blob: 50ee474339325674d6e203bc95b04bcff6eae709 [file] [log] [blame]
Chris Lattnerd28b0d72004-06-25 04:24:22 +00001//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
Chris Lattnere995a2a2004-05-23 21:00:47 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a very simple implementation of Andersen's interprocedural
11// alias analysis. This implementation does not include any of the fancy
12// features that make Andersen's reasonably efficient (like cycle elimination or
13// variable substitution), but it should be useful for getting precision
14// numbers and can be extended in the future.
15//
16// In pointer analysis terms, this is a subset-based, flow-insensitive,
17// field-insensitive, and context-insensitive algorithm pointer algorithm.
18//
19// This algorithm is implemented as three stages:
20// 1. Object identification.
21// 2. Inclusion constraint identification.
22// 3. Inclusion constraint solving.
23//
24// The object identification stage identifies all of the memory objects in the
25// program, which includes globals, heap allocated objects, and stack allocated
26// objects.
27//
28// The inclusion constraint identification stage finds all inclusion constraints
29// in the program by scanning the program, looking for pointer assignments and
30// other statements that effect the points-to graph. For a statement like "A =
31// B", this statement is processed to indicate that A can point to anything that
32// B can point to. Constraints can handle copies, loads, and stores.
33//
34// The inclusion constraint solving phase iteratively propagates the inclusion
35// constraints until a fixed point is reached. This is an O(N^3) algorithm.
36//
37// In the initial pass, all indirect function calls are completely ignored. As
38// the analysis discovers new targets of function pointers, it iteratively
39// resolves a precise (and conservative) call graph. Also related, this
40// analysis initially assumes that all internal functions have known incoming
41// pointers. If we find that an internal function's address escapes outside of
42// the program, we update this assumption.
43//
Chris Lattnerc7ca32b2004-06-05 20:12:36 +000044// Future Improvements:
45// This implementation of Andersen's algorithm is extremely slow. To make it
46// scale reasonably well, the inclusion constraints could be sorted (easy),
47// offline variable substitution would be a huge win (straight-forward), and
48// online cycle elimination (trickier) might help as well.
49//
Chris Lattnere995a2a2004-05-23 21:00:47 +000050//===----------------------------------------------------------------------===//
51
52#define DEBUG_TYPE "anders-aa"
53#include "llvm/Constants.h"
54#include "llvm/DerivedTypes.h"
55#include "llvm/Instructions.h"
56#include "llvm/Module.h"
57#include "llvm/Pass.h"
58#include "llvm/Support/InstIterator.h"
59#include "llvm/Support/InstVisitor.h"
60#include "llvm/Analysis/AliasAnalysis.h"
Jeff Cohen534927d2005-01-08 22:01:16 +000061#include "llvm/Analysis/Passes.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000062#include "llvm/Support/Debug.h"
63#include "llvm/ADT/Statistic.h"
Chris Lattnere995a2a2004-05-23 21:00:47 +000064#include <set>
65using namespace llvm;
66
67namespace {
68 Statistic<>
69 NumIters("anders-aa", "Number of iterations to reach convergence");
70 Statistic<>
71 NumConstraints("anders-aa", "Number of constraints");
72 Statistic<>
73 NumNodes("anders-aa", "Number of nodes");
74 Statistic<>
75 NumEscapingFunctions("anders-aa", "Number of internal functions that escape");
76 Statistic<>
77 NumIndirectCallees("anders-aa", "Number of indirect callees found");
78
Chris Lattnerb12914b2004-09-20 04:48:05 +000079 class Andersens : public ModulePass, public AliasAnalysis,
Chris Lattnere995a2a2004-05-23 21:00:47 +000080 private InstVisitor<Andersens> {
81 /// Node class - This class is used to represent a memory object in the
82 /// program, and is the primitive used to build the points-to graph.
83 class Node {
84 std::vector<Node*> Pointees;
85 Value *Val;
86 public:
87 Node() : Val(0) {}
88 Node *setValue(Value *V) {
89 assert(Val == 0 && "Value already set for this node!");
90 Val = V;
91 return this;
92 }
93
94 /// getValue - Return the LLVM value corresponding to this node.
Chris Lattnerc3c9fd02005-03-28 04:03:52 +000095 ///
Chris Lattnere995a2a2004-05-23 21:00:47 +000096 Value *getValue() const { return Val; }
97
98 typedef std::vector<Node*>::const_iterator iterator;
99 iterator begin() const { return Pointees.begin(); }
100 iterator end() const { return Pointees.end(); }
101
102 /// addPointerTo - Add a pointer to the list of pointees of this node,
103 /// returning true if this caused a new pointer to be added, or false if
104 /// we already knew about the points-to relation.
105 bool addPointerTo(Node *N) {
106 std::vector<Node*>::iterator I = std::lower_bound(Pointees.begin(),
107 Pointees.end(),
108 N);
109 if (I != Pointees.end() && *I == N)
110 return false;
111 Pointees.insert(I, N);
112 return true;
113 }
114
115 /// intersects - Return true if the points-to set of this node intersects
116 /// with the points-to set of the specified node.
117 bool intersects(Node *N) const;
118
119 /// intersectsIgnoring - Return true if the points-to set of this node
120 /// intersects with the points-to set of the specified node on any nodes
121 /// except for the specified node to ignore.
122 bool intersectsIgnoring(Node *N, Node *Ignoring) const;
123
124 // Constraint application methods.
125 bool copyFrom(Node *N);
126 bool loadFrom(Node *N);
127 bool storeThrough(Node *N);
128 };
129
130 /// GraphNodes - This vector is populated as part of the object
131 /// identification stage of the analysis, which populates this vector with a
132 /// node for each memory object and fills in the ValueNodes map.
133 std::vector<Node> GraphNodes;
134
135 /// ValueNodes - This map indicates the Node that a particular Value* is
136 /// represented by. This contains entries for all pointers.
137 std::map<Value*, unsigned> ValueNodes;
138
139 /// ObjectNodes - This map contains entries for each memory object in the
140 /// program: globals, alloca's and mallocs.
