blob: 2b9930cad6b404d25916634b94753e62cdae14cd [file] [log] [blame]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Neil Booth and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision floating
11// point values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#include <cassert>
16#include "llvm/ADT/APFloat.h"
Dale Johannesend3b51fd2007-08-24 05:08:11 +000017#include "llvm/Support/MathExtras.h"
Chris Lattnerb39cdde2007-08-20 22:49:32 +000018
19using namespace llvm;
20
21#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
22
23/* Assumed in hexadecimal significand parsing. */
24COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
25
26namespace llvm {
27
28 /* Represents floating point arithmetic semantics. */
29 struct fltSemantics {
30 /* The largest E such that 2^E is representable; this matches the
31 definition of IEEE 754. */
32 exponent_t maxExponent;
33
34 /* The smallest E such that 2^E is a normalized number; this
35 matches the definition of IEEE 754. */
36 exponent_t minExponent;
37
38 /* Number of bits in the significand. This includes the integer
39 bit. */
40 unsigned char precision;
41
42 /* If the target format has an implicit integer bit. */
43 bool implicitIntegerBit;
44 };
45
46 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
47 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
48 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
49 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, false };
Dale Johannesena72a5a02007-09-20 23:47:58 +000050 const fltSemantics APFloat::Bogus = { 0, 0, 0, false };
Chris Lattnerb39cdde2007-08-20 22:49:32 +000051}
52
53/* Put a bunch of private, handy routines in an anonymous namespace. */
54namespace {
55
56 inline unsigned int
57 partCountForBits(unsigned int bits)
58 {
59 return ((bits) + integerPartWidth - 1) / integerPartWidth;
60 }
61
62 unsigned int
63 digitValue(unsigned int c)
64 {
65 unsigned int r;
66
67 r = c - '0';
68 if(r <= 9)
69 return r;
70
71 return -1U;
72 }
73
74 unsigned int
75 hexDigitValue (unsigned int c)
76 {
77 unsigned int r;
78
79 r = c - '0';
80 if(r <= 9)
81 return r;
82
83 r = c - 'A';
84 if(r <= 5)
85 return r + 10;
86
87 r = c - 'a';
88 if(r <= 5)
89 return r + 10;
90
91 return -1U;
92 }
93
94 /* This is ugly and needs cleaning up, but I don't immediately see
95 how whilst remaining safe. */
96 static int
97 totalExponent(const char *p, int exponentAdjustment)
98 {
99 integerPart unsignedExponent;
100 bool negative, overflow;
101 long exponent;
102
103 /* Move past the exponent letter and sign to the digits. */
104 p++;
105 negative = *p == '-';
106 if(*p == '-' || *p == '+')
107 p++;
108
109 unsignedExponent = 0;
110 overflow = false;
111 for(;;) {
112 unsigned int value;
113
114 value = digitValue(*p);
115 if(value == -1U)
116 break;
117
118 p++;
119 unsignedExponent = unsignedExponent * 10 + value;
120 if(unsignedExponent > 65535)
121 overflow = true;
122 }
123
124 if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
125 overflow = true;
126
127 if(!overflow) {
128 exponent = unsignedExponent;
129 if(negative)
130 exponent = -exponent;
131 exponent += exponentAdjustment;
132 if(exponent > 65535 || exponent < -65536)
133 overflow = true;
134 }
135
136 if(overflow)
137 exponent = negative ? -65536: 65535;
138
139 return exponent;
140 }
141
142 const char *
143 skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
144 {
145 *dot = 0;
146 while(*p == '0')
147 p++;
148
149 if(*p == '.') {
150 *dot = p++;
151 while(*p == '0')
152 p++;
153 }
154
155 return p;
156 }
157
158 /* Return the trailing fraction of a hexadecimal number.
159 DIGITVALUE is the first hex digit of the fraction, P points to
160 the next digit. */
161 lostFraction
162 trailingHexadecimalFraction(const char *p, unsigned int digitValue)
163 {
164 unsigned int hexDigit;
165
166 /* If the first trailing digit isn't 0 or 8 we can work out the
167 fraction immediately. */
168 if(digitValue > 8)
169 return lfMoreThanHalf;
170 else if(digitValue < 8 && digitValue > 0)
171 return lfLessThanHalf;
172
173 /* Otherwise we need to find the first non-zero digit. */
174 while(*p == '0')
175 p++;
176
177 hexDigit = hexDigitValue(*p);
178
179 /* If we ran off the end it is exactly zero or one-half, otherwise
180 a little more. */
181 if(hexDigit == -1U)
182 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
183 else
184 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
185 }
186
187 /* Return the fraction lost were a bignum truncated. */
188 lostFraction
189 lostFractionThroughTruncation(integerPart *parts,
190 unsigned int partCount,
191 unsigned int bits)
192 {
193 unsigned int lsb;
194
195 lsb = APInt::tcLSB(parts, partCount);
196
197 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
198 if(bits <= lsb)
199 return lfExactlyZero;
200 if(bits == lsb + 1)
201 return lfExactlyHalf;
202 if(bits <= partCount * integerPartWidth
203 && APInt::tcExtractBit(parts, bits - 1))
204 return lfMoreThanHalf;
205
206 return lfLessThanHalf;
207 }
208
209 /* Shift DST right BITS bits noting lost fraction. */
210 lostFraction
211 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
212 {
213 lostFraction lost_fraction;
214
215 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
216
217 APInt::tcShiftRight(dst, parts, bits);
218
219 return lost_fraction;
220 }
221}
222
223/* Constructors. */
224void
225APFloat::initialize(const fltSemantics *ourSemantics)
226{
227 unsigned int count;
228
229 semantics = ourSemantics;
230 count = partCount();
231 if(count > 1)
232 significand.parts = new integerPart[count];
233}
234
235void
236APFloat::freeSignificand()
237{
238 if(partCount() > 1)
239 delete [] significand.parts;
240}
241
242void
243APFloat::assign(const APFloat &rhs)
244{
245 assert(semantics == rhs.semantics);
246
247 sign = rhs.sign;
248 category = rhs.category;
249 exponent = rhs.exponent;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000250 if(category == fcNormal || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000251 copySignificand(rhs);
252}
253
254void
255APFloat::copySignificand(const APFloat &rhs)
256{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000257 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000258 assert(rhs.partCount() >= partCount());
259
260 APInt::tcAssign(significandParts(), rhs.significandParts(),
261 partCount());
262}
263
264APFloat &
265APFloat::operator=(const APFloat &rhs)
266{
267 if(this != &rhs) {
268 if(semantics != rhs.semantics) {
269 freeSignificand();
270 initialize(rhs.semantics);
271 }
272 assign(rhs);
273 }
274
275 return *this;
276}
277
Dale Johannesen343e7702007-08-24 00:56:33 +0000278bool
Dale Johannesen12595d72007-08-24 22:09:56 +0000279APFloat::bitwiseIsEqual(const APFloat &rhs) const {
Dale Johannesen343e7702007-08-24 00:56:33 +0000280 if (this == &rhs)
281 return true;
282 if (semantics != rhs.semantics ||
Dale Johanneseneaf08942007-08-31 04:03:46 +0000283 category != rhs.category ||
284 sign != rhs.sign)
Dale Johannesen343e7702007-08-24 00:56:33 +0000285 return false;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000286 if (category==fcZero || category==fcInfinity)
Dale Johannesen343e7702007-08-24 00:56:33 +0000287 return true;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000288 else if (category==fcNormal && exponent!=rhs.exponent)
289 return false;
Dale Johannesen343e7702007-08-24 00:56:33 +0000290 else {
Dale Johannesen343e7702007-08-24 00:56:33 +0000291 int i= partCount();
292 const integerPart* p=significandParts();
293 const integerPart* q=rhs.significandParts();
294 for (; i>0; i--, p++, q++) {
295 if (*p != *q)
296 return false;
297 }
298 return true;
299 }
300}
301
