blob: f1ad3b44cf6ff32946a000c02c265d136a0cb79d [file] [log] [blame]
Chris Lattnerd28b0d72004-06-25 04:24:22 +00001//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
Chris Lattnere995a2a2004-05-23 21:00:47 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a very simple implementation of Andersen's interprocedural
11// alias analysis. This implementation does not include any of the fancy
12// features that make Andersen's reasonably efficient (like cycle elimination or
13// variable substitution), but it should be useful for getting precision
14// numbers and can be extended in the future.
15//
16// In pointer analysis terms, this is a subset-based, flow-insensitive,
17// field-insensitive, and context-insensitive algorithm pointer algorithm.
18//
19// This algorithm is implemented as three stages:
20// 1. Object identification.
21// 2. Inclusion constraint identification.
22// 3. Inclusion constraint solving.
23//
24// The object identification stage identifies all of the memory objects in the
25// program, which includes globals, heap allocated objects, and stack allocated
26// objects.
27//
28// The inclusion constraint identification stage finds all inclusion constraints
29// in the program by scanning the program, looking for pointer assignments and
30// other statements that effect the points-to graph. For a statement like "A =
31// B", this statement is processed to indicate that A can point to anything that
32// B can point to. Constraints can handle copies, loads, and stores.
33//
34// The inclusion constraint solving phase iteratively propagates the inclusion
35// constraints until a fixed point is reached. This is an O(N^3) algorithm.
36//
37// In the initial pass, all indirect function calls are completely ignored. As
38// the analysis discovers new targets of function pointers, it iteratively
39// resolves a precise (and conservative) call graph. Also related, this
40// analysis initially assumes that all internal functions have known incoming
41// pointers. If we find that an internal function's address escapes outside of
42// the program, we update this assumption.
43//
Chris Lattnerc7ca32b2004-06-05 20:12:36 +000044// Future Improvements:
45// This implementation of Andersen's algorithm is extremely slow. To make it
46// scale reasonably well, the inclusion constraints could be sorted (easy),
47// offline variable substitution would be a huge win (straight-forward), and
48// online cycle elimination (trickier) might help as well.
49//
Chris Lattnere995a2a2004-05-23 21:00:47 +000050//===----------------------------------------------------------------------===//
51
52#define DEBUG_TYPE "anders-aa"
53#include "llvm/Constants.h"
54#include "llvm/DerivedTypes.h"
55#include "llvm/Instructions.h"
56#include "llvm/Module.h"
57#include "llvm/Pass.h"
58#include "llvm/Support/InstIterator.h"
59#include "llvm/Support/InstVisitor.h"
60#include "llvm/Analysis/AliasAnalysis.h"
Jeff Cohen534927d2005-01-08 22:01:16 +000061#include "llvm/Analysis/Passes.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000062#include "llvm/Support/Debug.h"
63#include "llvm/ADT/Statistic.h"
Chris Lattnere995a2a2004-05-23 21:00:47 +000064#include <set>
65using namespace llvm;
66
67namespace {
68 Statistic<>
69 NumIters("anders-aa", "Number of iterations to reach convergence");
70 Statistic<>
71 NumConstraints("anders-aa", "Number of constraints");
72 Statistic<>
73 NumNodes("anders-aa", "Number of nodes");
74 Statistic<>
75 NumEscapingFunctions("anders-aa", "Number of internal functions that escape");
76 Statistic<>
77 NumIndirectCallees("anders-aa", "Number of indirect callees found");
78
Chris Lattnerb12914b2004-09-20 04:48:05 +000079 class Andersens : public ModulePass, public AliasAnalysis,
Chris Lattnere995a2a2004-05-23 21:00:47 +000080 private InstVisitor<Andersens> {
81 /// Node class - This class is used to represent a memory object in the
82 /// program, and is the primitive used to build the points-to graph.
83 class Node {
84 std::vector<Node*> Pointees;
85 Value *Val;
86 public:
87 Node() : Val(0) {}
88 Node *setValue(Value *V) {
89 assert(Val == 0 && "Value already set for this node!");
90 Val = V;
91 return this;
92 }
93
94 /// getValue - Return the LLVM value corresponding to this node.
Chris Lattnerc3c9fd02005-03-28 04:03:52 +000095 ///
Chris Lattnere995a2a2004-05-23 21:00:47 +000096 Value *getValue() const { return Val; }
97
98 typedef std::vector<Node*>::const_iterator iterator;
99 iterator begin() const { return Pointees.begin(); }
100 iterator end() const { return Pointees.end(); }
101
102 /// addPointerTo - Add a pointer to the list of pointees of this node,
103 /// returning true if this caused a new pointer to be added, or false if
104 /// we already knew about the points-to relation.
105 bool addPointerTo(Node *N) {
106 std::vector<Node*>::iterator I = std::lower_bound(Pointees.begin(),
107 Pointees.end(),
108 N);
109 if (I != Pointees.end() && *I == N)
110 return false;
111 Pointees.insert(I, N);
112 return true;
113 }
114
115 /// intersects - Return true if the points-to set of this node intersects
116 /// with the points-to set of the specified node.
117 bool intersects(Node *N) const;
118
119 /// intersectsIgnoring - Return true if the points-to set of this node
120 /// intersects with the points-to set of the specified node on any nodes
121 /// except for the specified node to ignore.
122 bool intersectsIgnoring(Node *N, Node *Ignoring) const;
123
124 // Constraint application methods.
