blob: be30d7663b3655caeb91ec8817e35ef3478b2da2 [file] [log] [blame]
Nate Begeman1d9d7422005-10-18 00:28:58 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Nate Begeman21e463b2005-10-16 05:39:50 +000010// This file implements the PPCISelLowering class.
Chris Lattner7c5a3d32005-08-16 17:14:42 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner16e71f22005-10-14 23:59:06 +000014#include "PPCISelLowering.h"
15#include "PPCTargetMachine.h"
Chris Lattner59138102006-04-17 05:28:54 +000016#include "PPCPerfectShuffle.h"
Nate Begeman750ac1b2006-02-01 07:19:44 +000017#include "llvm/ADT/VectorExtras.h"
Evan Chengc4c62572006-03-13 23:20:37 +000018#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner8a2d3ca2005-08-26 21:23:58 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000022#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner7b738342005-09-13 19:33:40 +000023#include "llvm/CodeGen/SSARegMap.h"
Chris Lattner0b1e4e52005-08-26 17:36:52 +000024#include "llvm/Constants.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000025#include "llvm/Function.h"
Chris Lattner6d92cad2006-03-26 10:06:40 +000026#include "llvm/Intrinsics.h"
Nate Begeman750ac1b2006-02-01 07:19:44 +000027#include "llvm/Support/MathExtras.h"
Evan Chengd2ee2182006-02-18 00:08:58 +000028#include "llvm/Target/TargetOptions.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000029using namespace llvm;
30
Nate Begeman21e463b2005-10-16 05:39:50 +000031PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
Chris Lattner7c5a3d32005-08-16 17:14:42 +000032 : TargetLowering(TM) {
33
34 // Fold away setcc operations if possible.
35 setSetCCIsExpensive();
Nate Begeman405e3ec2005-10-21 00:02:42 +000036 setPow2DivIsCheap();
Chris Lattner7c5a3d32005-08-16 17:14:42 +000037
Chris Lattnerd145a612005-09-27 22:18:25 +000038 // Use _setjmp/_longjmp instead of setjmp/longjmp.
39 setUseUnderscoreSetJmpLongJmp(true);
40
Chris Lattner7c5a3d32005-08-16 17:14:42 +000041 // Set up the register classes.
Nate Begeman1d9d7422005-10-18 00:28:58 +000042 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
43 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
44 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000045
Chris Lattnera54aa942006-01-29 06:26:08 +000046 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
47 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
48
Chris Lattner7c5a3d32005-08-16 17:14:42 +000049 // PowerPC has no intrinsics for these particular operations
50 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
51 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
52 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
53
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58 // PowerPC has no SREM/UREM instructions
59 setOperationAction(ISD::SREM, MVT::i32, Expand);
60 setOperationAction(ISD::UREM, MVT::i32, Expand);
61
62 // We don't support sin/cos/sqrt/fmod
63 setOperationAction(ISD::FSIN , MVT::f64, Expand);
64 setOperationAction(ISD::FCOS , MVT::f64, Expand);
Chris Lattner615c2d02005-09-28 22:29:58 +000065 setOperationAction(ISD::FREM , MVT::f64, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000066 setOperationAction(ISD::FSIN , MVT::f32, Expand);
67 setOperationAction(ISD::FCOS , MVT::f32, Expand);
Chris Lattner615c2d02005-09-28 22:29:58 +000068 setOperationAction(ISD::FREM , MVT::f32, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000069
70 // If we're enabling GP optimizations, use hardware square root
Chris Lattner1e9de3e2005-09-02 18:33:05 +000071 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +000072 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
73 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
74 }
75
Chris Lattner9601a862006-03-05 05:08:37 +000076 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
77 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
78
Nate Begemand88fc032006-01-14 03:14:10 +000079 // PowerPC does not have BSWAP, CTPOP or CTTZ
80 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000081 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
82 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
83
Nate Begeman35ef9132006-01-11 21:21:00 +000084 // PowerPC does not have ROTR
85 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
86
Chris Lattner7c5a3d32005-08-16 17:14:42 +000087 // PowerPC does not have Select
88 setOperationAction(ISD::SELECT, MVT::i32, Expand);
89 setOperationAction(ISD::SELECT, MVT::f32, Expand);
90 setOperationAction(ISD::SELECT, MVT::f64, Expand);
Chris Lattnere4bc9ea2005-08-26 00:52:45 +000091
Chris Lattner0b1e4e52005-08-26 17:36:52 +000092 // PowerPC wants to turn select_cc of FP into fsel when possible.
93 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
94 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
Nate Begeman44775902006-01-31 08:17:29 +000095
Nate Begeman750ac1b2006-02-01 07:19:44 +000096 // PowerPC wants to optimize integer setcc a bit
Nate Begeman44775902006-01-31 08:17:29 +000097 setOperationAction(ISD::SETCC, MVT::i32, Custom);
Chris Lattnereb9b62e2005-08-31 19:09:57 +000098
Nate Begeman81e80972006-03-17 01:40:33 +000099 // PowerPC does not have BRCOND which requires SetCC
100 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000101
Chris Lattnerf7605322005-08-31 21:09:52 +0000102 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
103 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
Nate Begemanc09eeec2005-09-06 22:03:27 +0000104
Jim Laskeyad23c9d2005-08-17 00:40:22 +0000105 // PowerPC does not have [U|S]INT_TO_FP
106 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
107 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
108
Chris Lattner53e88452005-12-23 05:13:35 +0000109 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
110 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
111
Chris Lattnere6ec9f22005-09-10 00:21:06 +0000112 // PowerPC does not have truncstore for i1.
113 setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
Chris Lattnerf73bae12005-11-29 06:16:21 +0000114
Jim Laskeyabf6d172006-01-05 01:25:28 +0000115 // Support label based line numbers.
Chris Lattnerf73bae12005-11-29 06:16:21 +0000116 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Jim Laskeye0bce712006-01-05 01:47:43 +0000117 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Jim Laskeyabf6d172006-01-05 01:25:28 +0000118 // FIXME - use subtarget debug flags
Jim Laskeye0bce712006-01-05 01:47:43 +0000119 if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
Jim Laskeyabf6d172006-01-05 01:25:28 +0000120 setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
Chris Lattnere6ec9f22005-09-10 00:21:06 +0000121
Nate Begeman28a6b022005-12-10 02:36:00 +0000122 // We want to legalize GlobalAddress and ConstantPool nodes into the
123 // appropriate instructions to materialize the address.
Chris Lattner3eef4e32005-11-17 18:26:56 +0000124 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
Nate Begeman28a6b022005-12-10 02:36:00 +0000125 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
Chris Lattnerb99329e2006-01-13 02:42:53 +0000126
Nate Begemanee625572006-01-27 21:09:22 +0000127 // RET must be custom lowered, to meet ABI requirements
128 setOperationAction(ISD::RET , MVT::Other, Custom);
129
Nate Begemanacc398c2006-01-25 18:21:52 +0000130 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
131 setOperationAction(ISD::VASTART , MVT::Other, Custom);
132
Chris Lattnerb22c08b2006-01-15 09:02:48 +0000133 // Use the default implementation.
Nate Begemanacc398c2006-01-25 18:21:52 +0000134 setOperationAction(ISD::VAARG , MVT::Other, Expand);
135 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
136 setOperationAction(ISD::VAEND , MVT::Other, Expand);
Chris Lattnerb22c08b2006-01-15 09:02:48 +0000137 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
138 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
139 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
Chris Lattner860e8862005-11-17 07:30:41 +0000140
Chris Lattner6d92cad2006-03-26 10:06:40 +0000141 // We want to custom lower some of our intrinsics.
Chris Lattner48b61a72006-03-28 00:40:33 +0000142 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
Chris Lattner6d92cad2006-03-26 10:06:40 +0000143
Nate Begemanc09eeec2005-09-06 22:03:27 +0000144 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
Nate Begeman1d9d7422005-10-18 00:28:58 +0000145 // They also have instructions for converting between i64 and fp.
Nate Begemanc09eeec2005-09-06 22:03:27 +0000146 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
147 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
Chris Lattner7fbcef72006-03-24 07:53:47 +0000148
149 // FIXME: disable this lowered code. This generates 64-bit register values,
150 // and we don't model the fact that the top part is clobbered by calls. We
151 // need to flag these together so that the value isn't live across a call.
152 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
153
Nate Begemanae749a92005-10-25 23:48:36 +0000154 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
155 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
156 } else {
Chris Lattner860e8862005-11-17 07:30:41 +0000157 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
Nate Begemanae749a92005-10-25 23:48:36 +0000158 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
Nate Begeman9d2b8172005-10-18 00:56:42 +0000159 }
160
161 if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
162 // 64 bit PowerPC implementations can support i64 types directly
163 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
Nate Begeman1d9d7422005-10-18 00:28:58 +0000164 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
165 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
Nate Begeman1d9d7422005-10-18 00:28:58 +0000166 } else {
167 // 32 bit PowerPC wants to expand i64 shifts itself.
168 setOperationAction(ISD::SHL, MVT::i64, Custom);
169 setOperationAction(ISD::SRL, MVT::i64, Custom);
170 setOperationAction(ISD::SRA, MVT::i64, Custom);
Nate Begemanc09eeec2005-09-06 22:03:27 +0000171 }
Evan Chengd30bf012006-03-01 01:11:20 +0000172
Nate Begeman425a9692005-11-29 08:17:20 +0000173 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000174 // First set operation action for all vector types to expand. Then we
175 // will selectively turn on ones that can be effectively codegen'd.
176 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
177 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000178 // add/sub are legal for all supported vector VT's.
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000179 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
180 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000181
Chris Lattner7ff7e672006-04-04 17:25:31 +0000182 // We promote all shuffles to v16i8.
183 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000184 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
185
186 // We promote all non-typed operations to v4i32.
187 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
188 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
189 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
190 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
191 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
192 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
193 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
194 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
195 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
196 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
197 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
198 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000199
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000200 // No other operations are legal.