141 std::map<Value*, unsigned> ObjectNodes;
142
143 /// ReturnNodes - This map contains an entry for each function in the
144 /// program that returns a value.
145 std::map<Function*, unsigned> ReturnNodes;
146
147 /// VarargNodes - This map contains the entry used to represent all pointers
148 /// passed through the varargs portion of a function call for a particular
149 /// function. An entry is not present in this map for functions that do not
150 /// take variable arguments.
151 std::map<Function*, unsigned> VarargNodes;
152
153 /// Constraint - Objects of this structure are used to represent the various
154 /// constraints identified by the algorithm. The constraints are 'copy',
155 /// for statements like "A = B", 'load' for statements like "A = *B", and
156 /// 'store' for statements like "*A = B".
157 struct Constraint {
158 enum ConstraintType { Copy, Load, Store } Type;
159 Node *Dest, *Src;
160
161 Constraint(ConstraintType Ty, Node *D, Node *S)
162 : Type(Ty), Dest(D), Src(S) {}
163 };
164
165 /// Constraints - This vector contains a list of all of the constraints
166 /// identified by the program.
167 std::vector<Constraint> Constraints;
168
169 /// EscapingInternalFunctions - This set contains all of the internal
170 /// functions that are found to escape from the program. If the address of
171 /// an internal function is passed to an external function or otherwise
172 /// escapes from the analyzed portion of the program, we must assume that
173 /// any pointer arguments can alias the universal node. This set keeps
174 /// track of those functions we are assuming to escape so far.
175 std::set<Function*> EscapingInternalFunctions;
176
177 /// IndirectCalls - This contains a list of all of the indirect call sites
178 /// in the program. Since the call graph is iteratively discovered, we may
179 /// need to add constraints to our graph as we find new targets of function
180 /// pointers.
181 std::vector<CallSite> IndirectCalls;
182
183 /// IndirectCallees - For each call site in the indirect calls list, keep
184 /// track of the callees that we have discovered so far. As the analysis
185 /// proceeds, more callees are discovered, until the call graph finally
186 /// stabilizes.
187 std::map<CallSite, std::vector<Function*> > IndirectCallees;
188
189 /// This enum defines the GraphNodes indices that correspond to important
190 /// fixed sets.
191 enum {
192 UniversalSet = 0,
193 NullPtr = 1,
194 NullObject = 2,
195 };
196
197 public:
Chris Lattnerb12914b2004-09-20 04:48:05 +0000198 bool runOnModule(Module &M) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000199 InitializeAliasAnalysis(this);
200 IdentifyObjects(M);
201 CollectConstraints(M);
202 DEBUG(PrintConstraints());
203 SolveConstraints();
204 DEBUG(PrintPointsToGraph());
205
206 // Free the constraints list, as we don't need it to respond to alias
207 // requests.
208 ObjectNodes.clear();
209 ReturnNodes.clear();
210 VarargNodes.clear();
211 EscapingInternalFunctions.clear();
212 std::vector<Constraint>().swap(Constraints);
213 return false;
214 }
215
216 void releaseMemory() {
217 // FIXME: Until we have transitively required passes working correctly,
218 // this cannot be enabled! Otherwise, using -count-aa with the pass
219 // causes memory to be freed too early. :(
220#if 0
221 // The memory objects and ValueNodes data structures at the only ones that
222 // are still live after construction.
223 std::vector<Node>().swap(GraphNodes);
224 ValueNodes.clear();
225#endif
226 }
227
228 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
229 AliasAnalysis::getAnalysisUsage(AU);
230 AU.setPreservesAll(); // Does not transform code
231 }
232
233 //------------------------------------------------
234 // Implement the AliasAnalysis API
235 //
236 AliasResult alias(const Value *V1, unsigned V1Size,
237 const Value *V2, unsigned V2Size);
Chris Lattnerf392c642005-03-28 06:21:17 +0000238 ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000239 void getMustAliases(Value *P, std::vector<Value*> &RetVals);
240 bool pointsToConstantMemory(const Value *P);
241
242 virtual void deleteValue(Value *V) {
243 ValueNodes.erase(V);
244 getAnalysis<AliasAnalysis>().deleteValue(V);
245 }
246
247 virtual void copyValue(Value *From, Value *To) {
248 ValueNodes[To] = ValueNodes[From];
249 getAnalysis<AliasAnalysis>().copyValue(From, To);
250 }
251
252 private:
253 /// getNode - Return the node corresponding to the specified pointer scalar.
254 ///
255 Node *getNode(Value *V) {
256 if (Constant *C = dyn_cast<Constant>(V))
Chris Lattnerdf9b7bc2004-08-16 05:38:02 +0000257 if (!isa<GlobalValue>(C))
258 return getNodeForConstantPointer(C);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000259
260 std::map<Value*, unsigned>::iterator I = ValueNodes.find(V);
261 if (I == ValueNodes.end()) {
262 V->dump();
263 assert(I != ValueNodes.end() &&
264 "Value does not have a node in the points-to graph!");
265 }
266 return &GraphNodes[I->second];
267 }
268
269 /// getObject - Return the node corresponding to the memory object for the
270 /// specified global or allocation instruction.
271 Node *getObject(Value *V) {
272 std::map<Value*, unsigned>::iterator I = ObjectNodes.find(V);
273 assert(I != ObjectNodes.end() &&
274 "Value does not have an object in the points-to graph!");
275 return &GraphNodes[I->second];
276 }
277
278 /// getReturnNode - Return the node representing the return value for the
279 /// specified function.
280 Node *getReturnNode(Function *F) {
281 std::map<Function*, unsigned>::iterator I = ReturnNodes.find(F);
282 assert(I != ReturnNodes.end() && "Function does not return a value!");
283 return &GraphNodes[I->second];
284 }
285
286 /// getVarargNode - Return the node representing the variable arguments
287 /// formal for the specified function.