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000302APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
303{
304 initialize(&ourSemantics);
305 sign = 0;
306 zeroSignificand();
307 exponent = ourSemantics.precision - 1;
308 significandParts()[0] = value;
309 normalize(rmNearestTiesToEven, lfExactlyZero);
310}
311
312APFloat::APFloat(const fltSemantics &ourSemantics,
313 fltCategory ourCategory, bool negative)
314{
315 initialize(&ourSemantics);
316 category = ourCategory;
317 sign = negative;
318 if(category == fcNormal)
319 category = fcZero;
320}
321
322APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
323{
324 initialize(&ourSemantics);
325 convertFromString(text, rmNearestTiesToEven);
326}
327
328APFloat::APFloat(const APFloat &rhs)
329{
330 initialize(rhs.semantics);
331 assign(rhs);
332}
333
334APFloat::~APFloat()
335{
336 freeSignificand();
337}
338
339unsigned int
340APFloat::partCount() const
341{
Dale Johannesena72a5a02007-09-20 23:47:58 +0000342 return partCountForBits(semantics->precision + 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000343}
344
345unsigned int
346APFloat::semanticsPrecision(const fltSemantics &semantics)
347{
348 return semantics.precision;
349}
350
351const integerPart *
352APFloat::significandParts() const
353{
354 return const_cast<APFloat *>(this)->significandParts();
355}
356
357integerPart *
358APFloat::significandParts()
359{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000360 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000361
362 if(partCount() > 1)
363 return significand.parts;
364 else
365 return &significand.part;
366}
367
368/* Combine the effect of two lost fractions. */
369lostFraction
370APFloat::combineLostFractions(lostFraction moreSignificant,
371 lostFraction lessSignificant)
372{
373 if(lessSignificant != lfExactlyZero) {
374 if(moreSignificant == lfExactlyZero)
375 moreSignificant = lfLessThanHalf;
376 else if(moreSignificant == lfExactlyHalf)
377 moreSignificant = lfMoreThanHalf;
378 }
379
380 return moreSignificant;
381}
382
383void
384APFloat::zeroSignificand()
385{
386 category = fcNormal;
387 APInt::tcSet(significandParts(), 0, partCount());
388}
389
390/* Increment an fcNormal floating point number's significand. */
391void
392APFloat::incrementSignificand()
393{
394 integerPart carry;
395
396 carry = APInt::tcIncrement(significandParts(), partCount());
397
398 /* Our callers should never cause us to overflow. */
399 assert(carry == 0);
400}
401
402/* Add the significand of the RHS. Returns the carry flag. */
403integerPart
404APFloat::addSignificand(const APFloat &rhs)
405{
406 integerPart *parts;
407
408 parts = significandParts();
409
410 assert(semantics == rhs.semantics);
411 assert(exponent == rhs.exponent);
412
413 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
414}
415
416/* Subtract the significand of the RHS with a borrow flag. Returns
417 the borrow flag. */
418integerPart
419APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
420{
421 integerPart *parts;
422
423 parts = significandParts();
424
425 assert(semantics == rhs.semantics);
426 assert(exponent == rhs.exponent);
427
428 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
429 partCount());
430}
431
432/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
433 on to the full-precision result of the multiplication. Returns the
434 lost fraction. */
435lostFraction
436APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
437{
438 unsigned int omsb; // One, not zero, based MSB.
439 unsigned int partsCount, newPartsCount, precision;
440 integerPart *lhsSignificand;
441 integerPart scratch[4];
442 integerPart *fullSignificand;
443 lostFraction lost_fraction;
444
445 assert(semantics == rhs.semantics);
446
447 precision = semantics->precision;
448 newPartsCount = partCountForBits(precision * 2);
449
450 if(newPartsCount > 4)
451 fullSignificand = new integerPart[newPartsCount];
452 else
453 fullSignificand = scratch;
454
455 lhsSignificand = significandParts();
456 partsCount = partCount();
457
458 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
459 rhs.significandParts(), partsCount);
460
461 lost_fraction = lfExactlyZero;
462 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
463 exponent += rhs.exponent;
464
465 if(addend) {
466 Significand savedSignificand = significand;
467 const fltSemantics *savedSemantics = semantics;
468 fltSemantics extendedSemantics;
469 opStatus status;
470 unsigned int extendedPrecision;
471
472 /* Normalize our MSB. */
473 extendedPrecision = precision + precision - 1;
474 if(omsb != extendedPrecision)
475 {
476 APInt::tcShiftLeft(fullSignificand, newPartsCount,
477 extendedPrecision - omsb);
478 exponent -= extendedPrecision - omsb;
479 }
480
481 /* Create new semantics. */
482 extendedSemantics = *semantics;
483 extendedSemantics.precision = extendedPrecision;
484
485 if(newPartsCount == 1)
486 significand.part = fullSignificand[0];
487 else
488 significand.parts = fullSignificand;
489 semantics = &extendedSemantics;
490
491 APFloat extendedAddend(*addend);
492 status = extendedAddend.convert(extendedSemantics, rmTowardZero);
493 assert(status == opOK);
494 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
495
496 /* Restore our state. */
497 if(newPartsCount == 1)
498 fullSignificand[0] = significand.part;
499 significand = savedSignificand;
500 semantics = savedSemantics;
501
502 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
503 }
504
505 exponent -= (precision - 1);
506
507 if(omsb > precision) {
508 unsigned int bits, significantParts;
509 lostFraction lf;
510
511 bits = omsb - precision;
512 significantParts = partCountForBits(omsb);
513 lf = shiftRight(fullSignificand, significantParts, bits);
514 lost_fraction = combineLostFractions(lf, lost_fraction);
515 exponent += bits;
516 }
517
518 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
519
520 if(newPartsCount > 4)
521 delete [] fullSignificand;
522
523 return lost_fraction;
524}
525
526/* Multiply the significands of LHS and RHS to DST. */
527lostFraction
528APFloat::divideSignificand(const APFloat &rhs)
529{
530 unsigned int bit, i, partsCount;
531 const integerPart *rhsSignificand;
532 integerPart *lhsSignificand, *dividend, *divisor;
533 integerPart scratch[4];
534 lostFraction lost_fraction;
535
536 assert(semantics == rhs.semantics);
537
538 lhsSignificand = significandParts();
539 rhsSignificand = rhs.significandParts();
540 partsCount = partCount();
541
542 if(partsCount > 2)
543 dividend = new integerPart[partsCount * 2];
544 else
545 dividend = scratch;
546
547 divisor = dividend + partsCount;
548
549 /* Copy the dividend and divisor as they will be modified in-place. */
550 for(i = 0; i < partsCount; i++) {
551 dividend[i] = lhsSignificand[i];
552 divisor[i] = rhsSignificand[i];
553 lhsSignificand[i] = 0;
554 }
555
556 exponent -= rhs.exponent;
557
558 unsigned int precision = semantics->precision;
559
560 /* Normalize the divisor. */
561 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
562 if(bit) {
563 exponent += bit;
564 APInt::tcShiftLeft(divisor, partsCount, bit);
565 }
566
567 /* Normalize the dividend. */
568 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
569 if(bit) {
570 exponent -= bit;
571 APInt::tcShiftLeft(dividend, partsCount, bit);
572 }
573
574 if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
575 exponent--;
576 APInt::tcShiftLeft(dividend, partsCount, 1);
577 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
578 }
579
580 /* Long division. */
581 for(bit = precision; bit; bit -= 1) {
582 if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
583 APInt::tcSubtract(dividend, divisor, 0, partsCount);