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000201 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
202 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
203 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
204 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
205 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
206 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
207 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
208 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Chris Lattner01cae072006-04-03 23:55:43 +0000209
210 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000211 }
212
Chris Lattner7ff7e672006-04-04 17:25:31 +0000213 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
214 // with merges, splats, etc.
215 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
216
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000217 setOperationAction(ISD::AND , MVT::v4i32, Legal);
218 setOperationAction(ISD::OR , MVT::v4i32, Legal);
219 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
220 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
221 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
222 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
223
Nate Begeman425a9692005-11-29 08:17:20 +0000224 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
Nate Begeman7fd1edd2005-12-19 23:25:09 +0000225 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
Chris Lattner8d052bc2006-03-25 07:39:07 +0000226 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
227 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
Chris Lattnerec4a0c72006-01-29 06:32:58 +0000228
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000229 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
Chris Lattnerf1d0b2b2006-03-20 01:53:53 +0000230
Chris Lattnerb2177b92006-03-19 06:55:52 +0000231 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
232 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
Chris Lattner64b3a082006-03-24 07:48:08 +0000233
Chris Lattner541f91b2006-04-02 00:43:36 +0000234 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
235 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
Chris Lattner64b3a082006-03-24 07:48:08 +0000236 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
237 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
Nate Begeman425a9692005-11-29 08:17:20 +0000238 }
239
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000240 setSetCCResultContents(ZeroOrOneSetCCResult);
Chris Lattnercadd7422006-01-13 17:52:03 +0000241 setStackPointerRegisterToSaveRestore(PPC::R1);
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000242
Chris Lattner8c13d0a2006-03-01 04:57:39 +0000243 // We have target-specific dag combine patterns for the following nodes:
244 setTargetDAGCombine(ISD::SINT_TO_FP);
Chris Lattner51269842006-03-01 05:50:56 +0000245 setTargetDAGCombine(ISD::STORE);
Chris Lattner8c13d0a2006-03-01 04:57:39 +0000246
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000247 computeRegisterProperties();
248}
249
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000250const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
251 switch (Opcode) {
252 default: return 0;
253 case PPCISD::FSEL: return "PPCISD::FSEL";
254 case PPCISD::FCFID: return "PPCISD::FCFID";
255 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
256 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
Chris Lattner51269842006-03-01 05:50:56 +0000257 case PPCISD::STFIWX: return "PPCISD::STFIWX";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000258 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
259 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
Chris Lattnerf1d0b2b2006-03-20 01:53:53 +0000260 case PPCISD::VPERM: return "PPCISD::VPERM";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000261 case PPCISD::Hi: return "PPCISD::Hi";
262 case PPCISD::Lo: return "PPCISD::Lo";
263 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
264 case PPCISD::SRL: return "PPCISD::SRL";
265 case PPCISD::SRA: return "PPCISD::SRA";
266 case PPCISD::SHL: return "PPCISD::SHL";
Chris Lattnerecfe55e2006-03-22 05:30:33 +0000267 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
268 case PPCISD::STD_32: return "PPCISD::STD_32";
Chris Lattnere00ebf02006-01-28 07:33:03 +0000269 case PPCISD::CALL: return "PPCISD::CALL";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000270 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
Chris Lattner6d92cad2006-03-26 10:06:40 +0000271 case PPCISD::MFCR: return "PPCISD::MFCR";
Chris Lattnera17b1552006-03-31 05:13:27 +0000272 case PPCISD::VCMP: return "PPCISD::VCMP";
Chris Lattner6d92cad2006-03-26 10:06:40 +0000273 case PPCISD::VCMPo: return "PPCISD::VCMPo";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000274 }
275}
276
Chris Lattner1a635d62006-04-14 06:01:58 +0000277//===----------------------------------------------------------------------===//
278// Node matching predicates, for use by the tblgen matching code.
279//===----------------------------------------------------------------------===//
280
Chris Lattner0b1e4e52005-08-26 17:36:52 +0000281/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
282static bool isFloatingPointZero(SDOperand Op) {
283 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
284 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
285 else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
286 // Maybe this has already been legalized into the constant pool?
287 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
288 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
289 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
290 }
291 return false;
292}
293
Chris Lattnerddb739e2006-04-06 17:23:16 +0000294/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
295/// true if Op is undef or if it matches the specified value.
296static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
297 return Op.getOpcode() == ISD::UNDEF ||
298 cast<ConstantSDNode>(Op)->getValue() == Val;
299}
300
301/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
302/// VPKUHUM instruction.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000303bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
304 if (!isUnary) {
305 for (unsigned i = 0; i != 16; ++i)
306 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
307 return false;
308 } else {
309 for (unsigned i = 0; i != 8; ++i)
310 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
311 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
312 return false;
313 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000314 return true;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000315}
316
317/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
318/// VPKUWUM instruction.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000319bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
320 if (!isUnary) {
321 for (unsigned i = 0; i != 16; i += 2)
322 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
323 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
324 return false;
325 } else {
326 for (unsigned i = 0; i != 8; i += 2)
327 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
328 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
329 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
330 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
331 return false;
332 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000333 return true;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000334}
335
Chris Lattnercaad1632006-04-06 22:02:42 +0000336/// isVMerge - Common function, used to match vmrg* shuffles.
337///
338static bool isVMerge(SDNode *N, unsigned UnitSize,
339 unsigned LHSStart, unsigned RHSStart) {
Chris Lattner116cc482006-04-06 21:11:54 +0000340 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
341 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
342 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
343 "Unsupported merge size!");
344
345 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
346 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
347 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
Chris Lattnercaad1632006-04-06 22:02:42 +0000348 LHSStart+j+i*UnitSize) ||
Chris Lattner116cc482006-04-06 21:11:54 +0000349 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
Chris Lattnercaad1632006-04-06 22:02:42 +0000350 RHSStart+j+i*UnitSize))
Chris Lattner116cc482006-04-06 21:11:54 +0000351 return false;
352 }
Chris Lattnercaad1632006-04-06 22:02:42 +0000353 return true;
354}
355
356/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
357/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
358bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
359 if (!isUnary)
360 return isVMerge(N, UnitSize, 8, 24);
361 return isVMerge(N, UnitSize, 8, 8);
Chris Lattner116cc482006-04-06 21:11:54 +0000362}
363
364/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
365/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
Chris Lattnercaad1632006-04-06 22:02:42 +0000366bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
367 if (!isUnary)
368 return isVMerge(N, UnitSize, 0, 16);
369 return isVMerge(N, UnitSize, 0, 0);
Chris Lattner116cc482006-04-06 21:11:54 +0000370}
371
372
Chris Lattnerd0608e12006-04-06 18:26:28 +0000373/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
374/// amount, otherwise return -1.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000375int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
Chris Lattner116cc482006-04-06 21:11:54 +0000376 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
377 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
Chris Lattnerd0608e12006-04-06 18:26:28 +0000378 // Find the first non-undef value in the shuffle mask.
379 unsigned i;
380 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
381 /*search*/;
382
383 if (i == 16) return -1; // all undef.
384
385 // Otherwise, check to see if the rest of the elements are consequtively
386 // numbered from this value.
387 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
388 if (ShiftAmt < i) return -1;
389 ShiftAmt -= i;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000390
Chris Lattnerf24380e2006-04-06 22:28:36 +0000391 if (!isUnary) {
392 // Check the rest of the elements to see if they are consequtive.
393 for (++i; i != 16; ++i)
394 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
395 return -1;
396 } else {
397 // Check the rest of the elements to see if they are consequtive.
398 for (++i; i != 16; ++i)
399 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
400 return -1;
401 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000402
403 return ShiftAmt;
404}
Chris Lattneref819f82006-03-20 06:33:01 +0000405
406/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
407/// specifies a splat of a single element that is suitable for input to
408/// VSPLTB/VSPLTH/VSPLTW.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000409bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
410 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
411 N->getNumOperands() == 16 &&
412 (EltSize == 1 || EltSize == 2 || EltSize == 4));
Chris Lattnerdd4d2d02006-03-20 06:51:10 +0000413
Chris Lattner88a99ef2006-03-20 06:37:44 +0000414 // This is a splat operation if each element of the permute is the same, and
415 // if the value doesn't reference the second vector.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000416 unsigned ElementBase = 0;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000417 SDOperand Elt = N->getOperand(0);
Chris Lattner7ff7e672006-04-04 17:25:31 +0000418 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
419 ElementBase = EltV->getValue();
420 else
421 return false; // FIXME: Handle UNDEF elements too!
422
423 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
424 return false;
425
426 // Check that they are consequtive.
427 for (unsigned i = 1; i != EltSize; ++i) {
428 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
429 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
430 return false;
431 }
432
Chris Lattner88a99ef2006-03-20 06:37:44 +0000433 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
Chris Lattner7ff7e672006-04-04 17:25:31 +0000434 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
Chris Lattnerb097aa92006-04-14 23:19:08 +0000435 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000436 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
437 "Invalid VECTOR_SHUFFLE mask!");
Chris Lattner7ff7e672006-04-04 17:25:31 +0000438 for (unsigned j = 0; j != EltSize; ++j)
439 if (N->getOperand(i+j) != N->getOperand(j))
440 return false;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000441 }
442
Chris Lattner7ff7e672006-04-04 17:25:31 +0000443 return true;
Chris Lattneref819f82006-03-20 06:33:01 +0000444}
445
446/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
447/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000448unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
449 assert(isSplatShuffleMask(N, EltSize));
450 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
Chris Lattneref819f82006-03-20 06:33:01 +0000451}
452
Chris Lattnere87192a2006-04-12 17:37:20 +0000453/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
Chris Lattner140a58f2006-04-08 06:46:53 +0000454/// by using a vspltis[bhw] instruction of the specified element size, return
455/// the constant being splatted. The ByteSize field indicates the number of
456/// bytes of each element [124] -> [bhw].