288 Node *getVarargNode(Function *F) {
289 std::map<Function*, unsigned>::iterator I = VarargNodes.find(F);
290 assert(I != VarargNodes.end() && "Function does not take var args!");
291 return &GraphNodes[I->second];
292 }
293
294 /// getNodeValue - Get the node for the specified LLVM value and set the
295 /// value for it to be the specified value.
296 Node *getNodeValue(Value &V) {
297 return getNode(&V)->setValue(&V);
298 }
299
300 void IdentifyObjects(Module &M);
301 void CollectConstraints(Module &M);
302 void SolveConstraints();
303
304 Node *getNodeForConstantPointer(Constant *C);
305 Node *getNodeForConstantPointerTarget(Constant *C);
306 void AddGlobalInitializerConstraints(Node *N, Constant *C);
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000307
Chris Lattnere995a2a2004-05-23 21:00:47 +0000308 void AddConstraintsForNonInternalLinkage(Function *F);
309 void AddConstraintsForCall(CallSite CS, Function *F);
Chris Lattner8a446432005-03-29 06:09:07 +0000310 bool AddConstraintsForExternalCall(CallSite CS, Function *F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000311
312
313 void PrintNode(Node *N);
314 void PrintConstraints();
315 void PrintPointsToGraph();
316
317 //===------------------------------------------------------------------===//
318 // Instruction visitation methods for adding constraints
319 //
320 friend class InstVisitor<Andersens>;
321 void visitReturnInst(ReturnInst &RI);
322 void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
323 void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
324 void visitCallSite(CallSite CS);
325 void visitAllocationInst(AllocationInst &AI);
326 void visitLoadInst(LoadInst &LI);
327 void visitStoreInst(StoreInst &SI);
328 void visitGetElementPtrInst(GetElementPtrInst &GEP);
329 void visitPHINode(PHINode &PN);
330 void visitCastInst(CastInst &CI);
Chris Lattner4de57fd2005-03-29 06:52:20 +0000331 void visitSetCondInst(SetCondInst &SCI) {} // NOOP!
Chris Lattnere995a2a2004-05-23 21:00:47 +0000332 void visitSelectInst(SelectInst &SI);
333 void visitVANext(VANextInst &I);
334 void visitVAArg(VAArgInst &I);
335 void visitInstruction(Instruction &I);
336 };
337
338 RegisterOpt<Andersens> X("anders-aa",
339 "Andersen's Interprocedural Alias Analysis");
340 RegisterAnalysisGroup<AliasAnalysis, Andersens> Y;
341}
342
Jeff Cohen534927d2005-01-08 22:01:16 +0000343ModulePass *llvm::createAndersensPass() { return new Andersens(); }
344
Chris Lattnere995a2a2004-05-23 21:00:47 +0000345//===----------------------------------------------------------------------===//
346// AliasAnalysis Interface Implementation
347//===----------------------------------------------------------------------===//
348
349AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
350 const Value *V2, unsigned V2Size) {
Chris Lattnerf392c642005-03-28 06:21:17 +0000351 Node *N1 = getNode(const_cast<Value*>(V1));
352 Node *N2 = getNode(const_cast<Value*>(V2));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000353
354 // Check to see if the two pointers are known to not alias. They don't alias
355 // if their points-to sets do not intersect.
356 if (!N1->intersectsIgnoring(N2, &GraphNodes[NullObject]))
357 return NoAlias;
358
359 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
360}
361
Chris Lattnerf392c642005-03-28 06:21:17 +0000362AliasAnalysis::ModRefResult
363Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
364 // The only thing useful that we can contribute for mod/ref information is
365 // when calling external function calls: if we know that memory never escapes
366 // from the program, it cannot be modified by an external call.
367 //
368 // NOTE: This is not really safe, at least not when the entire program is not
369 // available. The deal is that the external function could call back into the
370 // program and modify stuff. We ignore this technical niggle for now. This
371 // is, after all, a "research quality" implementation of Andersen's analysis.
372 if (Function *F = CS.getCalledFunction())
373 if (F->isExternal()) {
374 Node *N1 = getNode(P);
375 bool PointsToUniversalSet = false;
376
Chris Lattner8a9763c2005-04-04 22:23:21 +0000377 if (N1->begin() == N1->end())
378 return NoModRef; // P doesn't point to anything.
Chris Lattnerf392c642005-03-28 06:21:17 +0000379
Chris Lattner8a9763c2005-04-04 22:23:21 +0000380 // Get the first pointee.
381 Node *FirstPointee = *N1->begin();
382 if (FirstPointee != &GraphNodes[UniversalSet])
Chris Lattnerf392c642005-03-28 06:21:17 +0000383 return NoModRef; // P doesn't point to the universal set.
384 }
385
386 return AliasAnalysis::getModRefInfo(CS, P, Size);
387}
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000388
Chris Lattnere995a2a2004-05-23 21:00:47 +0000389/// getMustAlias - We can provide must alias information if we know that a
390/// pointer can only point to a specific function or the null pointer.
391/// Unfortunately we cannot determine must-alias information for global
392/// variables or any other memory memory objects because we do not track whether
393/// a pointer points to the beginning of an object or a field of it.
394void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
395 Node *N = getNode(P);
396 Node::iterator I = N->begin();
397 if (I != N->end()) {
398 // If there is exactly one element in the points-to set for the object...
399 ++I;
400 if (I == N->end()) {
401 Node *Pointee = *N->begin();
402
403 // If a function is the only object in the points-to set, then it must be
404 // the destination. Note that we can't handle global variables here,
405 // because we don't know if the pointer is actually pointing to a field of
406 // the global or to the beginning of it.
407 if (Value *V = Pointee->getValue()) {
408 if (Function *F = dyn_cast<Function>(V))
409 RetVals.push_back(F);
410 } else {
411 // If the object in the points-to set is the null object, then the null
412 // pointer is a must alias.
413 if (Pointee == &GraphNodes[NullObject])
414 RetVals.push_back(Constant::getNullValue(P->getType()));
415 }
416 }
417 }
418
419 AliasAnalysis::getMustAliases(P, RetVals);
420}
421
422/// pointsToConstantMemory - If we can determine that this pointer only points
423/// to constant memory, return true. In practice, this means that if the
424/// pointer can only point to constant globals, functions, or the null pointer,
425/// return true.