584 APInt::tcSetBit(lhsSignificand, bit - 1);
585 }
586
587 APInt::tcShiftLeft(dividend, partsCount, 1);
588 }
589
590 /* Figure out the lost fraction. */
591 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
592
593 if(cmp > 0)
594 lost_fraction = lfMoreThanHalf;
595 else if(cmp == 0)
596 lost_fraction = lfExactlyHalf;
597 else if(APInt::tcIsZero(dividend, partsCount))
598 lost_fraction = lfExactlyZero;
599 else
600 lost_fraction = lfLessThanHalf;
601
602 if(partsCount > 2)
603 delete [] dividend;
604
605 return lost_fraction;
606}
607
608unsigned int
609APFloat::significandMSB() const
610{
611 return APInt::tcMSB(significandParts(), partCount());
612}
613
614unsigned int
615APFloat::significandLSB() const
616{
617 return APInt::tcLSB(significandParts(), partCount());
618}
619
620/* Note that a zero result is NOT normalized to fcZero. */
621lostFraction
622APFloat::shiftSignificandRight(unsigned int bits)
623{
624 /* Our exponent should not overflow. */
625 assert((exponent_t) (exponent + bits) >= exponent);
626
627 exponent += bits;
628
629 return shiftRight(significandParts(), partCount(), bits);
630}
631
632/* Shift the significand left BITS bits, subtract BITS from its exponent. */
633void
634APFloat::shiftSignificandLeft(unsigned int bits)
635{
636 assert(bits < semantics->precision);
637
638 if(bits) {
639 unsigned int partsCount = partCount();
640
641 APInt::tcShiftLeft(significandParts(), partsCount, bits);
642 exponent -= bits;
643
644 assert(!APInt::tcIsZero(significandParts(), partsCount));
645 }
646}
647
648APFloat::cmpResult
649APFloat::compareAbsoluteValue(const APFloat &rhs) const
650{
651 int compare;
652
653 assert(semantics == rhs.semantics);
654 assert(category == fcNormal);
655 assert(rhs.category == fcNormal);
656
657 compare = exponent - rhs.exponent;
658
659 /* If exponents are equal, do an unsigned bignum comparison of the
660 significands. */
661 if(compare == 0)
662 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
663 partCount());
664
665 if(compare > 0)
666 return cmpGreaterThan;
667 else if(compare < 0)
668 return cmpLessThan;
669 else
670 return cmpEqual;
671}
672
673/* Handle overflow. Sign is preserved. We either become infinity or
674 the largest finite number. */
675APFloat::opStatus
676APFloat::handleOverflow(roundingMode rounding_mode)
677{
678 /* Infinity? */
679 if(rounding_mode == rmNearestTiesToEven
680 || rounding_mode == rmNearestTiesToAway
681 || (rounding_mode == rmTowardPositive && !sign)
682 || (rounding_mode == rmTowardNegative && sign))
683 {
684 category = fcInfinity;
685 return (opStatus) (opOverflow | opInexact);
686 }
687
688 /* Otherwise we become the largest finite number. */
689 category = fcNormal;
690 exponent = semantics->maxExponent;
691 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
692 semantics->precision);
693
694 return opInexact;
695}
696
697/* This routine must work for fcZero of both signs, and fcNormal
698 numbers. */
699bool
700APFloat::roundAwayFromZero(roundingMode rounding_mode,
701 lostFraction lost_fraction)
702{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000703 /* NaNs and infinities should not have lost fractions. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000704 assert(category == fcNormal || category == fcZero);
705
706 /* Our caller has already handled this case. */
707 assert(lost_fraction != lfExactlyZero);
708
709 switch(rounding_mode) {
710 default:
711 assert(0);
712
713 case rmNearestTiesToAway:
714 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
715
716 case rmNearestTiesToEven:
717 if(lost_fraction == lfMoreThanHalf)
718 return true;
719
720 /* Our zeroes don't have a significand to test. */
721 if(lost_fraction == lfExactlyHalf && category != fcZero)
722 return significandParts()[0] & 1;
723
724 return false;
725
726 case rmTowardZero:
727 return false;
728
729 case rmTowardPositive:
730 return sign == false;
731
732 case rmTowardNegative:
733 return sign == true;
734 }
735}
736
737APFloat::opStatus
738APFloat::normalize(roundingMode rounding_mode,
739 lostFraction lost_fraction)
740{
741 unsigned int omsb; /* One, not zero, based MSB. */
742 int exponentChange;
743
744 if(category != fcNormal)
745 return opOK;
746
747 /* Before rounding normalize the exponent of fcNormal numbers. */
748 omsb = significandMSB() + 1;
749
750 if(omsb) {
751 /* OMSB is numbered from 1. We want to place it in the integer
752 bit numbered PRECISON if possible, with a compensating change in
753 the exponent. */
754 exponentChange = omsb - semantics->precision;
755
756 /* If the resulting exponent is too high, overflow according to
757 the rounding mode. */
758 if(exponent + exponentChange > semantics->maxExponent)
759 return handleOverflow(rounding_mode);
760
761 /* Subnormal numbers have exponent minExponent, and their MSB
762 is forced based on that. */
763 if(exponent + exponentChange < semantics->minExponent)
764 exponentChange = semantics->minExponent - exponent;
765
766 /* Shifting left is easy as we don't lose precision. */
767 if(exponentChange < 0) {
768 assert(lost_fraction == lfExactlyZero);
769
770 shiftSignificandLeft(-exponentChange);
771
772 return opOK;
773 }
774
775 if(exponentChange > 0) {
776 lostFraction lf;
777
778 /* Shift right and capture any new lost fraction. */
779 lf = shiftSignificandRight(exponentChange);
780
781 lost_fraction = combineLostFractions(lf, lost_fraction);
782
783 /* Keep OMSB up-to-date. */
784 if(omsb > (unsigned) exponentChange)
785 omsb -= (unsigned) exponentChange;
786 else
787 omsb = 0;
788 }
789 }
790
791 /* Now round the number according to rounding_mode given the lost
792 fraction. */
793
794 /* As specified in IEEE 754, since we do not trap we do not report
795 underflow for exact results. */
796 if(lost_fraction == lfExactlyZero) {
797 /* Canonicalize zeroes. */
798 if(omsb == 0)
799 category = fcZero;
800
801 return opOK;
802 }
803
804 /* Increment the significand if we're rounding away from zero. */
805 if(roundAwayFromZero(rounding_mode, lost_fraction)) {
806 if(omsb == 0)
807 exponent = semantics->minExponent;
808
809 incrementSignificand();
810 omsb = significandMSB() + 1;
811
812 /* Did the significand increment overflow? */
813 if(omsb == (unsigned) semantics->precision + 1) {
814 /* Renormalize by incrementing the exponent and shifting our
815 significand right one. However if we already have the
816 maximum exponent we overflow to infinity. */
817 if(exponent == semantics->maxExponent) {
818 category = fcInfinity;
819
820 return (opStatus) (opOverflow | opInexact);
821 }
822
823 shiftSignificandRight(1);
824
825 return opInexact;
826 }
827 }
828
829 /* The normal case - we were and are not denormal, and any
830 significand increment above didn't overflow. */
831 if(omsb == semantics->precision)
832 return opInexact;
833
834 /* We have a non-zero denormal. */
835 assert(omsb < semantics->precision);
836 assert(exponent == semantics->minExponent);
837
838 /* Canonicalize zeroes. */
839 if(omsb == 0)
840 category = fcZero;
841
842 /* The fcZero case is a denormal that underflowed to zero. */
843 return (opStatus) (opUnderflow | opInexact);
844}
845
846APFloat::opStatus
847APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
848{
849 switch(convolve(category, rhs.category)) {
850 default:
851 assert(0);
852
Dale Johanneseneaf08942007-08-31 04:03:46 +0000853 case convolve(fcNaN, fcZero):
854 case convolve(fcNaN, fcNormal):
855 case convolve(fcNaN, fcInfinity):
856 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000857 case convolve(fcNormal, fcZero):
858 case convolve(fcInfinity, fcNormal):
859 case convolve(fcInfinity, fcZero):
860 return opOK;
861