125 bool copyFrom(Node *N);
126 bool loadFrom(Node *N);
127 bool storeThrough(Node *N);
128 };
129
130 /// GraphNodes - This vector is populated as part of the object
131 /// identification stage of the analysis, which populates this vector with a
132 /// node for each memory object and fills in the ValueNodes map.
133 std::vector<Node> GraphNodes;
134
135 /// ValueNodes - This map indicates the Node that a particular Value* is
136 /// represented by. This contains entries for all pointers.
137 std::map<Value*, unsigned> ValueNodes;
138
139 /// ObjectNodes - This map contains entries for each memory object in the
140 /// program: globals, alloca's and mallocs.
141 std::map<Value*, unsigned> ObjectNodes;
142
143 /// ReturnNodes - This map contains an entry for each function in the
144 /// program that returns a value.
145 std::map<Function*, unsigned> ReturnNodes;
146
147 /// VarargNodes - This map contains the entry used to represent all pointers
148 /// passed through the varargs portion of a function call for a particular
149 /// function. An entry is not present in this map for functions that do not
150 /// take variable arguments.
151 std::map<Function*, unsigned> VarargNodes;
152
153 /// Constraint - Objects of this structure are used to represent the various
154 /// constraints identified by the algorithm. The constraints are 'copy',
155 /// for statements like "A = B", 'load' for statements like "A = *B", and
156 /// 'store' for statements like "*A = B".
157 struct Constraint {
158 enum ConstraintType { Copy, Load, Store } Type;
159 Node *Dest, *Src;
160
161 Constraint(ConstraintType Ty, Node *D, Node *S)
162 : Type(Ty), Dest(D), Src(S) {}
163 };
164
165 /// Constraints - This vector contains a list of all of the constraints
166 /// identified by the program.
167 std::vector<Constraint> Constraints;
168
169 /// EscapingInternalFunctions - This set contains all of the internal
170 /// functions that are found to escape from the program. If the address of
171 /// an internal function is passed to an external function or otherwise
172 /// escapes from the analyzed portion of the program, we must assume that
173 /// any pointer arguments can alias the universal node. This set keeps
174 /// track of those functions we are assuming to escape so far.
175 std::set<Function*> EscapingInternalFunctions;
176
177 /// IndirectCalls - This contains a list of all of the indirect call sites
178 /// in the program. Since the call graph is iteratively discovered, we may
179 /// need to add constraints to our graph as we find new targets of function
180 /// pointers.
181 std::vector<CallSite> IndirectCalls;
182
183 /// IndirectCallees - For each call site in the indirect calls list, keep
184 /// track of the callees that we have discovered so far. As the analysis
185 /// proceeds, more callees are discovered, until the call graph finally
186 /// stabilizes.
187 std::map<CallSite, std::vector<Function*> > IndirectCallees;
188
189 /// This enum defines the GraphNodes indices that correspond to important
190 /// fixed sets.
191 enum {
192 UniversalSet = 0,
193 NullPtr = 1,
194 NullObject = 2,
195 };
196
197 public:
Chris Lattnerb12914b2004-09-20 04:48:05 +0000198 bool runOnModule(Module &M) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000199 InitializeAliasAnalysis(this);
200 IdentifyObjects(M);
201 CollectConstraints(M);
202 DEBUG(PrintConstraints());
203 SolveConstraints();
204 DEBUG(PrintPointsToGraph());
205
206 // Free the constraints list, as we don't need it to respond to alias
207 // requests.
208 ObjectNodes.clear();
209 ReturnNodes.clear();
210 VarargNodes.clear();
211 EscapingInternalFunctions.clear();
212 std::vector<Constraint>().swap(Constraints);
213 return false;
214 }
215
216 void releaseMemory() {
217 // FIXME: Until we have transitively required passes working correctly,
218 // this cannot be enabled! Otherwise, using -count-aa with the pass
219 // causes memory to be freed too early. :(
220#if 0
221 // The memory objects and ValueNodes data structures at the only ones that
222 // are still live after construction.
223 std::vector<Node>().swap(GraphNodes);
224 ValueNodes.clear();
225#endif
226 }
227
228 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
229 AliasAnalysis::getAnalysisUsage(AU);
230 AU.setPreservesAll(); // Does not transform code
231 }
232
233 //------------------------------------------------
234 // Implement the AliasAnalysis API
235 //
236 AliasResult alias(const Value *V1, unsigned V1Size,
237 const Value *V2, unsigned V2Size);
Chris Lattnerf392c642005-03-28 06:21:17 +0000238 ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000239 void getMustAliases(Value *P, std::vector<Value*> &RetVals);
240 bool pointsToConstantMemory(const Value *P);
241
242 virtual void deleteValue(Value *V) {
243 ValueNodes.erase(V);
244 getAnalysis<AliasAnalysis>().deleteValue(V);
245 }
246
247 virtual void copyValue(Value *From, Value *To) {
248 ValueNodes[To] = ValueNodes[From];
249 getAnalysis<AliasAnalysis>().copyValue(From, To);
250 }
251
252 private:
253 /// getNode - Return the node corresponding to the specified pointer scalar.
254 ///
255 Node *getNode(Value *V) {
256 if (Constant *C = dyn_cast<Constant>(V))
Chris Lattnerdf9b7bc2004-08-16 05:38:02 +0000257 if (!isa<GlobalValue>(C))
258 return getNodeForConstantPointer(C);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000259
260 std::map<Value*, unsigned>::iterator I = ValueNodes.find(V);
261 if (I == ValueNodes.end()) {
262 V->dump();
263 assert(I != ValueNodes.end() &&
264 "Value does not have a node in the points-to graph!");
265 }
266 return &GraphNodes[I->second];
267 }
268
269 /// getObject - Return the node corresponding to the memory object for the
270 /// specified global or allocation instruction.