Chris Lattnere87192a2006-04-12 17:37:20 +0000457SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000458 SDOperand OpVal(0, 0);
Chris Lattner79d9a882006-04-08 07:14:26 +0000459
460 // If ByteSize of the splat is bigger than the element size of the
461 // build_vector, then we have a case where we are checking for a splat where
462 // multiple elements of the buildvector are folded together into a single
463 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
464 unsigned EltSize = 16/N->getNumOperands();
465 if (EltSize < ByteSize) {
466 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
467 SDOperand UniquedVals[4];
468 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
469
470 // See if all of the elements in the buildvector agree across.
471 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
472 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
473 // If the element isn't a constant, bail fully out.
474 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
475
476
477 if (UniquedVals[i&(Multiple-1)].Val == 0)
478 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
479 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
480 return SDOperand(); // no match.
481 }
482
483 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
484 // either constant or undef values that are identical for each chunk. See
485 // if these chunks can form into a larger vspltis*.
486
487 // Check to see if all of the leading entries are either 0 or -1. If
488 // neither, then this won't fit into the immediate field.
489 bool LeadingZero = true;
490 bool LeadingOnes = true;
491 for (unsigned i = 0; i != Multiple-1; ++i) {
492 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
493
494 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
495 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
496 }
497 // Finally, check the least significant entry.
498 if (LeadingZero) {
499 if (UniquedVals[Multiple-1].Val == 0)
500 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
501 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
502 if (Val < 16)
503 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
504 }
505 if (LeadingOnes) {
506 if (UniquedVals[Multiple-1].Val == 0)
507 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
508 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
509 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
510 return DAG.getTargetConstant(Val, MVT::i32);
511 }
512
513 return SDOperand();
514 }
515
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000516 // Check to see if this buildvec has a single non-undef value in its elements.
517 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
518 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
519 if (OpVal.Val == 0)
520 OpVal = N->getOperand(i);
521 else if (OpVal != N->getOperand(i))
Chris Lattner140a58f2006-04-08 06:46:53 +0000522 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000523 }
524
Chris Lattner140a58f2006-04-08 06:46:53 +0000525 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000526
Nate Begeman98e70cc2006-03-28 04:15:58 +0000527 unsigned ValSizeInBytes = 0;
528 uint64_t Value = 0;
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000529 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
530 Value = CN->getValue();
531 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
532 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
533 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
534 Value = FloatToBits(CN->getValue());
535 ValSizeInBytes = 4;
536 }
537
538 // If the splat value is larger than the element value, then we can never do
539 // this splat. The only case that we could fit the replicated bits into our
540 // immediate field for would be zero, and we prefer to use vxor for it.
Chris Lattner140a58f2006-04-08 06:46:53 +0000541 if (ValSizeInBytes < ByteSize) return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000542
543 // If the element value is larger than the splat value, cut it in half and
544 // check to see if the two halves are equal. Continue doing this until we
545 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
546 while (ValSizeInBytes > ByteSize) {
547 ValSizeInBytes >>= 1;
548
549 // If the top half equals the bottom half, we're still ok.
Chris Lattner9b42bdd2006-04-05 17:39:25 +0000550 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
551 (Value & ((1 << (8*ValSizeInBytes))-1)))
Chris Lattner140a58f2006-04-08 06:46:53 +0000552 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000553 }
554
555 // Properly sign extend the value.
556 int ShAmt = (4-ByteSize)*8;
557 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
558
Evan Cheng5b6a01b2006-03-26 09:52:32 +0000559 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
Chris Lattner140a58f2006-04-08 06:46:53 +0000560 if (MaskVal == 0) return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000561
Chris Lattner140a58f2006-04-08 06:46:53 +0000562 // Finally, if this value fits in a 5 bit sext field, return it
563 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
564 return DAG.getTargetConstant(MaskVal, MVT::i32);
565 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000566}
567
Chris Lattner1a635d62006-04-14 06:01:58 +0000568//===----------------------------------------------------------------------===//
569// LowerOperation implementation
570//===----------------------------------------------------------------------===//
571
572static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
573 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
574 Constant *C = CP->get();
575 SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
576 SDOperand Zero = DAG.getConstant(0, MVT::i32);
577
578 const TargetMachine &TM = DAG.getTarget();
579
580 // If this is a non-darwin platform, we don't support non-static relo models
581 // yet.
582 if (TM.getRelocationModel() == Reloc::Static ||
583 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
584 // Generate non-pic code that has direct accesses to the constant pool.
585 // The address of the global is just (hi(&g)+lo(&g)).
586 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
587 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
588 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
589 }
590
591 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
592 if (TM.getRelocationModel() == Reloc::PIC) {
593 // With PIC, the first instruction is actually "GR+hi(&G)".
594 Hi = DAG.getNode(ISD::ADD, MVT::i32,
595 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
596 }
597
598 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
599 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
600 return Lo;
601}
602
603static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
604 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
605 GlobalValue *GV = GSDN->getGlobal();
606 SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
607 SDOperand Zero = DAG.getConstant(0, MVT::i32);
608
609 const TargetMachine &TM = DAG.getTarget();
610
611 // If this is a non-darwin platform, we don't support non-static relo models
612 // yet.
613 if (TM.getRelocationModel() == Reloc::Static ||
614 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
615 // Generate non-pic code that has direct accesses to globals.
616 // The address of the global is just (hi(&g)+lo(&g)).
617 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
618 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
619 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
620 }
621
622 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
623 if (TM.getRelocationModel() == Reloc::PIC) {
624 // With PIC, the first instruction is actually "GR+hi(&G)".
625 Hi = DAG.getNode(ISD::ADD, MVT::i32,
626 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
627 }
628
629 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
630 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
631
632 if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
633 (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
634 return Lo;
635
636 // If the global is weak or external, we have to go through the lazy
637 // resolution stub.
638 return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
639}
640
641static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
642 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
643
644 // If we're comparing for equality to zero, expose the fact that this is
645 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
646 // fold the new nodes.
647 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
648 if (C->isNullValue() && CC == ISD::SETEQ) {
649 MVT::ValueType VT = Op.getOperand(0).getValueType();
650 SDOperand Zext = Op.getOperand(0);
651 if (VT < MVT::i32) {
652 VT = MVT::i32;
653 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
654 }
655 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
656 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
657 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
658 DAG.getConstant(Log2b, MVT::i32));
659 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
660 }
661 // Leave comparisons against 0 and -1 alone for now, since they're usually
662 // optimized. FIXME: revisit this when we can custom lower all setcc
663 // optimizations.
664 if (C->isAllOnesValue() || C->isNullValue())
665 return SDOperand();
666 }
667
668 // If we have an integer seteq/setne, turn it into a compare against zero
669 // by subtracting the rhs from the lhs, which is faster than setting a
670 // condition register, reading it back out, and masking the correct bit.
671 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
672 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
673 MVT::ValueType VT = Op.getValueType();
674 SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
675 Op.getOperand(1));
676 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
677 }
678 return SDOperand();
679}
680
681static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
682 unsigned VarArgsFrameIndex) {
683 // vastart just stores the address of the VarArgsFrameIndex slot into the
684 // memory location argument.
685 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
686 return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
687 Op.getOperand(1), Op.getOperand(2));
688}
689
690static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
691 SDOperand Copy;
692 switch(Op.getNumOperands()) {
693 default:
694 assert(0 && "Do not know how to return this many arguments!");
695 abort();
696 case 1:
697 return SDOperand(); // ret void is legal
698 case 2: {
699 MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
700 unsigned ArgReg;
701 if (MVT::isVector(ArgVT))
702 ArgReg = PPC::V2;
703 else if (MVT::isInteger(ArgVT))
704 ArgReg = PPC::R3;
705 else {
706 assert(MVT::isFloatingPoint(ArgVT));
707 ArgReg = PPC::F1;
708 }
709
710 Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
711 SDOperand());
712
713 // If we haven't noted the R3/F1 are live out, do so now.
714 if (DAG.getMachineFunction().liveout_empty())
715 DAG.getMachineFunction().addLiveOut(ArgReg);
716 break;
717 }
718 case 3:
719 Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2),
720 SDOperand());
721 Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
722 // If we haven't noted the R3+R4 are live out, do so now.
723 if (DAG.getMachineFunction().liveout_empty()) {
724 DAG.getMachineFunction().addLiveOut(PPC::R3);
725 DAG.getMachineFunction().addLiveOut(PPC::R4);
726 }
727 break;
728 }
729 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
730}
731
732/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
733/// possible.
734static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
735 // Not FP? Not a fsel.
736 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
737 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
738 return SDOperand();
739
740 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
741
742 // Cannot handle SETEQ/SETNE.
743 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
744
745 MVT::ValueType ResVT = Op.getValueType();
746 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
747 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
748 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
749
750 // If the RHS of the comparison is a 0.0, we don't need to do the
751 // subtraction at all.
752 if (isFloatingPointZero(RHS))
753 switch (CC) {
754 default: break; // SETUO etc aren't handled by fsel.
755 case ISD::SETULT:
756 case ISD::SETLT:
757 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
758 case ISD::SETUGE:
759 case ISD::SETGE:
760 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
761 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
762 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
763 case ISD::SETUGT:
764 case ISD::SETGT:
765 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
766 case ISD::SETULE:
767 case ISD::SETLE:
768 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
769 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
770 return DAG.getNode(PPCISD::FSEL, ResVT,
771 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
772 }
773
774 SDOperand Cmp;
775 switch (CC) {
776 default: break; // SETUO etc aren't handled by fsel.
777 case ISD::SETULT:
778 case ISD::SETLT:
779 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
780 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
781 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
782 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
783 case ISD::SETUGE:
784 case ISD::SETGE:
785 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
786 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
787 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
788 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
789 case ISD::SETUGT:
790 case ISD::SETGT:
791 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
792 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
793 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
794 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
795 case ISD::SETULE:
796 case ISD::SETLE:
797 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
798 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
799 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
800 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
801 }
802 return SDOperand();
803}
804
805static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
806 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
807 SDOperand Src = Op.getOperand(0);
808 if (Src.getValueType() == MVT::f32)
809 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
810
811 SDOperand Tmp;
812 switch (Op.getValueType()) {
813 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
814 case MVT::i32:
815 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
816 break;
817 case MVT::i64:
818 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
819 break;
820 }
821
822 // Convert the FP value to an int value through memory.