Dale Johanneseneaf08942007-08-31 04:03:46 +0000862 case convolve(fcZero, fcNaN):
863 case convolve(fcNormal, fcNaN):
864 case convolve(fcInfinity, fcNaN):
865 category = fcNaN;
866 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000867 return opOK;
868
869 case convolve(fcNormal, fcInfinity):
870 case convolve(fcZero, fcInfinity):
871 category = fcInfinity;
872 sign = rhs.sign ^ subtract;
873 return opOK;
874
875 case convolve(fcZero, fcNormal):
876 assign(rhs);
877 sign = rhs.sign ^ subtract;
878 return opOK;
879
880 case convolve(fcZero, fcZero):
881 /* Sign depends on rounding mode; handled by caller. */
882 return opOK;
883
884 case convolve(fcInfinity, fcInfinity):
885 /* Differently signed infinities can only be validly
886 subtracted. */
887 if(sign ^ rhs.sign != subtract) {
Dale Johanneseneaf08942007-08-31 04:03:46 +0000888 category = fcNaN;
889 // Arbitrary but deterministic value for significand
890 APInt::tcSet(significandParts(), ~0U, partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000891 return opInvalidOp;
892 }
893
894 return opOK;
895
896 case convolve(fcNormal, fcNormal):
897 return opDivByZero;
898 }
899}
900
901/* Add or subtract two normal numbers. */
902lostFraction
903APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
904{
905 integerPart carry;
906 lostFraction lost_fraction;
907 int bits;
908
909 /* Determine if the operation on the absolute values is effectively
910 an addition or subtraction. */
911 subtract ^= (sign ^ rhs.sign);
912
913 /* Are we bigger exponent-wise than the RHS? */
914 bits = exponent - rhs.exponent;
915
916 /* Subtraction is more subtle than one might naively expect. */
917 if(subtract) {
918 APFloat temp_rhs(rhs);
919 bool reverse;
920
Chris Lattnerada530b2007-08-24 03:02:34 +0000921 if (bits == 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000922 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
923 lost_fraction = lfExactlyZero;
Chris Lattnerada530b2007-08-24 03:02:34 +0000924 } else if (bits > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000925 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
926 shiftSignificandLeft(1);
927 reverse = false;
Chris Lattnerada530b2007-08-24 03:02:34 +0000928 } else {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000929 lost_fraction = shiftSignificandRight(-bits - 1);
930 temp_rhs.shiftSignificandLeft(1);
931 reverse = true;
932 }
933
Chris Lattnerada530b2007-08-24 03:02:34 +0000934 if (reverse) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000935 carry = temp_rhs.subtractSignificand
936 (*this, lost_fraction != lfExactlyZero);
937 copySignificand(temp_rhs);
938 sign = !sign;
939 } else {
940 carry = subtractSignificand
941 (temp_rhs, lost_fraction != lfExactlyZero);
942 }
943
944 /* Invert the lost fraction - it was on the RHS and
945 subtracted. */
946 if(lost_fraction == lfLessThanHalf)
947 lost_fraction = lfMoreThanHalf;
948 else if(lost_fraction == lfMoreThanHalf)
949 lost_fraction = lfLessThanHalf;
950
951 /* The code above is intended to ensure that no borrow is
952 necessary. */
953 assert(!carry);
954 } else {
955 if(bits > 0) {
956 APFloat temp_rhs(rhs);
957
958 lost_fraction = temp_rhs.shiftSignificandRight(bits);
959 carry = addSignificand(temp_rhs);
960 } else {
961 lost_fraction = shiftSignificandRight(-bits);
962 carry = addSignificand(rhs);
963 }
964
965 /* We have a guard bit; generating a carry cannot happen. */
966 assert(!carry);
967 }
968
969 return lost_fraction;
970}
971
972APFloat::opStatus
973APFloat::multiplySpecials(const APFloat &rhs)
974{
975 switch(convolve(category, rhs.category)) {
976 default:
977 assert(0);
978
Dale Johanneseneaf08942007-08-31 04:03:46 +0000979 case convolve(fcNaN, fcZero):
980 case convolve(fcNaN, fcNormal):
981 case convolve(fcNaN, fcInfinity):
982 case convolve(fcNaN, fcNaN):
983 return opOK;
984
985 case convolve(fcZero, fcNaN):
986 case convolve(fcNormal, fcNaN):
987 case convolve(fcInfinity, fcNaN):
988 category = fcNaN;
989 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000990 return opOK;
991
992 case convolve(fcNormal, fcInfinity):
993 case convolve(fcInfinity, fcNormal):
994 case convolve(fcInfinity, fcInfinity):
995 category = fcInfinity;
996 return opOK;
997
998 case convolve(fcZero, fcNormal):
999 case convolve(fcNormal, fcZero):
1000 case convolve(fcZero, fcZero):
1001 category = fcZero;
1002 return opOK;
1003
1004 case convolve(fcZero, fcInfinity):
1005 case convolve(fcInfinity, fcZero):
Dale Johanneseneaf08942007-08-31 04:03:46 +00001006 category = fcNaN;
1007 // Arbitrary but deterministic value for significand
1008 APInt::tcSet(significandParts(), ~0U, partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001009 return opInvalidOp;
1010
1011 case convolve(fcNormal, fcNormal):
1012 return opOK;
1013 }
1014}
1015
1016APFloat::opStatus
1017APFloat::divideSpecials(const APFloat &rhs)
1018{
1019 switch(convolve(category, rhs.category)) {
1020 default:
1021 assert(0);
1022
Dale Johanneseneaf08942007-08-31 04:03:46 +00001023 case convolve(fcNaN, fcZero):
1024 case convolve(fcNaN, fcNormal):
1025 case convolve(fcNaN, fcInfinity):
1026 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001027 case convolve(fcInfinity, fcZero):
1028 case convolve(fcInfinity, fcNormal):
1029 case convolve(fcZero, fcInfinity):
1030 case convolve(fcZero, fcNormal):
1031 return opOK;
1032
Dale Johanneseneaf08942007-08-31 04:03:46 +00001033 case convolve(fcZero, fcNaN):
1034 case convolve(fcNormal, fcNaN):
1035 case convolve(fcInfinity, fcNaN):
1036 category = fcNaN;
1037 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001038 return opOK;
1039
1040 case convolve(fcNormal, fcInfinity):
1041 category = fcZero;
1042 return opOK;
1043
1044 case convolve(fcNormal, fcZero):
1045 category = fcInfinity;
1046 return opDivByZero;
1047
1048 case convolve(fcInfinity, fcInfinity):
1049 case convolve(fcZero, fcZero):
Dale Johanneseneaf08942007-08-31 04:03:46 +00001050 category = fcNaN;
1051 // Arbitrary but deterministic value for significand
1052 APInt::tcSet(significandParts(), ~0U, partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001053 return opInvalidOp;
1054
1055 case convolve(fcNormal, fcNormal):
1056 return opOK;
1057 }
1058}
1059
1060/* Change sign. */
1061void
1062APFloat::changeSign()
1063{
1064 /* Look mummy, this one's easy. */
1065 sign = !sign;
1066}
1067
Dale Johannesene15c2db2007-08-31 23:35:31 +00001068void
1069APFloat::clearSign()
1070{
1071 /* So is this one. */
1072 sign = 0;
1073}
1074
1075void
1076APFloat::copySign(const APFloat &rhs)
1077{
1078 /* And this one. */
1079 sign = rhs.sign;
1080}
1081
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001082/* Normalized addition or subtraction. */
1083APFloat::opStatus
1084APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
1085 bool subtract)
1086{
1087 opStatus fs;
1088
1089 fs = addOrSubtractSpecials(rhs, subtract);
1090
1091 /* This return code means it was not a simple case. */
1092 if(fs == opDivByZero) {
1093 lostFraction lost_fraction;
1094
1095 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1096 fs = normalize(rounding_mode, lost_fraction);
1097
1098 /* Can only be zero if we lost no fraction. */
1099 assert(category != fcZero || lost_fraction == lfExactlyZero);
1100 }
1101
1102 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1103 positive zero unless rounding to minus infinity, except that
1104 adding two like-signed zeroes gives that zero. */
1105 if(category == fcZero) {
1106 if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
1107 sign = (rounding_mode == rmTowardNegative);
1108 }
1109
1110 return fs;
1111}
1112
1113/* Normalized addition. */