271 Node *getObject(Value *V) {
272 std::map<Value*, unsigned>::iterator I = ObjectNodes.find(V);
273 assert(I != ObjectNodes.end() &&
274 "Value does not have an object in the points-to graph!");
275 return &GraphNodes[I->second];
276 }
277
278 /// getReturnNode - Return the node representing the return value for the
279 /// specified function.
280 Node *getReturnNode(Function *F) {
281 std::map<Function*, unsigned>::iterator I = ReturnNodes.find(F);
282 assert(I != ReturnNodes.end() && "Function does not return a value!");
283 return &GraphNodes[I->second];
284 }
285
286 /// getVarargNode - Return the node representing the variable arguments
287 /// formal for the specified function.
288 Node *getVarargNode(Function *F) {
289 std::map<Function*, unsigned>::iterator I = VarargNodes.find(F);
290 assert(I != VarargNodes.end() && "Function does not take var args!");
291 return &GraphNodes[I->second];
292 }
293
294 /// getNodeValue - Get the node for the specified LLVM value and set the
295 /// value for it to be the specified value.
296 Node *getNodeValue(Value &V) {
297 return getNode(&V)->setValue(&V);
298 }
299
300 void IdentifyObjects(Module &M);
301 void CollectConstraints(Module &M);
302 void SolveConstraints();
303
304 Node *getNodeForConstantPointer(Constant *C);
305 Node *getNodeForConstantPointerTarget(Constant *C);
306 void AddGlobalInitializerConstraints(Node *N, Constant *C);
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000307
Chris Lattnere995a2a2004-05-23 21:00:47 +0000308 void AddConstraintsForNonInternalLinkage(Function *F);
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000309 bool AddConstraintsForExternalFunction(Function *F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000310 void AddConstraintsForCall(CallSite CS, Function *F);
311
312
313 void PrintNode(Node *N);
314 void PrintConstraints();
315 void PrintPointsToGraph();
316
317 //===------------------------------------------------------------------===//
318 // Instruction visitation methods for adding constraints
319 //
320 friend class InstVisitor<Andersens>;
321 void visitReturnInst(ReturnInst &RI);
322 void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
323 void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
324 void visitCallSite(CallSite CS);
325 void visitAllocationInst(AllocationInst &AI);
326 void visitLoadInst(LoadInst &LI);
327 void visitStoreInst(StoreInst &SI);
328 void visitGetElementPtrInst(GetElementPtrInst &GEP);
329 void visitPHINode(PHINode &PN);
330 void visitCastInst(CastInst &CI);
331 void visitSelectInst(SelectInst &SI);
332 void visitVANext(VANextInst &I);
333 void visitVAArg(VAArgInst &I);
334 void visitInstruction(Instruction &I);
335 };
336
337 RegisterOpt<Andersens> X("anders-aa",
338 "Andersen's Interprocedural Alias Analysis");
339 RegisterAnalysisGroup<AliasAnalysis, Andersens> Y;
340}
341
Jeff Cohen534927d2005-01-08 22:01:16 +0000342ModulePass *llvm::createAndersensPass() { return new Andersens(); }
343
Chris Lattnere995a2a2004-05-23 21:00:47 +0000344//===----------------------------------------------------------------------===//
345// AliasAnalysis Interface Implementation
346//===----------------------------------------------------------------------===//
347
348AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
349 const Value *V2, unsigned V2Size) {
Chris Lattnerf392c642005-03-28 06:21:17 +0000350 Node *N1 = getNode(const_cast<Value*>(V1));
351 Node *N2 = getNode(const_cast<Value*>(V2));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000352
353 // Check to see if the two pointers are known to not alias. They don't alias
354 // if their points-to sets do not intersect.
355 if (!N1->intersectsIgnoring(N2, &GraphNodes[NullObject]))
356 return NoAlias;
357
358 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
359}
360
Chris Lattnerf392c642005-03-28 06:21:17 +0000361AliasAnalysis::ModRefResult
362Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
363 // The only thing useful that we can contribute for mod/ref information is
364 // when calling external function calls: if we know that memory never escapes
365 // from the program, it cannot be modified by an external call.
366 //
367 // NOTE: This is not really safe, at least not when the entire program is not
368 // available. The deal is that the external function could call back into the
369 // program and modify stuff. We ignore this technical niggle for now. This
370 // is, after all, a "research quality" implementation of Andersen's analysis.
371 if (Function *F = CS.getCalledFunction())
372 if (F->isExternal()) {
373 Node *N1 = getNode(P);
374 bool PointsToUniversalSet = false;
375
376 for (Node::iterator NI = N1->begin(), E = N1->end(); NI != E; ++NI) {
377 Node *PN = *NI;
378 if (PN->begin() == PN->end())
379 continue; // P doesn't point to anything.
380 // Get the first pointee.
381 Node *FirstPointee = *PN->begin();
382 if (FirstPointee == &GraphNodes[UniversalSet]) {
383 PointsToUniversalSet = true;
384 break;
385 }
386 }
387
388 if (!PointsToUniversalSet)
389 return NoModRef; // P doesn't point to the universal set.