426///
427bool Andersens::pointsToConstantMemory(const Value *P) {
428 Node *N = getNode((Value*)P);
429 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
430 if (Value *V = (*I)->getValue()) {
431 if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
432 !cast<GlobalVariable>(V)->isConstant()))
433 return AliasAnalysis::pointsToConstantMemory(P);
434 } else {
435 if (*I != &GraphNodes[NullObject])
436 return AliasAnalysis::pointsToConstantMemory(P);
437 }
438 }
439
440 return true;
441}
442
443//===----------------------------------------------------------------------===//
444// Object Identification Phase
445//===----------------------------------------------------------------------===//
446
447/// IdentifyObjects - This stage scans the program, adding an entry to the
448/// GraphNodes list for each memory object in the program (global stack or
449/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
450///
451void Andersens::IdentifyObjects(Module &M) {
452 unsigned NumObjects = 0;
453
454 // Object #0 is always the universal set: the object that we don't know
455 // anything about.
456 assert(NumObjects == UniversalSet && "Something changed!");
457 ++NumObjects;
458
459 // Object #1 always represents the null pointer.
460 assert(NumObjects == NullPtr && "Something changed!");
461 ++NumObjects;
462
463 // Object #2 always represents the null object (the object pointed to by null)
464 assert(NumObjects == NullObject && "Something changed!");
465 ++NumObjects;
466
467 // Add all the globals first.
Chris Lattner493f6362005-03-27 22:03:46 +0000468 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
469 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000470 ObjectNodes[I] = NumObjects++;
471 ValueNodes[I] = NumObjects++;
472 }
473
474 // Add nodes for all of the functions and the instructions inside of them.
475 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
476 // The function itself is a memory object.
477 ValueNodes[F] = NumObjects++;
478 ObjectNodes[F] = NumObjects++;
479 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
480 ReturnNodes[F] = NumObjects++;
481 if (F->getFunctionType()->isVarArg())
482 VarargNodes[F] = NumObjects++;
483
484 // Add nodes for all of the incoming pointer arguments.
Chris Lattner493f6362005-03-27 22:03:46 +0000485 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
486 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000487 if (isa<PointerType>(I->getType()))
488 ValueNodes[I] = NumObjects++;
489
490 // Scan the function body, creating a memory object for each heap/stack
491 // allocation in the body of the function and a node to represent all
492 // pointer values defined by instructions and used as operands.
493 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
494 // If this is an heap or stack allocation, create a node for the memory
495 // object.
496 if (isa<PointerType>(II->getType())) {
497 ValueNodes[&*II] = NumObjects++;
498 if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
499 ObjectNodes[AI] = NumObjects++;
500 }
501 }
502 }
503
504 // Now that we know how many objects to create, make them all now!
505 GraphNodes.resize(NumObjects);
506 NumNodes += NumObjects;
507}
508
509//===----------------------------------------------------------------------===//
510// Constraint Identification Phase
511//===----------------------------------------------------------------------===//
512
513/// getNodeForConstantPointer - Return the node corresponding to the constant
514/// pointer itself.
515Andersens::Node *Andersens::getNodeForConstantPointer(Constant *C) {
516 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
517
Chris Lattner267a1b02005-03-27 18:58:23 +0000518 if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
Chris Lattnere995a2a2004-05-23 21:00:47 +0000519 return &GraphNodes[NullPtr];
Reid Spencere8404342004-07-18 00:18:30 +0000520 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
521 return getNode(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000522 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
523 switch (CE->getOpcode()) {
524 case Instruction::GetElementPtr:
525 return getNodeForConstantPointer(CE->getOperand(0));
526 case Instruction::Cast:
527 if (isa<PointerType>(CE->getOperand(0)->getType()))
528 return getNodeForConstantPointer(CE->getOperand(0));
529 else
530 return &GraphNodes[UniversalSet];
531 default:
532 std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
533 assert(0);
534 }
535 } else {
536 assert(0 && "Unknown constant pointer!");
537 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000538 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000539}
540
541/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
542/// specified constant pointer.
543Andersens::Node *Andersens::getNodeForConstantPointerTarget(Constant *C) {
544 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
545
546 if (isa<ConstantPointerNull>(C))
547 return &GraphNodes[NullObject];
Reid Spencere8404342004-07-18 00:18:30 +0000548 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
549 return getObject(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000550 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
551 switch (CE->getOpcode()) {
552 case Instruction::GetElementPtr:
553 return getNodeForConstantPointerTarget(CE->getOperand(0));
554 case Instruction::Cast:
555 if (isa<PointerType>(CE->getOperand(0)->getType()))
556 return getNodeForConstantPointerTarget(CE->getOperand(0));
557 else
558 return &GraphNodes[UniversalSet];
559 default:
560 std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
561 assert(0);
562 }
563 } else {
564 assert(0 && "Unknown constant pointer!");
565 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000566 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000567}
568
569/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
570/// object N, which contains values indicated by C.
571void Andersens::AddGlobalInitializerConstraints(Node *N, Constant *C) {
572 if (C->getType()->isFirstClassType()) {
573 if (isa<PointerType>(C->getType()))
Chris Lattner76bc5ce2005-03-29 17:21:53 +0000574 N->copyFrom(getNodeForConstantPointer(C));
575
Chris Lattnere995a2a2004-05-23 21:00:47 +0000576 } else if (C->isNullValue()) {
577 N->addPointerTo(&GraphNodes[NullObject]);
578 return;
Chris Lattner8a446432005-03-29 06:09:07 +0000579 } else if (!isa<UndefValue>(C)) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000580 // If this is an array or struct, include constraints for each element.
581 assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
582 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
583 AddGlobalInitializerConstraints(N, cast<Constant>(C->getOperand(i)));
584 }
585}
586
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000587/// AddConstraintsForNonInternalLinkage - If this function does not have
588/// internal linkage, realize that we can't trust anything passed into or
589/// returned by this function.