1114APFloat::opStatus
1115APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1116{
1117 return addOrSubtract(rhs, rounding_mode, false);
1118}
1119
1120/* Normalized subtraction. */
1121APFloat::opStatus
1122APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1123{
1124 return addOrSubtract(rhs, rounding_mode, true);
1125}
1126
1127/* Normalized multiply. */
1128APFloat::opStatus
1129APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1130{
1131 opStatus fs;
1132
1133 sign ^= rhs.sign;
1134 fs = multiplySpecials(rhs);
1135
1136 if(category == fcNormal) {
1137 lostFraction lost_fraction = multiplySignificand(rhs, 0);
1138 fs = normalize(rounding_mode, lost_fraction);
1139 if(lost_fraction != lfExactlyZero)
1140 fs = (opStatus) (fs | opInexact);
1141 }
1142
1143 return fs;
1144}
1145
1146/* Normalized divide. */
1147APFloat::opStatus
1148APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1149{
1150 opStatus fs;
1151
1152 sign ^= rhs.sign;
1153 fs = divideSpecials(rhs);
1154
1155 if(category == fcNormal) {
1156 lostFraction lost_fraction = divideSignificand(rhs);
1157 fs = normalize(rounding_mode, lost_fraction);
1158 if(lost_fraction != lfExactlyZero)
1159 fs = (opStatus) (fs | opInexact);
1160 }
1161
1162 return fs;
1163}
1164
Dale Johannesene15c2db2007-08-31 23:35:31 +00001165/* Normalized remainder. */
1166APFloat::opStatus
1167APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1168{
1169 opStatus fs;
1170 APFloat V = *this;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001171 unsigned int origSign = sign;
Dale Johannesene15c2db2007-08-31 23:35:31 +00001172 fs = V.divide(rhs, rmNearestTiesToEven);
1173 if (fs == opDivByZero)
1174 return fs;
1175
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001176 int parts = partCount();
1177 integerPart *x = new integerPart[parts];
1178 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1179 rmNearestTiesToEven);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001180 if (fs==opInvalidOp)
1181 return fs;
1182
Dale Johannesen910993e2007-09-21 22:09:37 +00001183 fs = V.convertFromInteger(x, parts * integerPartWidth, true,
1184 rmNearestTiesToEven);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001185 assert(fs==opOK); // should always work
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001186
Dale Johannesene15c2db2007-08-31 23:35:31 +00001187 fs = V.multiply(rhs, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001188 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1189
Dale Johannesene15c2db2007-08-31 23:35:31 +00001190 fs = subtract(V, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001191 assert(fs==opOK || fs==opInexact); // likewise
1192
1193 if (isZero())
1194 sign = origSign; // IEEE754 requires this
1195 delete[] x;
Dale Johannesene15c2db2007-08-31 23:35:31 +00001196 return fs;
1197}
1198
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001199/* Normalized fused-multiply-add. */
1200APFloat::opStatus
1201APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
1202 const APFloat &addend,
1203 roundingMode rounding_mode)
1204{
1205 opStatus fs;
1206
1207 /* Post-multiplication sign, before addition. */
1208 sign ^= multiplicand.sign;
1209
1210 /* If and only if all arguments are normal do we need to do an
1211 extended-precision calculation. */
1212 if(category == fcNormal
1213 && multiplicand.category == fcNormal
1214 && addend.category == fcNormal) {
1215 lostFraction lost_fraction;
1216
1217 lost_fraction = multiplySignificand(multiplicand, &addend);
1218 fs = normalize(rounding_mode, lost_fraction);
1219 if(lost_fraction != lfExactlyZero)
1220 fs = (opStatus) (fs | opInexact);
1221
1222 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1223 positive zero unless rounding to minus infinity, except that
1224 adding two like-signed zeroes gives that zero. */
1225 if(category == fcZero && sign != addend.sign)
1226 sign = (rounding_mode == rmTowardNegative);
1227 } else {
1228 fs = multiplySpecials(multiplicand);
1229
1230 /* FS can only be opOK or opInvalidOp. There is no more work
1231 to do in the latter case. The IEEE-754R standard says it is
1232 implementation-defined in this case whether, if ADDEND is a
Dale Johanneseneaf08942007-08-31 04:03:46 +00001233 quiet NaN, we raise invalid op; this implementation does so.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001234
1235 If we need to do the addition we can do so with normal
1236 precision. */
1237 if(fs == opOK)
1238 fs = addOrSubtract(addend, rounding_mode, false);
1239 }
1240
1241 return fs;
1242}
1243
1244/* Comparison requires normalized numbers. */
1245APFloat::cmpResult
1246APFloat::compare(const APFloat &rhs) const
1247{
1248 cmpResult result;
1249
1250 assert(semantics == rhs.semantics);
1251
1252 switch(convolve(category, rhs.category)) {
1253 default:
1254 assert(0);
1255
Dale Johanneseneaf08942007-08-31 04:03:46 +00001256 case convolve(fcNaN, fcZero):
1257 case convolve(fcNaN, fcNormal):
1258 case convolve(fcNaN, fcInfinity):
1259 case convolve(fcNaN, fcNaN):
1260 case convolve(fcZero, fcNaN):
1261 case convolve(fcNormal, fcNaN):
1262 case convolve(fcInfinity, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001263 return cmpUnordered;
1264
1265 case convolve(fcInfinity, fcNormal):
1266 case convolve(fcInfinity, fcZero):
1267 case convolve(fcNormal, fcZero):
1268 if(sign)
1269 return cmpLessThan;
1270 else
1271 return cmpGreaterThan;
1272
1273 case convolve(fcNormal, fcInfinity):
1274 case convolve(fcZero, fcInfinity):
1275 case convolve(fcZero, fcNormal):
1276 if(rhs.sign)
1277 return cmpGreaterThan;
1278 else
1279 return cmpLessThan;
1280
1281 case convolve(fcInfinity, fcInfinity):
1282 if(sign == rhs.sign)
1283 return cmpEqual;
1284 else if(sign)
1285 return cmpLessThan;
1286 else
1287 return cmpGreaterThan;
1288
1289 case convolve(fcZero, fcZero):
1290 return cmpEqual;
1291
1292 case convolve(fcNormal, fcNormal):
1293 break;
1294 }
1295
1296 /* Two normal numbers. Do they have the same sign? */
1297 if(sign != rhs.sign) {
1298 if(sign)
1299 result = cmpLessThan;
1300 else
1301 result = cmpGreaterThan;
1302 } else {
1303 /* Compare absolute values; invert result if negative. */
1304 result = compareAbsoluteValue(rhs);
1305
1306 if(sign) {
1307 if(result == cmpLessThan)
1308 result = cmpGreaterThan;
1309 else if(result == cmpGreaterThan)
1310 result = cmpLessThan;
1311 }
1312 }
1313
1314 return result;
1315}
1316
1317APFloat::opStatus
1318APFloat::convert(const fltSemantics &toSemantics,
1319 roundingMode rounding_mode)
1320{
Neil Boothc8db43d2007-09-22 02:56:19 +00001321 lostFraction lostFraction;
1322 unsigned int newPartCount, oldPartCount;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001323 opStatus fs;
Neil Boothc8db43d2007-09-22 02:56:19 +00001324
1325 lostFraction = lfExactlyZero;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001326 newPartCount = partCountForBits(toSemantics.precision + 1);
Neil Boothc8db43d2007-09-22 02:56:19 +00001327 oldPartCount = partCount();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001328
Neil Boothc8db43d2007-09-22 02:56:19 +00001329 /* Handle storage complications. If our new form is wider,
1330 re-allocate our bit pattern into wider storage. If it is
1331 narrower, we ignore the excess parts, but if narrowing to a
1332 single part we need to free the old storage. */
1333 if (newPartCount > oldPartCount) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001334 integerPart *newParts;
1335
1336 newParts = new integerPart[newPartCount];
1337 APInt::tcSet(newParts, 0, newPartCount);
Neil Boothc8db43d2007-09-22 02:56:19 +00001338 APInt::tcAssign(newParts, significandParts(), oldPartCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001339 freeSignificand();