823 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
824 if (Op.getValueType() == MVT::i32)
825 Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
826 return Bits;
827}
828
829static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
830 if (Op.getOperand(0).getValueType() == MVT::i64) {
831 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
832 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
833 if (Op.getValueType() == MVT::f32)
834 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
835 return FP;
836 }
837
838 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
839 "Unhandled SINT_TO_FP type in custom expander!");
840 // Since we only generate this in 64-bit mode, we can take advantage of
841 // 64-bit registers. In particular, sign extend the input value into the
842 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
843 // then lfd it and fcfid it.
844 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
845 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
846 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
847
848 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
849 Op.getOperand(0));
850
851 // STD the extended value into the stack slot.
852 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
853 DAG.getEntryNode(), Ext64, FIdx,
854 DAG.getSrcValue(NULL));
855 // Load the value as a double.
856 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
857
858 // FCFID it and return it.
859 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
860 if (Op.getValueType() == MVT::f32)
861 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
862 return FP;
863}
864
865static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) {
866 assert(Op.getValueType() == MVT::i64 &&
867 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
868 // The generic code does a fine job expanding shift by a constant.
869 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
870
871 // Otherwise, expand into a bunch of logical ops. Note that these ops
872 // depend on the PPC behavior for oversized shift amounts.
873 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
874 DAG.getConstant(0, MVT::i32));
875 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
876 DAG.getConstant(1, MVT::i32));
877 SDOperand Amt = Op.getOperand(1);
878
879 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
880 DAG.getConstant(32, MVT::i32), Amt);
881 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
882 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
883 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
884 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
885 DAG.getConstant(-32U, MVT::i32));
886 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
887 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
888 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
889 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
890}
891
892static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) {
893 assert(Op.getValueType() == MVT::i64 &&
894 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
895 // The generic code does a fine job expanding shift by a constant.
896 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
897
898 // Otherwise, expand into a bunch of logical ops. Note that these ops
899 // depend on the PPC behavior for oversized shift amounts.
900 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
901 DAG.getConstant(0, MVT::i32));
902 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
903 DAG.getConstant(1, MVT::i32));
904 SDOperand Amt = Op.getOperand(1);
905
906 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
907 DAG.getConstant(32, MVT::i32), Amt);
908 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
909 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
910 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
911 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
912 DAG.getConstant(-32U, MVT::i32));
913 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
914 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
915 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
916 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
917}
918
919static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) {
920 assert(Op.getValueType() == MVT::i64 &&
921 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
922 // The generic code does a fine job expanding shift by a constant.
923 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
924
925 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
926 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
927 DAG.getConstant(0, MVT::i32));
928 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
929 DAG.getConstant(1, MVT::i32));
930 SDOperand Amt = Op.getOperand(1);
931
932 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
933 DAG.getConstant(32, MVT::i32), Amt);
934 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
935 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
936 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
937 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
938 DAG.getConstant(-32U, MVT::i32));
939 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
940 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
941 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
942 Tmp4, Tmp6, ISD::SETLE);
943 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
944}
945
946//===----------------------------------------------------------------------===//
947// Vector related lowering.
948//
949
Chris Lattnerac225ca2006-04-12 19:07:14 +0000950// If this is a vector of constants or undefs, get the bits. A bit in
951// UndefBits is set if the corresponding element of the vector is an
952// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
953// zero. Return true if this is not an array of constants, false if it is.
954//
Chris Lattnerac225ca2006-04-12 19:07:14 +0000955static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
956 uint64_t UndefBits[2]) {
957 // Start with zero'd results.
958 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
959
960 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
961 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
962 SDOperand OpVal = BV->getOperand(i);
963
964 unsigned PartNo = i >= e/2; // In the upper 128 bits?
Chris Lattnerb17f1672006-04-16 01:01:29 +0000965 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
Chris Lattnerac225ca2006-04-12 19:07:14 +0000966
967 uint64_t EltBits = 0;
968 if (OpVal.getOpcode() == ISD::UNDEF) {
969 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
970 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
971 continue;
972 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
973 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
974 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
975 assert(CN->getValueType(0) == MVT::f32 &&
976 "Only one legal FP vector type!");
977 EltBits = FloatToBits(CN->getValue());
978 } else {
979 // Nonconstant element.
980 return true;
981 }
982
983 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
984 }
985
986 //printf("%llx %llx %llx %llx\n",
987 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
988 return false;
989}
Chris Lattneref819f82006-03-20 06:33:01 +0000990
Chris Lattnerb17f1672006-04-16 01:01:29 +0000991// If this is a splat (repetition) of a value across the whole vector, return
992// the smallest size that splats it. For example, "0x01010101010101..." is a
993// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
994// SplatSize = 1 byte.
995static bool isConstantSplat(const uint64_t Bits128[2],
996 const uint64_t Undef128[2],
997 unsigned &SplatBits, unsigned &SplatUndef,
998 unsigned &SplatSize) {
999
1000 // Don't let undefs prevent splats from matching. See if the top 64-bits are
1001 // the same as the lower 64-bits, ignoring undefs.
1002 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1003 return false; // Can't be a splat if two pieces don't match.
1004
1005 uint64_t Bits64 = Bits128[0] | Bits128[1];
1006 uint64_t Undef64 = Undef128[0] & Undef128[1];
1007
1008 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1009 // undefs.
1010 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1011 return false; // Can't be a splat if two pieces don't match.
1012
1013 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1014 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1015
1016 // If the top 16-bits are different than the lower 16-bits, ignoring
1017 // undefs, we have an i32 splat.
1018 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1019 SplatBits = Bits32;
1020 SplatUndef = Undef32;
1021 SplatSize = 4;
1022 return true;
1023 }
1024
1025 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
1026 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1027
1028 // If the top 8-bits are different than the lower 8-bits, ignoring
1029 // undefs, we have an i16 splat.
1030 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1031 SplatBits = Bits16;
1032 SplatUndef = Undef16;
1033 SplatSize = 2;
1034 return true;
1035 }
1036
1037 // Otherwise, we have an 8-bit splat.
1038 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
1039 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1040 SplatSize = 1;
1041 return true;
1042}
1043
Chris Lattner4a998b92006-04-17 06:00:21 +00001044/// BuildSplatI - Build a canonical splati of Val with an element size of
1045/// SplatSize. Cast the result to VT.
1046static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1047 SelectionDAG &DAG) {
1048 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
1049 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1050 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1051 };
1052 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1053
1054 // Build a canonical splat for this value.
1055 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1056 std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
1057 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
1058 return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1059}
1060
Chris Lattnerf1b47082006-04-14 05:19:18 +00001061// If this is a case we can't handle, return null and let the default
1062// expansion code take care of it. If we CAN select this case, and if it
1063// selects to a single instruction, return Op. Otherwise, if we can codegen
1064// this case more efficiently than a constant pool load, lower it to the
1065// sequence of ops that should be used.
1066static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1067 // If this is a vector of constants or undefs, get the bits. A bit in
1068 // UndefBits is set if the corresponding element of the vector is an
1069 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
1070 // zero.
1071 uint64_t VectorBits[2];
1072 uint64_t UndefBits[2];
1073 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1074 return SDOperand(); // Not a constant vector.
1075
Chris Lattnerb17f1672006-04-16 01:01:29 +00001076 // If this is a splat (repetition) of a value across the whole vector, return
1077 // the smallest size that splats it. For example, "0x01010101010101..." is a
1078 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1079 // SplatSize = 1 byte.
1080 unsigned SplatBits, SplatUndef, SplatSize;
1081 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1082 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1083
1084 // First, handle single instruction cases.
1085
1086 // All zeros?
1087 if (SplatBits == 0) {
1088 // Canonicalize all zero vectors to be v4i32.
1089 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1090 SDOperand Z = DAG.getConstant(0, MVT::i32);
1091 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1092 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1093 }
1094 return Op;
Chris Lattnerf1b47082006-04-14 05:19:18 +00001095 }
Chris Lattnerb17f1672006-04-16 01:01:29 +00001096
1097 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1098 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
Chris Lattner4a998b92006-04-17 06:00:21 +00001099 if (SextVal >= -16 && SextVal <= 15)
1100 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
Chris Lattnerb17f1672006-04-16 01:01:29 +00001101
Chris Lattner4a998b92006-04-17 06:00:21 +00001102 // If this value is in the range [-32,30] and is even, use:
1103 // tmp = VSPLTI[bhw], result = add tmp, tmp
1104 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1105 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
1106 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
1107 }
1108
Chris Lattnerf1b47082006-04-14 05:19:18 +00001109
1110 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
1111 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). These are important
1112 // for fneg/fabs.
Chris Lattnerb17f1672006-04-16 01:01:29 +00001113 if (SplatSize == 4 &&
1114 SplatBits == 0x80000000 || SplatBits == (0x7FFFFFFF&~SplatUndef)) {
Chris Lattnerf1b47082006-04-14 05:19:18 +00001115 // Make -1 and vspltisw -1:
1116 SDOperand OnesI = DAG.getConstant(~0U, MVT::i32);
1117 SDOperand OnesV = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32,
1118 OnesI, OnesI, OnesI, OnesI);
1119
1120 // Make the VSLW intrinsic, computing 0x8000_0000.
1121 SDOperand Res
1122 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, MVT::v4i32,
1123 DAG.getConstant(Intrinsic::ppc_altivec_vslw, MVT::i32),
1124 OnesV, OnesV);
1125
1126 // If this is 0x7FFF_FFFF, xor by OnesV to invert it.