Chris Lattnere995a2a2004-05-23 21:00:47 +0000590void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
Chris Lattnere4d5c442005-03-15 04:54:21 +0000591 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000592 if (isa<PointerType>(I->getType()))
593 // If this is an argument of an externally accessible function, the
594 // incoming pointer might point to anything.
595 Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
596 &GraphNodes[UniversalSet]));
597}
598
Chris Lattner8a446432005-03-29 06:09:07 +0000599/// AddConstraintsForCall - If this is a call to a "known" function, add the
600/// constraints and return true. If this is a call to an unknown function,
601/// return false.
602bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) {
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000603 assert(F->isExternal() && "Not an external function!");
604
605 // These functions don't induce any points-to constraints.
Chris Lattner175b9632005-03-29 20:36:05 +0000606 if (F->getName() == "atoi" || F->getName() == "atof" ||
607 F->getName() == "atol" || F->getName() == "atoll" ||
608 F->getName() == "remove" || F->getName() == "unlink" ||
609 F->getName() == "rename" || F->getName() == "memcmp" ||
610 F->getName() == "llvm.memset" ||
611 F->getName() == "strcmp" || F->getName() == "strncmp" ||
612 F->getName() == "execl" || F->getName() == "execlp" ||
613 F->getName() == "execle" || F->getName() == "execv" ||
614 F->getName() == "execvp" || F->getName() == "chmod" ||
615 F->getName() == "puts" || F->getName() == "write" ||
616 F->getName() == "open" || F->getName() == "create" ||
617 F->getName() == "truncate" || F->getName() == "chdir" ||
618 F->getName() == "mkdir" || F->getName() == "rmdir" ||
619 F->getName() == "read" || F->getName() == "pipe" ||
620 F->getName() == "wait" || F->getName() == "time" ||
621 F->getName() == "stat" || F->getName() == "fstat" ||
622 F->getName() == "lstat" || F->getName() == "strtod" ||
623 F->getName() == "strtof" || F->getName() == "strtold" ||
624 F->getName() == "fopen" || F->getName() == "fdopen" ||
625 F->getName() == "freopen" ||
626 F->getName() == "fflush" || F->getName() == "feof" ||
627 F->getName() == "fileno" || F->getName() == "clearerr" ||
628 F->getName() == "rewind" || F->getName() == "ftell" ||
629 F->getName() == "ferror" || F->getName() == "fgetc" ||
630 F->getName() == "fgetc" || F->getName() == "_IO_getc" ||
631 F->getName() == "fwrite" || F->getName() == "fread" ||
632 F->getName() == "fgets" || F->getName() == "ungetc" ||
633 F->getName() == "fputc" ||
634 F->getName() == "fputs" || F->getName() == "putc" ||
635 F->getName() == "ftell" || F->getName() == "rewind" ||
636 F->getName() == "_IO_putc" || F->getName() == "fseek" ||
637 F->getName() == "fgetpos" || F->getName() == "fsetpos" ||
638 F->getName() == "printf" || F->getName() == "fprintf" ||
639 F->getName() == "sprintf" || F->getName() == "vprintf" ||
640 F->getName() == "vfprintf" || F->getName() == "vsprintf" ||
641 F->getName() == "scanf" || F->getName() == "fscanf" ||
642 F->getName() == "sscanf" || F->getName() == "__assert_fail" ||
643 F->getName() == "modf")
Chris Lattner8a446432005-03-29 06:09:07 +0000644 return true;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000645
Chris Lattner175b9632005-03-29 20:36:05 +0000646
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000647 // These functions do induce points-to edges.
Chris Lattner4de57fd2005-03-29 06:52:20 +0000648 if (F->getName() == "llvm.memcpy" || F->getName() == "llvm.memmove" ||
649 F->getName() == "memmove") {
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000650 // Note: this is a poor approximation, this says Dest = Src, instead of
651 // *Dest = *Src.
Chris Lattner8a446432005-03-29 06:09:07 +0000652 Constraints.push_back(Constraint(Constraint::Copy,
653 getNode(CS.getArgument(0)),
654 getNode(CS.getArgument(1))));
655 return true;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000656 }
657
Chris Lattner77b50562005-03-29 20:04:24 +0000658 // Result = Arg0
659 if (F->getName() == "realloc" || F->getName() == "strchr" ||
660 F->getName() == "strrchr" || F->getName() == "strstr" ||
661 F->getName() == "strtok") {
Chris Lattner8a446432005-03-29 06:09:07 +0000662 Constraints.push_back(Constraint(Constraint::Copy,
663 getNode(CS.getInstruction()),
664 getNode(CS.getArgument(0))));
665 return true;
666 }
667
668 return false;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000669}
670
671
Chris Lattnere995a2a2004-05-23 21:00:47 +0000672
673/// CollectConstraints - This stage scans the program, adding a constraint to
674/// the Constraints list for each instruction in the program that induces a
675/// constraint, and setting up the initial points-to graph.
676///
677void Andersens::CollectConstraints(Module &M) {
678 // First, the universal set points to itself.
679 GraphNodes[UniversalSet].addPointerTo(&GraphNodes[UniversalSet]);
Chris Lattner4de57fd2005-03-29 06:52:20 +0000680 //Constraints.push_back(Constraint(Constraint::Load, &GraphNodes[UniversalSet],
681 // &GraphNodes[UniversalSet]));
Chris Lattnerf392c642005-03-28 06:21:17 +0000682 Constraints.push_back(Constraint(Constraint::Store, &GraphNodes[UniversalSet],
683 &GraphNodes[UniversalSet]));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000684
685 // Next, the null pointer points to the null object.
686 GraphNodes[NullPtr].addPointerTo(&GraphNodes[NullObject]);
687
688 // Next, add any constraints on global variables and their initializers.
Chris Lattner493f6362005-03-27 22:03:46 +0000689 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
690 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000691 // Associate the address of the global object as pointing to the memory for
692 // the global: &G = <G memory>
693 Node *Object = getObject(I);
694 Object->setValue(I);
695 getNodeValue(*I)->addPointerTo(Object);
696
697 if (I->hasInitializer()) {
698 AddGlobalInitializerConstraints(Object, I->getInitializer());
699 } else {
700 // If it doesn't have an initializer (i.e. it's defined in another
701 // translation unit), it points to the universal set.