390 }
391
392 return AliasAnalysis::getModRefInfo(CS, P, Size);
393}
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000394
Chris Lattnere995a2a2004-05-23 21:00:47 +0000395/// getMustAlias - We can provide must alias information if we know that a
396/// pointer can only point to a specific function or the null pointer.
397/// Unfortunately we cannot determine must-alias information for global
398/// variables or any other memory memory objects because we do not track whether
399/// a pointer points to the beginning of an object or a field of it.
400void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
401 Node *N = getNode(P);
402 Node::iterator I = N->begin();
403 if (I != N->end()) {
404 // If there is exactly one element in the points-to set for the object...
405 ++I;
406 if (I == N->end()) {
407 Node *Pointee = *N->begin();
408
409 // If a function is the only object in the points-to set, then it must be
410 // the destination. Note that we can't handle global variables here,
411 // because we don't know if the pointer is actually pointing to a field of
412 // the global or to the beginning of it.
413 if (Value *V = Pointee->getValue()) {
414 if (Function *F = dyn_cast<Function>(V))
415 RetVals.push_back(F);
416 } else {
417 // If the object in the points-to set is the null object, then the null
418 // pointer is a must alias.
419 if (Pointee == &GraphNodes[NullObject])
420 RetVals.push_back(Constant::getNullValue(P->getType()));
421 }
422 }
423 }
424
425 AliasAnalysis::getMustAliases(P, RetVals);
426}
427
428/// pointsToConstantMemory - If we can determine that this pointer only points
429/// to constant memory, return true. In practice, this means that if the
430/// pointer can only point to constant globals, functions, or the null pointer,
431/// return true.
432///
433bool Andersens::pointsToConstantMemory(const Value *P) {
434 Node *N = getNode((Value*)P);
435 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
436 if (Value *V = (*I)->getValue()) {
437 if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
438 !cast<GlobalVariable>(V)->isConstant()))
439 return AliasAnalysis::pointsToConstantMemory(P);
440 } else {
441 if (*I != &GraphNodes[NullObject])
442 return AliasAnalysis::pointsToConstantMemory(P);
443 }
444 }
445
446 return true;
447}
448
449//===----------------------------------------------------------------------===//
450// Object Identification Phase
451//===----------------------------------------------------------------------===//
452
453/// IdentifyObjects - This stage scans the program, adding an entry to the
454/// GraphNodes list for each memory object in the program (global stack or
455/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
456///
457void Andersens::IdentifyObjects(Module &M) {
458 unsigned NumObjects = 0;
459
460 // Object #0 is always the universal set: the object that we don't know
461 // anything about.
462 assert(NumObjects == UniversalSet && "Something changed!");
463 ++NumObjects;
464
465 // Object #1 always represents the null pointer.
466 assert(NumObjects == NullPtr && "Something changed!");
467 ++NumObjects;
468
469 // Object #2 always represents the null object (the object pointed to by null)
470 assert(NumObjects == NullObject && "Something changed!");
471 ++NumObjects;
472
473 // Add all the globals first.
Chris Lattner493f6362005-03-27 22:03:46 +0000474 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
475 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000476 ObjectNodes[I] = NumObjects++;
477 ValueNodes[I] = NumObjects++;
478 }
479
480 // Add nodes for all of the functions and the instructions inside of them.
481 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
482 // The function itself is a memory object.
483 ValueNodes[F] = NumObjects++;
484 ObjectNodes[F] = NumObjects++;
485 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
486 ReturnNodes[F] = NumObjects++;
487 if (F->getFunctionType()->isVarArg())
488 VarargNodes[F] = NumObjects++;
489
490 // Add nodes for all of the incoming pointer arguments.
Chris Lattner493f6362005-03-27 22:03:46 +0000491 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
492 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000493 if (isa<PointerType>(I->getType()))
494 ValueNodes[I] = NumObjects++;
495
496 // Scan the function body, creating a memory object for each heap/stack
497 // allocation in the body of the function and a node to represent all
498 // pointer values defined by instructions and used as operands.
499 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
500 // If this is an heap or stack allocation, create a node for the memory
501 // object.
502 if (isa<PointerType>(II->getType())) {
503 ValueNodes[&*II] = NumObjects++;
504 if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
505 ObjectNodes[AI] = NumObjects++;
506 }
507 }
508 }
509
510 // Now that we know how many objects to create, make them all now!
511 GraphNodes.resize(NumObjects);
512 NumNodes += NumObjects;
513}
514
515//===----------------------------------------------------------------------===//
516// Constraint Identification Phase
517//===----------------------------------------------------------------------===//
518
519/// getNodeForConstantPointer - Return the node corresponding to the constant
520/// pointer itself.
521Andersens::Node *Andersens::getNodeForConstantPointer(Constant *C) {
522 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
523
Chris Lattner267a1b02005-03-27 18:58:23 +0000524 if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
Chris Lattnere995a2a2004-05-23 21:00:47 +0000525 return &GraphNodes[NullPtr];
Reid Spencere8404342004-07-18 00:18:30 +0000526 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
527 return getNode(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000528 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
529 switch (CE->getOpcode()) {
530 case Instruction::GetElementPtr:
531 return getNodeForConstantPointer(CE->getOperand(0));
532 case Instruction::Cast:
533 if (isa<PointerType>(CE->getOperand(0)->getType()))
534 return getNodeForConstantPointer(CE->getOperand(0));
535 else
536 return &GraphNodes[UniversalSet];
537 default:
538 std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
539 assert(0);
540 }
541 } else {
542 assert(0 && "Unknown constant pointer!");
543 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000544 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000545}
546
547/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
548/// specified constant pointer.
