001863 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1864 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1865 if (C->canTrap())
1866 return false;
1867
1868 switch (Inst->getOpcode()) {
1869 default:
1870 return true;
1871 case Instruction::UDiv:
1872 case Instruction::URem:
1873 // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1874 return isKnownNonZero(Inst->getOperand(1), TD);
1875 case Instruction::SDiv:
1876 case Instruction::SRem: {
1877 Value *Op = Inst->getOperand(1);
1878 // x / y is undefined if y == 0
1879 if (!isKnownNonZero(Op, TD))
1880 return false;
1881 // x / y might be undefined if y == -1
1882 unsigned BitWidth = getBitWidth(Op->getType(), TD);
1883 if (BitWidth == 0)
1884 return false;
1885 APInt KnownZero(BitWidth, 0);
1886 APInt KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001887 ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
Dan Gohmanf0426602011-12-14 23:49:11 +00001888 return !!KnownZero;
1889 }
1890 case Instruction::Load: {
1891 const LoadInst *LI = cast<LoadInst>(Inst);
1892 if (!LI->isUnordered())
1893 return false;
1894 return LI->getPointerOperand()->isDereferenceablePointer();
1895 }
Nick Lewycky83696872011-12-21 05:52:02 +00001896 case Instruction::Call: {
1897 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
1898 switch (II->getIntrinsicID()) {
Chandler Carruthc0d18b62012-04-07 19:22:18 +00001899 // These synthetic intrinsics have no side-effects, and just mark
1900 // information about their operands.
1901 // FIXME: There are other no-op synthetic instructions that potentially
1902 // should be considered at least *safe* to speculate...
1903 case Intrinsic::dbg_declare:
1904 case Intrinsic::dbg_value:
1905 return true;
1906
Nick Lewycky83696872011-12-21 05:52:02 +00001907 case Intrinsic::bswap:
1908 case Intrinsic::ctlz:
1909 case Intrinsic::ctpop:
1910 case Intrinsic::cttz:
1911 case Intrinsic::objectsize:
1912 case Intrinsic::sadd_with_overflow:
1913 case Intrinsic::smul_with_overflow:
1914 case Intrinsic::ssub_with_overflow:
1915 case Intrinsic::uadd_with_overflow:
1916 case Intrinsic::umul_with_overflow:
1917 case Intrinsic::usub_with_overflow:
1918 return true;
1919 // TODO: some fp intrinsics are marked as having the same error handling
1920 // as libm. They're safe to speculate when they won't error.
1921 // TODO: are convert_{from,to}_fp16 safe?
1922 // TODO: can we list target-specific intrinsics here?
1923 default: break;
1924 }
1925 }
Dan Gohmanf0426602011-12-14 23:49:11 +00001926 return false; // The called function could have undefined behavior or
Nick Lewycky83696872011-12-21 05:52:02 +00001927 // side-effects, even if marked readnone nounwind.
1928 }
Dan Gohmanf0426602011-12-14 23:49:11 +00001929 case Instruction::VAArg:
1930 case Instruction::Alloca:
1931 case Instruction::Invoke:
1932 case Instruction::PHI:
1933 case Instruction::Store:
1934 case Instruction::Ret:
1935 case Instruction::Br:
1936 case Instruction::IndirectBr:
1937 case Instruction::Switch:
Dan Gohmanf0426602011-12-14 23:49:11 +00001938 case Instruction::Unreachable:
1939 case Instruction::Fence:
1940 case Instruction::LandingPad:
1941 case Instruction::AtomicRMW:
1942 case Instruction::AtomicCmpXchg:
1943 case Instruction::Resume:
1944 return false; // Misc instructions which have effects
1945 }
1946}