1340 significand.parts = newParts;
Neil Boothc8db43d2007-09-22 02:56:19 +00001341 } else if (newPartCount < oldPartCount) {
1342 /* Capture any lost fraction through truncation of parts so we get
1343 correct rounding whilst normalizing. */
1344 lostFraction = lostFractionThroughTruncation
1345 (significandParts(), oldPartCount, toSemantics.precision);
1346 if (newPartCount == 1)
1347 {
1348 integerPart newPart = significandParts()[0];
1349 freeSignificand();
1350 significand.part = newPart;
1351 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001352 }
1353
1354 if(category == fcNormal) {
1355 /* Re-interpret our bit-pattern. */
1356 exponent += toSemantics.precision - semantics->precision;
1357 semantics = &toSemantics;
Neil Boothc8db43d2007-09-22 02:56:19 +00001358 fs = normalize(rounding_mode, lostFraction);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001359 } else {
1360 semantics = &toSemantics;
1361 fs = opOK;
1362 }
1363
1364 return fs;
1365}
1366
1367/* Convert a floating point number to an integer according to the
1368 rounding mode. If the rounded integer value is out of range this
1369 returns an invalid operation exception. If the rounded value is in
1370 range but the floating point number is not the exact integer, the C
1371 standard doesn't require an inexact exception to be raised. IEEE
1372 854 does require it so we do that.
1373
1374 Note that for conversions to integer type the C standard requires
1375 round-to-zero to always be used. */
1376APFloat::opStatus
1377APFloat::convertToInteger(integerPart *parts, unsigned int width,
1378 bool isSigned,
1379 roundingMode rounding_mode) const
1380{
1381 lostFraction lost_fraction;
1382 unsigned int msb, partsCount;
1383 int bits;
1384
1385 /* Handle the three special cases first. */
Dale Johanneseneaf08942007-08-31 04:03:46 +00001386 if(category == fcInfinity || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001387 return opInvalidOp;
1388
1389 partsCount = partCountForBits(width);
1390
1391 if(category == fcZero) {
1392 APInt::tcSet(parts, 0, partsCount);
1393 return opOK;
1394 }
1395
1396 /* Shift the bit pattern so the fraction is lost. */
1397 APFloat tmp(*this);
1398
1399 bits = (int) semantics->precision - 1 - exponent;
1400
1401 if(bits > 0) {
1402 lost_fraction = tmp.shiftSignificandRight(bits);
1403 } else {
1404 tmp.shiftSignificandLeft(-bits);
1405 lost_fraction = lfExactlyZero;
1406 }
1407
1408 if(lost_fraction != lfExactlyZero
1409 && tmp.roundAwayFromZero(rounding_mode, lost_fraction))
1410 tmp.incrementSignificand();
1411
1412 msb = tmp.significandMSB();
1413
1414 /* Negative numbers cannot be represented as unsigned. */
1415 if(!isSigned && tmp.sign && msb != -1U)
1416 return opInvalidOp;
1417
1418 /* It takes exponent + 1 bits to represent the truncated floating
1419 point number without its sign. We lose a bit for the sign, but
1420 the maximally negative integer is a special case. */
1421 if(msb + 1 > width) /* !! Not same as msb >= width !! */
1422 return opInvalidOp;
1423
1424 if(isSigned && msb + 1 == width
1425 && (!tmp.sign || tmp.significandLSB() != msb))
1426 return opInvalidOp;
1427
1428 APInt::tcAssign(parts, tmp.significandParts(), partsCount);
1429
1430 if(tmp.sign)
1431 APInt::tcNegate(parts, partsCount);
1432
1433 if(lost_fraction == lfExactlyZero)
1434 return opOK;
1435 else
1436 return opInexact;
1437}
1438
1439APFloat::opStatus
1440APFloat::convertFromUnsignedInteger(integerPart *parts,
1441 unsigned int partCount,
1442 roundingMode rounding_mode)
1443{
1444 unsigned int msb, precision;
1445 lostFraction lost_fraction;
1446
1447 msb = APInt::tcMSB(parts, partCount) + 1;
1448 precision = semantics->precision;
1449
1450 category = fcNormal;
1451 exponent = precision - 1;
1452
1453 if(msb > precision) {
1454 exponent += (msb - precision);
1455 lost_fraction = shiftRight(parts, partCount, msb - precision);
1456 msb = precision;
1457 } else
1458 lost_fraction = lfExactlyZero;
1459
1460 /* Copy the bit image. */
1461 zeroSignificand();
1462 APInt::tcAssign(significandParts(), parts, partCountForBits(msb));
1463
1464 return normalize(rounding_mode, lost_fraction);
1465}
1466
1467APFloat::opStatus
Dale Johannesen910993e2007-09-21 22:09:37 +00001468APFloat::convertFromInteger(const integerPart *parts, unsigned int width,
1469 bool isSigned, roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001470{
Dale Johannesen910993e2007-09-21 22:09:37 +00001471 unsigned int partCount = partCountForBits(width);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001472 opStatus status;
Dale Johannesen910993e2007-09-21 22:09:37 +00001473 APInt api = APInt(width, partCount, parts);
1474 integerPart *copy = new integerPart[partCount];
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001475
1476 sign = false;
Dale Johannesen910993e2007-09-21 22:09:37 +00001477 if(isSigned) {
1478 if (APInt::tcExtractBit(parts, width - 1)) {
1479 sign = true;
1480 if (width < partCount * integerPartWidth)
1481 api = api.sext(partCount * integerPartWidth);
1482 }
1483 else if (width < partCount * integerPartWidth)
1484 api = api.zext(partCount * integerPartWidth);
1485 } else {
1486 if (width < partCount * integerPartWidth)
1487 api = api.zext(partCount * integerPartWidth);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001488 }
1489
Dale Johannesen910993e2007-09-21 22:09:37 +00001490 APInt::tcAssign(copy, api.getRawData(), partCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001491 status = convertFromUnsignedInteger(copy, partCount, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001492 return status;
1493}
1494
1495APFloat::opStatus
1496APFloat::convertFromHexadecimalString(const char *p,
1497 roundingMode rounding_mode)
1498{
1499 lostFraction lost_fraction;
1500 integerPart *significand;
1501 unsigned int bitPos, partsCount;
1502 const char *dot, *firstSignificantDigit;
1503
1504 zeroSignificand();
1505 exponent = 0;
1506 category = fcNormal;
1507
1508 significand = significandParts();
1509 partsCount = partCount();
1510 bitPos = partsCount * integerPartWidth;
1511
1512 /* Skip leading zeroes and any(hexa)decimal point. */
1513 p = skipLeadingZeroesAndAnyDot(p, &dot);
1514 firstSignificantDigit = p;
1515
1516 for(;;) {
1517 integerPart hex_value;
1518
1519 if(*p == '.') {
1520 assert(dot == 0);
1521 dot = p++;
1522 }
1523
1524 hex_value = hexDigitValue(*p);
1525 if(hex_value == -1U) {
1526 lost_fraction = lfExactlyZero;
1527 break;
1528 }
1529
1530 p++;
1531
1532 /* Store the number whilst 4-bit nibbles remain. */
1533 if(bitPos) {
1534 bitPos -= 4;
1535 hex_value <<= bitPos % integerPartWidth;
1536 significand[bitPos / integerPartWidth] |= hex_value;
1537 } else {
1538 lost_fraction = trailingHexadecimalFraction(p, hex_value);
1539 while(hexDigitValue(*p) != -1U)
1540 p++;
1541 break;
1542 }
1543 }
1544
1545 /* Hex floats require an exponent but not a hexadecimal point. */
1546 assert(*p == 'p' || *p == 'P');
1547
1548 /* Ignore the exponent if we are zero. */
1549 if(p != firstSignificantDigit) {
1550 int expAdjustment;
1551
1552 /* Implicit hexadecimal point? */
1553 if(!dot)
1554 dot = p;
1555
1556 /* Calculate the exponent adjustment implicit in the number of
1557 significant digits. */
1558 expAdjustment = dot - firstSignificantDigit;
1559 if(expAdjustment < 0)
1560 expAdjustment++;
1561 expAdjustment = expAdjustment * 4 - 1;
1562
1563 /* Adjust for writing the significand starting at the most
1564 significant nibble. */
1565 expAdjustment += semantics->precision;
1566 expAdjustment -= partsCount * integerPartWidth;
1567
1568 /* Adjust for the given exponent. */