549Andersens::Node *Andersens::getNodeForConstantPointerTarget(Constant *C) {
550 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
551
552 if (isa<ConstantPointerNull>(C))
553 return &GraphNodes[NullObject];
Reid Spencere8404342004-07-18 00:18:30 +0000554 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
555 return getObject(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000556 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
557 switch (CE->getOpcode()) {
558 case Instruction::GetElementPtr:
559 return getNodeForConstantPointerTarget(CE->getOperand(0));
560 case Instruction::Cast:
561 if (isa<PointerType>(CE->getOperand(0)->getType()))
562 return getNodeForConstantPointerTarget(CE->getOperand(0));
563 else
564 return &GraphNodes[UniversalSet];
565 default:
566 std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
567 assert(0);
568 }
569 } else {
570 assert(0 && "Unknown constant pointer!");
571 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000572 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000573}
574
575/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
576/// object N, which contains values indicated by C.
577void Andersens::AddGlobalInitializerConstraints(Node *N, Constant *C) {
578 if (C->getType()->isFirstClassType()) {
579 if (isa<PointerType>(C->getType()))
580 N->addPointerTo(getNodeForConstantPointer(C));
581 } else if (C->isNullValue()) {
582 N->addPointerTo(&GraphNodes[NullObject]);
583 return;
584 } else {
585 // If this is an array or struct, include constraints for each element.
586 assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
587 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
588 AddGlobalInitializerConstraints(N, cast<Constant>(C->getOperand(i)));
589 }
590}
591
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000592/// AddConstraintsForNonInternalLinkage - If this function does not have
593/// internal linkage, realize that we can't trust anything passed into or
594/// returned by this function.
Chris Lattnere995a2a2004-05-23 21:00:47 +0000595void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
Chris Lattnere4d5c442005-03-15 04:54:21 +0000596 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000597 if (isa<PointerType>(I->getType()))
598 // If this is an argument of an externally accessible function, the
599 // incoming pointer might point to anything.
600 Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
601 &GraphNodes[UniversalSet]));
602}
603
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000604/// AddConstraintsForExternalFunction - If this is a call to a "known" function,
Misha Brukmanbe5e2f42005-03-28 04:32:12 +0000605/// add the constraints and return false. If this is a call to an unknown
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000606/// function, return true.
607bool Andersens::AddConstraintsForExternalFunction(Function *F) {
608 assert(F->isExternal() && "Not an external function!");
609
610 // These functions don't induce any points-to constraints.
611 if (F->getName() == "printf" || F->getName() == "fprintf" ||
612 F->getName() == "open" || F->getName() == "fopen" ||
613 F->getName() == "atoi" ||
614 F->getName() == "llvm.memset" || F->getName() == "memcmp" ||
615 F->getName() == "read" || F->getName() == "write")
616 return false;
617
618 // These functions do induce points-to edges.
619 if (F->getName() == "llvm.memcpy" || F->getName() == "llvm.memmove") {
620 Function::arg_iterator Dst = F->arg_begin(), Src = Dst;
621 // Note: this is a poor approximation, this says Dest = Src, instead of
622 // *Dest = *Src.
623 ++Src;
624 Constraints.push_back(Constraint(Constraint::Copy, getNode(Dst),
625 getNode(Src)));
626 return false;
627 }
628
629 return true;
630}
631
632
Chris Lattnere995a2a2004-05-23 21:00:47 +0000633
634/// CollectConstraints - This stage scans the program, adding a constraint to
635/// the Constraints list for each instruction in the program that induces a
636/// constraint, and setting up the initial points-to graph.
637///
638void Andersens::CollectConstraints(Module &M) {
639 // First, the universal set points to itself.
640 GraphNodes[UniversalSet].addPointerTo(&GraphNodes[UniversalSet]);
Chris Lattnerf392c642005-03-28 06:21:17 +0000641 Constraints.push_back(Constraint(Constraint::Load, &GraphNodes[UniversalSet],
642 &GraphNodes[UniversalSet]));
643 Constraints.push_back(Constraint(Constraint::Store, &GraphNodes[UniversalSet],
644 &GraphNodes[UniversalSet]));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000645
646 // Next, the null pointer points to the null object.
647 GraphNodes[NullPtr].addPointerTo(&GraphNodes[NullObject]);
648
649 // Next, add any constraints on global variables and their initializers.
Chris Lattner493f6362005-03-27 22:03:46 +0000650 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
651 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000652 // Associate the address of the global object as pointing to the memory for
653 // the global: &G = <G memory>
654 Node *Object = getObject(I);
655 Object->setValue(I);
656 getNodeValue(*I)->addPointerTo(Object);
657
658 if (I->hasInitializer()) {
659 AddGlobalInitializerConstraints(Object, I->getInitializer());
660 } else {
661 // If it doesn't have an initializer (i.e. it's defined in another
662 // translation unit), it points to the universal set.
663 Constraints.push_back(Constraint(Constraint::Copy, Object,
664 &GraphNodes[UniversalSet]));
665 }
666 }
667
668 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
669 // Make the function address point to the function object.
670 getNodeValue(*F)->addPointerTo(getObject(F)->setValue(F));
671
672 // Set up the return value node.
673 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
674 getReturnNode(F)->setValue(F);
675 if (F->getFunctionType()->isVarArg())
676 getVarargNode(F)->setValue(F);
677
678 // Set up incoming argument nodes.