702 Constraints.push_back(Constraint(Constraint::Copy, Object,
703 &GraphNodes[UniversalSet]));
704 }
705 }
706
707 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
708 // Make the function address point to the function object.
709 getNodeValue(*F)->addPointerTo(getObject(F)->setValue(F));
710
711 // Set up the return value node.
712 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
713 getReturnNode(F)->setValue(F);
714 if (F->getFunctionType()->isVarArg())
715 getVarargNode(F)->setValue(F);
716
717 // Set up incoming argument nodes.
Chris Lattner493f6362005-03-27 22:03:46 +0000718 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
719 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000720 if (isa<PointerType>(I->getType()))
721 getNodeValue(*I);
722
723 if (!F->hasInternalLinkage())
724 AddConstraintsForNonInternalLinkage(F);
725
726 if (!F->isExternal()) {
727 // Scan the function body, creating a memory object for each heap/stack
728 // allocation in the body of the function and a node to represent all
729 // pointer values defined by instructions and used as operands.
730 visit(F);
Chris Lattner8a446432005-03-29 06:09:07 +0000731 } else {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000732 // External functions that return pointers return the universal set.
733 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
734 Constraints.push_back(Constraint(Constraint::Copy,
735 getReturnNode(F),
736 &GraphNodes[UniversalSet]));
737
738 // Any pointers that are passed into the function have the universal set
739 // stored into them.
Chris Lattner493f6362005-03-27 22:03:46 +0000740 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
741 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000742 if (isa<PointerType>(I->getType())) {
743 // Pointers passed into external functions could have anything stored
744 // through them.
745 Constraints.push_back(Constraint(Constraint::Store, getNode(I),
746 &GraphNodes[UniversalSet]));
747 // Memory objects passed into external function calls can have the
748 // universal set point to them.
749 Constraints.push_back(Constraint(Constraint::Copy,
750 &GraphNodes[UniversalSet],
751 getNode(I)));
752 }
753
754 // If this is an external varargs function, it can also store pointers
755 // into any pointers passed through the varargs section.
756 if (F->getFunctionType()->isVarArg())
757 Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
758 &GraphNodes[UniversalSet]));
759 }
760 }
761 NumConstraints += Constraints.size();
762}
763
764
765void Andersens::visitInstruction(Instruction &I) {
766#ifdef NDEBUG
767 return; // This function is just a big assert.
768#endif
769 if (isa<BinaryOperator>(I))
770 return;
771 // Most instructions don't have any effect on pointer values.
772 switch (I.getOpcode()) {
773 case Instruction::Br:
774 case Instruction::Switch:
775 case Instruction::Unwind:
Chris Lattnerc17edbd2004-10-16 18:16:19 +0000776 case Instruction::Unreachable:
Chris Lattnere995a2a2004-05-23 21:00:47 +0000777 case Instruction::Free:
778 case Instruction::Shl:
779 case Instruction::Shr:
780 return;
781 default:
782 // Is this something we aren't handling yet?
783 std::cerr << "Unknown instruction: " << I;
784 abort();
785 }
786}
787
788void Andersens::visitAllocationInst(AllocationInst &AI) {
789 getNodeValue(AI)->addPointerTo(getObject(&AI)->setValue(&AI));
790}
791
792void Andersens::visitReturnInst(ReturnInst &RI) {
793 if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
794 // return V --> <Copy/retval{F}/v>
795 Constraints.push_back(Constraint(Constraint::Copy,
796 getReturnNode(RI.getParent()->getParent()),
797 getNode(RI.getOperand(0))));
798}
799
800void Andersens::visitLoadInst(LoadInst &LI) {
801 if (isa<PointerType>(LI.getType()))
802 // P1 = load P2 --> <Load/P1/P2>
803 Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
804 getNode(LI.getOperand(0))));
805}
806
807void Andersens::visitStoreInst(StoreInst &SI) {
808 if (isa<PointerType>(SI.getOperand(0)->getType()))
809 // store P1, P2 --> <Store/P2/P1>
810 Constraints.push_back(Constraint(Constraint::Store,
811 getNode(SI.getOperand(1)),
812 getNode(SI.getOperand(0))));
813}
814
815void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
816 // P1 = getelementptr P2, ... --> <Copy/P1/P2>
817 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
818 getNode(GEP.getOperand(0))));
819}
820
821void Andersens::visitPHINode(PHINode &PN) {
822 if (isa<PointerType>(PN.getType())) {
823 Node *PNN = getNodeValue(PN);
824 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
825 // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ...
826 Constraints.push_back(Constraint(Constraint::Copy, PNN,
827 getNode(PN.getIncomingValue(i))));
828 }
829}
830
831void Andersens::visitCastInst(CastInst &CI) {
832 Value *Op = CI.getOperand(0);
833 if (isa<PointerType>(CI.getType())) {
834 if (isa<PointerType>(Op->getType())) {
835 // P1 = cast P2 --> <Copy/P1/P2>
836 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
837 getNode(CI.getOperand(0))));
838 } else {
839 // P1 = cast int --> <Copy/P1/Univ>
Chris Lattner175b9632005-03-29 20:36:05 +0000840#if 0
Chris Lattnere995a2a2004-05-23 21:00:47 +0000841 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
842 &GraphNodes[UniversalSet]));
Chris Lattnerbd135c72005-04-05 01:12:03 +0000843#else
844 getNodeValue(CI);
Chris Lattner175b9632005-03-29 20:36:05 +0000845#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +0000846 }
847 } else if (isa<PointerType>(Op->getType())) {
848 // int = cast P1 --> <Copy/Univ/P1>
Chris Lattner175b9632005-03-29 20:36:05 +0000849#if 0
Chris Lattnere995a2a2004-05-23 21:00:47 +0000850 Constraints.push_back(Constraint(Constraint::Copy,
851 &GraphNodes[UniversalSet],
852 getNode(CI.getOperand(0))));
Chris Lattnerbd135c72005-04-05 01:12:03 +0000853#else
854 getNode(CI.getOperand(0));
Chris Lattner175b9632005-03-29 20:36:05 +0000855#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +0000856 }
857}
858
859void Andersens::visitSelectInst(SelectInst &SI) {
860 if (isa<PointerType>(SI.getType())) {
861 Node *SIN = getNodeValue(SI);
862 // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3>
863 Constraints.push_back(Constraint(Constraint::Copy, SIN,
864 getNode(SI.getOperand(1))));
865 Constraints.push_back(Constraint(Constraint::Copy, SIN,
866 getNode(SI.getOperand(2))));
867 }
868}
869
870void Andersens::visitVANext(VANextInst &I) {
871 // FIXME: Implement
872 assert(0 && "vanext not handled yet!");
873}
874void Andersens::visitVAArg(VAArgInst &I) {
875 assert(0 && "vaarg not handled yet!");
876}
877
878/// AddConstraintsForCall - Add constraints for a call with actual arguments
879/// specified by CS to the function specified by F. Note that the types of
880/// arguments might not match up in the case where this is an indirect call and
881/// the function pointer has been casted. If this is the case, do something
882/// reasonable.