Chris Lattnerb17f1672006-04-16 01:01:29 +00001127 if (SplatBits == 0x80000000)
Chris Lattnerf1b47082006-04-14 05:19:18 +00001128 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
1129
1130 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
1131 }
1132 }
Chris Lattnerb17f1672006-04-16 01:01:29 +00001133
Chris Lattnerf1b47082006-04-14 05:19:18 +00001134 return SDOperand();
1135}
1136
Chris Lattner59138102006-04-17 05:28:54 +00001137/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
1138/// the specified operations to build the shuffle.
1139static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
1140 SDOperand RHS, SelectionDAG &DAG) {
1141 unsigned OpNum = (PFEntry >> 26) & 0x0F;
1142 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
1143 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
1144
1145 enum {
1146 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
1147 OP_VMRGHW,
1148 OP_VMRGLW,
1149 OP_VSPLTISW0,
1150 OP_VSPLTISW1,
1151 OP_VSPLTISW2,
1152 OP_VSPLTISW3,
1153 OP_VSLDOI4,
1154 OP_VSLDOI8,
1155 OP_VSLDOI12,
1156 };
1157
1158 if (OpNum == OP_COPY) {
1159 if (LHSID == (1*9+2)*9+3) return LHS;
1160 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
1161 return RHS;
1162 }
1163
1164 unsigned ShufIdxs[16];
1165 switch (OpNum) {
1166 default: assert(0 && "Unknown i32 permute!");
1167 case OP_VMRGHW:
1168 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
1169 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
1170 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
1171 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
1172 break;
1173 case OP_VMRGLW:
1174 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
1175 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
1176 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
1177 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
1178 break;
1179 case OP_VSPLTISW0:
1180 for (unsigned i = 0; i != 16; ++i)
1181 ShufIdxs[i] = (i&3)+0;
1182 break;
1183 case OP_VSPLTISW1:
1184 for (unsigned i = 0; i != 16; ++i)
1185 ShufIdxs[i] = (i&3)+4;
1186 break;
1187 case OP_VSPLTISW2:
1188 for (unsigned i = 0; i != 16; ++i)
1189 ShufIdxs[i] = (i&3)+8;
1190 break;
1191 case OP_VSPLTISW3:
1192 for (unsigned i = 0; i != 16; ++i)
1193 ShufIdxs[i] = (i&3)+12;
1194 break;
1195 case OP_VSLDOI4:
1196 for (unsigned i = 0; i != 16; ++i)
1197 ShufIdxs[i] = i+4;
1198 break;
1199 case OP_VSLDOI8:
1200 for (unsigned i = 0; i != 16; ++i)
1201 ShufIdxs[i] = i+8;
1202 break;
1203 case OP_VSLDOI12:
1204 for (unsigned i = 0; i != 16; ++i)
1205 ShufIdxs[i] = i+12;
1206 break;
1207 }
1208 std::vector<SDOperand> Ops;
1209 for (unsigned i = 0; i != 16; ++i)
1210 Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
1211 SDOperand OpLHS, OpRHS;
1212 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
1213 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
1214
1215 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
1216 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1217}
1218
Chris Lattnerf1b47082006-04-14 05:19:18 +00001219/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
1220/// is a shuffle we can handle in a single instruction, return it. Otherwise,
1221/// return the code it can be lowered into. Worst case, it can always be
1222/// lowered into a vperm.
1223static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
1224 SDOperand V1 = Op.getOperand(0);
1225 SDOperand V2 = Op.getOperand(1);
1226 SDOperand PermMask = Op.getOperand(2);
1227
1228 // Cases that are handled by instructions that take permute immediates
1229 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
1230 // selected by the instruction selector.
1231 if (V2.getOpcode() == ISD::UNDEF) {
1232 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
1233 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
1234 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
1235 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
1236 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
1237 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
1238 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
1239 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
1240 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
1241 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
1242 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
1243 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
1244 return Op;
1245 }
1246 }
1247
1248 // Altivec has a variety of "shuffle immediates" that take two vector inputs
1249 // and produce a fixed permutation. If any of these match, do not lower to
1250 // VPERM.
1251 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
1252 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
1253 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
1254 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
1255 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
1256 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
1257 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
1258 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
1259 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
1260 return Op;
1261
Chris Lattner59138102006-04-17 05:28:54 +00001262 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
1263 // perfect shuffle table to emit an optimal matching sequence.
1264 unsigned PFIndexes[4];
1265 bool isFourElementShuffle = true;
1266 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
1267 unsigned EltNo = 8; // Start out undef.
1268 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
1269 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
1270 continue; // Undef, ignore it.
1271
1272 unsigned ByteSource =
1273 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
1274 if ((ByteSource & 3) != j) {
1275 isFourElementShuffle = false;
1276 break;
1277 }
1278
1279 if (EltNo == 8) {
1280 EltNo = ByteSource/4;
1281 } else if (EltNo != ByteSource/4) {
1282 isFourElementShuffle = false;
1283 break;
1284 }
1285 }
1286 PFIndexes[i] = EltNo;
1287 }
1288
1289 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
1290 // perfect shuffle vector to determine if it is cost effective to do this as
1291 // discrete instructions, or whether we should use a vperm.
1292 if (isFourElementShuffle) {
1293 // Compute the index in the perfect shuffle table.
1294 unsigned PFTableIndex =
1295 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
1296
1297 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
1298 unsigned Cost = (PFEntry >> 30);
1299
1300 // Determining when to avoid vperm is tricky. Many things affect the cost
1301 // of vperm, particularly how many times the perm mask needs to be computed.
1302 // For example, if the perm mask can be hoisted out of a loop or is already
1303 // used (perhaps because there are multiple permutes with the same shuffle
1304 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
1305 // the loop requires an extra register.
1306 //
1307 // As a compromise, we only emit discrete instructions if the shuffle can be
1308 // generated in 3 or fewer operations. When we have loop information
1309 // available, if this block is within a loop, we should avoid using vperm
1310 // for 3-operation perms and use a constant pool load instead.
1311 if (Cost < 3)
1312 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
1313 }
Chris Lattnerf1b47082006-04-14 05:19:18 +00001314
1315 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
1316 // vector that will get spilled to the constant pool.
1317 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
1318
1319 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
1320 // that it is in input element units, not in bytes. Convert now.
1321 MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
1322 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
1323
1324 std::vector<SDOperand> ResultMask;
1325 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
Chris Lattner730b4562006-04-15 23:48:05 +00001326 unsigned SrcElt;
1327 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
1328 SrcElt = 0;
1329 else
1330 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
Chris Lattnerf1b47082006-04-14 05:19:18 +00001331
1332 for (unsigned j = 0; j != BytesPerElement; ++j)
1333 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
1334 MVT::i8));
1335 }
1336
1337 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
1338 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
1339}
1340
Chris Lattner1a635d62006-04-14 06:01:58 +00001341/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
1342/// lower, do it, otherwise return null.
1343static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
1344 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
1345
1346 // If this is a lowered altivec predicate compare, CompareOpc is set to the
1347 // opcode number of the comparison.
1348 int CompareOpc = -1;
1349 bool isDot = false;
1350 switch (IntNo) {
1351 default: return SDOperand(); // Don't custom lower most intrinsics.
1352 // Comparison predicates.
1353 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
1354 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
1355 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
1356 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
1357 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
1358 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
1359 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
1360 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
1361 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
1362 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
1363 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
1364 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
1365 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
1366
1367 // Normal Comparisons.
1368 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
1369 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
1370 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
1371 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
1372 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
1373 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
1374 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
1375 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
1376 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
1377 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
1378 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
1379 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
1380 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
1381 }
1382
1383 assert(CompareOpc>0 && "We only lower altivec predicate compares so far!");
1384
1385 // If this is a non-dot comparison, make the VCMP node.
1386 if (!isDot) {
1387 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
1388 Op.getOperand(1), Op.getOperand(2),
1389 DAG.getConstant(CompareOpc, MVT::i32));
1390 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
1391 }
1392
1393 // Create the PPCISD altivec 'dot' comparison node.
1394 std::vector<SDOperand> Ops;
1395 std::vector<MVT::ValueType> VTs;
1396 Ops.push_back(Op.getOperand(2)); // LHS
1397 Ops.push_back(Op.getOperand(3)); // RHS
1398 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
1399 VTs.push_back(Op.getOperand(2).getValueType());
1400 VTs.push_back(MVT::Flag);
1401 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
1402
1403 // Now that we have the comparison, emit a copy from the CR to a GPR.
1404 // This is flagged to the above dot comparison.
1405 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
1406 DAG.getRegister(PPC::CR6, MVT::i32),
1407 CompNode.getValue(1));
1408
1409 // Unpack the result based on how the target uses it.
1410 unsigned BitNo; // Bit # of CR6.
1411 bool InvertBit; // Invert result?
1412 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1413 default: // Can't happen, don't crash on invalid number though.
1414 case 0: // Return the value of the EQ bit of CR6.
1415 BitNo = 0; InvertBit = false;
1416 break;
1417 case 1: // Return the inverted value of the EQ bit of CR6.
1418 BitNo = 0; InvertBit = true;
1419 break;
1420 case 2: // Return the value of the LT bit of CR6.
1421 BitNo = 2; InvertBit = false;
1422 break;
1423 case 3: // Return the inverted value of the LT bit of CR6.
1424 BitNo = 2; InvertBit = true;
1425 break;
1426 }
1427
1428 // Shift the bit into the low position.
1429 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
1430 DAG.getConstant(8-(3-BitNo), MVT::i32));
1431 // Isolate the bit.
1432 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
1433 DAG.getConstant(1, MVT::i32));
1434
1435 // If we are supposed to, toggle the bit.
1436 if (InvertBit)
1437 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
1438 DAG.getConstant(1, MVT::i32));
1439 return Flags;
1440}
1441
1442static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1443 // Create a stack slot that is 16-byte aligned.
1444 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1445 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
1446 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1447
1448 // Store the input value into Value#0 of the stack slot.
1449 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
1450 Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
1451 // Load it out.
1452 return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
1453}
1454
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001455/// LowerOperation - Provide custom lowering hooks for some operations.