1569 exponent = totalExponent(p, expAdjustment);
1570 }
1571
1572 return normalize(rounding_mode, lost_fraction);
1573}
1574
1575APFloat::opStatus
Chris Lattnerada530b2007-08-24 03:02:34 +00001576APFloat::convertFromString(const char *p, roundingMode rounding_mode) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001577 /* Handle a leading minus sign. */
1578 if(*p == '-')
1579 sign = 1, p++;
1580 else
1581 sign = 0;
1582
1583 if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
1584 return convertFromHexadecimalString(p + 2, rounding_mode);
Chris Lattnerada530b2007-08-24 03:02:34 +00001585
1586 assert(0 && "Decimal to binary conversions not yet implemented");
1587 abort();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001588}
Dale Johannesen343e7702007-08-24 00:56:33 +00001589
1590// For good performance it is desirable for different APFloats
1591// to produce different integers.
1592uint32_t
1593APFloat::getHashValue() const {
1594 if (category==fcZero) return sign<<8 | semantics->precision ;
1595 else if (category==fcInfinity) return sign<<9 | semantics->precision;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001596 else if (category==fcNaN) return 1<<10 | semantics->precision;
Dale Johannesen343e7702007-08-24 00:56:33 +00001597 else {
1598 uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
1599 const integerPart* p = significandParts();
1600 for (int i=partCount(); i>0; i--, p++)
1601 hash ^= ((uint32_t)*p) ^ (*p)>>32;
1602 return hash;
1603 }
1604}
1605
1606// Conversion from APFloat to/from host float/double. It may eventually be
1607// possible to eliminate these and have everybody deal with APFloats, but that
1608// will take a while. This approach will not easily extend to long double.
Dale Johannesena72a5a02007-09-20 23:47:58 +00001609// Current implementation requires integerPartWidth==64, which is correct at
1610// the moment but could be made more general.
Dale Johannesen343e7702007-08-24 00:56:33 +00001611
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001612// Denormals have exponent minExponent in APFloat, but minExponent-1 in
Dale Johannesena72a5a02007-09-20 23:47:58 +00001613// the actual IEEE respresentations. We compensate for that here.
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001614
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001615APInt
1616APFloat::convertF80LongDoubleAPFloatToAPInt() const {
1617 assert(semantics == (const llvm::fltSemantics* const)&x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00001618 assert (partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001619
1620 uint64_t myexponent, mysignificand;
1621
1622 if (category==fcNormal) {
1623 myexponent = exponent+16383; //bias
Dale Johannesena72a5a02007-09-20 23:47:58 +00001624 mysignificand = significandParts()[0];
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001625 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
1626 myexponent = 0; // denormal
1627 } else if (category==fcZero) {
1628 myexponent = 0;
1629 mysignificand = 0;
1630 } else if (category==fcInfinity) {
1631 myexponent = 0x7fff;
1632 mysignificand = 0x8000000000000000ULL;
1633 } else if (category==fcNaN) {
1634 myexponent = 0x7fff;
Dale Johannesena72a5a02007-09-20 23:47:58 +00001635 mysignificand = significandParts()[0];
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001636 } else
1637 assert(0);
1638
1639 uint64_t words[2];
1640 words[0] = (((uint64_t)sign & 1) << 63) |
1641 ((myexponent & 0x7fff) << 48) |
1642 ((mysignificand >>16) & 0xffffffffffffLL);
1643 words[1] = mysignificand & 0xffff;
1644 APInt api(80, 2, words);
1645 return api;
1646}
1647
1648APInt
1649APFloat::convertDoubleAPFloatToAPInt() const {
Dan Gohmancb648f92007-09-14 20:08:19 +00001650 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00001651 assert (partCount()==1);
1652
Dale Johanneseneaf08942007-08-31 04:03:46 +00001653 uint64_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001654
1655 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001656 myexponent = exponent+1023; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001657 mysignificand = *significandParts();
1658 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
1659 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00001660 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001661 myexponent = 0;
1662 mysignificand = 0;
1663 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001664 myexponent = 0x7ff;
1665 mysignificand = 0;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001666 } else if (category==fcNaN) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001667 myexponent = 0x7ff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001668 mysignificand = *significandParts();
Dale Johannesen343e7702007-08-24 00:56:33 +00001669 } else
1670 assert(0);
1671
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001672 APInt api(64, (((((uint64_t)sign & 1) << 63) |
1673 ((myexponent & 0x7ff) << 52) |
1674 (mysignificand & 0xfffffffffffffLL))));
1675 return api;
Dale Johannesen343e7702007-08-24 00:56:33 +00001676}
1677
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001678APInt
1679APFloat::convertFloatAPFloatToAPInt() const {
Dan Gohmancb648f92007-09-14 20:08:19 +00001680 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00001681 assert (partCount()==1);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001682
Dale Johanneseneaf08942007-08-31 04:03:46 +00001683 uint32_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001684
1685 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001686 myexponent = exponent+127; //bias
1687 mysignificand = *significandParts();
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001688 if (myexponent == 1 && !(mysignificand & 0x400000))
1689 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00001690 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001691 myexponent = 0;
1692 mysignificand = 0;
1693 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001694 myexponent = 0xff;
1695 mysignificand = 0;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001696 } else if (category==fcNaN) {
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001697 myexponent = 0xff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001698 mysignificand = *significandParts();
Dale Johannesen343e7702007-08-24 00:56:33 +00001699 } else
1700 assert(0);
1701
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001702 APInt api(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
1703 (mysignificand & 0x7fffff)));
1704 return api;
Dale Johannesen343e7702007-08-24 00:56:33 +00001705}
1706
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001707APInt
1708APFloat::convertToAPInt() const {
1709 if (semantics == (const llvm::fltSemantics* const)&IEEEsingle)
1710 return convertFloatAPFloatToAPInt();
1711 else if (semantics == (const llvm::fltSemantics* const)&IEEEdouble)
1712 return convertDoubleAPFloatToAPInt();
1713 else if (semantics == (const llvm::fltSemantics* const)&x87DoubleExtended)
1714 return convertF80LongDoubleAPFloatToAPInt();
1715 else
1716 assert(0);
1717}
1718
1719float
1720APFloat::convertToFloat() const {
1721 assert(semantics == (const llvm::fltSemantics* const)&IEEEsingle);
1722 APInt api = convertToAPInt();
1723 return api.bitsToFloat();
1724}
1725
1726double
1727APFloat::convertToDouble() const {
1728 assert(semantics == (const llvm::fltSemantics* const)&IEEEdouble);
1729 APInt api = convertToAPInt();
1730 return api.bitsToDouble();
1731}
1732
1733/// Integer bit is explicit in this format. Current Intel book does not
1734/// define meaning of:
1735/// exponent = all 1's, integer bit not set.