Chris Lattner493f6362005-03-27 22:03:46 +0000679 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
680 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000681 if (isa<PointerType>(I->getType()))
682 getNodeValue(*I);
683
684 if (!F->hasInternalLinkage())
685 AddConstraintsForNonInternalLinkage(F);
686
687 if (!F->isExternal()) {
688 // Scan the function body, creating a memory object for each heap/stack
689 // allocation in the body of the function and a node to represent all
690 // pointer values defined by instructions and used as operands.
691 visit(F);
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000692 } else if (AddConstraintsForExternalFunction(F)) {
693 // If we don't "know" about this function, assume the worst.
694
Chris Lattnere995a2a2004-05-23 21:00:47 +0000695 // External functions that return pointers return the universal set.
696 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
697 Constraints.push_back(Constraint(Constraint::Copy,
698 getReturnNode(F),
699 &GraphNodes[UniversalSet]));
700
701 // Any pointers that are passed into the function have the universal set
702 // stored into them.
Chris Lattner493f6362005-03-27 22:03:46 +0000703 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
704 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000705 if (isa<PointerType>(I->getType())) {
706 // Pointers passed into external functions could have anything stored
707 // through them.
708 Constraints.push_back(Constraint(Constraint::Store, getNode(I),
709 &GraphNodes[UniversalSet]));
710 // Memory objects passed into external function calls can have the
711 // universal set point to them.
712 Constraints.push_back(Constraint(Constraint::Copy,
713 &GraphNodes[UniversalSet],
714 getNode(I)));
715 }
716
717 // If this is an external varargs function, it can also store pointers
718 // into any pointers passed through the varargs section.
719 if (F->getFunctionType()->isVarArg())
720 Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
721 &GraphNodes[UniversalSet]));
722 }
723 }
724 NumConstraints += Constraints.size();
725}
726
727
728void Andersens::visitInstruction(Instruction &I) {
729#ifdef NDEBUG
730 return; // This function is just a big assert.
731#endif
732 if (isa<BinaryOperator>(I))
733 return;
734 // Most instructions don't have any effect on pointer values.
735 switch (I.getOpcode()) {
736 case Instruction::Br:
737 case Instruction::Switch:
738 case Instruction::Unwind:
Chris Lattnerc17edbd2004-10-16 18:16:19 +0000739 case Instruction::Unreachable:
Chris Lattnere995a2a2004-05-23 21:00:47 +0000740 case Instruction::Free:
741 case Instruction::Shl:
742 case Instruction::Shr:
743 return;
744 default:
745 // Is this something we aren't handling yet?
746 std::cerr << "Unknown instruction: " << I;
747 abort();
748 }
749}
750
751void Andersens::visitAllocationInst(AllocationInst &AI) {
752 getNodeValue(AI)->addPointerTo(getObject(&AI)->setValue(&AI));
753}
754
755void Andersens::visitReturnInst(ReturnInst &RI) {
756 if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
757 // return V --> <Copy/retval{F}/v>
758 Constraints.push_back(Constraint(Constraint::Copy,
759 getReturnNode(RI.getParent()->getParent()),
760 getNode(RI.getOperand(0))));
761}
762
763void Andersens::visitLoadInst(LoadInst &LI) {
764 if (isa<PointerType>(LI.getType()))
765 // P1 = load P2 --> <Load/P1/P2>
766 Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
767 getNode(LI.getOperand(0))));
768}
769
770void Andersens::visitStoreInst(StoreInst &SI) {
771 if (isa<PointerType>(SI.getOperand(0)->getType()))
772 // store P1, P2 --> <Store/P2/P1>
773 Constraints.push_back(Constraint(Constraint::Store,
774 getNode(SI.getOperand(1)),
775 getNode(SI.getOperand(0))));
776}
777
778void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
779 // P1 = getelementptr P2, ... --> <Copy/P1/P2>
780 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
781 getNode(GEP.getOperand(0))));
782}
783
784void Andersens::visitPHINode(PHINode &PN) {
785 if (isa<PointerType>(PN.getType())) {
786 Node *PNN = getNodeValue(PN);
787 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
788 // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ...
789 Constraints.push_back(Constraint(Constraint::Copy, PNN,
790 getNode(PN.getIncomingValue(i))));
791 }
792}
793
794void Andersens::visitCastInst(CastInst &CI) {
795 Value *Op = CI.getOperand(0);
796 if (isa<PointerType>(CI.getType())) {
797 if (isa<PointerType>(Op->getType())) {
798 // P1 = cast P2 --> <Copy/P1/P2>
799 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
800 getNode(CI.getOperand(0))));
801 } else {
802 // P1 = cast int --> <Copy/P1/Univ>
803 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
804 &GraphNodes[UniversalSet]));
805 }
806 } else if (isa<PointerType>(Op->getType())) {
807 // int = cast P1 --> <Copy/Univ/P1>
808 Constraints.push_back(Constraint(Constraint::Copy,
809 &GraphNodes[UniversalSet],
810 getNode(CI.getOperand(0))));
811 }
812}
813
814void Andersens::visitSelectInst(SelectInst &SI) {
815 if (isa<PointerType>(SI.getType())) {
816 Node *SIN = getNodeValue(SI);
817 // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3>
818 Constraints.push_back(Constraint(Constraint::Copy, SIN,
819 getNode(SI.getOperand(1))));
820 Constraints.push_back(Constraint(Constraint::Copy, SIN,
821 getNode(SI.getOperand(2))));
822 }
823}
824
825void Andersens::visitVANext(VANextInst &I) {
826 // FIXME: Implement
827 assert(0 && "vanext not handled yet!");
828}
829void Andersens::visitVAArg(VAArgInst &I) {
830 assert(0 && "vaarg not handled yet!");
831}
832
833/// AddConstraintsForCall - Add constraints for a call with actual arguments
834/// specified by CS to the function specified by F. Note that the types of
835/// arguments might not match up in the case where this is an indirect call and
836/// the function pointer has been casted. If this is the case, do something
837/// reasonable.