1456///
Nate Begeman21e463b2005-10-16 05:39:50 +00001457SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001458 switch (Op.getOpcode()) {
1459 default: assert(0 && "Wasn't expecting to be able to lower this!");
Chris Lattner1a635d62006-04-14 06:01:58 +00001460 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
1461 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
1462 case ISD::SETCC: return LowerSETCC(Op, DAG);
1463 case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
1464 case ISD::RET: return LowerRET(Op, DAG);
Chris Lattner7c0d6642005-10-02 06:37:13 +00001465
Chris Lattner1a635d62006-04-14 06:01:58 +00001466 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
1467 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1468 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00001469
Chris Lattner1a635d62006-04-14 06:01:58 +00001470 // Lower 64-bit shifts.
1471 case ISD::SHL: return LowerSHL(Op, DAG);
1472 case ISD::SRL: return LowerSRL(Op, DAG);
1473 case ISD::SRA: return LowerSRA(Op, DAG);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00001474
Chris Lattner1a635d62006-04-14 06:01:58 +00001475 // Vector-related lowering.
1476 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
1477 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
1478 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1479 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
Chris Lattnerbc11c342005-08-31 20:23:54 +00001480 }
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001481 return SDOperand();
1482}
1483
Chris Lattner1a635d62006-04-14 06:01:58 +00001484//===----------------------------------------------------------------------===//
1485// Other Lowering Code
1486//===----------------------------------------------------------------------===//
1487
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001488std::vector<SDOperand>
Nate Begeman21e463b2005-10-16 05:39:50 +00001489PPCTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001490 //
1491 // add beautiful description of PPC stack frame format, or at least some docs
1492 //
1493 MachineFunction &MF = DAG.getMachineFunction();
1494 MachineFrameInfo *MFI = MF.getFrameInfo();
1495 MachineBasicBlock& BB = MF.front();
Chris Lattner7b738342005-09-13 19:33:40 +00001496 SSARegMap *RegMap = MF.getSSARegMap();
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001497 std::vector<SDOperand> ArgValues;
1498
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001499 unsigned ArgOffset = 24;
1500 unsigned GPR_remaining = 8;
1501 unsigned FPR_remaining = 13;
1502 unsigned GPR_idx = 0, FPR_idx = 0;
1503 static const unsigned GPR[] = {
1504 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1505 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1506 };
1507 static const unsigned FPR[] = {
1508 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1509 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1510 };
1511
1512 // Add DAG nodes to load the arguments... On entry to a function on PPC,
1513 // the arguments start at offset 24, although they are likely to be passed
1514 // in registers.
1515 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
1516 SDOperand newroot, argt;
1517 unsigned ObjSize;
1518 bool needsLoad = false;
1519 bool ArgLive = !I->use_empty();
1520 MVT::ValueType ObjectVT = getValueType(I->getType());
1521
1522 switch (ObjectVT) {
Chris Lattner915fb302005-08-30 00:19:00 +00001523 default: assert(0 && "Unhandled argument type!");
1524 case MVT::i1:
1525 case MVT::i8:
1526 case MVT::i16:
1527 case MVT::i32:
1528 ObjSize = 4;
1529 if (!ArgLive) break;
1530 if (GPR_remaining > 0) {
Nate Begeman1d9d7422005-10-18 00:28:58 +00001531 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001532 MF.addLiveIn(GPR[GPR_idx], VReg);
1533 argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
Nate Begeman49296f12005-08-31 01:58:39 +00001534 if (ObjectVT != MVT::i32) {
1535 unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
1536 : ISD::AssertZext;
1537 argt = DAG.getNode(AssertOp, MVT::i32, argt,
1538 DAG.getValueType(ObjectVT));
1539 argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, argt);
1540 }
Chris Lattner915fb302005-08-30 00:19:00 +00001541 } else {
1542 needsLoad = true;
1543 }
1544 break;
Chris Lattner80720a92005-11-30 20:40:54 +00001545 case MVT::i64:
1546 ObjSize = 8;
Chris Lattner915fb302005-08-30 00:19:00 +00001547 if (!ArgLive) break;
1548 if (GPR_remaining > 0) {
1549 SDOperand argHi, argLo;
Nate Begeman1d9d7422005-10-18 00:28:58 +00001550 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001551 MF.addLiveIn(GPR[GPR_idx], VReg);
1552 argHi = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
Chris Lattner915fb302005-08-30 00:19:00 +00001553 // If we have two or more remaining argument registers, then both halves
1554 // of the i64 can be sourced from there. Otherwise, the lower half will
1555 // have to come off the stack. This can happen when an i64 is preceded
1556 // by 28 bytes of arguments.
1557 if (GPR_remaining > 1) {
Nate Begeman1d9d7422005-10-18 00:28:58 +00001558 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001559 MF.addLiveIn(GPR[GPR_idx+1], VReg);
1560 argLo = DAG.getCopyFromReg(argHi, VReg, MVT::i32);
Chris Lattner915fb302005-08-30 00:19:00 +00001561 } else {
1562 int FI = MFI->CreateFixedObject(4, ArgOffset+4);
1563 SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
1564 argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
1565 DAG.getSrcValue(NULL));
1566 }
1567 // Build the outgoing arg thingy
1568 argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
1569 newroot = argLo;
1570 } else {
1571 needsLoad = true;
1572 }
1573 break;
1574 case MVT::f32:
1575 case MVT::f64:
1576 ObjSize = (ObjectVT == MVT::f64) ? 8 : 4;
Chris Lattner413b9792006-01-11 18:21:25 +00001577 if (!ArgLive) {
1578 if (FPR_remaining > 0) {
1579 --FPR_remaining;
1580 ++FPR_idx;
1581 }
1582 break;
1583 }
Chris Lattner915fb302005-08-30 00:19:00 +00001584 if (FPR_remaining > 0) {
Chris Lattner919c0322005-10-01 01:35:02 +00001585 unsigned VReg;
1586 if (ObjectVT == MVT::f32)
Nate Begeman1d9d7422005-10-18 00:28:58 +00001587 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
Chris Lattner919c0322005-10-01 01:35:02 +00001588 else
Nate Begeman1d9d7422005-10-18 00:28:58 +00001589 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001590 MF.addLiveIn(FPR[FPR_idx], VReg);
1591 argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, ObjectVT);
Chris Lattner915fb302005-08-30 00:19:00 +00001592 --FPR_remaining;
1593 ++FPR_idx;
1594 } else {
1595 needsLoad = true;
1596 }
1597 break;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001598 }
1599
1600 // We need to load the argument to a virtual register if we determined above
1601 // that we ran out of physical registers of the appropriate type
1602 if (needsLoad) {
1603 unsigned SubregOffset = 0;
1604 if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
1605 if (ObjectVT == MVT::i16) SubregOffset = 2;
1606 int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1607 SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
1608 FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
1609 DAG.getConstant(SubregOffset, MVT::i32));
1610 argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
1611 DAG.getSrcValue(NULL));
1612 }
1613
1614 // Every 4 bytes of argument space consumes one of the GPRs available for
1615 // argument passing.
1616 if (GPR_remaining > 0) {
1617 unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
1618 GPR_remaining -= delta;
1619 GPR_idx += delta;
1620 }
1621 ArgOffset += ObjSize;
1622 if (newroot.Val)
1623 DAG.setRoot(newroot.getValue(1));
1624
1625 ArgValues.push_back(argt);
1626 }
1627
1628 // If the function takes variable number of arguments, make a frame index for
1629 // the start of the first vararg value... for expansion of llvm.va_start.
1630 if (F.isVarArg()) {
1631 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1632 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
1633 // If this function is vararg, store any remaining integer argument regs
1634 // to their spots on the stack so that they may be loaded by deferencing the
1635 // result of va_next.
1636 std::vector<SDOperand> MemOps;
1637 for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
Nate Begeman1d9d7422005-10-18 00:28:58 +00001638 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001639 MF.addLiveIn(GPR[GPR_idx], VReg);
1640 SDOperand Val = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001641 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
1642 Val, FIN, DAG.getSrcValue(NULL));
1643 MemOps.push_back(Store);
1644 // Increment the address by four for the next argument to store
1645 SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
1646 FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
1647 }
Chris Lattner80720a92005-11-30 20:40:54 +00001648 if (!MemOps.empty()) {
1649 MemOps.push_back(DAG.getRoot());
1650 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
1651 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001652 }
1653
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001654 return ArgValues;
1655}
1656
1657std::pair<SDOperand, SDOperand>
Nate Begeman21e463b2005-10-16 05:39:50 +00001658PPCTargetLowering::LowerCallTo(SDOperand Chain,
1659 const Type *RetTy, bool isVarArg,
1660 unsigned CallingConv, bool isTailCall,
1661 SDOperand Callee, ArgListTy &Args,
1662 SelectionDAG &DAG) {
Chris Lattner281b55e2006-01-27 23:34:02 +00001663 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001664 // SelectExpr to use to put the arguments in the appropriate registers.
1665 std::vector<SDOperand> args_to_use;
1666
1667 // Count how many bytes are to be pushed on the stack, including the linkage
1668 // area, and parameter passing area.
1669 unsigned NumBytes = 24;
1670
1671 if (Args.empty()) {
Chris Lattner45b39762006-02-13 08:55:29 +00001672 Chain = DAG.getCALLSEQ_START(Chain,
1673 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001674 } else {
Chris Lattner915fb302005-08-30 00:19:00 +00001675 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001676 switch (getValueType(Args[i].second)) {
Chris Lattner915fb302005-08-30 00:19:00 +00001677 default: assert(0 && "Unknown value type!");
1678 case MVT::i1:
1679 case MVT::i8:
1680 case MVT::i16:
1681 case MVT::i32:
1682 case MVT::f32:
1683 NumBytes += 4;
1684 break;
1685 case MVT::i64:
1686 case MVT::f64:
1687 NumBytes += 8;
1688 break;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001689 }
Chris Lattner915fb302005-08-30 00:19:00 +00001690 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001691
Chris Lattner915fb302005-08-30 00:19:00 +00001692 // Just to be safe, we'll always reserve the full 24 bytes of linkage area
1693 // plus 32 bytes of argument space in case any called code gets funky on us.