1736/// exponent = 0, integer bit set. (formerly "psuedodenormals")
1737/// exponent!=0 nor all 1's, integer bit not set. (formerly "unnormals")
1738void
1739APFloat::initFromF80LongDoubleAPInt(const APInt &api) {
1740 assert(api.getBitWidth()==80);
1741 uint64_t i1 = api.getRawData()[0];
1742 uint64_t i2 = api.getRawData()[1];
1743 uint64_t myexponent = (i1 >> 48) & 0x7fff;
1744 uint64_t mysignificand = ((i1 << 16) & 0xffffffffffff0000ULL) |
1745 (i2 & 0xffff);
1746
1747 initialize(&APFloat::x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00001748 assert(partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001749
1750 sign = i1>>63;
1751 if (myexponent==0 && mysignificand==0) {
1752 // exponent, significand meaningless
1753 category = fcZero;
1754 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
1755 // exponent, significand meaningless
1756 category = fcInfinity;
1757 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
1758 // exponent meaningless
1759 category = fcNaN;
Dale Johannesena72a5a02007-09-20 23:47:58 +00001760 significandParts()[0] = mysignificand;
1761 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001762 } else {
1763 category = fcNormal;
1764 exponent = myexponent - 16383;
Dale Johannesena72a5a02007-09-20 23:47:58 +00001765 significandParts()[0] = mysignificand;
1766 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001767 if (myexponent==0) // denormal
1768 exponent = -16382;
1769 }
1770}
1771
1772void
1773APFloat::initFromDoubleAPInt(const APInt &api) {
1774 assert(api.getBitWidth()==64);
1775 uint64_t i = *api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00001776 uint64_t myexponent = (i >> 52) & 0x7ff;
1777 uint64_t mysignificand = i & 0xfffffffffffffLL;
1778
Dale Johannesen343e7702007-08-24 00:56:33 +00001779 initialize(&APFloat::IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00001780 assert(partCount()==1);
1781
Dale Johanneseneaf08942007-08-31 04:03:46 +00001782 sign = i>>63;
Dale Johannesen343e7702007-08-24 00:56:33 +00001783 if (myexponent==0 && mysignificand==0) {
1784 // exponent, significand meaningless
1785 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00001786 } else if (myexponent==0x7ff && mysignificand==0) {
1787 // exponent, significand meaningless
1788 category = fcInfinity;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001789 } else if (myexponent==0x7ff && mysignificand!=0) {
1790 // exponent meaningless
1791 category = fcNaN;
1792 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001793 } else {
Dale Johannesen343e7702007-08-24 00:56:33 +00001794 category = fcNormal;
1795 exponent = myexponent - 1023;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001796 *significandParts() = mysignificand;
1797 if (myexponent==0) // denormal
1798 exponent = -1022;
1799 else
1800 *significandParts() |= 0x10000000000000LL; // integer bit
Dale Johanneseneaf08942007-08-31 04:03:46 +00001801 }
Dale Johannesen343e7702007-08-24 00:56:33 +00001802}
1803
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001804void
1805APFloat::initFromFloatAPInt(const APInt & api) {
1806 assert(api.getBitWidth()==32);
1807 uint32_t i = (uint32_t)*api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00001808 uint32_t myexponent = (i >> 23) & 0xff;
1809 uint32_t mysignificand = i & 0x7fffff;
1810
Dale Johannesen343e7702007-08-24 00:56:33 +00001811 initialize(&APFloat::IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00001812 assert(partCount()==1);
1813
Dale Johanneseneaf08942007-08-31 04:03:46 +00001814 sign = i >> 31;
Dale Johannesen343e7702007-08-24 00:56:33 +00001815 if (myexponent==0 && mysignificand==0) {
1816 // exponent, significand meaningless
1817 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00001818 } else if (myexponent==0xff && mysignificand==0) {
1819 // exponent, significand meaningless
1820 category = fcInfinity;
Dale Johannesen343e7702007-08-24 00:56:33 +00001821 } else if (myexponent==0xff && (mysignificand & 0x400000)) {
1822 // sign, exponent, significand meaningless
Dale Johanneseneaf08942007-08-31 04:03:46 +00001823 category = fcNaN;
1824 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001825 } else {
1826 category = fcNormal;
Dale Johannesen343e7702007-08-24 00:56:33 +00001827 exponent = myexponent - 127; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001828 *significandParts() = mysignificand;
1829 if (myexponent==0) // denormal
1830 exponent = -126;
1831 else
1832 *significandParts() |= 0x800000; // integer bit
Dale Johannesen343e7702007-08-24 00:56:33 +00001833 }
1834}
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001835
1836/// Treat api as containing the bits of a floating point number. Currently
1837/// we infer the floating point type from the size of the APInt. FIXME: This
1838/// breaks when we get to PPC128 and IEEE128 (but both cannot exist in the
1839/// same compile...)
1840void
1841APFloat::initFromAPInt(const APInt& api) {
1842 if (api.getBitWidth() == 32)
1843 return initFromFloatAPInt(api);
1844 else if (api.getBitWidth()==64)
1845 return initFromDoubleAPInt(api);
1846 else if (api.getBitWidth()==80)
1847 return initFromF80LongDoubleAPInt(api);
1848 else
1849 assert(0);
1850}
1851
1852APFloat::APFloat(const APInt& api) {
1853 initFromAPInt(api);
1854}
1855
1856APFloat::APFloat(float f) {
1857 APInt api = APInt(32, 0);
1858 initFromAPInt(api.floatToBits(f));
1859}
1860
1861APFloat::APFloat(double d) {
1862 APInt api = APInt(64, 0);
1863 initFromAPInt(api.doubleToBits(d));
1864}
1865