883void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
Chris Lattner8a446432005-03-29 06:09:07 +0000884 // If this is a call to an external function, handle it directly to get some
885 // taste of context sensitivity.
886 if (F->isExternal() && AddConstraintsForExternalCall(CS, F))
887 return;
888
Chris Lattnere995a2a2004-05-23 21:00:47 +0000889 if (isa<PointerType>(CS.getType())) {
890 Node *CSN = getNode(CS.getInstruction());
891 if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
892 Constraints.push_back(Constraint(Constraint::Copy, CSN,
893 getReturnNode(F)));
894 } else {
895 // If the function returns a non-pointer value, handle this just like we
896 // treat a nonpointer cast to pointer.
897 Constraints.push_back(Constraint(Constraint::Copy, CSN,
898 &GraphNodes[UniversalSet]));
899 }
900 } else if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
901 Constraints.push_back(Constraint(Constraint::Copy,
902 &GraphNodes[UniversalSet],
903 getReturnNode(F)));
904 }
905
Chris Lattnere4d5c442005-03-15 04:54:21 +0000906 Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
Chris Lattnere995a2a2004-05-23 21:00:47 +0000907 CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
908 for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
909 if (isa<PointerType>(AI->getType())) {
910 if (isa<PointerType>((*ArgI)->getType())) {
911 // Copy the actual argument into the formal argument.
912 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
913 getNode(*ArgI)));
914 } else {
915 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
916 &GraphNodes[UniversalSet]));
917 }
918 } else if (isa<PointerType>((*ArgI)->getType())) {
919 Constraints.push_back(Constraint(Constraint::Copy,
920 &GraphNodes[UniversalSet],
921 getNode(*ArgI)));
922 }
923
924 // Copy all pointers passed through the varargs section to the varargs node.
925 if (F->getFunctionType()->isVarArg())
926 for (; ArgI != ArgE; ++ArgI)
927 if (isa<PointerType>((*ArgI)->getType()))
928 Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
929 getNode(*ArgI)));
930 // If more arguments are passed in than we track, just drop them on the floor.
931}
932
933void Andersens::visitCallSite(CallSite CS) {
934 if (isa<PointerType>(CS.getType()))
935 getNodeValue(*CS.getInstruction());
936
937 if (Function *F = CS.getCalledFunction()) {
938 AddConstraintsForCall(CS, F);
939 } else {
940 // We don't handle indirect call sites yet. Keep track of them for when we
941 // discover the call graph incrementally.
942 IndirectCalls.push_back(CS);
943 }
944}
945
946//===----------------------------------------------------------------------===//
947// Constraint Solving Phase
948//===----------------------------------------------------------------------===//
949
950/// intersects - Return true if the points-to set of this node intersects
951/// with the points-to set of the specified node.
952bool Andersens::Node::intersects(Node *N) const {
953 iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
954 while (I1 != E1 && I2 != E2) {
955 if (*I1 == *I2) return true;
956 if (*I1 < *I2)
957 ++I1;
958 else
959 ++I2;
960 }
961 return false;
962}
963
964/// intersectsIgnoring - Return true if the points-to set of this node
965/// intersects with the points-to set of the specified node on any nodes
966/// except for the specified node to ignore.
967bool Andersens::Node::intersectsIgnoring(Node *N, Node *Ignoring) const {
968 iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
969 while (I1 != E1 && I2 != E2) {
970 if (*I1 == *I2) {
971 if (*I1 != Ignoring) return true;
972 ++I1; ++I2;
973 } else if (*I1 < *I2)
974 ++I1;
975 else
976 ++I2;
977 }
978 return false;
979}
980
981// Copy constraint: all edges out of the source node get copied to the
982// destination node. This returns true if a change is made.
983bool Andersens::Node::copyFrom(Node *N) {
984 // Use a mostly linear-time merge since both of the lists are sorted.
985 bool Changed = false;
986 iterator I = N->begin(), E = N->end();
987 unsigned i = 0;
988 while (I != E && i != Pointees.size()) {
989 if (Pointees[i] < *I) {
990 ++i;
991 } else if (Pointees[i] == *I) {
992 ++i; ++I;
993 } else {
994 // We found a new element to copy over.
995 Changed = true;
996 Pointees.insert(Pointees.begin()+i, *I);
997 ++i; ++I;
998 }
999 }
1000
1001 if (I != E) {
1002 Pointees.insert(Pointees.end(), I, E);
1003 Changed = true;
1004 }
1005
1006 return Changed;
1007}
1008
1009bool Andersens::Node::loadFrom(Node *N) {
1010 bool Changed = false;
1011 for (iterator I = N->begin(), E = N->end(); I != E; ++I)
1012 Changed |= copyFrom(*I);
1013 return Changed;
1014}
1015
1016bool Andersens::Node::storeThrough(Node *N) {
1017 bool Changed = false;
1018 for (iterator I = begin(), E = end(); I != E; ++I)
1019 Changed |= (*I)->copyFrom(N);
1020 return Changed;
1021}
1022
1023
1024/// SolveConstraints - This stage iteratively processes the constraints list
1025/// propagating constraints (adding edges to the Nodes in the points-to graph)
1026/// until a fixed point is reached.