1694 // (Required by ABI to support var arg)
1695 if (NumBytes < 56) NumBytes = 56;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001696
1697 // Adjust the stack pointer for the new arguments...
1698 // These operations are automatically eliminated by the prolog/epilog pass
Chris Lattner45b39762006-02-13 08:55:29 +00001699 Chain = DAG.getCALLSEQ_START(Chain,
1700 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001701
1702 // Set up a copy of the stack pointer for use loading and storing any
1703 // arguments that may not fit in the registers available for argument
1704 // passing.
Chris Lattnera243db82006-01-11 19:55:07 +00001705 SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001706
1707 // Figure out which arguments are going to go in registers, and which in
1708 // memory. Also, if this is a vararg function, floating point operations
1709 // must be stored to our stack, and loaded into integer regs as well, if
1710 // any integer regs are available for argument passing.
1711 unsigned ArgOffset = 24;
1712 unsigned GPR_remaining = 8;
1713 unsigned FPR_remaining = 13;
1714
1715 std::vector<SDOperand> MemOps;
1716 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1717 // PtrOff will be used to store the current argument to the stack if a
1718 // register cannot be found for it.
1719 SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1720 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
1721 MVT::ValueType ArgVT = getValueType(Args[i].second);
1722
1723 switch (ArgVT) {
Chris Lattner915fb302005-08-30 00:19:00 +00001724 default: assert(0 && "Unexpected ValueType for argument!");
1725 case MVT::i1:
1726 case MVT::i8:
1727 case MVT::i16:
1728 // Promote the integer to 32 bits. If the input type is signed use a
1729 // sign extend, otherwise use a zero extend.
1730 if (Args[i].second->isSigned())
1731 Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
1732 else
1733 Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
1734 // FALL THROUGH
1735 case MVT::i32:
1736 if (GPR_remaining > 0) {
1737 args_to_use.push_back(Args[i].first);
1738 --GPR_remaining;
1739 } else {
1740 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1741 Args[i].first, PtrOff,
1742 DAG.getSrcValue(NULL)));
1743 }
1744 ArgOffset += 4;
1745 break;
1746 case MVT::i64:
1747 // If we have one free GPR left, we can place the upper half of the i64
1748 // in it, and store the other half to the stack. If we have two or more
1749 // free GPRs, then we can pass both halves of the i64 in registers.
1750 if (GPR_remaining > 0) {
1751 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1752 Args[i].first, DAG.getConstant(1, MVT::i32));
1753 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1754 Args[i].first, DAG.getConstant(0, MVT::i32));
1755 args_to_use.push_back(Hi);
1756 --GPR_remaining;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001757 if (GPR_remaining > 0) {
Chris Lattner915fb302005-08-30 00:19:00 +00001758 args_to_use.push_back(Lo);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001759 --GPR_remaining;
1760 } else {
Chris Lattner915fb302005-08-30 00:19:00 +00001761 SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1762 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001763 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
Chris Lattner915fb302005-08-30 00:19:00 +00001764 Lo, PtrOff, DAG.getSrcValue(NULL)));
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001765 }
Chris Lattner915fb302005-08-30 00:19:00 +00001766 } else {
1767 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1768 Args[i].first, PtrOff,
1769 DAG.getSrcValue(NULL)));
1770 }
1771 ArgOffset += 8;
1772 break;
1773 case MVT::f32:
1774 case MVT::f64:
1775 if (FPR_remaining > 0) {
1776 args_to_use.push_back(Args[i].first);
1777 --FPR_remaining;
1778 if (isVarArg) {
1779 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
1780 Args[i].first, PtrOff,
1781 DAG.getSrcValue(NULL));
1782 MemOps.push_back(Store);
1783 // Float varargs are always shadowed in available integer registers
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001784 if (GPR_remaining > 0) {
Chris Lattner915fb302005-08-30 00:19:00 +00001785 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
1786 DAG.getSrcValue(NULL));
Chris Lattner1df74782005-11-17 18:30:17 +00001787 MemOps.push_back(Load.getValue(1));
Chris Lattner915fb302005-08-30 00:19:00 +00001788 args_to_use.push_back(Load);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001789 --GPR_remaining;
Chris Lattner915fb302005-08-30 00:19:00 +00001790 }
1791 if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001792 SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1793 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
Chris Lattner915fb302005-08-30 00:19:00 +00001794 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
1795 DAG.getSrcValue(NULL));
Chris Lattner1df74782005-11-17 18:30:17 +00001796 MemOps.push_back(Load.getValue(1));
Chris Lattner915fb302005-08-30 00:19:00 +00001797 args_to_use.push_back(Load);
1798 --GPR_remaining;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001799 }
1800 } else {
Chris Lattner915fb302005-08-30 00:19:00 +00001801 // If we have any FPRs remaining, we may also have GPRs remaining.
1802 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1803 // GPRs.
1804 if (GPR_remaining > 0) {
1805 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
1806 --GPR_remaining;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001807 }
Chris Lattner915fb302005-08-30 00:19:00 +00001808 if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
1809 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
1810 --GPR_remaining;
1811 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001812 }
Chris Lattner915fb302005-08-30 00:19:00 +00001813 } else {
1814 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1815 Args[i].first, PtrOff,
1816 DAG.getSrcValue(NULL)));
1817 }
1818 ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
1819 break;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001820 }
1821 }
1822 if (!MemOps.empty())
1823 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
1824 }
1825
1826 std::vector<MVT::ValueType> RetVals;
1827 MVT::ValueType RetTyVT = getValueType(RetTy);
Chris Lattnerf5059492005-09-02 01:24:55 +00001828 MVT::ValueType ActualRetTyVT = RetTyVT;
1829 if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
1830 ActualRetTyVT = MVT::i32; // Promote result to i32.
1831
Chris Lattnere00ebf02006-01-28 07:33:03 +00001832 if (RetTyVT == MVT::i64) {
1833 RetVals.push_back(MVT::i32);
1834 RetVals.push_back(MVT::i32);
1835 } else if (RetTyVT != MVT::isVoid) {
Chris Lattnerf5059492005-09-02 01:24:55 +00001836 RetVals.push_back(ActualRetTyVT);
Chris Lattnere00ebf02006-01-28 07:33:03 +00001837 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001838 RetVals.push_back(MVT::Other);
1839
Chris Lattner2823b3e2005-11-17 05:56:14 +00001840 // If the callee is a GlobalAddress node (quite common, every direct call is)
1841 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1842 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1843 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
1844
Chris Lattner281b55e2006-01-27 23:34:02 +00001845 std::vector<SDOperand> Ops;
1846 Ops.push_back(Chain);
1847 Ops.push_back(Callee);
1848 Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
1849 SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
Chris Lattnere00ebf02006-01-28 07:33:03 +00001850 Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001851 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1852 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattnerf5059492005-09-02 01:24:55 +00001853 SDOperand RetVal = TheCall;
1854
1855 // If the result is a small value, add a note so that we keep track of the
1856 // information about whether it is sign or zero extended.
1857 if (RetTyVT != ActualRetTyVT) {
1858 RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
1859 MVT::i32, RetVal, DAG.getValueType(RetTyVT));
1860 RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
Chris Lattnere00ebf02006-01-28 07:33:03 +00001861 } else if (RetTyVT == MVT::i64) {
1862 RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
Chris Lattnerf5059492005-09-02 01:24:55 +00001863 }
1864
1865 return std::make_pair(RetVal, Chain);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001866}
1867
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00001868MachineBasicBlock *
Nate Begeman21e463b2005-10-16 05:39:50 +00001869PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
1870 MachineBasicBlock *BB) {
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00001871 assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
Chris Lattner919c0322005-10-01 01:35:02 +00001872 MI->getOpcode() == PPC::SELECT_CC_F4 ||
Chris Lattner710ff322006-04-08 22:45:08 +00001873 MI->getOpcode() == PPC::SELECT_CC_F8 ||
1874 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00001875 "Unexpected instr type to insert");
1876
1877 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1878 // control-flow pattern. The incoming instruction knows the destination vreg
1879 // to set, the condition code register to branch on, the true/false values to
1880 // select between, and a branch opcode to use.
1881 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1882 ilist<MachineBasicBlock>::iterator It = BB;
1883 ++It;
1884
1885 // thisMBB:
1886 // ...
1887 // TrueVal = ...
1888 // cmpTY ccX, r1, r2
1889 // bCC copy1MBB
1890 // fallthrough --> copy0MBB
1891 MachineBasicBlock *thisMBB = BB;
1892 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
1893 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1894 BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
1895 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
1896 MachineFunction *F = BB->getParent();
1897 F->getBasicBlockList().insert(It, copy0MBB);
1898 F->getBasicBlockList().insert(It, sinkMBB);
Nate Begemanf15485a2006-03-27 01:32:24 +00001899 // Update machine-CFG edges by first adding all successors of the current
1900 // block to the new block which will contain the Phi node for the select.
1901 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
1902 e = BB->succ_end(); i != e; ++i)
1903 sinkMBB->addSuccessor(*i);
1904 // Next, remove all successors of the current block, and add the true
1905 // and fallthrough blocks as its successors.
1906 while(!BB->succ_empty())
1907 BB->removeSuccessor(BB->succ_begin());
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00001908 BB->addSuccessor(copy0MBB);
1909 BB->addSuccessor(sinkMBB);
1910
1911 // copy0MBB:
1912 // %FalseValue = ...
1913 // # fallthrough to sinkMBB
1914 BB = copy0MBB;
1915
1916 // Update machine-CFG edges
1917 BB->addSuccessor(sinkMBB);
1918
1919 // sinkMBB:
1920 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1921 // ...
1922 BB = sinkMBB;
1923 BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
1924 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
1925 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1926
1927 delete MI; // The pseudo instruction is gone now.