838void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
839 if (isa<PointerType>(CS.getType())) {
840 Node *CSN = getNode(CS.getInstruction());
841 if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
842 Constraints.push_back(Constraint(Constraint::Copy, CSN,
843 getReturnNode(F)));
844 } else {
845 // If the function returns a non-pointer value, handle this just like we
846 // treat a nonpointer cast to pointer.
847 Constraints.push_back(Constraint(Constraint::Copy, CSN,
848 &GraphNodes[UniversalSet]));
849 }
850 } else if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
851 Constraints.push_back(Constraint(Constraint::Copy,
852 &GraphNodes[UniversalSet],
853 getReturnNode(F)));
854 }
855
Chris Lattnere4d5c442005-03-15 04:54:21 +0000856 Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
Chris Lattnere995a2a2004-05-23 21:00:47 +0000857 CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
858 for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
859 if (isa<PointerType>(AI->getType())) {
860 if (isa<PointerType>((*ArgI)->getType())) {
861 // Copy the actual argument into the formal argument.
862 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
863 getNode(*ArgI)));
864 } else {
865 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
866 &GraphNodes[UniversalSet]));
867 }
868 } else if (isa<PointerType>((*ArgI)->getType())) {
869 Constraints.push_back(Constraint(Constraint::Copy,
870 &GraphNodes[UniversalSet],
871 getNode(*ArgI)));
872 }
873
874 // Copy all pointers passed through the varargs section to the varargs node.
875 if (F->getFunctionType()->isVarArg())
876 for (; ArgI != ArgE; ++ArgI)
877 if (isa<PointerType>((*ArgI)->getType()))
878 Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
879 getNode(*ArgI)));
880 // If more arguments are passed in than we track, just drop them on the floor.
881}
882
883void Andersens::visitCallSite(CallSite CS) {
884 if (isa<PointerType>(CS.getType()))
885 getNodeValue(*CS.getInstruction());
886
887 if (Function *F = CS.getCalledFunction()) {
888 AddConstraintsForCall(CS, F);
889 } else {
890 // We don't handle indirect call sites yet. Keep track of them for when we
891 // discover the call graph incrementally.
892 IndirectCalls.push_back(CS);
893 }
894}
895
896//===----------------------------------------------------------------------===//
897// Constraint Solving Phase
898//===----------------------------------------------------------------------===//
899
900/// intersects - Return true if the points-to set of this node intersects
901/// with the points-to set of the specified node.
902bool Andersens::Node::intersects(Node *N) const {
903 iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
904 while (I1 != E1 && I2 != E2) {
905 if (*I1 == *I2) return true;
906 if (*I1 < *I2)
907 ++I1;
908 else
909 ++I2;
910 }
911 return false;
912}
913
914/// intersectsIgnoring - Return true if the points-to set of this node
915/// intersects with the points-to set of the specified node on any nodes
916/// except for the specified node to ignore.
917bool Andersens::Node::intersectsIgnoring(Node *N, Node *Ignoring) const {
918 iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
919 while (I1 != E1 && I2 != E2) {
920 if (*I1 == *I2) {
921 if (*I1 != Ignoring) return true;
922 ++I1; ++I2;
923 } else if (*I1 < *I2)
924 ++I1;
925 else
926 ++I2;
927 }
928 return false;
929}
930
931// Copy constraint: all edges out of the source node get copied to the
932// destination node. This returns true if a change is made.
933bool Andersens::Node::copyFrom(Node *N) {
934 // Use a mostly linear-time merge since both of the lists are sorted.
935 bool Changed = false;
936 iterator I = N->begin(), E = N->end();
937 unsigned i = 0;
938 while (I != E && i != Pointees.size()) {
939 if (Pointees[i] < *I) {
940 ++i;
941 } else if (Pointees[i] == *I) {
942 ++i; ++I;
943 } else {
944 // We found a new element to copy over.
945 Changed = true;
946 Pointees.insert(Pointees.begin()+i, *I);
947 ++i; ++I;
948 }
949 }
950
951 if (I != E) {
952 Pointees.insert(Pointees.end(), I, E);
953 Changed = true;
954 }
955
956 return Changed;
957}
958
959bool Andersens::Node::loadFrom(Node *N) {
960 bool Changed = false;
961 for (iterator I = N->begin(), E = N->end(); I != E; ++I)
962 Changed |= copyFrom(*I);
963 return Changed;
964}
965
966bool Andersens::Node::storeThrough(Node *N) {
967 bool Changed = false;
968 for (iterator I = begin(), E = end(); I != E; ++I)
969 Changed |= (*I)->copyFrom(N);
970 return Changed;
971}
972
973
974/// SolveConstraints - This stage iteratively processes the constraints list
975/// propagating constraints (adding edges to the Nodes in the points-to graph)
976/// until a fixed point is reached.