1027///
1028void Andersens::SolveConstraints() {
1029 bool Changed = true;
1030 unsigned Iteration = 0;
1031 while (Changed) {
1032 Changed = false;
1033 ++NumIters;
1034 DEBUG(std::cerr << "Starting iteration #" << Iteration++ << "!\n");
1035
1036 // Loop over all of the constraints, applying them in turn.
1037 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1038 Constraint &C = Constraints[i];
1039 switch (C.Type) {
1040 case Constraint::Copy:
1041 Changed |= C.Dest->copyFrom(C.Src);
1042 break;
1043 case Constraint::Load:
1044 Changed |= C.Dest->loadFrom(C.Src);
1045 break;
1046 case Constraint::Store:
1047 Changed |= C.Dest->storeThrough(C.Src);
1048 break;
1049 default:
1050 assert(0 && "Unknown constraint!");
1051 }
1052 }
1053
1054 if (Changed) {
1055 // Check to see if any internal function's addresses have been passed to
1056 // external functions. If so, we have to assume that their incoming
1057 // arguments could be anything. If there are any internal functions in
1058 // the universal node that we don't know about, we must iterate.
1059 for (Node::iterator I = GraphNodes[UniversalSet].begin(),
1060 E = GraphNodes[UniversalSet].end(); I != E; ++I)
1061 if (Function *F = dyn_cast_or_null<Function>((*I)->getValue()))
1062 if (F->hasInternalLinkage() &&
1063 EscapingInternalFunctions.insert(F).second) {
1064 // We found a function that is just now escaping. Mark it as if it
1065 // didn't have internal linkage.
1066 AddConstraintsForNonInternalLinkage(F);
1067 DEBUG(std::cerr << "Found escaping internal function: "
1068 << F->getName() << "\n");
1069 ++NumEscapingFunctions;
1070 }
1071
1072 // Check to see if we have discovered any new callees of the indirect call
1073 // sites. If so, add constraints to the analysis.
1074 for (unsigned i = 0, e = IndirectCalls.size(); i != e; ++i) {
1075 CallSite CS = IndirectCalls[i];
1076 std::vector<Function*> &KnownCallees = IndirectCallees[CS];
1077 Node *CN = getNode(CS.getCalledValue());
1078
1079 for (Node::iterator NI = CN->begin(), E = CN->end(); NI != E; ++NI)
1080 if (Function *F = dyn_cast_or_null<Function>((*NI)->getValue())) {
1081 std::vector<Function*>::iterator IP =
1082 std::lower_bound(KnownCallees.begin(), KnownCallees.end(), F);
1083 if (IP == KnownCallees.end() || *IP != F) {
1084 // Add the constraints for the call now.
1085 AddConstraintsForCall(CS, F);
1086 DEBUG(std::cerr << "Found actual callee '"
1087 << F->getName() << "' for call: "
1088 << *CS.getInstruction() << "\n");
1089 ++NumIndirectCallees;
1090 KnownCallees.insert(IP, F);
1091 }
1092 }
1093 }
1094 }
1095 }
1096}
1097
1098
1099
1100//===----------------------------------------------------------------------===//
1101// Debugging Output
1102//===----------------------------------------------------------------------===//
1103
1104void Andersens::PrintNode(Node *N) {
1105 if (N == &GraphNodes[UniversalSet]) {
1106 std::cerr << "<universal>";
1107 return;
1108 } else if (N == &GraphNodes[NullPtr]) {
1109 std::cerr << "<nullptr>";
1110 return;
1111 } else if (N == &GraphNodes[NullObject]) {
1112 std::cerr << "<null>";
1113 return;
1114 }
1115
1116 assert(N->getValue() != 0 && "Never set node label!");
1117 Value *V = N->getValue();
1118 if (Function *F = dyn_cast<Function>(V)) {
1119 if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
1120 N == getReturnNode(F)) {
1121 std::cerr << F->getName() << ":retval";
1122 return;
1123 } else if (F->getFunctionType()->isVarArg() && N == getVarargNode(F)) {
1124 std::cerr << F->getName() << ":vararg";
1125 return;
1126 }
1127 }
1128
1129 if (Instruction *I = dyn_cast<Instruction>(V))
1130 std::cerr << I->getParent()->getParent()->getName() << ":";
1131 else if (Argument *Arg = dyn_cast<Argument>(V))
1132 std::cerr << Arg->getParent()->getName() << ":";
1133
1134 if (V->hasName())
1135 std::cerr << V->getName();
1136 else
1137 std::cerr << "(unnamed)";
1138
1139 if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
1140 if (N == getObject(V))
1141 std::cerr << "<mem>";
1142}
1143
1144void Andersens::PrintConstraints() {
1145 std::cerr << "Constraints:\n";
1146 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1147 std::cerr << " #" << i << ": ";
1148 Constraint &C = Constraints[i];
1149 if (C.Type == Constraint::Store)
1150 std::cerr << "*";
1151 PrintNode(C.Dest);
1152 std::cerr << " = ";
1153 if (C.Type == Constraint::Load)
1154 std::cerr << "*";
1155 PrintNode(C.Src);
1156 std::cerr << "\n";
1157 }
1158}
1159
1160void Andersens::PrintPointsToGraph() {
1161 std::cerr << "Points-to graph:\n";
1162 for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
1163 Node *N = &GraphNodes[i];
1164 std::cerr << "[" << (N->end() - N->begin()) << "] ";
1165 PrintNode(N);
1166 std::cerr << "\t--> ";
1167 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
1168 if (I != N->begin()) std::cerr << ", ";
1169 PrintNode(*I);
1170 }
1171 std::cerr << "\n";
1172 }
1173}