1928 return BB;
1929}
1930
Chris Lattner1a635d62006-04-14 06:01:58 +00001931//===----------------------------------------------------------------------===//
1932// Target Optimization Hooks
1933//===----------------------------------------------------------------------===//
1934
Chris Lattner8c13d0a2006-03-01 04:57:39 +00001935SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
1936 DAGCombinerInfo &DCI) const {
1937 TargetMachine &TM = getTargetMachine();
1938 SelectionDAG &DAG = DCI.DAG;
1939 switch (N->getOpcode()) {
1940 default: break;
1941 case ISD::SINT_TO_FP:
1942 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
Chris Lattnerecfe55e2006-03-22 05:30:33 +00001943 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
1944 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
1945 // We allow the src/dst to be either f32/f64, but the intermediate
1946 // type must be i64.
1947 if (N->getOperand(0).getValueType() == MVT::i64) {
1948 SDOperand Val = N->getOperand(0).getOperand(0);
1949 if (Val.getValueType() == MVT::f32) {
1950 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
1951 DCI.AddToWorklist(Val.Val);
1952 }
1953
1954 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
Chris Lattner8c13d0a2006-03-01 04:57:39 +00001955 DCI.AddToWorklist(Val.Val);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00001956 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
Chris Lattner8c13d0a2006-03-01 04:57:39 +00001957 DCI.AddToWorklist(Val.Val);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00001958 if (N->getValueType(0) == MVT::f32) {
1959 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
1960 DCI.AddToWorklist(Val.Val);
1961 }
1962 return Val;
1963 } else if (N->getOperand(0).getValueType() == MVT::i32) {
1964 // If the intermediate type is i32, we can avoid the load/store here
1965 // too.
Chris Lattner8c13d0a2006-03-01 04:57:39 +00001966 }
Chris Lattner8c13d0a2006-03-01 04:57:39 +00001967 }
1968 }
1969 break;
Chris Lattner51269842006-03-01 05:50:56 +00001970 case ISD::STORE:
1971 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
1972 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
1973 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
1974 N->getOperand(1).getValueType() == MVT::i32) {
1975 SDOperand Val = N->getOperand(1).getOperand(0);
1976 if (Val.getValueType() == MVT::f32) {
1977 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
1978 DCI.AddToWorklist(Val.Val);
1979 }
1980 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
1981 DCI.AddToWorklist(Val.Val);
1982
1983 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
1984 N->getOperand(2), N->getOperand(3));
1985 DCI.AddToWorklist(Val.Val);
1986 return Val;
1987 }
1988 break;
Chris Lattner4468c222006-03-31 06:02:07 +00001989 case PPCISD::VCMP: {
1990 // If a VCMPo node already exists with exactly the same operands as this
1991 // node, use its result instead of this node (VCMPo computes both a CR6 and
1992 // a normal output).
1993 //
1994 if (!N->getOperand(0).hasOneUse() &&
1995 !N->getOperand(1).hasOneUse() &&
1996 !N->getOperand(2).hasOneUse()) {
1997
1998 // Scan all of the users of the LHS, looking for VCMPo's that match.
1999 SDNode *VCMPoNode = 0;
2000
2001 SDNode *LHSN = N->getOperand(0).Val;
2002 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2003 UI != E; ++UI)
2004 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2005 (*UI)->getOperand(1) == N->getOperand(1) &&
2006 (*UI)->getOperand(2) == N->getOperand(2) &&
2007 (*UI)->getOperand(0) == N->getOperand(0)) {
2008 VCMPoNode = *UI;
2009 break;
2010 }
2011
2012 // If there are non-zero uses of the flag value, use the VCMPo node!
Chris Lattner33497cc2006-03-31 06:04:53 +00002013 if (VCMPoNode && !VCMPoNode->hasNUsesOfValue(0, 1))
Chris Lattner4468c222006-03-31 06:02:07 +00002014 return SDOperand(VCMPoNode, 0);
2015 }
2016 break;
2017 }
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002018 }
2019
2020 return SDOperand();
2021}
2022
Chris Lattner1a635d62006-04-14 06:01:58 +00002023//===----------------------------------------------------------------------===//
2024// Inline Assembly Support
2025//===----------------------------------------------------------------------===//
2026
Chris Lattnerbbe77de2006-04-02 06:26:07 +00002027void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2028 uint64_t Mask,
2029 uint64_t &KnownZero,
2030 uint64_t &KnownOne,
2031 unsigned Depth) const {
2032 KnownZero = 0;
2033 KnownOne = 0;
2034 switch (Op.getOpcode()) {
2035 default: break;
2036 case ISD::INTRINSIC_WO_CHAIN: {
2037 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2038 default: break;
2039 case Intrinsic::ppc_altivec_vcmpbfp_p:
2040 case Intrinsic::ppc_altivec_vcmpeqfp_p:
2041 case Intrinsic::ppc_altivec_vcmpequb_p:
2042 case Intrinsic::ppc_altivec_vcmpequh_p:
2043 case Intrinsic::ppc_altivec_vcmpequw_p:
2044 case Intrinsic::ppc_altivec_vcmpgefp_p:
2045 case Intrinsic::ppc_altivec_vcmpgtfp_p:
2046 case Intrinsic::ppc_altivec_vcmpgtsb_p:
2047 case Intrinsic::ppc_altivec_vcmpgtsh_p:
2048 case Intrinsic::ppc_altivec_vcmpgtsw_p:
2049 case Intrinsic::ppc_altivec_vcmpgtub_p:
2050 case Intrinsic::ppc_altivec_vcmpgtuh_p:
2051 case Intrinsic::ppc_altivec_vcmpgtuw_p:
2052 KnownZero = ~1U; // All bits but the low one are known to be zero.
2053 break;
2054 }
2055 }
2056 }
2057}
2058
2059
Chris Lattnerad3bc8d2006-02-07 20:16:30 +00002060/// getConstraintType - Given a constraint letter, return the type of
2061/// constraint it is for this target.
2062PPCTargetLowering::ConstraintType
2063PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2064 switch (ConstraintLetter) {
2065 default: break;
2066 case 'b':
2067 case 'r':
2068 case 'f':
2069 case 'v':
2070 case 'y':
2071 return C_RegisterClass;
2072 }
2073 return TargetLowering::getConstraintType(ConstraintLetter);
2074}
2075
2076
Chris Lattnerddc787d2006-01-31 19:20:21 +00002077std::vector<unsigned> PPCTargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00002078getRegClassForInlineAsmConstraint(const std::string &Constraint,
2079 MVT::ValueType VT) const {
Chris Lattnerddc787d2006-01-31 19:20:21 +00002080 if (Constraint.size() == 1) {
2081 switch (Constraint[0]) { // GCC RS6000 Constraint Letters
2082 default: break; // Unknown constriant letter
2083 case 'b':
2084 return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
2085 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2086 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2087 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2088 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2089 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2090 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2091 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2092 0);
2093 case 'r':
2094 return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
2095 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2096 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2097 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2098 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2099 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2100 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2101 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2102 0);
2103 case 'f':
2104 return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
2105 PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
2106 PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
2107 PPC::F12, PPC::F13, PPC::F14, PPC::F15,
2108 PPC::F16, PPC::F17, PPC::F18, PPC::F19,
2109 PPC::F20, PPC::F21, PPC::F22, PPC::F23,
2110 PPC::F24, PPC::F25, PPC::F26, PPC::F27,
2111 PPC::F28, PPC::F29, PPC::F30, PPC::F31,
2112 0);
2113 case 'v':
2114 return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
2115 PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
2116 PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
2117 PPC::V12, PPC::V13, PPC::V14, PPC::V15,
2118 PPC::V16, PPC::V17, PPC::V18, PPC::V19,
2119 PPC::V20, PPC::V21, PPC::V22, PPC::V23,
2120 PPC::V24, PPC::V25, PPC::V26, PPC::V27,
2121 PPC::V28, PPC::V29, PPC::V30, PPC::V31,
2122 0);
2123 case 'y':
2124 return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
2125 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
2126 0);
2127 }
2128 }
2129
Chris Lattner1efa40f2006-02-22 00:56:39 +00002130 return std::vector<unsigned>();
Chris Lattnerddc787d2006-01-31 19:20:21 +00002131}
Chris Lattner763317d2006-02-07 00:47:13 +00002132
2133// isOperandValidForConstraint
2134bool PPCTargetLowering::
2135isOperandValidForConstraint(SDOperand Op, char Letter) {
2136 switch (Letter) {
2137 default: break;
2138 case 'I':
2139 case 'J':
2140 case 'K':
2141 case 'L':
2142 case 'M':
2143 case 'N':
2144 case 'O':
2145 case 'P': {
2146 if (!isa<ConstantSDNode>(Op)) return false; // Must be an immediate.
2147 unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2148 switch (Letter) {
2149 default: assert(0 && "Unknown constraint letter!");
2150 case 'I': // "I" is a signed 16-bit constant.
2151 return (short)Value == (int)Value;
2152 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
2153 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
2154 return (short)Value == 0;
2155 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
2156 return (Value >> 16) == 0;
2157 case 'M': // "M" is a constant that is greater than 31.
2158 return Value > 31;
2159 case 'N': // "N" is a positive constant that is an exact power of two.
2160 return (int)Value > 0 && isPowerOf2_32(Value);
2161 case 'O': // "O" is the constant zero.
2162 return Value == 0;
2163 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
2164 return (short)-Value == (int)-Value;
2165 }
2166 break;
2167 }
2168 }
2169
2170 // Handle standard constraint letters.
2171 return TargetLowering::isOperandValidForConstraint(Op, Letter);
2172}
Evan Chengc4c62572006-03-13 23:20:37 +00002173
2174/// isLegalAddressImmediate - Return true if the integer value can be used
2175/// as the offset of the target addressing mode.
2176bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2177 // PPC allows a sign-extended 16-bit immediate field.
2178 return (V > -(1 << 16) && V < (1 << 16)-1);
2179}