977///
978void Andersens::SolveConstraints() {
979 bool Changed = true;
980 unsigned Iteration = 0;
981 while (Changed) {
982 Changed = false;
983 ++NumIters;
984 DEBUG(std::cerr << "Starting iteration #" << Iteration++ << "!\n");
985
986 // Loop over all of the constraints, applying them in turn.
987 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
988 Constraint &C = Constraints[i];
989 switch (C.Type) {
990 case Constraint::Copy:
991 Changed |= C.Dest->copyFrom(C.Src);
992 break;
993 case Constraint::Load:
994 Changed |= C.Dest->loadFrom(C.Src);
995 break;
996 case Constraint::Store:
997 Changed |= C.Dest->storeThrough(C.Src);
998 break;
999 default:
1000 assert(0 && "Unknown constraint!");
1001 }
1002 }
1003
1004 if (Changed) {
1005 // Check to see if any internal function's addresses have been passed to
1006 // external functions. If so, we have to assume that their incoming
1007 // arguments could be anything. If there are any internal functions in
1008 // the universal node that we don't know about, we must iterate.
1009 for (Node::iterator I = GraphNodes[UniversalSet].begin(),
1010 E = GraphNodes[UniversalSet].end(); I != E; ++I)
1011 if (Function *F = dyn_cast_or_null<Function>((*I)->getValue()))
1012 if (F->hasInternalLinkage() &&
1013 EscapingInternalFunctions.insert(F).second) {
1014 // We found a function that is just now escaping. Mark it as if it
1015 // didn't have internal linkage.
1016 AddConstraintsForNonInternalLinkage(F);
1017 DEBUG(std::cerr << "Found escaping internal function: "
1018 << F->getName() << "\n");
1019 ++NumEscapingFunctions;
1020 }
1021
1022 // Check to see if we have discovered any new callees of the indirect call
1023 // sites. If so, add constraints to the analysis.
1024 for (unsigned i = 0, e = IndirectCalls.size(); i != e; ++i) {
1025 CallSite CS = IndirectCalls[i];
1026 std::vector<Function*> &KnownCallees = IndirectCallees[CS];
1027 Node *CN = getNode(CS.getCalledValue());
1028
1029 for (Node::iterator NI = CN->begin(), E = CN->end(); NI != E; ++NI)
1030 if (Function *F = dyn_cast_or_null<Function>((*NI)->getValue())) {
1031 std::vector<Function*>::iterator IP =
1032 std::lower_bound(KnownCallees.begin(), KnownCallees.end(), F);
1033 if (IP == KnownCallees.end() || *IP != F) {
1034 // Add the constraints for the call now.
1035 AddConstraintsForCall(CS, F);
1036 DEBUG(std::cerr << "Found actual callee '"
1037 << F->getName() << "' for call: "
1038 << *CS.getInstruction() << "\n");
1039 ++NumIndirectCallees;
1040 KnownCallees.insert(IP, F);
1041 }
1042 }
1043 }
1044 }
1045 }
1046}
1047
1048
1049
1050//===----------------------------------------------------------------------===//
1051// Debugging Output
1052//===----------------------------------------------------------------------===//
1053
1054void Andersens::PrintNode(Node *N) {
1055 if (N == &GraphNodes[UniversalSet]) {
1056 std::cerr << "<universal>";
1057 return;
1058 } else if (N == &GraphNodes[NullPtr]) {
1059 std::cerr << "<nullptr>";
1060 return;
1061 } else if (N == &GraphNodes[NullObject]) {
1062 std::cerr << "<null>";
1063 return;
1064 }
1065
1066 assert(N->getValue() != 0 && "Never set node label!");
1067 Value *V = N->getValue();
1068 if (Function *F = dyn_cast<Function>(V)) {
1069 if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
1070 N == getReturnNode(F)) {
1071 std::cerr << F->getName() << ":retval";
1072 return;
1073 } else if (F->getFunctionType()->isVarArg() && N == getVarargNode(F)) {
1074 std::cerr << F->getName() << ":vararg";
1075 return;
1076 }
1077 }
1078
1079 if (Instruction *I = dyn_cast<Instruction>(V))
1080 std::cerr << I->getParent()->getParent()->getName() << ":";
1081 else if (Argument *Arg = dyn_cast<Argument>(V))
1082 std::cerr << Arg->getParent()->getName() << ":";
1083
1084 if (V->hasName())
1085 std::cerr << V->getName();
1086 else
1087 std::cerr << "(unnamed)";
1088
1089 if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
1090 if (N == getObject(V))
1091 std::cerr << "<mem>";
1092}
1093
1094void Andersens::PrintConstraints() {
1095 std::cerr << "Constraints:\n";
1096 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1097 std::cerr << " #" << i << ": ";
1098 Constraint &C = Constraints[i];
1099 if (C.Type == Constraint::Store)
1100 std::cerr << "*";
1101 PrintNode(C.Dest);
1102 std::cerr << " = ";
1103 if (C.Type == Constraint::Load)
1104 std::cerr << "*";
1105 PrintNode(C.Src);
1106 std::cerr << "\n";
1107 }
1108}
1109
1110void Andersens::PrintPointsToGraph() {
1111 std::cerr << "Points-to graph:\n";
1112 for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
1113 Node *N = &GraphNodes[i];
1114 std::cerr << "[" << (N->end() - N->begin()) << "] ";
1115 PrintNode(N);
1116 std::cerr << "\t--> ";
1117 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
1118 if (I != N->begin()) std::cerr << ", ";
1119 PrintNode(*I);
1120 }
1121 std::cerr << "\n";
1122 }
1123}